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Abstract

This paper is divided into two parts. In the first part we analyze the consequences,
for the LHC, of gauge and third family Yukawa coupling unification with a particular
set of boundary conditions defined at the GUT scale. We perform a global χ2 anal-
ysis including the observables MW ,MZ , GF , α

−1
em, αs(MZ),Mt,mb(mb),Mτ , BR(B →

Xsγ), BR(Bs → µ+µ−) and Mh. The fit is performed in the MSSM in terms of 9 GUT
scale parameters, while tanβ and µ are fixed at the weak scale. Good fits suggest an up-
per bound on the gluino mass, Mg̃ . 2 TeV. This constraint comes predominantly from
fitting the bottom quark and Higgs masses (assuming a 125 GeV Higgs). Gluinos should
be visible at the LHC in the 14 TeV run but they cannot be described by the typical
simplified models. This is because the branching ratios for g̃ → tt̄ χ̃0

1,2, bb̄ χ̃
0
1,2, tb̄ χ̃

−
1,2,

bt̄ χ̃+
1,2, g χ̃

0
1,2,3,4 are comparable. Stops and sbottoms may also be visible. Charginos

and neutralinos can be light with the LSP predominantly bino-like. In the second part
of the paper we analyze a complete three family model and discuss the quality of the
global χ2 fits and the differences between the third family analysis and the full three
family analysis for overlapping observables. We note that the light Higgs in our model
couples to matter like the Standard Model Higgs. Any deviation from this would rule
out this model.



1 Introduction

Gauge coupling unification in supersymmetric grand unified theories (SUSY GUTs) [1–6] provides an
experimental hint for low energy SUSY. However, it does not significantly constrain the spectrum of
supersymmetric particles. On the other hand, it has been observed that Yukawa coupling unification
for the third generation of quarks and leptons in models, such as SO(10) or SU(4)c×SU(2)L×SU(2)R,
can place significant constraints on the SUSY spectrum in order to fit the top, bottom and tau
masses [7–11]. These constraints depend on the particular boundary conditions for sparticle masses
chosen at the GUT scale (see for example, [9, 12, 13], which consider different GUT scale boundary
conditions). In light of the present success of the LHC with the possible observation of the Higgs
boson with mass of order 125 GeV and significant lower bounds on gluino and squark masses, it
is a perfect time to review the viability of the constraints on the sparticle spectrum resulting from
gauge and third generation Yukawa coupling unification.1 This is what we do in this paper. In
part one of the paper, we perform a global χ2 analysis assuming SO(10) boundary conditions for
sparticle masses and non-universal Higgs masses, which we have called “just so Higgs splitting.” We
fit the observables, MW ,MZ , GF , α

−1
em, αs(MZ),Mt,mb(mb),Mτ , BR(B → Xsγ), BR(Bs → µ+µ−)

and Mh in terms of 11 arbitrary parameters. These fits then place significant constraints on the
gluino mass.

In the second part of the paper we study a complete three family model of quark and lepton Yukawa
couplings at the GUT scale [16, 17] which is based on an SO(10) GUT with a D3× [U(1)×Z2×Z3]
family symmetry. This model was shown to give good fits to precision electroweak data, including
quark, charged lepton and neutrino masses and mixing angles (see most recently the global χ2

analysis in [18]). In light of the observation of sin2 θ13 it is again a perfect time to re-analyze
this model. We are also able to compare the third family Yukawa unification analysis with the
three family analysis which now includes hierarchical Yukawa matrices with unification of the (3,3)
element of the Yukawa matrices. Hence, off-diagonal elements in the Yukawa matrices give small
corrections to exact Yukawa unification.

The paper is organized as follows. In Section 2, we present the SO(10) model. In Section 3, we
present the procedure used in the paper for analyzing the model. In Section 4, we consider a model
with gauge coupling unification and only the Yukawa couplings for the third family, which are
assumed to unify at the GUT scale. We perform a global χ2 analysis fitting the relevant low energy
observables. In Section 5, we extend the analysis to all three families of quarks and leptons using a
particular SO(10) GUT model. In this case, we look for the minimum values of χ2 for five different
choices of the universal squark and slepton mass, m16, defined at the GUT scale, MG. Finally, the
summary and conclusions are given in Section 6.

1For other analyses in this direction, see [14, 15].
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2 The Model

2.1 Third family model

Fermion masses and quark mixing angles are manifestly hierarchical. The simplest way to describe
this hierarchy is with Yukawa matrices which are also hierarchical. Moreover the most natural way
to obtain the hierarchy is in terms of effective higher dimension operators of the form

W ⊃ λ 163 10 163 + 163 10
45

M
162 + · · · . (1)

This version of SO(10) models has the nice features that it only requires small representations of
SO(10), has many predictions and can, in principle, find an UV completion in string theory. The
only renormalizable term in W is λ 163 10 163 which gives Yukawa coupling unification

λ = λt = λb = λτ = λντ (2)

at MGUT . Note, one cannot predict the top mass due to large SUSY threshold corrections to the
bottom and tau masses, as shown in [19–21]. These corrections are of the form

δmb/mb ∝
α3 µ Mg̃ tanβ

m2
b̃

+
λ2t µ At tanβ

m2
t̃

+ log corrections. (3)

So instead we use Yukawa unification to predict the soft SUSY breaking masses. In order to fit the
data, we need

δmb/mb ∼ −2%. (4)

We take µ, Mg̃ > 0, thus we need µ, At < 0. For a short list of references on this subject, see
[7–11, 14, 22–24].

Given the following GUT scale boundary conditions, namely universal squark and slepton masses,
m16, universal cubic scalar parameter, A0, universal gaugino masses, M1/2, and non-universal Higgs
masses [NUHM] or “just so” Higgs splitting, mHu , mHd or m2

Hu(d)
= m2

10[1− (+)∆2
mH

], we find that

fitting the top, bottom and tau mass forces us into the region of SUSY breaking parameter space
with

A0 ≈ −2m16, m10 ≈
√

2 m16, m16 > few TeV, µ,M1/2 � m16; (5)

and, finally,
tanβ ≈ 50. (6)

In addition, radiative electroweak symmetry breaking requires ∆2
mH
≈ 13%, with roughly half of

this coming naturally from the renormalization group running of neutrino Yukawa couplings from
MG to MNτ ∼ 1013 GeV [9].

It is very interesting that the above region in SUSY parameter space results in an inverted scalar
mass hierarchy at the weak scale with the third family scalars significantly lighter than the first
two families [25]. This has the nice property of suppressing flavor changing neutral current and CP
violating processes. These results depend solely on SO(10) Yukawa unification for the third family.
In order to demonstrate this, we perform a separate analysis with only third family observables
(Section 4) and then a complete three family analysis (Section 5).2

2The large Yukawa coupling for the third family is the driving force for the inverted scalar mass hierarchy. However,
the particular boundary conditions of Eq. (5) were shown to maximize the effect.
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2.2 Full Three Family Model

We now consider a complete three family SO(10) model for fermion masses and mixing, including
neutrinos [16–18]. The model also includes a D3 × [U(1) × Z2 × Z3] family symmetry which is
necessary to obtain a predictive theory of fermion masses by reducing the number of arbitrary
parameters in the Yukawa matrices. Consider the superpotential generating the effective fermion
Yukawa couplings:

Wch. fermions = λ 163 10 163 + 16a 10 χa + χ̄a (Mχ χa + 45
φa

M̂
163 + 45

φ̃a

M̂
16a + A 16a) (7)

where 45 is an SO(10) adjoint field which is assumed to obtain a VEV in the B – L direction,
Mχ is a linear combination of an SO(10) singlet and adjoint, and the index a = 1, 2. Its VEV
Mχ = M0(1 +αX + βY ) gives mass to Froggatt-Nielsen states [26]. Here, X and Y are elements of
the Lie algebra of SO(10) with X in the direction of the U(1) which commutes with SU(5) and Y
the standard weak hypercharge, and α , β are arbitrary constants which are fit to the data. M̂ is
an SO(10) invariant mass scale which in principle could be obtained by integrating out additional
Froggatt-Nielsen states. Note that both M0 and M̂ are assumed to be above the GUT scale. φa,
φ̃a, A are SO(10) singlet “flavon” fields, A is a non-trivial one dimensional representation under
D3, and χ̄a, χa are a pair of Froggatt-Nielsen states transforming as a 16 and 16 under SO(10).
The so-called flavon fields are assumed to obtain VEVs of the form

〈φa〉 =

(
φ1
φ2

)
, 〈φ̃a〉 =

(
0

φ̃2

)
. (8)

After integrating out the Froggatt-Nielsen states one obtains the effective fermion mass operators
in Fig. 1.

