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A Novel Universal Statistic for Computing Upper Limits in Ill-behaved Background

V. Dergachev!
'LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, CA 91125, USA

Analysis of experimental data must sometimes deal with abrupt changes in the distribution of
measured values. Setting upper limits on signals usually involves a veto procedure that excludes
data not described by an assumed statistical model. We show how to implement statistical estimates
of physical quantities (such as upper limits) that are valid without assuming a particular family
of statistical distributions, while still providing close to optimal values when the data are from

an expected distribution (such as Gaussian or exponential).

This new technique can compute

statistically sound results in the presence of severe non-Gaussian noise, relaxes assumptions on
distribution stationarity and is especially useful in automated analysis of large datasets, where

computational speed is important.

PACS numbers: 07.05.Kf, 02.50.Tt, 04.80.Nn, 06.20.Dk

I. INTRODUCTION

Data collected in experiments are sometimes contam-
inated by noise or background with an ill-behaved and
often unknown distribution, presenting problems for the
traditional method of using distribution quantiles to es-
tablish upper limits or confidence intervals. This problem
happens especially often in experiments that collect large
volumes of data.

A common solution is to exclude contaminated data
from the analysis. For example, figure 1 shows a small
portion of data obtained in the LIGO search for continu-
ous gravitational waves in fifth science run using Power-
Flux code [1]. The blue points mark regions where non-
Gaussian behavior was detected and upper limit values
are not expected to be valid.

In fact, if one looks carefully at the data for each point
one can find a cause of non-Gaussian behavior and a
workaround to establish an upper limit - but the causes
are different for different points, making analysis very
laborious.

What is desired is an automated way to establish an
upper limit that would be valid (if a bit conservative) for
an arbitrary distribution, while still being close to opti-
mum in the case of Gaussian noise (or other distribution
class) that commonly occurs in the data.

We present a new algorithm that establishes upper lim-
its without assuming a specific underlying background
distribution, and that can be optimized for an arbitrary
class of distributions (such as Gaussian, exponential, etc)
that are expected to commonly occur in the data. A com-
parison is made to conventional methods of establishing
upper limits.

This advance allows one to obtain valid upper limits on
signal strengths in the presence of ill-behaved and poorly
understood background.
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FIG. 1. Upper limit data from LIGO S5 search for continuous
gravitational waves in the 50-200 Hz frequency range[l]. A
large number of non-Gaussian bands significantly reduces the
usefulness of the results. (color online)

II. UNIVERSAL INEQUALITIES AND
STATISTIC

Let us consider a sample problem. Suppose we have
obtained many samples of data which consist of back-
ground noise plus a possible signal. The data is collected
in batches of N samples d; for which the background
noise &; is independent and identically distributed. Also,
we expect that at most one sample j in each batch con-
tains a signal:

We would like to place a limit on the strength of the
signals that may (or may not) be present in our data set.



If we knew that the noise &; were drawn from a partic-
ular distribution p (such as Gaussian) our task would be
straightforward - we would find the maximum d; in all
our data, subtract the mean of the background p and add
a distribution specific correction C, that accounts for the
possibility that a particular sample with the signal was
below the background mean:

UL, = maxd; — u+C, (2)

If the distribution of &; is not known with certainty,
then we can try to estimate the distribution from the data
itself. This, however, is problematic when the amount of
data is small.

We now notice that, regardless of the procedure to
compute the correction, it ends up being the function
of the input data:

UL = maxd; — p+ O({d:}) (3)

We can now pose the following problem:

Suppose we are given a confidence level 1 —¢, a class of
commonly encountered distributions D and a tolerance
a. We need to find a function C({d;}) of the input data
such that:

1. For any s and any distribution of £; we have

P(UL<s)<e (4)

2. We require that for any distribution p € D the up-
per limits are overestimated by at most a compared
to what we could obtain with full knowledge of the

distribution:
UL
E(l— | <1
(UL,,) <l+a (5)

We call such statistics universal as they are applicable
regardless of the distribution of noise we have.

III. RANK BASED UPPER LIMIT STATISTIC

A universal statistic can be constructed by using quan-
tiles of the data &;.

For example, to compute 95% upper limit, one would
find the maximum M of the data ;, and the N/20 small-
est sample V. Then the upper limit is computed as

ULquantilc =M-V (6)

This well-known procedure works quite well, except for
small sample sizes N < 20.

