
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Unification of gauge couplings in the standard model with
extra vectorlike families

Radovan Dermíšek
Phys. Rev. D 87, 055008 — Published 11 March 2013

DOI: 10.1103/PhysRevD.87.055008

http://dx.doi.org/10.1103/PhysRevD.87.055008


Unification of Gauge Couplings in the Standard Model with

Extra Vector-like Families

Radovan Dermı́̌sek

Physics Department, Indiana University, Bloomington, IN 47405, USA

Abstract

We discuss gauge coupling unification in models with additional 1 to 4 complete vector-like

families, and derive simple rules for masses of vector-like fermions required for exact gauge couplings

unification. These mass rules and the classification scheme are generalized to arbitrary extension of

the standard model. We focus on scenarios with 3 or more vector-like families in which the values

of gauge couplings at the electroweak scale are highly insensitive to the grand unification scale,

the unified gauge coupling, and the masses of vector-like fermions. Their observed values can be

mostly understood from infrared fixed point behavior. With respect to sensitivity to fundamental

parameters the model with 3 extra vector-like families stands out. It requires vector-like fermions

with masses of order 1 TeV – 100 TeV, and thus at least part of the spectrum may be within the

reach of the LHC. The constraints on proton lifetime can be easily satisfied in these models since

the best motivated grand unification scale is at ∼1016 GeV. The Higgs quartic coupling remains

positive all the way to the GUT scale, and thus the electroweak minimum of the Higgs potential

is stable.
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I. INTRODUCTION

Models for new physics at the TeV scale are typically motivated by the hierarchy problem.

They strive to explain the hierarchy between the electroweak (EW) scale and the Planck

scale, or at least remove the incredible fine tuning required in the standard model (SM) for

having such a hierarchy. However, the SM is stubbornly surviving the first tests at the LHC

and there are no traces of new physics yet. In addition, the mass of the recently discovered

Higgs-like particle suggests that the SM can be a consistent theory all the way to the Planck

scale. This gives more weight to speculations that there is no mechanism, no new physics,

that stabilizes the hierarchy, or that the EW scale is selected based on anthropic reasoning.

However, even when we ignore the hierarchy problem, the SM is still not very satisfactory.

The three gauge couplings, all couplings of the Higgs boson to fermions, the Higgs mass,

and the Higgs quartic coupling are free parameters. This motivates us to explore extensions

of the standard model in which at least some of these parameters could be understood.

We have recently showed that extending the standard model by three complete vector-

like families (SM+3VFs) with masses of order 1 TeV - 100 TeV allows for unification of

gauge couplings [1]. Predictions for gauge couplings at the EW scale are highly insensitive

to fundamental parameters: the grand unification scale, the unified gauge coupling, and

the masses of vector-like fermions. Their observed values can be mostly understood from

infrared fixed point behavior.

In this paper we discuss gauge coupling unification in detail in models with additional

1 to 4 complete vector-like families (VFs), and derive simple rules for masses of vector-

like fermions required for exact gauge couplings unification. We then focus on scenarios

with 3 or more vector-like families which lead to insensitive unification of gauge couplings.

Requiring the smallest splitting between masses of vector-like fermions we show that the

best motivated GUT scale is at ∼1016 GeV. We provide examples of the spectrum as a

function of the GUT scale which can be as large as the Planck scale. We discuss constraints

from proton decay and show that predictions from the best motivated region are close to

current limits. However, due to insensitivity of predicted EW scale values of gauge couplings

to GUT scale parameters no sharp predictions can be made without knowing the spectrum

of vector-like fermions.

The focus on complete families follows from the fact that quantum numbers of quarks and
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leptons in the SM nicely fill representations of a GUT symmetry, 10 and 5̄ of SU(5) or 16

of SO(10). This provides a support for the idea of grand unification and the unification of

gauge couplings [2]. Additional complete families represent some of the simplest extensions

of the SM that can be embedded into simple GUTs.1 Consequently, there are many studies

exploring various features of vector-like families (mostly in supersymmetric models), see for

example Refs. [4–8].

In addition, vector-like fermions, not necessarily coming in complete GUT multiplets,

are often introduced on purely phenomenological grounds, to explain various discrepancies

between observations and SM predictions. Examples include discrepancies in precision EW

Z-pole observables [9–12], and the muon g-2 anomaly [13]. However, with arbitrary new

particles there are many possibilities for gauge coupling unification.2 Therefore, we gen-

eralize the mass rules and the method to classify scenarios consistent with gauge coupling

unification to an arbitrary extension of the standard model.

The method to classify scenarios consistent with gauge coupling unification in terms of

physical masses of extra particles starts with finding the mass scales that represent “average”

masses of all particles charged under given gauge symmetry required for gauge coupling uni-

fication (they are defined precisely in the next section and are referred to as crossing scales).

These crossing scales are easy to obtain and they immediately give us information about

the required spectrum. First of all, if they do not exist between the EW scale and the GUT

scale, the gauge coupling unification in a given model is not possible, no matter what the

splitting between masses of extra particles is. Second, the splitting between crossing scales

represents the minimum necessary splitting in the spectrum required. Third, from the mass

formulas that define crossing scales in terms of masses of extra particles one can immedi-

ately see the basic features of the spectrum required, and the spectrum can be calculated.