16

10

16
3 3

(a) Renormalizable mass term for third family that
gives rise to the (3, 3) element of the Yukawa matrix.

45 Φa

MX

10

16 χa χa
_

~

1622

(b) Effective operator that generates the (2, 2) element
of the Yukawa matrix.

45 Φa

MX

10

16 χa χa
_

16a cb

(c) Effective operators that generate the off-diagonal
Yukawa couplings: (b, c) = (3, 2), (2, 3), (3, 1) or (1, 3)

MX

10

16 χa

A

χa

_
16b c

(d) Effective operators that generate the off-diagonal
Yukawa couplings: (b, c) = (2, 1) or (1, 2).

Figure 1: The effective fermion mass operators obtained after integrating out the Froggatt-Nielsen massive states.
Here, a runs from 1 to 2.

Inserting the flavon VEVs, one then obtains Yukawa matrices for up-quarks, down-quarks, charged

3



leptons and neutrinos given by

Yu =




0 ε′ ρ −ε ξ
−ε′ ρ ε̃ ρ −ε
ε ξ ε 1


 λ

Yd =




0 ε′ −ε ξ σ
−ε′ ε̃ −ε σ
ε ξ ε 1


 λ (9)

Ye =




0 −ε′ 3 ε ξ
ε′ 3 ε̃ 3 ε

−3 ε ξ σ −3 ε σ 1


 λ

with

ξ = φ2/φ1, ε̃ ∝ φ̃2/M̂, (10)

ε ∝ φ1/M̂, ε′ ∼ (A/M0),

σ =
1 + α

1− 3α
, ρ ∼ β � α

and

Yν =




0 −ε′ ω 3
2 ε ξ ω

ε′ ω 3 ε̃ ω 3
2 ε ω

−3 ε ξ σ −3 ε σ 1


 λ (11)

with ω = 2σ/(2σ − 1) and a Dirac neutrino mass matrix given by

mν ≡ Yν
v√
2

sinβ. (12)

From Eq. (9) and Eq. (11) one can see that the flavor hierarchies in the Yukawa couplings are
encoded in terms of the four complex parameters ρ, σ, ε̃, ξ and the additional real ones ε, ε′, λ. These
matrices contain 7 real parameters and 4 arbitrary phases. Note, the superpotential (Eq. (7)) has
many arbitrary parameters. However, at the end of the day the effective Yukawa matrices have
much fewer parameters. This is good, because we then obtain a very predictive theory. Also, the
quark mass matrices accommodate the Georgi-Jarlskog mechanism, such that mµ/me ≈ 9ms/md.
This is a result of the 45 VEV in the B − L direction.

We then add 3 real Majorana mass parameters for the neutrino see-saw mechanism. The anti-
neutrinos obtain GUT scale masses by mixing with three SO(10) singlets (Na for a = 1, 2 and
N3) transforming as a D3 doublet and singlet, respectively. The full superpotential is given by
W = Wch. fermions +Wneutrino with

Wneutrino = 16 (λ2 Na 16a + λ3 N3 163) +
1

2
(Sa Na Na + S3 N3 N3) (13)

where the fields Sa, S3 are additional flavon fields whose VEVs provide Majorana masses for the
states Na, N3. We assume 16 obtains a VEV, v16, in the right-handed neutrino direction, and
〈Sa〉 = Ma for a = 1, 2 and 〈S3〉 = M3. The effective neutrino mass terms are given by

W = ν mν ν̄ + ν̄ V N +
1

2
N MN N (14)
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Sector Third Family Analysis # Full three family Analysis #

gauge αG, MG, ε3 3 αG, MG, ε3 3

SUSY (GUT scale) m16, M1/2, A0, mHu , mHd 5 m16, M1/2, A0, mHu , mHd 5

textures λ 1 ε, ε′, λ, ρ, σ, ε̃, ξ 11

neutrino 0 MR1 , MR2 , MR3 3

SUSY (EW scale) tanβ, µ 2 tanβ, µ 2

Total # 11 24

Table 1: The model is defined by three gauge parameters, αG,MG, ε3; one large Yukawa coupling, λ; 5 SUSY
parameters defined at the GUT scale, m16 (universal scalar mass for squarks and sleptons), M1/2 (universal gaugino
mass), mHu , mHd (up and down Higgs masses), and A0 (universal trilinear scalar coupling); µ, tanβ obtained at
the weak scale by consistent electroweak symmetry breaking. The full three family model has additional off-diagonal
Yukawa couplings, and includes 3 right-handed neutrino masses.

with

V = v16




0 λ2 0
λ2 0 0
0 0 λ3


 , MN = diag(M1, M2, M3) (15)

all assumed to be real. Finally, upon integrating out the heavy Majorana neutrinos we obtain the
3× 3 Majorana mass matrix for the light neutrinos in the lepton flavor basis given by

M = UTe mν M
−1
R mT

ν Ue, (16)

where the effective right-handed neutrino Majorana mass matrix is given by:

MR = V M−1N V T ≡ diag(MR1 ,MR2 ,MR3), (17)

with

MR1 = (λ2 v16)
2/M2, MR2 = (λ2 v16)

2/M1, MR3 = (λ3 v16)
2/M3. (18)

3 Procedure

Renormalization Group Equations

The model parameters, summarized in Tab. 1, are defined at the grand unification scale MG with
the exception of tanβ and µ that are defined at the electroweak scale. At the GUT scale, αG ≡
α1(MG) = α2(MG) and α3(MG) = αG(1 + ε3), where ε3 is the GUT scale threshold correction3

necessary to fit the strong coupling to experimental data at the electroweak scale, MZ . These 3
gauge parameters, the 11 Yukawa textures (described in Section 2.2), 5 SUSY boundary conditions,
and 3 real neutrino mass parameters allow us to completely define the model at the GUT scale and
derive all the parameters of the minimal supersymmetric standard model (MSSM).

3Without presenting a complete GUT we leave ε3 as a free parameter. In this way, our analysis will also apply to
orbifold GUTs or string compactifications with a scale of order MG.
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First, the GUT scale parameters are RGE evolved to the right-handed neutrino scale where the
RH neutrinos are integrated out (see Fig. 2 on the following page). The right-handed neutrinos
have three different scales associated with them, and the most relevant one is the third-family RHN
that is mostly responsible for splitting the up and down type Higgs masses. We therefore choose to
integrate out all the right-handed neutrinos at one single scale, MNτ = MR3 .

Below the scale of the RHNs, we use the 2-loop MSSM RGEs for both dimensionful and dimension-
less parameters. Ideally, one should evolve all parameters to the scale of the heavy scalars (m16 in
this case, as shown in Fig. 2) and integrate them out and proceed to evolve to the weak scale using
an effective theory without the first two generation scalars. We choose an alternative approach
and use the 2-loop MSSM RGE4 evolution down to the weak scale and correct for the additional
running by including 1-loop threshold corrections to the relevant observables5. This approximation
eliminates the need to define multiple effective theories. In our analysis, we have been careful to
take into account the corresponding threshold corrections for all observables.

Electroweak Observables

At the weak scale, we calculate the SUSY spectrum and the SUSY threshold corrections to the
fermion masses and CKM matrix elements. Especially in the large tanβ regime, these SUSY
threshold corrections are very important for the down type quarks and charged leptons and can
be at the percent level in Yukawa-unified SUSY models [21]. We then use the threshold corrected
fermion masses to determine the tree level masses for the squarks and sleptons. In addition, we also
determine the one-loop pole mass for gluino and the CP-odd Higgs mass. The precision electroweak
observables MZ , MW , Gµ, α−1em(MZ), αs(MZ) are calculated including 1-loop threshold corrections,
using the procedure described in [35, 36]. Following the prescription in [35], the condition for
consistent radiative electroweak symmetry breaking is also imposed at the weak scale, and for
this, we use the physical Z pole mass. The parameter µ is fixed by this procedure via a separate
χ2 minimization, and in the process, we fit the Z mass precisely to the physical Z pole mass.
In the calculation of MZ and MW , we only include the 1-loop corrections from the third family
scalars, since the first two generation scalars are integrated out at m16. We assign a theoretical
uncertainty of 0.5% to our calculation of the electroweak observables (except for MZ) due to the
approximate treatment of thresholds described above. We also assign a 1% theoretical uncertainty
to our calculation of Gµ, since we neglect the SUSY vertex and box diagrams. Finally, to compare
to experiment, αem is evolved to zero momentum transfer.