For large scale computation we run into difficulties:
while AN log(N) scaling of known sort implementations
and selection algorithms look very good in theory, in
practice the constant A depends on the speed with which

one can sort or rearrange a few numbers. The compu-
tation of the sample quantile V' is rather difficult to im-
plement using floating point hardware and it does not
vectorize well'. What is needed is an algorithm which
scales linearly with the number of samples and that can
be implemented using floating point instructions.

IV. DERIVATION OF ADDITIVE UPPER
LIMIT STATISTIC

In probability theory distribution-independent bounds
are commonly obtained by use of Chebyshev-Bienaymé’s
or Markov’s inequalities, however they are rarely used
in practice, since in common applications they provide
bounds that are far too loose.

For example, Encyclopaedia Britanica writes “Unfor-
tunately, with virtually no restriction on the shape of an
underlying distribution, the inequality is so weak as to
be virtually useless to anyone looking for a precise state-
ment on the probability of a large deviation. To achieve
this goal, people usually try to justify a specific error
distribution, such as the normal distribution...” [2].

This is because even though Chebyshev-Bienaymé’s or
Markov’s inequalities are sharp - turning into equalities
for an appropriate probability distribution - these distri-
butions are rarely encountered in practice.

There exists a stronger Vysochanskij-Petunin inequal-
ity [3] but it relies on distributions being unimodal - an
assumption that is hard to establish in empirical data. A
review of other Chebyshev type inequalities can be found
in [4, 5].

We engineer an upper limit statistic by starting with
Markov’s inequality

P(1x] > o) < XD @
and modifying it to read
E(/(X)D

P(f(X)] = a) < (®)

a

Then a further modification yields:

P(lr(57)]ze) < =),

a

for, in general, arbitrary p and ¢ > 0 - though in prac-
tice these are chosen to be estimates of the mean and
standard deviation. After setting

L=l (=)D o)

€

1 At this point we would like to bemoan the lack of sorting primi-
tives on contemporary CPUs. A similar regret can be voiced for
absence of primitives for modular arithmetic.



we obtain

d ‘f(ugx)‘;(‘f(“_”x)‘) <c

€

Because the original Markov’s inequality is correct for
a random variable X with an arbitrary distribution, in-
equality (11) is valid for any choice of f(z), pu and o -
even when y and o are estimated from the data X.

We can now optimize f(x) to provide more precise up-
per limits or confidence intervals for our desired distri-
bution. As a quick example, the inequality 11 becomes
sharp for a Gaussian random variable X when we choose
1 =E(X), o =+vVar X and use a step function

1 when z > 2.
fs(a) = { 0 otherwise (12)

where the lower tail cutoff Z. satisfies

1 e 2
F(=&) = E/ e " e =€ (13)

The choice f(z) = fs(x) is difficult to apply to estab-
lish a confidence interval because the function f4(x) is not

invertible: it can happen that the average of % ‘f (%) ‘

for practical data is greater than 1 which does not yield
a constraint on X. One approach could be to pick initial
z¢ as defined by equation 13 and then iterate to establish
a bound for X. This is cumbersome for both analytical
and numerical computation.

A better way is to pick the function f(x) to be invert-
ible above x.. An especially simple and computationally
efficient example, shown in figure 2, is given by

_J1+i(z—=) whenz >z,
Jel@) = { 0 otherwise (14)
with the corresponding inverse function given by
inv, v | Te+2(x—1) whenax >1
Jo @) = { Te otherwise (15)

Our correction C' is then

oo (B (455)

with expectation replaced by average for empirical data.

V. IMPLEMENTATION OF ADDITIVE UPPER
LIMIT STATISTIC

A step by step algorithm for computing the upper limit
is shown in figure 3. It incorporates three adjustments
that we find important in practical implementation.

First, for smaller values of N the point x. has been
increased by 5/ V/N compared to theoretical value. This
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FIG. 2. Function f. used for computation of 95% confidence
level upper limits (simulation results are shown in figure 5).
The point z. has been shifted to the right to compensate for
errors in mean estimates for 501 points of input data. The
dashed line shows the step function fs that makes inequality
11 exact in the ideal case. (color online)

1. Prepare by computing value of

2. = —F (e) + max(5/VN,n)

where n = 0.04 (\/log g—: - ]:71(6))
2. Compute M = max;=1..n d;
3. Compute p = (vazl d; — M)

4. Compute o = % N max(pu — d;,0). We prefer
this formula as it is simpler to compute and is insen-
sitive to outliers in the upper tail of the distribution.