In addition, these formulas also indicate the freedom one has in imposing further relations

between masses of extra particles. This might be useful when searching for models that

1 This does not mean that the masses of vector-like fermions needed for gauge coupling unification necessar-

ily result from a simple unified boundary condition. By simple GUTs we mean that there is no additional

mechanism required to keep particles in incomplete GUT multiplets significantly below the GUT scale, or

to split their masses over many orders of magnitudes that would to large extent ameliorate the motivation

for GUTs.
2 For examples of recent studies investigating effects of extra particles on gauge coupling unification in

models without supersymmetry, see Refs. [14, 15].
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relate masses of particles at a given scale. The mass rules given in terms of particle masses

can be evolved to arbitrary scale, e.g. the GUT scale, which would provide the boundary

conditions that need to be satisfied. However, the RG evolution of the mass rules depends

on additional assumptions one has to make about the origin of the masses and the scale at

which these masses are generated.3

This paper is organized as follows. In Sec. II we discuss RG evolution of gauge couplings

in models with extra VFs. We start with the discussion of IR fixed point predictions for

gauge couplings, then add threshold corrections from universal mass of vector-like fermions,

and finally we add effects from splitting masses of vector-like fermions. We discuss sensitivity

of predicted values of gage couplings to fundamental parameters. Finally, we derive simple

mass rules that have to be satisfied in order to get exact gauge coupling unification. We

generalize the method to classify all solutions consistent with gauge coupling unification to

arbitrary extension of the SM. In Sec. III we discuss constraints from proton decay, stability

of the EW minimum of the Higgs potential, and discuss possible origin of masses of vector-

like fermions. We give few concluding remarks in Sec. IV.

II. RENORMALIZATION GROUP EVOLUTION OF GAUGE COUPLINGS

The one-loop renormalization group equations (RGEs) for three gauge couplings, αi =

g2i /4π, are given by:
dαi
dt

= β(αi) =
α2
i

2π
bi, (1)

where t = lnQ/Q0 with Q representing the energy scale at which gauge couplings are

evaluated. The beta function coefficients, bi, in the SM with nf families are given by

bi =

(
1

10
+

4

3
nf , −

43

6
+

4

3
nf , −11 +

4

3
nf

)
. (2)

For nf = 3 we get the usual SM result, bi = (41/10, −19/6, −7). With extra N pairs of

complete VFs we have nf = 3 + 2×N (a vector-like partner contributes in the same way).

3 The study of gauge coupling unification is to large extent unaffected by these assumptions, only the

physical masses of particles matter in the leading order. If the masses originate from Yukawa couplings

to extra scalars that get vacuum expectation values at an intermediate scale, these may contribute to the

RG evolution of gauge couplings at 2-loop level. However unless the extra couplings are large these effects

would be negligible.

4



2 4 6 8 10 12 14 16
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log10 Q @GeVD

Α
1,

2,
3

SM

SM + 3 VFs

M1M2M3

2 4 6 8 10 12 14 16
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log10 Q @GeVD

Α
1,

2,
3

SM

SM + 3 VFs

MVF

FIG. 1: RG evolution of gauge couplings: α3 (top solid line), α2 (middle solid line), and α1 (bottom

solid line) in the SM extended by three vector-like families for αG = 0.3 at MG = 2 × 1016 GeV.

Dashed lines in the same order show running of gauge couplings in the SM. Masses of 3 VFs are

neglected in the left plot, and fixed to 10 TeV (indicated by MV F ) in the right plot. The crossing

points in the evolution of gauge couplings in the SM+3VFs and the SM indicated in the left plot

define the common threshold scales, M1,2,3, for masses of particles charged under given symmetry

required for exact gauge coupling unification.

For example, in SM+3VFs we find bi = (121/10, 29/6, +1) which indicates that all three

gauge couplings are asymptotically divergent (this result obviously holds for 3 or more pairs

of VFs).

The evolution of gauge couplings in the SM and an example of the evolution in the

SM+3VFs case are showed in Fig. 1. The numerical analysis closely follows that of Ref. [1].

For the SM evolution we use the Z-scale central values of α−1EM(MZ) = 127.916, sin2 θW =

0.2313, and α3(MZ) = 0.1184, together with the top quark mass mt = 173.2 GeV which can

be found in Ref. [3]. The αEM and sin2 θW are related to α1,2(MZ) through

sin2 θW =
α′

α2 + α′
, and αEM = α2 sin2 θW , (3)

where, assuming the SU(5) normalization of hypercharge, α′ ≡ (3/5)α1. We set the Higgs

boson mass to mh = 126 GeV [16, 17]. The example of the RG evolution of gauge couplings

in the SM+3VFs starts with unified gauge coupling αG = 0.3 at MG = 2 × 1016 GeV.

The crossing points in the evolutions of gauge couplings in these two cases, which will be

important for the discussion of threshold corrections, are indicated in the left plot by M1,2,3.

In all numerical results we use full two loop RGEs [18], we integrate out all particles with

masses above MZ at their mass scale, and include one-loop matching corrections for mt and
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mh [19]. We assume that Yukawa couplings of vector-like fermions are negligible, and we

also neglect Yukawa couplings of all fermions in the SM except the top quark.