Charged Fermion masses and mixing angles

Below MZ , we integrate out all SUSY partners and electroweak gauge bosons to obtain an effective
SU(3) × U(1)em low energy theory. We use 1-loop QED and 3-loop QCD RGEs to renormalize to
the appropriate scales and calculate the low energy observables. We fit the top quark pole mass,

4In scenarios with heavy scalars, it has been shown that the 2-loop contributions to the third generation scalars
can lead to dramatic consequences, like driving the stop mass squared negative [27] and thus it is important to include
the 2-loop RGEs in scenarios such as discussed here.

5For the calculation of Higgs mass, we define an effective theory at the scale MSUSY and interface our calculation
with the code by authors in Ref.[28]
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Model defined in terms of 24 real parameters: αG, MG, ǫ3, m16,
M1/2, A0, mHu , mHd

, λ, ǫ, ǫ′, ρ, σ, ǫ̃, ξ, MR1 , MR2 , MR3 , tan β, µ

GUT (24 parameters)

Right-handed neutrinos integrated out

RHN

1st and 2nd generation scalars are integrated out

m16

SUSY spectrum & flavor observ-
ables calculated (susy flavor)

MSUSY

Calculate top pole mass

Mtop

SM spectrum & flavor observables cal-
culated (SuperIso) & tanβ, µ, mh,
mH , mA, mH±

MEW

Calculate light quark
masses mu, md, ms

2 GeV
Gauge & EW sector: MZ , MW , αem, Gµ, α3, Mh

Quark sector: Mt, mb, mc, ms, md/ms, 1/Q2, |Vus|, |Vcb|,
|Vub|, |Vtd|, |Vts|, sin2β

Lepton sector: Mτ , Mµ, Me, θ12, θ23, θ13, m2
21, m2

31

Flavor observables: ǫK , ∆MBs/∆MBd, ∆MBd, B → Xsγ,
Bs → µ+µ−, Bd → µ+µ−, B → τν, B → K∗µ+µ− (3x)

Experiment (36 Observables)

RGEs for MSSM w/right-handed neutrinos

RGEs for MSSM

RGEs for MSSM w/o 1st
and 2nd generation scalars

RGEs for MSSM w/o 1st
and 2nd generation scalars

Corrections

Compare

Compare

Compare

RGEs for SM

RGEs: 3-loop QCD &
1-loop EW

Figure 2: This schematic shows the steps that must be employed to evolve a GUT model to the low energies and
calculate observables at the relevant scales to compare with experimental data. Note that we use threshold corrections
instead of integrating out two family of scalars from the particle spectrum.



Observable Exp. Value Ref. Program Th. Error

α3(MZ) 0.1184± 0.0007 [29] maton 0.5%

αem 1/137.035999074(44) [29] maton 0.5%

Gµ 1.16637876(7)× 10−5 GeV−2 [29] maton 1%

MW 80.385± 0.015 GeV [29] maton 0.5%

MZ 91.1876± 0.0021 [29] Input 0.0%

Mt 173.5± 1.0 GeV [29] maton 0.5%

mb(mb) 4.18± 0.03 GeV [29] maton 0.5%

mc(mc) 1.275± 0.025 GeV [29] maton 0.5%

ms(2 GeV) 95± 5 MeV [29] maton 0.5%

ms/md (2 GeV) 17− 22 [29] maton 0.5%

Q 21− 25 [29] maton 5%

|Vus| 0.2252± 0.0009 [29] maton 0.5%

|Vub| 0.00377± 0.00085 [29] maton 0.5%

|Vcb| 0.04065± 0.00195 [29] maton 0.5%

|Vtd| 0.00840± 0.0006 [29] maton 0.5%

|Vts| 0.0429± 0.0026 [29] maton 0.5%

sin 2β 0.679± 0.020 [29] maton 0.5%

Mτ 1776.82± 0.16 MeV [29] maton 0.5%

Mµ 105.6583715(35) MeV [29] maton 0.5%

Me 0.510998928(11) MeV [29] maton 0.5%

Mh 125.3± 0.4± 0.5 GeV [30] Ref. [28] 3 GeV

sin2 θ12 0.27− 0.34 (3σ range) [31] maton 0.5%

sin2 θ23 0.34− 0.67 (3σ range) [31] maton 0.5%

sin2 θ13 0.016− 0.030 (3σ range) [31] maton 0.5%

∆m2
21 (7.00− 8.09)× 10−5 eV2 (3σ range) [31] maton 0.5%

∆m2
31 (2.27− 2.69)× 10−3 eV2 (3σ range) [31] maton 0.5%

BR(b→ sγ) (343± 21± 7)× 10−6 [32] SuperIso (181− 505)× 10−6

BR(B → K∗µµ)1≤q2≤6 GeV2 (1.97± 0.21)× 10−7 [32] SuperIso (0.79− 3.15)× 10−7

BR(B → K∗µµ)14.18≤q2≤16 GeV2 1.20+0.11
−0.10 × 10−7 [32] SuperIso (0.48− 1.92)× 10−7

q20(AFB(B → K∗µµ)) 4.9+1.1
−1.3 GeV2 [33] SuperIso 4.86− 4.94

BR(Bs → µ+µ−) 3.2× 10−9 [34] susy flavor 1.5× 10−9

BR(Bu → τν) (166± 33)× 10−6 [32] susy flavor (83− 249)× 10−6

BR(Bd → µ+µ−) < 8.1× 10−10 [32] susy flavor < 9.72× 10−10

∆mBd (3.337± 0.033)× 10−10 MeV [29] susy flavor (2.67− 4.00)× 10−10

∆mBs/∆mBd 35.06± 0.42 [29] susy flavor 28.05− 42.07

εK (2.228± 0.11)× 10−3 [29] susy flavor (2.00− 2.45)× 10−3

Table 2: The 36 observables that we fit and their experimental values. In the 4th column, we indicate the software
package that gives us the theoretical prediction. In the last column, we show what we have assumed for the theoretical
errors. Here, Q2 = (m2

s−1/4(mu+md)
2)/(m2

d−m2
u) is defined on p. 657 of Ref. [29]. The number(s) in brackets after

some of the values indicate the 1σ uncertainty in the last digit(s). Capital letters denote pole masses. We take LHCb
results into account, but use the average by Ref. [32]. All experimental errors are 1σ unless otherwise indicated. To
account for the inconsistencies in the inclusive and exclusive measurements of |Vub| and |Vcb|, we allow our result to
be within the experimental error from both the inclusive and the exclusive measurement. To minimize theoretical
uncertainties, we fit the ratio ∆mBs/∆mBd and derive its error by the usual formula for error propagation using the
value ∆mBs = (117.0± 0.8)× 10−10 MeV [29] and assuming no correlations between the errors. Finally, the Z mass
is fit precisely via a separate χ2 function solely imposing electroweak symmetry breaking.
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and the bottom and charm quark MS masses are calculated at their respective masses. All the
other light quark masses are calculated at the scale of 2 GeV. We fit 7 observables relevant to quark
masses, 3 charged lepton masses, and 6 CKM observables. The theoretical uncertainty in their
calculation is again estimated to be 0.5 %. Since the light quark masses are not measured to very
high precision, we choose to fit multiple correlated observables. These include the MS strange quark
mass, the mass ratio md/ms and the mass ratio Q defined in the PDG [29] as

Q2 =
m2
s − 1/4(mu +md)

2

m2
d −m2

u

, or equivalently,

(
mu

md

)2

+
1

Q2

(
ms

md

)2

= 1 (19)

The CKM matrix is calculated from the left and right mixing matrices by diagonalizing the Yukawa
matrices and including the SUSY threshold corrections. 6 CKM observables (|Vus|, |Vub|, |Vcb|,
|Vtd|, |Vts| and sin 2β) are included in our global fit analysis. To account for the inconsistencies in
the inclusive and exclusive measurements of |Vub| and |Vcb|, we allow our result to be within the
experimental error from both the inclusive and the exclusive measurement. The pole masses in the
lepton sector are calculated with 1-loop electromagnetic threshold corrections.