5. Compute § = - SN fe (i;di)'
6. Establish upper limit UL = M — p 4 o fZ"¥(6)

FIG. 3. Algorithm for computing the upper limit from a single
batch of data of N points.

increase guards against fluctuations in the mean estimate
1 which could lead to effectively underestimate .. The
offset was chosen to correspond to 5-sigma level in the
case of Gaussian variables &;, which virtually eliminates
underestimate errors.

For large N we provide a fixed offset n that provides
a consistent overestimate. The somewhat complicated
form of 7 is just an approximation of the expectation



value of the upper limit times the desired overestimate
for large N. For extremely large N the term with the
square root can be replaced with a more precise (but
longer) expression for the expectation of the maximum
of N Gaussian variables [6].

Secondly, the mean p is computed after excluding the
maximum point in the distribution. The exclusion is not
necessary if it is known that only weak signals are ex-
pected. Otherwise, the overestimate will increase with
signal strength. Our implementation in PowerFlux ac-
tually excludes a window of 20 frequency bins to each
side of maximum, to guard against spillover of detector
artifacts due to Doppler shifts.

Lastly, the standard deviation o is estimated using
data from the lower tail of the distribution only. This
is reasonable as the upper limit only needs correction for
noise values that decrease the maximum of d; compared
to the pure signal case. Also, in practical use, d; are often
bounded from below such as the case of x? distributions
resulting from power sums. This leads to slightly smaller
upper limits than would be obtained by considering both
tails.

The main steps 2-6 of the algorithm 3 employ only
piecewise linear functions allowing for very efficient im-
plementation on virtually any computational platform.

VI. HEURISTIC EXPLANATION OF THE
ALGORITHM

To understand how the algorithm works it is useful to
examine steps 5 and 6 in detail. First, we convert our
data into SNR units:

di — p
o

SNR; = (17)

Then we compute §:

1 N
5= e ; f-(=SNR;) (18)

If we were using the step function then § would just be
the ratio of the number of data points with SNR larger
than x. to the number of such points we would expect
for Gaussian distribution. Keeping in mind that the step
function does not provide a useful constraint for § > 1
we would be, in effect, making a check “Have we seen
too many points in the lower tail ?”. If the answer is
yes, we would declare the data non-Gaussian and refuse
to set upper limit, if the answer is no, we would use the
standard expression M — u + ox..

By using a piecewise linear function we replace this
hard check with a soft correction. We compute § as

1 1
b=~ >o1- 5 SNER; (19)

€
SNR;<—z.

As before, when 6 < 1 we just use the estimate for the
Gaussian: M — p + ox., but instead of bailing out when

0 exceeds unity we use an inflated estimate:

1
UL(6 > 1) = M—p+o (1} —2+ >oo2- SNRi>
SNR;<—x,
(20)
By equation 11 this automatically adjusts our correction
C to match the underlying distribution.

The overestimate can be expressed as:

P(§<1)(M+x.)+ P(6>1)E(UL(S > 1)|6 > 1)

l+a = _
o M — F~1(e)

(21)

where M = E (max&;) — p ~ y/log (g—;)

The overestimate is at least as large as

-1
> M (22)
M —F-1(e)

with the equality approached when P(§ > 1) ~ 0.

To understand the dependence of P(6 > 1) on z. let
us consider the case of step function f;, i.e. a simplified
0 variable:

>

The sum is just a binomial variable with parameter p =
1 — F(z¢). Approximating it with a normal distribution
for large N we find

1<3§ (23)

€—p
p(1 —p)> 2

From this expression it is clear why the gap between x.
and —F () is essential to good performance: without
it the probability of § exceeding unity would be more
than 50%.

The choice of parameters for the algorithm thus in-
volves a tradeoff between narrowing the gap to improve
performance for very large N and Gaussian &; and in-
creasing the gap to maintain good performance for small
N and arbitrary distributions.