The results of the numerical analysis we present can be understood from approximate

analytic formulas. The one-loop RGEs can be solved, and we can express gauge couplings

at the EW scale in terms of the GUT scale, and values of gauge couplings at MG:

α−1i (MZ) =
bi
2π

ln
MG

MZ

+ α−1i (MG), (4)

Assuming gauge coupling unification, αi(MG) = αG, and neglecting threshold corrections

both at the EW scale and the GUT scale, we can express one gauge coupling in terms of

the other two. For example:

α3(MZ) =
b1 − b2

(b1 − b3)s2W + 3/5(b3 − b2)c2W
αEM(MZ), (5)

where s2W ≡ sin2 θW (MZ), and c2W ≡ cos2 θW (MZ). For the measured values of αEM and

s2W the SU(5) embedding of the SM predicts α3(MZ) ' 0.07 which is about 40% below the

experimental value.

Adding complete chiral or vector-like families at the EW scale does not change at all the

one-loop prediction given in Eq. (5) since complete families contribute equally to all three

beta function coefficients, see Eq. (2). Furthermore, the scale of unification (more precisely

the scales where any two couplings meet) does not change at one-loop, only the value of

the unified gauge coupling increases. With increasing the number of extra families, at some

point, the couplings become non-perturbative before they meet, and eventually reach the

Landau pole. Further increase of the number of families lowers the energy scale at which

the Landau pole occurs.

However, the SM extended with sufficient number of complete vector-like families so

that all couplings are asymptotically divergent offers a new possibility. Vector-like families

introduce additional scale to the problem associated with masses of vector-like fermions,

MV F , and they contribute to the RG evolution of gauge couplings only above this energy

scale. This allows us to consider models with a large (but still perturbative) unified gauge

coupling at a high scale, higher than the scale at which the Landau pole would occur if

the VFs were at the EW scale. Consequently, in the RG evolution to lower energies gauge

couplings run to the (trivial) infrared (IR) fixed point. Thus, at lower energies the values of

gauge couplings are determined only by the particle content of the theory and how far from
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the GUT scale we measure them. Since the exact value of αG becomes irrelevant, instead of

one prediction of the conventional unification, Eq. (5), we have two predictions for ratios of

gauge couplings. At the MV F scale the vector-like fermions are integrated out, and below

this scale gauge couplings run according to the usual RG equations of the standard model.

In a way, the two parameters of the conventional unification, MG and αG, are replaced by

MG and MV F . The discrepancies of IR fixed point predictions from observed values can be

explained by threshold effects of extra vector-like fermions.

A. IR fixed point predictions for gauge couplings

The IR fixed point predictions were discussed in detail in Ref. [1]. In models with asymp-

totically divergent couplings, these can be easily obtained if the 1-loop RGEs are good

approximations. Assuming large enough unification scale and large (but still perturbative)

unified gauge coupling, the first term in Eq. (4) dominates, and the ratios of gauge couplings

are given by ratios of beta function coefficients,

αi(MZ)

αj(MZ)
' bj

bi
. (6)

This can be translated into the prediction for sin2 θW :

sin2 θW ≡
α′

α2 + α′
=

b2
b2 + b′

, (7)

where b′ ≡ (5/3)b1. Numerically we find sin2 θW = 0.193 in the case of SM+3VFs, which is

identical to the value obtained assuming 9 chiral families [20, 21]. Similarly, in SM+4VFs

we find sin2 θW = 0.234.

In the case of SM+3VFs, the one-loop RGE for α3 given in Eq. (1) is not a good approx-

imation because of the accidentally small b3 coefficient. The two-loop contribution to the

beta function is well approximated by the term proportional to α3
3,

dα3

dt
= β(α3) '

α2
3

2π
b3 +

α3
3

8π2
B3, (8)

where B3 = −102 + (76/3)nf = 126 for SM+3VFs [18]. Thus the two loop contribution is

larger than the one-loop contribution for α3 & 0.1.4

4 This is a consequence of a very small 1-loop beta function coefficient and it is not an indication of non-

perturbativity. The coupling is still perturbative, the dominant 3-loop contribution to β(α3), proportional

to α4
3, represents a ∼ 5% correction to 1 + 2-loop beta function for α3 ' 0.1 [22].
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The RGE for α3 can be solved by adding the 1-loop contribution as an expansion in ε =

4πb3/B3 to the solution obtained from the 2-loop contribution only [23], [1]. Alternatively,

we can solve the full RGE given in Eq. (8) and find:

α−13 (MZ)− 1

ε
ln

(
1 +

ε

α3(MZ)

)
=

b3
2π

ln
MG

MZ

+ α−1G −
1

ε
ln

(
1 +

ε

αG

)
. (9)

Neglecting α−1G , we obtain the second prediction:

α3(MZ)

1− α3(MZ)
ε

ln(1 + ε
α3(MZ)

)
=

b2 + b′

b3
αEM(MZ). (10)

Numerically, for αEM(MZ) = 1/127.916, it predicts α3(MZ) ' 0.072 in the case of

SM+3VFs.

The beta function coefficients for α3 in SM+4VFs scenario are b3 = 11/3 and B3 = 530/3.

The 1-loop term in the RG equation (8) dominates for α3 < 0.26 in this case.

The proximity of predictions from the IR fixed point, Eqs. (7) and (10), to observed

values is certainly intriguing. Although they are not a perfect match to measured values,

the discrepancies can be easily accommodated by taking into account threshold corrections

from vector-like fermions that should be integrated out at the MV F scale.