To execute the steps elaborated so far, we use a code maton, originally developed by Radovan
Dermı́̌sek to study Yukawa unification in the SO(10) model with D3 × [U(1) × Z2 × Z3] family
symmetry [17]. maton has been restructured and extended appropriately to adapt to the current
analysis.

Higgs Mass

The recent observation of the Higgs boson at the LHC [30, 37] will allow us to highly constrain
the parameter space of the model. Flavor constraints have already pushed the first two generation
scalars of Yukawa-unified SUSY models & 10 TeV [38]. In contrast, the third family scalars have
mass about a few TeV, purely by the effects of RGE running. The hierarchy between the first two
and the third generations alleviates the constraints from flavor physics and CP violating observables,
and at the same time eases the large fine-tuning in models with heavy scalars. In addition to the
TeV range scalars, the large A-terms make it easy to obtain a Higgs mass of about 125 GeV. We
integrate out all the scalars (including the third generation squarks and sleptons) below the scale
MSUSY, and calculate the Higgs boson mass using the dedicated code by the authors of Ref. [28],
that is best suited to our case where the sfermions are very heavy. Given the boundary conditions,

µ(MZ), M1(MSUSY), M2(MSUSY), M3(MSUSY), MSUSY, tanβ, At(MSUSY)

at the scale MSUSY =
√
Mt̃1
×Mt̃2

, (where M1, M2, M3 are the gaugino masses at the scale
MSUSY), the routine [28] determines the Higgs mass by calculating the corrections to the Higgs
quartic coupling:

Mh =

√
λ(MSUSY)√

2Gµ

(
1 + δSM (MSUSY) + δχ(MSUSY)

)
(20)

δχ are the contributions from chargino and neutralino diagrams. The quartic coupling λ(MSUSY)
is given by:

λ(MSUSY) =
1

4

(
g2 + g′2

)
+

3h4t
8π2

[(
1− g2 + g′2

8h2t

)
X2
t

M2
SUSY

− X4
t

12M4
SUSY

]
(21)
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We have to point out an important difference in our approach. The conventional method is to use
the SM inputs of MZ , Gµ, α−1em(MZ), αs(MZ), Mt, mb(mb), Mτ to determine the gauge and the
Yukawa couplings at the scales MSUSY and further constrain the GUT scale parameters. We instead
like to predict these low energy observables and constrain the GUT scale parameter space based on
a global χ2 fit to the data. In our calculation of the Higgs mass, we take the gauge and Yukawa
couplings as input at the scale MSUSY, obtained from RGE evolution using maton and calculate the
Higgs mass using these inputs. The approach we adopt here is purely top-down. We have adapted
the routine [28] to suit this line of analysis. Nevertheless, we have compared the spectrum we obtain
from maton with that from softsusy6 [39] and find good agreement.

Neutrino Sector

We are fitting 5 observables in the neutrino sector: the mixing angles θ12, θ23, θ13, and the mass-
squared differences ∆m31 ≡ m2

3−m2
1 and ∆m21 ≡ m2

2−m2
1 (cf. Tab. 2). The most dramatic change

in the experimental determination of the neutrino parameters in recent years comes from the Daya
Bay and Reno collaborations [40, 41] that have confirmed that θ13 ∼ 9◦ is indeed large. Moreover,
there are tentative hints that θ23 is not maximal [42, 43]. Whereas Ref. [42] sees a preference at
∼ 2σ− 3σ for the first octant, i.e. θ23 < 45◦, Ref. [43] finds an equal probability for θ23 being larger
or smaller than 45◦. In the following, we will be using the best-fit values and the 3σ uncertainties
quoted by the NuFIT collaboration [43] which are in agreement with Ref. [42] at 3σ.

Flavor Physics

The strongest constraints on the model come from B-physics. For calculating the flavor observables,
we use two publicly available codes, namely susy flavor [44] and SuperIso [45, 46]. Since the
boundary conditions that we impose at the GUT scale may generate large off-diagonal and in
general complex entries at the low scale, susy flavor is better adapted to our needs. Note that
susy flavor, in contrast to comparable programs that calculate similar processes, does not assume
minimal flavor violation (MFV), and allows for general, full three family, complex soft parameters.
This is particularly important in our case, since we are calculating several CP violating observables
and need to take into account7 the complex phases in the soft parameters. Hence, susy flavor is
our default choice for all flavor observables with the following exceptions. For B → Xsγ, we use
SuperIso, since susy flavor does not include the NNLO SM corrections. We have verified that
the discrepancy between susy flavor and SuperIso in the parameter space that is of interest to
us is at most 10% and typically less than 7%. Also, we use SuperIso for the observables connected
to the decay process B → K∗µ+µ−, since susy flavor does not provide them. It is important
to note that SuperIso has some built-in assumptions that prove to be too restrictive in our case.
E.g. SuperIso assumes all soft parameters to be real, and only takes the diagonal entries of the
third-family trilinear couplings into account. As a consequence, we have assigned larger theoretical

6Without making significant changes to softsusy or other publicly available codes, we find that we can only make
rough comparisons of the spectra. This is because to the best of our knowledge, most of the currently available codes
do not handle complex parameters. In addition, many do not include right-handed neutrinos, and do not offer an
easy way to implement the particular GUT scale Yukawa texture of the model.

7We calculate the particle spectrum using maton, see comments on p. 9. To the best of our knowledge, there is
currently no publicly available spectrum generator that fully takes into account all the complex phases of the MSSM.
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uncertainties to the values calculated by SuperIso (see Tab. 2). Additional sources of uncertainties
in the flavor observables derive from the theoretical determination of the B meson decay constant
and from the experimental measurements of the CKM matrix elements.

LHCb has recently measured [34] the Br(Bs → µ+µ−) which is in good agreement with the SM
prediction. This pushes the CP-odd Higgs mass to a few TeV and hence leads to the Higgs decoupling
limit. Thus the light Higgs is predicted to be SM-like. The recent observation of zero-crossing in the
forward-backward asymmetry of B → K∗µ+µ− constrains the Wilson coefficient C7 to be of the
same sign as that in the SM. This imposes the additional constraint for the model that if µ > 0,
in order to satisfy the branching fraction observed in the process B → Xsγ the first two generation
scalars have to be heavier than at least 10 TeV.

Global Fit

In the last step of our calculation, we construct a χ2 function in terms of the 36 calculated observables
(see Tab. 2).

χ2 =
∑

i

|yi − ydatai |2
σ2i

(22)

yi and ydatai are the theoretical prediction and experimental measurement, respectively, for each
observable. σi is the error on each observable, the theoretical and experimental errors added in
quadrature. In the general case, we vary 23 parameters (see Tab. 1 and note that m16 is fixed in all
the analyses) in order to fit 36 observables, which amounts to 12 (or 13 counting the separate fit to
the Z pole mass) degrees of freedom (d.o.f.). We will consider the χ2 per d.o.f. for the model as a
qualitative measure of the goodness of fit. We will look at the pulls from the individual observables
to assess the goodness of fit of the model.

Finding the global minimum for a model with 23 parameters is a formidable task. In the present
analysis, we minimize the χ2 function using the Minuit package maintained by CERN [47]. Note
that Minuit is not guaranteed to find the global minimum, but will in most cases converge on a
local one. For that reason, we iterate O(100) times the minimization procedure for each set of
input parameters, and in each step we take a different initial guess for the minimum (required by
Minuit) so that we have a fair chance of finding the true minimum. This, of course, requires large
computing resources, and to that end we have used the Ohio Supercomputer Center in Columbus
and the “Centre de Calcul de l’Institut National de Physique Nucléaire et Physique des Particules”
in Lyon.