P(S>1)=1—f<\/ﬁ

VII. OPTIMIZATION THEORY VIEWPOINT

The algorithm 3 is connected with a convex opti-
mization problem of a linear utility function. Indeed,
consider the space of all distribution functions F, with
F,(—00) = 0 (or, equivalently, measures dF,). The re-
quirement that full probability equals to 1 is linear:

[ Z dF, =1 (25)

and the monotonicity requirement can be expressed as
an infinite set of linear inequalities:

Fo(z1) > Fp(xo) for all 1 > 29 (26)



The steps 5 and 6 of algorithm 3 compute the correction
C from the normalized data, thus we can require that
our distribution is centered:

/ T wdF, =0 (27)

— 00

and normalized, which is achieved either by fixing vari-
ance:

/ ?dF, =1 (28)

or by a condition on the lower tail of the distribution as
used in step 3 of our algorithm:

0 1

All of these conditions are linear and the distribution
functions that satisfy them form a convex set - that is
for any two such functions F, and F,, the function
AF,, + (1 — A)F,, also satisfies conditions 25-29 for any
A between 0 and 1.

If we ignore step 5 and 6 of the algorithm and only use
the information above, than the best confidence level we
can claim for a given correction value Cjy is

—Cy
€ (Cy) = sup/ dF, (30)

Fo Jooo

The integral expression that we are to maximize is linear
in F, and thus we have a convex problem with linear
utility function.

We can now apply a well-known fact from optimiza-
tion theory: if the value of the maximum of linear utility
function is reached within a convex set (the domain of
our problem) then it will be reached in one of the ex-
tremal points of this convex set. This can be easily seen,
as any non-extremal point will be inside a linear segment
contained in our convex set and one of the ends of the
segment should have utility at least as great as the utility
of the non-extremal point.

To find the set of extremal points consider that any
interior mix 0 < A < 1 of two distributions A\F,, + (1 —
A)Fp, will have non-zero measure for any set that had a
non-zero measure for either ¥, or F,,. A distribution
forming extremal point should therefore have the smallest
support.

The simplest class of such extremal points satisfying
conditioni 25-27, 29 is given by Bernoulli measures that

. - . °1s 1 . ~
yield Von with probability p and RESWors with prob

ability 1 — p.

These are not all extremal points as, for example,
these distributions have support that does not approach
0 closer than 1/v/27.

However, just by finding the maximum of ¢*(Cy) on
these Bernoulli distributions (achieved for p = 1/Cy) we
derive a useful constraint on the estimates one can place

with only the knowledge of the mean and standard devi-
ation of our data:

1
Co 2T

€ (Co) > (31)
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FIG. 4. Distribution test1 used in figure 5. It is composed of
three populations, two normal and one exponential. We also
show distribution-specific and additive universal 95% confi-
dence level upper limit for this batch of N = 501 numbers.
(color online)

This provides a rich source of examples where conven-
tional methods based only on mean and standard devia-
tion would establish an incorrect upper limit. For exam-
ple, if we pick p to be a Bernoulli distribution which yields
0 in 10% of the cases, our upper limit would have to be at
least 10/ V27 = 4 standard deviations? away from M — .
Yet most conventional methods would use much smaller
values, with 3 standard deviations considered very reli-
able (which it is for Gaussian data). Of course, Bernoulli
distribution is a somewhat extreme form of noise, but ex-
actly the same effect is observed in a mix of two Gaussian
distributions with different means, effectively smearing
out Bernoulli distribution. We illustrate this point with
distribution testl (figure 4) discussed in the next sec-
tion.

Let us now turn attention to steps 5 and 6 of the algo-
rithm 3. The computation of § is linear in the distribu-

2 This number is for standard deviation computed as in step 3
of our algorithm. For conventional standard deviation a similar
computation yields a constraint C > 3 by considering a 10%
distribution and C' > 4.35 by considering Bernoulli distribution
with 5% of zeros.



tion functions:
0(Fp) :/ fe(—z)dF, (32)
We can now let €* depend on §:

€ (Co,00) = sup
0(Fp)=do

/ o (33)

—0o0

and obtain smaller € (and higher confidence level) by
slicing our convex domain in level sets of 6(F),).

Step 6 of the algorithm 3 inverts the relationship by
computing correction Cy for a given confidence level and
observed §. As we do not have the exact value of equation
33 the computed correction is somewhat larger, but is
still very useful for practical applications as discussed in
the next section.

VIII. PERFORMANCE OF UNIVERSAL

UPPER LIMIT STATISTICS

To gauge the performance of universal statistics, we
performed a simulation that closely reflects real-world
situations we encountered during analysis of LIGO data
[1].