B. Mass scale of vector-like fermions and sensitivity to fundamental parameters

The existence of a scale associated with masses of vector-like fermions is strongly sug-

gested by the overlay of the RG evolution of gauge couplings in the SM and those in the

SM+3VFs assuming unified gauge coupling at a high scale given in Fig. 1. All three gauge

couplings in these two scenarios cross at comparable scales suggesting a common threshold

at which particles from VFs are integrated out. Indeed, for the example given in Fig. 1,

fixing all the masses of 3 VFs to 10 TeV, showed in Fig. 1 (right), the EW scale values

of gauge couplings are predicted within 8% from measured values. In the next subsection

we will show that the measured values of gauge couplings can be precisely reproduced by

splitting the masses of vector-like fermions. First however, we would like to discuss general

features of this result assuming the common mass of VFs.

The fairly good agreement of predicted values of gauge couplings from 3 VFs at ∼ 10

TeV with observed values does not rely on the specific choice of the GUT scale and the value
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of the unified gauge coupling. The EW scale values of gauge couplings are highly insensitive

to these parameters which can be understood from IR fixed point behavior.

The low sensitivity of predicted values of gauge couplings to fundamental parameters

is demonstrated in Fig. 2 (left). It shows a large region of the GUT scale, MG, and the

universal mass of fermions from 3 vector-like families, MV F , (bright red region) from which

the values of gauge couplings at the EW scale are simultaneously predicted within 10% from

the measured values. It also shows the best fit which predicts all couplings within 6%. The

GUT scale is the best motivated between 1015 GeV and 1017 GeV with the best fit close to

1016 GeV. For completeness, a similar plot for αEM , s2W , and α3 is presented in Fig. 2 (right).

However, as we will see from the discussion of threshold corrections in the next subsection,

the plot on the left for α1, α2, and α3 is more indicative about the best motivated values of

MG and MV F .

In order to understand the sensitivity of the EW scale values of gauge couplings to

fundamental parameters quantitatively, it is instructive to estimate separate contributions

to α1,2,3(MZ) from αG, MG and MV F . Note, that the values of α−11,2,3(MZ) are approximately

59, 30, and 8.4 respectively. From Eqs. (4) and (10) we see that αG & 0.3 contributes less

than ∼ 10% to the EW scale values of gauge couplings. It is the least important parameter.

Plots in Fig. 2 for any αG > 0.3 would look almost identical. Increasing αG moves all the

contours slightly to the right. The largest contribution to EW scale values of couplings

originates from 1/(2π) ln(MG/MZ) ' 5.2 term multiplied by corresponding beta function

coefficients.

The second largest contribution to gauge couplings come from masses of vector-like

fermions. The IR fixed point predictions for the gauge couplings at the EW scale, ob-

tained from Eq. (4) for α1,2 with α1,2(MG) = αG, and from Eq. (9) for α3, are modified by

threshold corrections Ti:

αi(MZ) → αi(MZ)

1− αi(MZ)Ti
, (11)

that depend on masses of the extra vector-like fermions. These threshold effects are well
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FIG. 2: Left: contours of constant values of predicted gauge couplings at MZ , α1 green, α2 blue,

and α3 red, as functions of the GUT scale, MG, and the universal mass of fermions from 3 vector-

like families, MV F , for fixed αG = 0.3. Solid lines represent the central experimental values of three

gauge couplings, the shaded regions represent ±10% ranges, and the dashed lines in unshaded areas

represent ±20% ranges. Lightly shaded area corresponds to ±50% range of α3. In the bright red

region all three gauge couplings are simultaneously predicted within 10% from the measured values,

and the small black area in the red region represents the best fit with all three couplings within

6% from the measured values. The gray region corresponds to α3(MZ) > 0.3; α3(MZ) becomes

non-perturbative very fast with increasing MV F from the value that corresponds to the boundary

of this region. Right: the same as in the plot on the left but for αEM orange, s2W purple, and α3

red. The dotted purple line represents s2W being −5% from the central value.

approximated by the leading logarithmic corrections:5

Ti =
1

2π

∑
f

bfi ln
Mf

MZ

, (12)

where bfi is the contribution of a given fermion f , with mass Mf , to the corresponding beta

function coefficient [18]. For particles originating from vector-like families these contribu-

5 These corrections correspond to removing one loop contributions of vector-like fermions from Eqs. (4) and

Eq. (9) below their mass. It is an excellent approximation for α1,2 and sufficient approximation for α3

since, for the IR value of α3, the 1-loop term in the RG equation dominates.
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TABLE I: Quantum numbers and contributions to beta function coefficients of particles from extra

vector-like families. The names are chosen to mimic those of the standard model particles with

the same quantum numbers. For each particle there is a corresponding vector-like partner, and

its contributions to the beta function coefficients are identical. The b1 coefficients correspond to

SU(5) normalization of the hypercharge.

Particle SU(3) × SU(2) × U(1) b3 b2 b1

Q 3 2 1/6 2/3 1 1/15

U 3̄ 1 -2/3 1/3 0 8/15

E 1 1 1 0 0 2/5

L 1 2 -1/2 0 1/3 1/5

D 3̄ 1 1/3 1/3 0 2/15

tions, summarized in Table I, are identical to contributions from fermions in the standard

model. The contribution from the complete family is identical to all three beta function

coefficients and equal to 4/3 for a chiral family, and 8/3 for a vector-like pair (16 + 16 in

the SO(10) language).