4 Third family analysis

In this section we analyze the consequences of Yukawa unification for the the third family in the
context of minimal SO(10) supersymmetric grand unification defined by the superpotential term,
W ⊃ λ 163 10 163. The aim of this analysis is to study the SUSY spectrum, and we argue that
the constraints on the SUSY spectrum come predominantly from the third family, the lightest
Higgs mass and the branching ratio BR(Bs → µ+ µ−). There are 24 parameters in total in the
DR model [16, 17], and in this section we focus on 11 parameters (summarized in Tab. 1) that
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are used to evaluate 11 low energy observables, MW , MZ , GF , α−1em, αs(MZ), Mt, mb(mb), Mτ ,
Br(B → Xsγ), Br(Bs → µ+µ−), and the lightest Higgs mass, Mh. We specify the model with
the full 24 parameters, but we only vary 11 in the minimization procedure to fit the 11 observables
listed above. The irrelevant parameters for this analysis, namely, the neutrino parameters and the
off-diagonal Yukawa textures, are set to constant values and do not enter into the minimization
procedure.8 Similarly, the low energy observables connected to the first two families do not enter
the χ2 function. The effects of the off-diagonal Yukawa textures will be discussed in Section 5.
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(a) With increasing m16, χ2 first dramatically de-
creases, and after reaching a minimum around m16 '
20 TeV, starts increasing again.
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(b) As we increase the lower bound on the gluino mass,
we find that χ2 dramatically increases for constantm16.

Figure 3: χ2 vs. m16 for the third family analysis. The red and blue filled circles correspond to minima of χ2 for
the values of m16 indicated on the x-axis, where we have interpolated between them using cubic splines for ease of
inspection. The curves correspond to different lower bounds on the gluino mass.

Consider first the SUSY spectrum in our analysis. The first and second family squarks and sleptons
have mass of order m16, while stops, sbottoms and staus are all significantly lighter. This is the
inverted scalar mass hierarchy which is a direct result of RG running. Nevertheless, gluinos are
always lighter than the third family squarks and sleptons, and the lightest charginos and neutralinos
are even lighter. Note the states χ̃± and χ0

2 are approximately degenerate. A detailed spectrum
is given in Tab. 3. Recent results from CMS and ATLAS give lower bounds on the gluino mass.
These bounds are given in terms of the CMSSM or simplified models. The simplified models which
are most relevant for our analysis are those in which (a) the third family of squarks and sleptons
are lighter than the first two, and (b) the gluino is lighter than the stops and sbottoms. In this
case, the lower bound on the gluino mass is now of order 1 - 1.2 TeV, assuming the branching ratio
BR(g̃ → tt̄ χ̃0

1) = 100% or BR(g̃ → bb̄ χ̃0
1) = 100% [48, 49]. Although neither simplified model is

appropriate for our model, we nevertheless impose a lower bound on the gluino pole mass in order
to be roughly consistent with the latest LHC results.

In Fig. 3(a) we present the best χ2 fits as a function of m16 for two values of the lower bound that
we impose on the gluino pole mass, i.e. 850 and 1000 GeV. We note that χ2 is relatively insensitive
to these lower bounds on the gluino mass, although lower values of Mg̃ are slightly favored. The

8In this section, when calculating flavor violating observables, we use susy flavor with the experimental input
values for the light fermion masses and mixing angles.
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Figure 4: The contribution of Mh to the global χ2 as a function of the lower bound on the gluino mass (vertical axis)
and the value of m16 (horizontal axis). The Higgs mass is mainly responsible for the steep increase of χ2 observed in
Fig. 3(a).
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Figure 5: The best χ2 fits for the third family analysis (left) and contours of constant gluino mass ( roughly
horizontal lines) and stop masses (vertical lines) (right). Note, for larger values of m16 ≥ 22 TeV, the best fit gluino
pole mass is always much larger than the lower bound imposed.

minimum χ2 is found for m16 = 20 TeV, and χ2 increases as m16 either decreases or increases.
Features of the model like the large A-terms and large tanβ are favorable to obtain a Higgs mass
in the range of 122 - 127 GeV as observed at the LHC. However, the largest contribution to χ2 for
lower values of m16 comes from the Higgs mass constraint (see Fig. 4).
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As the lower bound on the gluino mass is increased to 2 or 3 TeV, we find that χ2 dramatically
increases (see Fig. 3(b)). Note, this is predominantly due to the constraint from the light Higgs mass
(Fig. 4). The simple explanation for this fact is that as the gluino mass increases the magnitude
of At at MSUSY also increases, due to the infra-red fixed point. This has the effect of decreasing
the light Higgs mass because now Xt >

√
6MSUSY which goes beyond maximal mixing. As a

consequence, there appears to be an upper bound on the gluino mass of order 2 TeV, which makes
gluinos inevitably observable at the LHC 14 TeV. However, as discussed earlier, the usual simplified
models do not apply since gluinos decay with branching ratios g̃ → tt̄ χ̃0

(1,2), bb̄ χ̃
0
(1,2), tb̄ χ̃

−
(1,2),

bt̄ χ̃+
(1,2), g χ̃

0
(1,2,3,4) which are all significant.

In Fig. 5(a) we give the best χ2 fits for the third family analysis as a function of the lower bound on
the gluino mass and the value of m16. In Fig. 5(b) we give the contours of constant gluino masses
(roughly horizontal lines) and stop masses (vertical lines)9. Note, for values of m16 ≥ 20 TeV, the
best fit gluino pole mass is always much larger than the lower bound imposed.

5 Full Three family analysis

In this section we present the global χ2 analysis for three families including all 24 arbitrary pa-
rameters. The χ2 function includes 36 observables. We present our results for fixed values of m16

in Fig. 6 on the next page and in Tab. 5 to Tab. 9.

In Fig. 6 we give the best χ2 fits for two different values of the lower bound on the gluino pole
mass imposed in the analysis. Fig. 3 and Fig. 6 have similar behavior. The value of χ2 increases
dramatically for values of m16 . 15 TeV. For larger values of m16 & 25 TeV the increase is much
slower. In the three family analysis, the minimum χ2 occurs around m16 ≈ 20 TeV, just as in
the third family analysis. Moreover, the input parameters which minimize χ2 in the third family
analysis also minimize χ2 for the full three family analysis.

In Tab. 5 to Tab. 9 we present the best χ2 fits for values of m16 = 10, 15, 20, 25, and 30
TeV, respectively. The best fit overall comes for m16 = 20 TeV with χ2/d.o.f ∼ 2 (see Tab. 7).
Let us just comment on a few of the initial values of the parameters for this point. We find
αG ≈ 1/26, MG ≈ 3 × 1016 GeV, and ε3 = −1.45%. The magnitude of the Yukawa couplings are
hierarchical. As expected, we have A0 ≈ −2m16, µ, M1/2 � m16 and tanβ ∼ 50. The average

Higgs mass parameter and the relative splitting are given by m10 ≡
√

(m2
Hu

+m2
Hd

)/2 ≈ 26 TeV and

∆2
mH
≡ (m2

Hd
−m2

Hu
)/(2m2

10) ≈ 0.07, respectively. The gravitino mass for this model is expected
to be of order the largest scalar mass, i.e. M3/2 ∼ m10 ≈ 26 TeV. We used micrOmegas[51] to

calculate the relic abundance for the benchmark points considered and found Ωth = 22.2 (10 TeV),
Ωth = 0.776 (15 TeV), Ωth = 70.0 (20 TeV), Ωth = 90.2 (25 TeV), Ωth = 123 (30 TeV). This is a
consequence of a purely bino-like LSP. In this case, a non-thermal process would be necessary to
accommodate the observed dark matter abundance. Assuming the correct dark matter abundance,
a bino LSP would not have been observed yet by direct detection methods, but should be observable
by future detectors [52].

9In a recent analysis [50], the authors found an upper bound on the stop mass for good Yukawa unification. Their
result is a consequence of the constraint µ < 1000 GeV, in order to satisfy dark matter bounds. We do not make any
such assumption and do not find an upper bound on the stop mass for m16 ≤ 30 TeV.
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Figure 6: χ2 vs. m16 for the full three family analysis. χ2 is very large for low values of m16 . 15 TeV. The blue
(solid) and red (dashed) lines correspond to a lower bound on the gluino mass of 850 GeV and 1000 GeV, respectively.