The PowerFlux search for continuous wave sources it-
erates over many millions of templates that depend on
parameters such as sky location and frequency. As the
weights in computed power sums depend strongly on sky
location we have to treat each sky location separately. To
avoid steep features in frequency spectrum we establish
an upper limit for one small frequency range at a time,
while holding other parameters fixed. As the possible
signal can correspond to any single template the sum-
mary data (such as shown on figure 1) is the maximum
of individual upper limits over sky and other parameters.

In our simulation we assume that our data consist of
independent samples of noise plus a possible determinis-
tic signal in one or more bins. The data are analyzed in
batches of N data samples for each of which we estab-
lish an upper limit on signal strength. Unless specified
otherwise the plots show results for N = 501, as used
in PowerFlux analysis. The final reported value is the
worst case (i.e. maximum) upper limit among L batches.
We generally expect the performance to improve with the
number of batches and the corresponding increase in the
signal-to-noise of the loudest outlier. We present plots
computed for batch number L = 100 to model Power-
Flux search, as well as batch number L = 1 which re-
flects more conventional usage where a single upper limit
is established using available data.

A. Upper limit statistics under test

The plots discussed below show performance of ad-
ditive universal upper limit statistic, universal statistic

based on sample quantiles and three variants of conven-
tional upper limits designed for Gaussian data.

These variants are comprised of “sd-based” upper limit
which computes sample average p and standard devia-
tion. The correction C' is then computed as a product
of standard deviation and lower 5% quantile of the ¢-
distribution.

The second variant - “modified sd” upper limit - re-
places regular standard deviation with ¢ computed ac-
cording to step 3 of algorithm 3 and, instead of using a
modified ¢-distribution we use 5% quantile of normal dis-
tribution, which is expected to work well for large sample
sizes.

The third variant - “mad-based” upper limit - uses
median to estimate g and median absolute deviation to
estimate 0. We again use lower 5% quantile of normal

distribution.
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FIG. 5. Average overestimate of upper limit by the addi-

tive universal statistic as compared to the value predicted by
analytical formula for the corresponding distributions. The
overestimate is less than 5% for Gaussian data, and we ex-
pect any practical measurement to perform worse than the
ideal case. The error bars show region containing 90% of up-
per limits from different noise realizations. The upper limits
were computed using f. (see figure 2) with N = 501 points
of data for different noise distributions described in the text.
The points on the graph were obtained by averaging 100 in-
dependent measurements, each of which consisted of finding
the maximum among L = 100 upper limits to simulate max-
imization across a set of templates. (color online)
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FIG. 6. Dependence of overestimate of upper limit by the
additive universal statistic on the batch size L for Gaussian
noise. (color online)

B. Noise distributions tested

To illustrate distribution independent nature of our al-
gorithm we have tested its behavior on a variety of dis-
tributions:

e Weibull distribution with parameter k£ with proba-
bility density given by:

PWeibull (T3 k) = ke (34)

The Weibull distributed random variables are al-
ways positive. We have included them as a model
of power sums with larger lower tail. The plots
show results for parameter values from 2 to 10.

e exponential distribution is a special case of Weibull
distribution with parameter k = 1 and x? distribu-
tion with parameter k£ = 2.

Pexp(r) = €* (35)
e 2 distribution has probability density given by:

. 1 k/2—1_—x/2
Px2 (x,k) = W.’E / € / (36)

It is commonly found as a power distribution (sum
of squares) of k independent and identically dis-
tributed normal variables. The case k = 2 coincides
with exponential distribution. The limit £ — oo

Overestimate, %

100 o
3 * 95% upper limit
50 o 90% upper limit
1 ¢
10 o
5
1 —

T T T
o O O
n o

15

25
50
75

T
(=]
o
—

T T T 1
o o o o ©
o o o o o
N o ~ o o o + +
— N o [} ]
. — — —

Sample size

FIG. 7. Dependence of overestimate of upper limit by the
additive universal statistic on the sample size N for Gaussian
noise. This plot uses batch size L = 1. (color online)

gives normal distribution. The plots show data for
x? distributions with parameters ranging from 3 to
15.

e normal or Gaussian distributed random variables

arise commonly as limits of averages of indepen-
dent identically distributed variables, via central
limit theorem. There are a number of generaliza-
tions that relax the assumptions of independence or
of having identical distributions, so, in practice, av-
erages of many quantities turn out Gaussian unless
there is a specific property that prevents it. Also,
Gaussian distribution shows up as the lowest or-
der mode in the quantum harmonic oscillator and
optical cavities.