The correction to α3 of about +40% is crucial in order to reproduce the measured value.

As can be seen in Figs. 1 and 2, it is indeed α3 that determines MV F ' 104 GeV and

consequently MG ' 1016 GeV. The other two couplings are within 10% from measured

values in much larger ranges of MV F and would actually prefer smaller MV F and MG.

Out of the three parameters, the EW scale values of gauge couplings are the most sensitive

to changes in MV F . However, since MV F is only responsible for at most ∼ 40% of the EW

scale values of couplings, the overall sensitivity is still very small. Most of the EW scale

values of couplings originate from the IR fixed point. Since no precise cancellations between

separate contributions are required, there are large ranges of fundamental parameters from

which the predicted values of gauge couplings at the EW scale are close to observed values.

The standard model extended by 4 vector-like families (SM+4VFs) allows for insensitive

unification of gauge couplings in a similar way as the SM+3VF. Predicted values of gauge

couplings at MZ as functions of the GUT scale and the universal mass of fermions from

4 vector-like families for fixed αG = 0.3 are showed in Fig. 3. There are however notable
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FIG. 3: The same as in Fig. 2 but for the SM extended by 4 vector-like families.

differences from the SM+3VFs case. First of all, the common mass of vector-like families

moves to ∼ 106− 107 GeV. This is easily understood from the fact that more matter makes

gauge couplings run faster and thus the VFs must stop contributing to RG evolution at a

higher scale, otherwise the EW scale values of gauge couplings would be too small. Second of

all, the 1-loop IR fixed point value of sin2 θW is 0.234 which is larger than in the SM+3VFs

case and actually very close to the measured value. Overall, this however does not make the

predictions much better than in the SM+3VFs case since α3 requires MV F larger than the

one needed to reach the measured value of sin2 θW . Finally, as a result of larger masses of

VFs required in SM+4VFs scenario, the sensitivity of EW scale values of gauge couplings

to fundamental parameters increased, which is visible in Fig. 3 as narrower 10% bands

compared to those in Fig. 2 corresponding to the case of SM+3VFs.

It is easy to extrapolate to larger number of VFs. Increasing the number of VFs requires

larger MV F closer and closer to the GUT scale. The sensitivity of predicted values of gauge

couplings to fundamental parameters is increasing and approaching the sensitivity in the

SM.

In the SM extended by 1 or 2 vector-like families the predictive power is lost, since the

unified gauge coupling is small and its specific value is crucial for predictions for gauge

couplings at the EW scale in a similar way as in the SM. The difference form the SM is that

the exact unification of gauge couplings is now possible with split masses of VFs. We will
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include these solutions as a curiosity in the next subsection.

C. Threshold effects of vector-like fermions

Let’s now turn our attention to precise predictions for gauge couplings rather than ∼10%

agreement. For this we need to consider threshold effects from splitting masses of VFs.

The necessity to split masses of particles from extra 3VFs is indicated in Fig. 1 (left)

by slightly different scales at which the RG evolutions of gauge couplings in the SM and

SM+3VFs cross. For the example in this figure the crossing scales for α1, α2, and α3 are

M1 ' 100 TeV,M2 ' 1 TeV, andM3 ' 10 TeV. These scales determine threshold corrections

Ti = (4/π) ln(Mi/MZ), see Eq. (12), required for gauge coupling unification. Any spectrum

that leads to required threshold corrections will reproduce the measured values of gauge

couplings.

The crossing scales are increasing with increasing MG and depend very little on αG for

αG & 0.3. For different values of MG they can be read out of Fig. 2 (left) as corresponding

values of MV F for which we obtain the measured value of given gauge coupling. Similarly,

in the case of SM+4VFs the values of M1,2,3 can be read out of Fig. 3 (left). For values of

MG not showed, or for other scenarios, the crossing scales can be easily calculated from RG

equations as functions of MG and αG.

In general, for N pairs of vector-like families, once we know values of crossing scales M1,2,3

for chosen GUT scale, the masses of fermions must satisfy:

4N

3π
ln
M3

MZ

=
1

π

N∑
i=1

(
bQ3 ln

MQi

MZ

+ bU3 ln
MUi

MZ

+ bD3 ln
MDi

MZ

)
, (13)

4N

3π
ln
M2

MZ

=
1

π

N∑
i=1

(
bQ2 ln

MQi

MZ

+ bL2 ln
MLi

MZ

)
, (14)

4N

3π
ln
M1

MZ

=
1

π

N∑
i=1

(
bQ1 ln

MQi

MZ

+ bU1 ln
MUi

MZ

+ bD1 ln
MDi

MZ

+ bL1 ln
MLi

MZ

+ bE1 ln
MEi

MZ

)
,(15)

in order to get exact gauge coupling unification at given GUT scale. In the case of universal

masses of particles with the same quantum numbers, e.g. MQ1 = MQ2 = · · · = MQN
≡MQ,

these mass rules can be written in a simple form:

M
4/3
i =

∏
F=Q,U,D,L,E

M
bFi
F , i = 1, 2, 3. (16)
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Inserting the beta function coefficients from Table I we find:

M4
3 = M2

QMUMD, (17)

M4
2 = M3

QML, (18)

M20
1 = MQM

8
UM

2
DM

3
LM

6
E. (19)

These formulas hold for any number of complete vector-like families, only the values of M1,2,3

depend on the specific scenario. In the case of non-universal masses of particles with the

same quantum numbers the above formulas are still valid with the replacement:

MF ≡ (MF1MF2 . . .MFN
)1/N , F = Q,U,D,L,E. (20)

From Eqs. (17) - (20) we can immediately see that splitting fermions with the same

quantum numbers does not help to find a solution if a solution does not exist with universal

masses. Thus, it is sufficient to assume universal masses, MF , of particles with the same

quantum numbers, and Eqs. (17) - (19) classify possible solutions. In addition, for each

solution with universal masses there are other solutions with split masses, and the only

constrain is that their geometric mean is the universal mass needed for given solution.