Let us now focus on the fit. Consider the observables with the largest pulls. Roughly half the
contribution to χ2 at this point comes from just two observables, namely md/ms and sin 2β. Our
value of md/ms is larger than the experimental value, and this implies that our value of mu/md ∼ 0.9
(see Eq. (19)). We have allowed |Vub| to range over values consistent with both exclusive and
inclusive measurements. We find that our fit is more consistent with exclusive measurements.
Moreover, our fit value of sin 2β is at the 3σ lower bound allowed by the experiments. Otherwise we
are able to fit an amazing array of experimental observables. The light Higgs mass is fit to within
the ± 3 GeV theoretical uncertainty we have assigned. As for the neutrino mixing angle θ13 we
obtain a value closer to 6◦, rather than the present experimental value of approximately 9◦. This
may be a problem, however, it has been noticed recently that flavor violating corrections to the
Kähler potential can have a significant effect on θ13 without affecting the other larger mixing angles
[53]. Our neutrino spectrum corresponds to the normal hierarchy. Note that the two large mixing
angles are a consequence of a hierarchy in the right-handed neutrino masses.

In Tab. 3 we summarize the predictions for the SUSY spectrum given values ofm16 = 10, 15, 20, 25, 30
TeV, respectively. We give the spectrum of the lightest squark, slepton and gaugino masses, and
the CP odd Higgs mass MA. The first and second generation squarks and sleptons all have mass
of order m16. Note, in order to fit the branching ratio BR(Bs → µ+ µ−) with large tanβ, we have
MA � MZ . Thus we are in the decoupling limit where the light Higgs is predicted to couple to
matter just like the Standard Model Higgs. Therefore, any deviation from this prediction would
rule out our model. Finally, in Tab. 4 we present results for yet to be observed quantities such as
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m16 10 TeV 15 TeV 20 TeV 25 TeV 30 TeV

χ2 49.65 31.02 26.58 27.93 29.48

MA 2333 3662 1651 2029 2036
mt̃1

1681 2529 3975 4892 5914

mb̃1
2046 2972 5194 6353 7660

mτ̃1 3851 5576 7994 9769 11620
mχ̃0

1
133 134 137 149 167

mχ̃+
1

260 263 279 309 351

Mg̃ 853 850 851 910 1004

Table 3: SUSY Spectrum corresponding to the benchmark points presented in Appendix A. The first two generation
scalars have mass of the order of m16.

Current Limit 10 TeV 15 Te V 20 TeV 25 TeV 30 TeV

e EDM ×1028 < 10.5 e cm −0.224 −0.0408 −0.0173 −0.0113 −0.0084
µ EDM ×1028 (−0.1± 0.9)× 109 e cm 34.6 6.23 3.04 1.77 1.20
τ EDM ×1028 −0.220− 0.45× 1012 e cm −2.09 −0.394 −0.185 −0.109 −0.0732

BR(µ→ eγ)× 1012 < 2.4 e cm 5.09 1.23 0.211 0.0937 0.0447
BR(τ → eγ)× 1012 < 3.3× 104 e cm 58.8 13.9 2.40 1.04 0.502
BR(τ → µγ)× 108 < 4.4 e cm 1.75 0.498 0.0837 0.0385 0.0182

sin δ -0.60 -0.87 -0.27 -0.42 -0.53

Table 4: Predictions from the full three family analysis. The dipole moments and branching ratios were calculated
using susy flavor.

electric dipole moments of charged leptons, flavor violating processes such as BR(µ → e γ) and
the CP violating angle in the lepton sector, sin δ. The value of sin δ is close to zero and is thus
consistent with tentative emerging hints for δ ' π [42]. We also find that the BR(µ→ e γ) may in
fact be observable by the MEG experiment in a few years [54].

6 Summary and Conclusions

We have performed a global χ2 analysis of an SO(10) SUSY GUT times a D3 × [U(1) × Z2 × Z3]
family symmetry. The model fits all fermion masses and mixing angles, as well as many flavor
observables, quite well. The model has 24 arbitrary parameters which we use to fit 36 low energy
observables. Five of these parameters include the soft SUSY breaking masses, a universal squark
and slepton mass, m16; a universal cubic scalar coupling, A0; a universal gaugino mass, M1/2 and
split Higgs up and down masses, mHu , mHd . The model has gauge coupling unification and top,
bottom, τ , ντ Yukawa unification at MGUT . We have analyzed the model for the third family alone
and then for three families. We have shown that the SUSY spectrum is predominantly determined
by fitting the third family and light Higgs masses and the branching ratio BR(Bs → µ+ µ−). In
Tab. 5 - Tab. 9 we give the best three family fits for five different values of the universal scalar mass
m16. The best overall fit is found for m16 ≈ 20 TeV. The SUSY spectrum for these best fit points
are given in Tab. 3.
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Our model makes several significant predictions.

(i) The first and second family of squarks and sleptons obtain mass of order m16, while the
third family scalars are naturally much lighter. Then gluinos and the lightest chargino and
neutralinos are always lighter than the third family squarks and sleptons.

(ii) Due to Yukawa unification of the third family at the GUT scale we have tanβ ≈ 50. In order
to fit the branching ratio BR(Bs → µ+ µ−) we find the CP odd Higgs mass, mA �MZ . Hence
we are in the decoupling limit and the light Higgs is predicted to be Standard Model-like.

(iii) In order to fit the light Higgs mass, we find an upper bound on the gluino mass, Mg̃ ∼ 2 TeV.
Thus gluinos should be observable at LHC14.

(iv) No simplified model studied to date describes the relevant gluino decay branching ratios (See
scenarios studied in [55]). Thus in order to constrain our theory we need both CMS and
ATLAS to provide detailed bounds on the p p→ g̃ g̃ production cross-section times branching
ratios for the many different two and three body decay modes, i.e. g̃ → tt̄ χ̃0

(1,2); bb̄ χ̃
0
(1,2);

tb̄ χ̃−(1,2); bt̄ χ̃
+
(1,2); g χ̃

0
(1,2,3,4).
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(v) We find BR(µ → e γ) ∼ 10−12 − 10−13 for values of m16 = 15 − 25 TeV. This may soon be
observable at MEG [54].

(vi) We find the CP violating parameter in the lepton sector, sin δ ≈ 0, and the neutrinos obey a
normal hierarchy.

(vii) Since the first two family sleptons have mass of order m16 we are not able to fit the muon
anomalous magnetic moment, (g − 2)µ.

(viii) Our LSP is predominantly bino and thus assuming a thermal calculation of the relic abundance,
we find Ωχ̃0

1
too large.

(ix) The gravitino mass is naturally of order
√

2 m16 or for m16 = 15−25 TeV we have mG̃ ∼ 20−35
TeV. Thus the the model may avoid the cosmological gravitino problem.

There is one obvious issue with the model regarding fine-tuning. We have not performed a detailed
analysis of fine-tuning, but a rough measure is given by ∆ = ( µ

MZ
)2 ∼ 150, corresponding to a

fine-tuning of 1/∆. As this is true for most of the surviving parameter space of the MSSM, at the
moment we do not regard this as a serious problem. The question of electroweak fine-tuning in
Yukawa unified models was recently studied in [56].

Let us now consider future directions. We will evaluate the gluino decay branching ratios in our
model in order to compare to LHC data in a future work. In addition, we want to analyze other
boundary conditions at the GUT scale consistent with gauge and Yukawa coupling unification.
In particular, we will consider the “DR3” scheme [12] and also non-universal gaugino masses as
discussed in [13], and study them with the combined predictive power of family symmetries. On
the computational front, we would like to explore other methods to tackle the problem of finding a
global minimum in a multi-dimensional parameter space.