Normally distributed random variables have prob-
ability density:

pGauss(x) = \/%B_Ez (37)

e t-distribution with parameter k has probability

density of

k41

k+1 22\ 2
pe(z; k) = ;%FQ(,;) (1 + k) (38)

This distribution is commonly encountered when
the vector of i.i.d. Gaussian variables has been nor-
malized using mean and standard deviation com-
puted from the vector itself. It is an example of a



heavy tailed distribution. Interestingly, for param-
eter values less or equal to 1 the mean does not ex-
ist as corresponding integral is not convergent. The
variance only exists for k > 2. Thus it is particu-
larly interesting to see the performance of various
statistics on samples drawn from t1 and t2 distri-
butions. The plots show results for ¢ distributions
with parameters up to 10.

e lognormal distribution is another example of a dis-
tribution with heavy tail. Its probability density is
given by

Prognormal(¥) = —e~ (/2 (39)
ognorma, .’L‘\/%

e uniform distribution on segment [0, 1]

e Bernoulli distribution with probability p to draw
1 and 1 — p to draw 0. We show performance for
p=0.5and p=0.8.

e custom distribution test1 which is a mix of 10%
standard Gaussian variable, 63% Gaussian variable
with mean 5 and standard deviation 0.5 and 27%
exponential variable shifted by 8 to the right. This
reflects a possible case where the power sum is a
mix of different distributions. Figure 4 shows the
histogram of a sample of this distribution.

e A highly correlated Gaussian distribution corrX
was constructed as

X/2 : i
2rk [ 27mk
georrk 2 cos (Nj) 725 +sin <N]> n2j+1  (40)
j=1

where N is the size of the noise sample, k is the
index of random variable and 7; are independent
standard Gaussian variables. The results are shown
for X from 60 to 100 in steps of 10.

C. Upper limit overestimate analysis

The comparison of this worst case upper limit to the
upper limit established from the known distribution of
underlying noise is shown in figures 5 and 6. The samples
consisted of identically distributed pure noise (s = 0).

We have averaged the ratios of established upper lim-
its to theoretical ideal values. As the value of x. was
obtained assuming Gaussian data we see that our statis-
tic achieves less than 5% overestimate both for 90% and
95% confidence level upper limits. The error bars show
region containing 90% of ratios of universal upper limit to
theoretical value. The upper mark shows that for Gaus-
sian data we are at or below 7% for 95% of cases.

A number of other distributions have been tried. As
seen on the plot, the performance is remarkably flat for
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FIG. 8. Average overestimate of upper limit by various meth-
ods as compared to the value predicted by analytical formula
for the corresponding distributions. We show 95% confidence
level upper limits computed with the additive universal statis-
tic (solid green dots), a conventional method using Gaussian
quantiles and average and standard deviation of the data (ma-
genta diamonds), a variant with modified estimate of standard
deviation (orange triangles), a robust variant using median
and mad of the data (red triangles) and a quantile based
upper limit (solid brown diamonds). The negative values re-
flect the failure of conventional method based on quantiles for
Gaussian distribution to set the correct upper limit in case of
some non-Gaussian distributions. This plot shows data for
batch size of L = 100, as described in text. (color online)

x? distributions with different degrees of freedom and the
overestimate is moderate for uniform distribution. The
heavy-tailed Student’s t-distributions, as well as lognor-
mal distribution, show good performance as well. In the
extreme case of Bernoulli distribution, with 80% proba-
bility to obtain 1, we overestimate by less than a factor
of 3 for 95% confidence level. The custom distribution
test1l composed of three populations of normal and ex-
ponentially distributed numbers (figure 4) has overesti-
mate of only 31% for 95% confidence level, similar in per-
formance to Weibull distributions or heavily correlated
distributions corrX.

The dependence of overestimate on batch size L is
shown on plot 6 using Gaussian data. The overestimate
slowly declines as batch size is increased, but we retain
essentially the same performance at all batch sizes.

The dependence on sample size N for the batch size
L =1 is shown on the plot 7. The overestimate is around
30% for N = 15 and decreases to 4% for very large values
of N.



D. Comparison of upper limit methods

In many practical cases the data is assumed to be
Gaussian with only a cursory check to its validity. It is
thus interesting to compare the behavior of conventional
methods on data drawn from non-Gaussian distribution.