There are many solutions available, since we have 5 different masses that have to satisfy

three conditions (17) - (19) . However, it is not guaranteed that for given GUT scale there

is a phenomenologically viable solution. Clearly, the crossing scales have to be above the

EW scale, and even then the solution might require new fermions below experimental limits

or some fermions above the GUT scale or the Planck scale.

Representative examples of the spectrum for various values of MG in the case of SM+3VFs

are given in Fig. 4. The value of αG is fixed to 0.3, however the spectrum is not very sensitive

to this choice as previously discussed. The spectrum showed is just an example, motivated

by the smallest splitting between masses required, and it is not unique. A specific example

with exact numerical values was also given in Ref. [1]. The GUT scale motivated by lowest

splitting required between masses of vector-like fermions is at ∼ 1016 GeV in agreement with

what is suggested in Fig. 2 (left), and the masses are split between ∼1 TeV and ∼100 TeV.

There is a lower bound on possible GUT scale at ∼ 1015 GeV. For smaller MG the crossing

scale M2 is too small, see Fig. 2 (left), and thus a phenomenologically viable solution does

not exist. With increasing MG the splitting of fermion masses is increasing that can be

inferred from larger splitting of crossing scales. The GUT scale can be as high as the Planck
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FIG. 4: Masses of vector-like fermions leading to exact gauge coupling unification as functions of

the GUT scale in the case of SM+3VFs. The universal mass for particles with the same quantum

numbers is assumed. The value of αG is fixed to 0.3. Smaller values of MG (not showed) can

still be consistent with gauge coupling unification for smaller αG. The spectrum showed is just an

example, it is not unique.

scale. However, in that case the masses of vector-like fermions have to be split over 6 orders

of magnitude.

Note that quark doublets, Q, are typically predicted at ∼1 TeV. Preference for Q being

the lightest of vector-like fermions can be understood from M2 < M1,3. However there are

also solutions with L being the lightest. Keep in mind however, that these masses represent

geometric means of masses of particles with the same quantum numbers. Therefore, when

considering split masses of fermions with the same quantum numbers any fermion can be

the lightest one and as light as current experimental limits.

For SM+4VFs examples of the spectrum are given in Fig. 5. The main features are very

similar to the case of SM+3VFs. The GUT scale motivated by lowest splitting required

between masses of vector-like fermions is also at ∼ 1016 GeV in agreement with what is

suggested in Fig. 3 (left), and about two orders of magnitude splitting of masses of vector-

like fermions is required. The main difference from the SM+3VFs case is that the spectrum

shifted to 106 − 108 GeV.

For completeness we also include examples of the spectrum needed for exact gauge cou-

pling unification in the case of SM+1VF in Fig. 6 and SM+2VFs in Fig. 7. For these cases
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FIG. 5: The same as in Fig. 4 but in the case of SM+4VFs.
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FIG. 6: The same as in Fig. 4 but in the case of SM+1VF. In this case values of αG are optimized

for given GUT scale, and are close to 0.03 for all MG showed. For smaller or larger values of MG

the unification is not possible for any spectrum.

the EW scale values of gauge couplings are highly sensitive to αG. Thus αG in these ex-

amples is not fixed but rather optimized for given MG. In both cases the exact unification

can be achieved even in the region consistent with limits on proton lifetime. However the

required splitting between masses of vector-like fermions is sizable.
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FIG. 7: The same as in Fig. 4 but in the case of SM+2VF. In this case values of αG are optimized

for given GUT scale, and vary between 0.042 and 0.048. Smaller values of MG (not showed) can

still be consistent with gauge coupling unification.

D. Generalization of mass rules to other extensions of the SM

The mass rules we have just derived can be generalized to any extension of the SM. The

existence of crossing scales is a necessary condition for achieving gauge coupling unification

in a given model. This follows from the fact that integrating out extra fields above the EW

scale can only increase gauge couplings at the EW scale. Therefore, values of predicted

couplings at the EW scale without considering the mass effect of extra matter fields have

to be smaller than the measured values. The crossing scales depend only on αG and MG.

Thus, requiring that the crossing scales exist leads to limits on possible values of the GUT

scale and αG.

For chosen αG and MG we can find the crossing scales M1,2,3 for all three gauge couplings.