10In order for ATLAS or CMS to test our model, we would gladly provide an SLHA2 file specifying all the low
energy parameters of any of our benchmark points.
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A Benchmark Points

Table 5: Initial parameters for benchmark point with m16 = 10 TeV:
(1/αG, MG, ε3) = (25.42, 2.80× 1016 GeV, −2.20 %),
(λ, λε, σ, λε̃, ρ, λε′, λεξ) = (0.61, 0.031, 1.14, 0.0048, 0.071, −0.0019, 0.0038),
(Φσ, Φε̃, Φρ, Φξ) = (0.517, 0.625, 4.000, 3.497) rad,
(m16, M1/2, A0, µ(MZ)) = (10000, 239, −20247, 791.13) GeV,
((mHd/m16)

2, (mHu/m16)
2, tanβ) = (1.95, 1.61, 49.42)

(MR3 , MR2 , MR1) = (3.2× 1013 GeV, 5.6× 1011 GeV, 0.9× 1010 GeV)

Observable Fit value Exp value Pull σ

MZ 91.1876 91.1876 0.0000 0.4559
MW 80.5581 80.3850 0.4305 0.4022
1/αem 136.3909 137.0360 0.9415 0.6852
Gµ × 105 1.1754 1.1664 0.7722 0.0117
α3 0.1184 0.1184 0.0342 0.0009

Mt 173.9306 173.5000 0.3253 1.3238
mb(mb) 4.1719 4.1800 0.2213 0.0366
Mτ 1.7796 1.7768 0.3104 0.0089

mc(mc) 1.2782 1.2750 0.1246 0.0258
ms 0.0962 0.0950 0.2437 0.0050
md/ms 0.0710 0.0526 3.3115 0.0055
1/Q2 0.0019 0.0019 0.2854 0.0001
Mµ 0.1056 0.1057 0.2011 0.0005
Me × 104 5.1137 5.1100 0.1450 0.0255

|Vus| 0.2248 0.2252 0.2886 0.0014
|Vcb| 0.0424 0.0406 0.8748 0.0020
|Vub| × 103 3.3462 3.7700 0.4985 0.8502
|Vtd| × 103 9.5185 8.4000 1.8597 0.6015
|Vts| 0.0414 0.0429 0.5683 0.0026
sin2β 0.6357 0.6790 2.1346 0.0203

εK 0.0023 0.0022 0.2568 0.0002
∆MBs/∆MBd 59.6805 35.0600 3.5049 7.0246
∆MBd × 1013 3.5432 3.3370 0.3086 0.6682

m2
21 × 105 7.6408 7.5450 0.1754 0.5463

m2
31 × 103 2.6521 2.4800 0.8182 0.2104

sin2θ12 0.3297 0.3050 0.7041 0.0350
sin2θ23 0.6441 0.5050 0.8427 0.1650
sin2θ13 0.0128 0.0230 1.4585 0.0070

Mh 116.94 125.30 2.7265 3.0676

BR(B → Xsγ)× 104 3.9408 3.4300 0.3120 1.6374
BR(Bs → µ+µ−)× 109 2.3710 3.2000 0.5083 1.6308
BR(Bd → µ+µ−)× 1010 1.7509 8.1000 0.0000 5.2559
BR(B → τν)× 105 7.1988 16.6000 1.0525 8.9320
BR(B → K∗µ+µ−)(low) ×108 5.4370 19.7000 1.1881 12.0051
BR(B → K∗µ+µ−)(high) ×108 7.8844 12.0000 0.5651 7.2835
q20(B → K∗µ+µ−) 4.8731 4.9000 0.0206 1.3009

Total χ2 49.6463
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Table 6: Initial parameters for benchmark point with m16 = 15 TeV:
(1/αG, MG, ε3) = (25.50, 2.96× 1016 GeV, −2.40 %),
(λ, λε, σ, λε̃, ρ, λε′, λεξ) = (0.61, 0.031, 1.14, 0.0049, 0.070, −0.0019, 0.0037),
(Φσ, Φε̃, Φρ, Φξ) = (0.527, 0.635, 3.881, 3.429) rad,
(m16, M1/2, A0, µ(MZ)) = (15000, 201, −30639, 513.07) GeV,
((mHd/m16)

2, (mHu/m16)
2, tanβ) = (1.97, 1.62, 49.59)

(MR3 , MR2 , MR1) = (4.2× 1013 GeV, 6.1× 1011 GeV, 1.0× 1010 GeV)

Observable Fit value Exp value Pull Sigma

MZ 91.1876 91.1876 0.0000 0.4559
MW 80.5671 80.3850 0.4527 0.4022
1/αem 136.4172 137.0360 0.9031 0.6852
Gµ × 105 1.1766 1.1664 0.8739 0.0117
α3 0.1185 0.1184 0.1342 0.0009

Mt 173.5253 173.5000 0.0191 1.3238
mb(mb) 4.1903 4.1800 0.2813 0.0366
Mτ 1.7756 1.7768 0.1366 0.0089

mc(mc) 1.2613 1.2750 0.5312 0.0258
ms 0.0964 0.0950 0.2766 0.0050
md/ms 0.0686 0.0526 2.8819 0.0055
1/Q2 0.0018 0.0019 0.4900 0.0001
Mµ 0.1056 0.1057 0.0748 0.0005
Me × 104 5.1135 5.1100 0.1386 0.0255

|Vus| 0.2243 0.2252 0.6542 0.0014
|Vcb| 0.0410 0.0406 0.1681 0.0020
|Vub| × 103 3.1115 3.7700 0.7745 0.8502
|Vtd| × 103 8.8886 8.4000 0.8124 0.6015
|Vts| 0.0401 0.0429 1.0638 0.0026
sin2β 0.6220 0.6790 2.8094 0.0203

εK 0.0023 0.0022 0.1079 0.0002
∆MBs/∆MBd 37.6694 35.0600 0.3715 7.0246
∆MBd × 1013 4.0059 3.3370 1.0010 0.6682

m2
21 × 105 7.5155 7.5450 0.0540 0.5463

m2
31 × 103 2.5097 2.4800 0.1413 0.2104

sin2θ12 0.2994 0.3050 0.1600 0.0350
sin2θ23 0.7414 0.5050 1.4323 0.1650
sin2θ13 0.0147 0.0230 1.1908 0.0070

Mh 122.21 125.30 1.0080 3.0676

BR(B → Xsγ)× 104 3.5456 3.4300 0.0706 1.6374
BR(Bs → µ+µ−)× 109 4.3688 3.2000 0.7167 1.6308
BR(Bd → µ+µ−)× 1010 1.3486 8.1000 0.0000 5.2559
BR(B → τν)× 105 6.2875 16.6000 1.1546 8.9320
BR(B → K∗µ+µ−)(low) ×108 5.0499 19.7000 1.2203 12.0051
BR(B → K∗µ+µ−)(high) ×108 7.5449 12.0000 0.6117 7.2835
q20(B → K∗µ+µ−) 4.5922 4.9000 0.2366 1.3009

Total χ2 31.0266
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Table 7: Initial parameters for benchmark point with m16 = 20 TeV:
(1/αG, MG, ε3) = (25.90, 3.13× 1016 GeV, −1.45 %),
(λ, λε, σ, λε̃, ρ, λε′, λεξ) = (0.60, 0.031, 1.14, 0.0049, 0.070, −0.0019, 0.0038),
(Φσ, Φε̃, Φρ, Φξ) = (0.533, 0.548, 3.936, 3.508) rad,
(m16, M1/2, A0, µ(MZ)) = (20000, 168, −41087, 1163.25) GeV,
((mHd/m16)

2, (mHu/m16)
2, tanβ) = (1.85, 1.61, 49.82)

(MR3 , MR2 , MR1) = (3.2× 1013 GeV, 6.1× 1011 GeV, 0.9× 1010 GeV)

Observable Fit value Exp value Pull Sigma

MZ 91.1876 91.1876 0.0000 0.4559
MW 80.5452 80.3850 0.3982 0.4022
1/αem 137.0725 137.0360 0.0533 0.6852
Gµ × 105 1.1713 1.1664 0.4250 0.0117
α3 0.1184 0.1184 0.0467 0.0009

Mt 174.0184 173.5000 0.3916 1.3238
mb(mb) 4.1849 4.1800 0.1334 0.0366
Mτ 1.7755 1.7768 0.1462 0.0089

mc(mc) 1.2547 1.2750 0.7876 0.0258
ms 0.0964 0.0950 0.2807 0.0050
md/ms 0.0692 0.0526 2.9891 0.0055
1/Q2 0.0018 0.0019 0.4749 0.0001
Mµ 0.1056 0.1057 0.1049 0.0005
Me × 104 5.1122 5.1100 0.0862 0.0255

|Vus| 0.2243 0.2252 0.5964 0.0014
|Vcb| 0.0415 0.0406 0.4511 0.0020
|Vub| × 103 3.2023 3.7700 0.6678 0.8502
|Vtd| × 103 8.9819 8.4000 0.9675 0.6015
|Vts| 0.0407 0.0429 0.8518 0.0026
sin2β 0.6304 0.6790 2.3959 0.0203