We performed the same procedure for upper limits es-
tablished by conventional methods based on 95% Gaus-
sian quantiles without any checks that the distribution
of data is actually Gaussian.

The mean and standard deviation of assumed Gaus-
sian distribution were obtained in three ways - through
average and standard deviation of the data, average and
modified standard deviation as computed by step 4 of
algorithm 3 or by using median and median absolute de-
viation of the data. We also show behavior of the quantile
upper limit. The results are shown on figure 8 for batch
size L = 100 and figure 9 for batch size L = 1.

Interestingly, the mad-based upper limit performs the
worst, as it fails to account correctly for the thick tails
of Weibull and t-distributions. The mean and standard
deviation method fairs better as the presence of a large
upper tail increases standard deviation. The modified sd
method from figure 3 is more robust and has intermediate
performance. For Weibull distributions only the additive
or quantile universal statistics return a consistently cor-
rect result.

We study how often the upper limit established by var-
ious statistics exceeds injected signal on figures 10-13.
The strength s of injected signal was varied from 0 (no
injection) to 100 in units of standard deviation of the
noise distribution.

Figure 10 uses Gaussian distributed data while figure
11 which shows data drawn from test1 distribution.

Figures 12 and 13 show performance of different upper
limit methods for small sample size N = 15. The quantile
based upper limit does not return correct result either for
Gaussian noise or test1 distribution.

It is interesting to compare performance for Gaussian
distribution shown in figures 10 and 12 to the lower
bound given by formula 22. For 95% upper limit and
N = 501 we find z. ~ 1.868 which yields overestimate
for Gaussian data of at least

a(N = 501) > 4.55% (41)

and the expected validity rate of F(z.) = 96.9%. This
compares well with average overestimate of ~ 5% (figure
5) and validity rate of ~ 97% (figure 10).

For N = 15 we compute z. =~ 2.936 and overestimate
bound of

a(N =15) > 36.5% (42)

and expected validity rate of F(z.) = 99.8%. Both num-
bers are larger than « ~ 30% (figure 7) and actual valid-
ity rate of ~ 99% (figure 12). This is unsurprising as our
formulas were derived for the limit of large V.
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FIG. 9. Average overestimate of upper limit by various meth-
ods as compared to the value predicted by analytical formula
for the corresponding distributions. This plots shows 95%
confidence level upper limit for batch size L = 1 as described
in text. (color online)
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FIG. 10. Percentage of successfully established upper limits
versus injection strength. The noise was distributed according
to normal distribution. This plot shows data for batch size of
L =1. (color online)
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FIG. 11. Percentage of successfully established upper limits
versus injection strength. The noise was distributed according
to custom distribution test1. This plot shows data for batch
size of L = 1 and sample size N = 501. (color online)
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FIG. 12. Percentage of successfully established upper lim-
its versus injection strength using Gaussian noise. This plot
shows data for batch size of L = 1 and sample size N = 15.
(color online)
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FIG. 13. Percentage of successfully established upper limits
versus injection strength. The noise was distributed according
to custom distribution test1. This plot shows data for batch
size of L = 1 and sample size N = 15. (color online)

A natural question to ask is how would the conven-
tional methods perform if we raise the threshold to
96.9% - the confidence level achieved by additive uni-
versal statistic on Gaussian data. The results for distri-
bution testl are shown on figure 14. The performance
of all statistics has improved, but all statistics based only
on estimates of mean and standard deviation still signif-
icantly underestimate the confidence level.

IX. CONCLUSIONS

We have described a new universal statistic that pro-
duces reliable and useful upper limits regardless of the
underlying distribution of noise, while still producing
close to optimum values for a specific family of distri-
butions. We have also shown that conventional methods
based only on mean and standard deviation of the sam-
ple can significantly underestimate the upper limit. Our
Monte-Carlo tests also show that the additive universal
statistic is reliable at small sample sizes and with sig-
nificant correlations in observations. The algorithm for
computing its values is very practical, and is easily im-
plemented for large scale computation. The results of
its application to analysis of sixth scientific run of LIGO
interferometers are expected to appear in a future paper.

This opens the road for publication of reliable results
from large data sets with only partial understanding of
distributional properties of data they contain.
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FIG. 14. Percentage of successfully established upper limits
versus injection strength. All statistics, except the additive
universal statistic used 96.9% confidence level. The noise was
distributed according to custom distribution test1. This plot
shows data for batch size of L = 1 and sample size N = 501.
(color online)
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