If one loop RGEs are good approximations these crossing scales can be easily found by ap-

plying Eq. (4) separately between MZ the Mi scales using the SM beta function coefficients,

bSMi , starting with observed values of αi,exp(MZ), and between Mi and MG scales using beta

function coefficients in the given extension, bi, assuming gauge couplings exactly unify. We

get:

ln
Mi

MZ

=
2π

bi − bSMi

(
−α−1i,exp(MZ) + α−1G +

bi
2π

ln
MG

MZ

)
. (21)

The meaning of crossing scales is the same as in extensions of the SM with VFs, namely they

represent the threshold corrections, Ti = (4/π) ln(Mi/MZ), that masses of extra particles
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must generate in order to reproduce the measured values of gauge couplings starting from

given αG and MG. The rest follows what we did for complete VFs. Once we know values of

crossing scales M1,2,3, in order to get exact gauge coupling unification, the masses of extra

particles must satisfy:

M
(bi−bSM

i )
i =

∏
F

M
bFi
F , i = 1, 2, 3, (22)

where the product is over all extra fermions (or scalars) charged under given gauge symmetry.

For a vector-like pair of fermions the corresponding mass on the right-hand side appears

twice. As in the case of complete VFs it is sufficient to consider the universal mass of

all particles with the same quantum numbers. The universal mass that enters Eq. (22)

represents their geometric mean.

For any model with arbitrary particle content, the crossing scales (21) as functions of αG

and MG together with the mass rules (22) classify all the solutions consistent with gauge

coupling unification in terms of physical masses of extra particles.

Let us illustrate the usefulness of crossing scales and the mass rules on one example. Let

us ask if there is any spectrum of extra particles in the SM extended by one vector-like family

that leads to exact gauge coupling unification for MG = 1016 GeV. This choice corresponds

to one of the points in Fig. 6 and so we already have the answer we can compare with.

However this answer is obtained by fairly complicated numerical procedure, that iteratively

solves coupled differential equations with masses of extra vector-like fermions varied till the

EW scale values of gauge couplings are precisely reproduced. Using our method, we can get

the basic features of the required spectrum fast.

For αG = 0.0286 that corresponds to the given example in Fig. 6, the crossing scales

M1,2,3, easily calculated from Eq. (21), are 1 × 1013 GeV, 7 × 104 GeV, and 2 × 106 GeV.

This immediately tells us that there will be more than 8 orders of magnitude splitting

between masses required. Knowing the crossing scales we can easily see basic features of the

spectrum that will work. From Eqs. (22), which in this case are the same as Eqs. (17) - (19),

we see that MQ, which heavily weighs on M2, should be less than M2, while everything with

large hypercharge (especially E and U) should be above M1 in order to find a solution. For

a specific example, one can choose two masses, and calculate the rest of the spectrum from

formulas Eqs. (17) - (19). Given large splitting between M2 and M1 in this case, it would

be easiest to choose the masses of Q and U as a starting point. Once we have one solution,
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varying starting masses of Q and U, and calculating the rest of masses from Eqs. (17) - (19)

will give us all possible solutions for given αG and MG. This procedure can be repeated for

any αG and MG, or the solutions can be plotted as functions of these variables.

III. DISCUSSION

So far we have only considered constraints on the GUT scale and masses of vector-like

fermions from gauge coupling unification. In order for this scenario to be easily embedded

into simple grand unified theories, based on SU(5) or SO(10), the constraints on proton

lifetime and the stability of EW minimum of the Higgs potential should be satisfied.

The most stringent limits on proton lifetime come from Super-Kamiokande. For the

dominant decay mode from dimension 6 operators, the limit is τ(p → π0e+) > 1.4 × 1034

yrs [24]. Assuming naively, that proton lifetime is τp ∼ M4
G/(α

2
Gm

5
p), where mp is the mass

of the proton, this limit translates into the lower bound on the GUT scale: MG > 1.5× 1016

GeV for αG = 0.3 which we use in our examples. However, the prediction for proton lifetime

is somewhat model dependent, see for example Refs. [2, 24, 25] and references therein, and

so we do not impose the strict limit in the plots we present. In addition, the plots would

look very similar for any large value of αG but the limits would differ. The interested reader

can easily impose the limit on any scenario by simple rescaling of the mentioned limit using

the formula for proton lifetime.

It is interesting to note that the best motivated value of the GUT scale is in the∼1016 GeV

range which is basically at the current limit. It is however not possible to make precise

predictions without knowing masses of vector-like fermions. For example, a scenario with

the GUT scale larger by a factor of 3 results in∼2 orders of magnitude enhancement of proton

lifetime, but would only require modest changes in the spectrum of vector-like fermions in

order to have exact gauge coupling unification. This inability to make precise predictions of

GUT scale parameters is a direct consequence of the insensitivity of EW scale couplings to

GUT scale boundary conditions.

The RG evolution of the top Yukawa and Higgs quartic couplings in the SM+3VFs for

MG = 2 × 1016 GeV and αG = 0.3 was given in Ref. [1]. The Higgs quartic coupling

remains positive all the way to the GUT scale and thus the electroweak minimum of the

Higgs potential is stable. This result holds in a large range of MG and αG especially in the
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best motivated region. Therefore, these scenarios represent some of the simplest possible

extensions of the standard model that can be embedded into grand unified theories, with

sufficiently long lived proton, and stable EW minimum of the Higgs potential.