εK 0.0023 0.0022 0.3823 0.0002
∆MBs/∆MBd 39.4933 35.0600 0.6311 7.0246
∆MBd × 1013 3.9432 3.3370 0.9072 0.6682

m2
21 × 105 7.5126 7.5450 0.0593 0.5463

m2
31 × 103 2.4828 2.4800 0.0135 0.2104

sin2θ12 0.2949 0.3050 0.2880 0.0350
sin2θ23 0.5156 0.5050 0.0640 0.1650
sin2θ13 0.0131 0.0230 1.4134 0.0070

Mh 124.07 125.30 0.4010 3.0676

BR(B → Xsγ)× 104 3.4444 3.4300 0.0088 1.6374
BR(Bs → µ+µ−)× 109 1.6210 3.2000 0.9682 1.6308
BR(Bd → µ+µ−)× 1010 1.0231 8.1000 0.0000 5.2559
BR(B → τν)× 105 6.3855 16.6000 1.1436 8.9320
BR(B → K∗µ+µ−)(low) ×108 5.1468 19.7000 1.2123 12.0051
BR(B → K∗µ+µ−)(high) ×108 7.7469 12.0000 0.5839 7.2835
q20(B → K∗µ+µ−) 4.5168 4.9000 0.2945 1.3009

Total χ2 26.5812
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Table 8: Initial parameters for benchmark point with m16 = 25 TeV:
(1/αG, MG, ε3) = (25.83, 4.17× 1016 GeV, −2.55 %),
(λ, λε, σ, λε̃, ρ, λε′, λεξ) = (0.61, 0.031, 1.17, 0.0049, 0.070, −0.0019, 0.0037),
(Φσ, Φε̃, Φρ, Φξ) = (0.513, 0.542, 3.969, 3.503) rad,
(m16, M1/2, A0, µ(MZ)) = (25000, 158, −51365, 1348) GeV,
((mHd/m16)

2, (mHu/m16)
2, tanβ) = (1.86, 1.61, 49.98)

(MR3 , MR2 , MR1) = (3.2× 1013 GeV, 6.1× 1011 GeV, 0.9× 1010 GeV)

Observable Fit value Exp. value Pull Sigma

MZ 91.1876 91.1876 0.0000 0.4559
MW 80.6192 80.3850 0.5824 0.4022
1/αem 137.1624 137.0360 0.1844 0.6852
Gµ × 105 1.1754 1.1664 0.7749 0.0117
α3 0.1185 0.1184 0.0889 0.0009

Mt 174.5241 173.5000 0.7735 1.3238
mb(mb) 4.1789 4.1800 0.0307 0.0366
Mτ 1.7761 1.7768 0.0800 0.0089

mc(mc) 1.2529 1.2750 0.8559 0.0258
ms 0.0963 0.0950 0.2652 0.0050
md/ms 0.0702 0.0526 3.1726 0.0055
1/Q2 0.0019 0.0019 0.3379 0.0001
Mµ 0.1057 0.1057 0.1533 0.0005
Me × 104 5.1102 5.1100 0.0083 0.0255

|Vus| 0.2244 0.2252 0.5407 0.0014
|Vcb| 0.0411 0.0406 0.2090 0.0020
|Vub| × 103 3.1806 3.7700 0.6933 0.8502
|Vtd| × 103 8.9530 8.4000 0.9193 0.6015
|Vts| 0.0402 0.0429 1.0358 0.0026
sin2β 0.6318 0.6790 2.3268 0.0203

εK 0.0024 0.0022 0.8902 0.0002
∆MBs/∆MBd 35.1576 35.0600 0.0139 7.0246
∆MBd × 1013 4.1075 3.3370 1.1531 0.6682

m2
21 × 105 7.5325 7.5450 0.0229 0.5463

m2
31 × 103 2.4814 2.4800 0.0066 0.2104

sin2θ12 0.2978 0.3050 0.2069 0.0350
sin2θ23 0.5109 0.5050 0.0358 0.1650
sin2θ13 0.0140 0.0230 1.2789 0.0070

Mh 125.21 125.30 0.0293 3.0676

BR(B → Xsγ)× 104 3.4074 3.4300 0.0138 1.6374
BR(Bs → µ+µ−)× 109 2.6112 3.2000 0.3610 1.6308
BR(Bd → µ+µ−)× 1010 1.0779 8.1000 0.0000 5.2559
BR(B → τν)× 105 6.4123 16.6000 1.1406 8.9320
BR(B → K∗µ+µ−)(low) ×108 5.0511 19.7000 1.2202 12.0051
BR(B → K∗µ+µ−)(high) ×108 7.6223 12.0000 0.6010 7.2835
q20(B → K∗µ+µ−) 4.4839 4.9000 0.3198 1.3009

Total χ2 27.9288
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Table 9: Initial parameters for benchmark point with m16 = 30 TeV:
(1/αG, MG, ε3) = (25.86, 4.36× 1016 GeV, −2.81 %),
(λ, λε, σ, λε̃, ρ, λε′, λεξ) = (0.62, 0.031, 1.18, 0.0050, 0.069, −0.0020, 0.0037),
(Φσ, Φε̃, Φρ, Φξ) = (0.507, 0.534, 4.005, 3.514) rad,
(m16, M1/2, A0, µ(MZ)) = (30000, 161, −61640, 1647) GeV,
((mHd/m16)

2, (mHu/m16)
2, tanβ) = (1.86, 1.63, 50.15)

(MR3 , MR2 , MR1) = (3.2× 1013 GeV, 6.4× 1011 GeV, 0.9× 1010 GeV)

Observable Fit value Exp. value Pull Sigma

MZ 91.1876 91.1876 0.0000 0.4559
MW 80.6519 80.3850 0.6637 0.4022
1/αem 137.0422 137.0360 0.0091 0.6852
Gµ × 105 1.1785 1.1664 1.0410 0.0117
α3 0.1187 0.1184 0.2850 0.0009

Mt 175.0383 173.5000 1.1620 1.3238
mb(mb) 4.1782 4.1800 0.0484 0.0366
Mτ 1.7764 1.7768 0.0419 0.0089

mc(mc) 1.2504 1.2750 0.9540 0.0258
ms 0.0972 0.0950 0.4362 0.0050
md/ms 0.0712 0.0526 3.3536 0.0055
1/Q2 0.0019 0.0019 0.3029 0.0001
Mµ 0.1058 0.1057 0.1928 0.0005
Me × 104 5.1097 5.1100 0.0125 0.0255

|Vus| 0.2244 0.2252 0.5324 0.0014
|Vcb| 0.0405 0.0406 0.0988 0.0020
|Vub| × 103 3.1793 3.7700 0.6947 0.8502
|Vtd| × 103 8.9071 8.4000 0.8431 0.6015
|Vts| 0.0396 0.0429 1.2682 0.0026
sin2β 0.6380 0.6790 2.0207 0.0203

εK 0.0022 0.0022 0.0877 0.0002
∆MBs/∆MBd 34.0021 35.0600 0.1506 7.0246
∆MBd × 1013 4.1018 3.3370 1.1445 0.6682

m2
21 × 105 7.5705 7.5450 0.0467 0.5463

m2
31 × 103 2.4783 2.4800 0.0081 0.2104

sin2θ12 0.3057 0.3050 0.0213 0.0350
sin2θ23 0.5036 0.5050 0.0087 0.1650
sin2θ13 0.0130 0.0230 1.4280 0.0070

Mh 125.88 125.30 0.1876 3.0676

BR(B → Xsγ)× 104 3.3931 3.4300 0.0225 1.6374
BR(Bs → µ+µ−)× 109 2.6139 3.2000 0.3594 1.6308
BR(Bd → µ+µ−)× 1010 1.0748 8.1000 0.0000 5.2559
BR(B → τν)× 105 6.4081 16.6000 1.1411 8.9320
BR(B → K∗µ+µ−)(low) ×108 4.9279 19.7000 1.2305 12.0051
BR(B → K∗µ+µ−)(high) ×108 7.4423 12.0000 0.6257 7.2835
q20(B → K∗µ+µ−) 4.4707 4.9000 0.3300 1.3009

Total χ2 29.4783
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