We have not investigated the origin of masses of vector-like fermions needed for gauge

coupling unification. This would require additional assumptions about the mechanism that

generates them and the scale at which boundary conditions are set. The masses of vector-

like fermions may be fundamental lagrangian parameters, or they can originate from Yukawa

couplings to one or several additional scalars (singlets under SM gauge symmetry, but possi-

bly charged under family symmetries) that acquire vacuum expectation values at any scale

between the GUT scale and the MV F scale. In addition, vector-like fermions can have non-

zero Yukawa couplings to the SM Higgs doublet, which add another layer of complexity by

contributing to the physical masses and possibly significantly affecting the RG evolution of

other parameters that directly determine their masses. The study of gauge coupling unifica-

tion is to large extent unaffected by these assumptions, only the physical masses of particles

matter in the leading order. Fundamental lagrangian masses would not affect running of

gauge couplings at all, and the Yukawa couplings to extra scalars may only contribute to

the RG evolution of gauge couplings at 2-loop level. However, in any specific scenario, the

mass rules (17) - (19) can be evolved to the GUT scale (or other relevant scale) and the

freedom to choose some of the masses can be used to search for simple boundary conditions

that are consistent with gauge coupling unification.

Finally, it is intriguing to consider a connection with the anthropic solution to the hier-

archy problem, or the EW scale [26, 27]. Adding VFs to the SM makes this possibility more

appealing, since in the SM special values of gauge couplings either at the EW scale or some

high scale have to be selected. In scenarios that we discussed the EW scale values of gauge

couplings close to the observed values are not very special, but rather quite generic outcome

from large ranges of fundamental parameters. For example in the SM+3VFs case, as far as

MV F < 25 TeV, for any αG & 0.2, and MG anywhere between 1014 GeV and the Planck

scale, the predicted values of gauge coupling at the EW scale are always within 50% of the

measured values (α1,2 typically well within 20%). This is indicated by lightly shaded region

in Fig. 2, and similar region is indicated in Fig. 3 for SM+4VFs. Furthermore, if the EW

scale and MV F have the same origin it would also explain the proximity of the QCD scale

to the EW scale. The beta function of α3 changes the sign at MV F , and below this scale it
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starts running fast toward ΛQCD.

IV. CONCLUSIONS

We have discussed gauge coupling unification in models with additional 1 to 4 complete

vector-like families. In scenarios with 3 or more vector-like families the values of gauge

couplings at the electroweak scale are highly insensitive to the grand unification scale, the

unified gauge coupling, and the masses of vector-like fermions. Their observed values can

be mostly understood from infrared fixed point behavior. Starting with a large (but still

perturbative) unified gauge coupling at a high scale, the values of gauge couplings at lower

energies are determined only by the particle content of the theory and how far from the

GUT scale we measure them. Since the exact value of αG becomes irrelevant, instead of

one prediction of the conventional unification we have two predictions for ratios of gauge

couplings. These predictions are modified at the MV F scale, where the vector-like fermions

are integrated out, and below this scale gauge couplings run according to the usual RG

equations of the standard model.

Assuming first a common mass of vector-like fermions, MV F , we showed predictions for

three gauge couplings at the EW scale as functions of MG and MV F . We found that the

observed values of gauge coupling are reproduced with good precision from a large range

of parameters. Especially MG can be varied over several orders of magnitude while having

all three gauge couplings within 20% from observed values. The best fit, which predicts all

three couplings within 6% from measured values, suggests MG ∼ 1016 GeV, and MV F ' 104

GeV in the case of SM+3VFs, and MV F ' 106 − 107 GeV in the case of SM+4VFs.

The best motivated GUT scale, ∼1016 GeV, predicts proton lifetime close to current

limits. However, due to insensitivity of predicted EW scale values of gauge couplings to

GUT scale parameters no sharp predictions can be made without knowing the spectrum of

vector-like fermions. In addition, it was previously showed that the Higgs quartic coupling

remains positive all the way to the GUT scale, and thus the electroweak minimum of the

Higgs potential is stable. This result holds in a large range of MG and αG especially in the

best motivated region. Therefore, these scenarios represent some of the simplest possible

extensions of the standard model that can be embedded into grand unified theories, with

sufficiently long lived proton, and stable EW minimum of the Higgs potential.
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The discrepancies of IR fixed point predictions from observed values can be explained by

threshold effects of extra vector-like fermions. We showed examples of the spectrum for GUT

scale varied between 1014 GeV and 1018 GeV. We derived simple rules for masses of vector-

like fermions required for exact gauge couplings unification. In addition, we generalized the

mass rules and the method of using crossing scales of evolutions of gauge couplings in the

SM and given extension to classify scenarios consistent with gauge coupling unification to

arbitrary extension of the standard model. The problem of finding all possible mass spectra

in a given model consistent with gauge coupling unification is reduced to solving a set of

simple algebraic equations that masses of extra particles have to satisfy.

With respect to sensitivity to fundamental parameters the model with 3 extra vector-like

families stands out. In the best motivated region it requires vector-like fermions with masses

of order 1 TeV – 100 TeV, and thus at least part of the spectrum may be within the reach

of the LHC. Notably, quark doublets, Q, are typically predicted at ∼1 TeV. However, only

geometric means of masses of particles with the same quantum numbers are constrained

by gauge coupling unification. Therefore, when considering split masses of fermions with

the same quantum numbers, any fermion can be the lightest one, and as light as current

experimental limits. Besides direct production of these particles at the LHC, it may be

also possible to observe their effects in a variety of processes. However, they typically

affect standard model predictions only through mixing with light fermions which is highly

model dependent. The discussion of gauge coupling unification, that we focused on here, is

negligibly affected by such mixing.
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