
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Light quark mass reweighting
Qi Liu, Norman H. Christ, and Chulwoo Jung

Phys. Rev. D 87, 054503 — Published  6 March 2013
DOI: 10.1103/PhysRevD.87.054503

http://dx.doi.org/10.1103/PhysRevD.87.054503


DV10948

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

CU-TP-1201

Light Quark Mass Reweighting

Qi Liu and Norman H. Christ

Physics Department, Columbia University, New York, NY 10027, USA

Chulwoo Jung

Brookhaven National Laboratory, Upton, NY 11973, USA

(RBC and UKQCD Collaborations)

Abstract

We present a systematic study of the effectiveness of light quark mass reweighting. This method

allows a single, lattice QCD ensemble, generated with a specific value of the dynamical light quark

mass, to be used to determine results for other, nearby light dynamical quark masses. We study

two gauge field ensembles generated with 2+1 flavors of dynamical domain wall fermions with

light quark masses ml = 0.02 (mπ = 620 MeV) and ml = 0.01 (mπ = 420 MeV). We reweight

each ensemble to determine results which could be computed directly from the other and check

the consistency of the reweighted results with the direct results. The large difference between

the 0.02 and 0.01 light quark masses suggests that this is an aggressive application of reweighting

as can be seen from fluctuations in the magnitude of the reweighting factor by four orders of

magnitude. Never-the-less, a comparison of the reweighed topological charge, average plaquette,

residual mass, pion mass, pion decay constant, and scalar correlator between these two ensembles

shows an agreement well described by the statistical errors. The issues of the effective number

of configurations and finite sample bias are discussed. An examination of the topological charge

distribution implies that it is more favorable to reweight from heavier mass to lighter quark mass.

PACS numbers: 11.15.Ha, 12.38.Gc 14.40.Be
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I. INTRODUCTION

Generating ensembles of gauge field configurations with dynamical quarks is usually the

most expensive part of a lattice QCD calculation. Because of the renormalization of the

quark mass, we are usually not able to identify in advance the input bare quark mass that will

correspond to a target renormalized mass. Quark mass reweighting is a powerful technique

that allows us to fine tune the sea quark masses to their physical or other desired values

after an ensemble has been generated, avoiding the computationally expensive generation

of new ensembles. As is explained below, a reweighted lattice quantity is computed by

averaging the product of that quantity and a reweighting factor over the given ensemble.

The reweighting factor is chosen to reproduce the effects of the change in the action that

would result from changing from the simulated to the reweighted quark mass.

Reweighting of the strange quark mass has been widely applied to accomplish such a fine

tuning of the physical strange quark mass [1–3] or to study the dependence on the dynamical

strange quark mass [4]. Reweighting of the light quark mass has been used less frequently,

presumably because the light quark masses used in most current lattice calculations are

sufficiently heavy that reweighting methods may not be able to bridge the gap between

the simulated and physical masses. However, Aoki et al. [5] have applied light quark mass

reweighting to obtain results at the physical light quark mass. In the future, we expect

there will be an increasing use of mass reweighting to adjust the light quark mass to its

physical value. Another important application is the use of light quark mass reweighting

to avoid difficulties caused by a small quark mass such as long autocorrelation times or a

loss of numerical stability at small mass. For example in the case Wilson fermions, one

intentionally performs a simulation at larger light quark mass and then reweights to the

physical mass [6, 7]. This can also potentially reduce the computational cost.

As an important and widely used technique in lattice QCD, quark mass reweighting has

been carefully studied and examined, for example, using Wilson [6] or overlap [8] fermions.

However, to better understand how mass reweighting performs, we believe that additional

study of the resulting statistical fluctuations and a systematic comparison of a reweighted

ensemble with one directly generated without reweighting are needed. As has been empha-

sized in earlier work such as Refs. [6–8], a small overlap in configuration space between the

simulated ensemble and the target ensemble can lead to large fluctuations in the reweighting
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factors and unreliable results because of the lack of sufficient statistics. There are two issues.

First, for a fixed sample size N, the reweighting factor is determined from what may be a

biased estimator. (We will discuss this in detail in section IV). If the reweighting factors

fluctuate too much, this bias may lead to a large systematic error. Second, without a suf-

ficiently large number of configurations with non-negligible weight, the error estimate may

not be reliable, or even when reliable, the estimated error may be too large for the result to

be useful.

One of the limitations of the reweighting approach is the exponential dependence of the

reweighting factor on the volume. One expects that for a fixed mass reweighting interval,

the overlap between the original and target configurations will decrease exponentially as the

volume increases. Possibly less serious is the decreasing precision of the stochastic estimate

of the large reweighing factor for which the statistical fluctuations in the estimate should

grow exponentially in the square root of the volume. We do not investigate the volume

dependence of quark mass reweighting in this paper and examine a relatively small lattice

volume of 163 × 32 which corresponds to a physical spatial extent of 1.8 fm. However, by

studying the reweighing effects of a large change in the quark mass, we are addressing the

same issues that will arise when a smaller change in the quark mass is attempted for larger

volume. For example, in the present paper studying a lattice volume of 163×32, we conclude

that a change in the quark mass from 0.02 to 0.01 introduces statistical uncertainty which is

equivalent to reducing our sample size from 600 to approximately 50. In a recent study [9, 10]

of the ∆I = 3/2, K → ππ decay amplitude A2 the RBC and UKQCD collaborations work

on a lattice volume of 323 × 64 and carry out a much less aggressive reweighting from light

quark mass of 0.001 to 0.0001. They see an increase in statistical error of roughly a factor of

two, corresponding to a reduction in effective sample size of a factor of four. This suggests

that the reweighting method studied here may be used successfully on much larger volumes

if smaller ranges for reweighting are employed.

In this paper, we provide a systematic check of the reweighting technique by using two

ensembles generated with the Iwasaki gauge action and the Domain Wall Fermion (DWF)

action for the quarks. In order to see the limitations of reweighting, we consider a case

were the method is used to achieve a large change in fermion mass. Specifically we reweight

the light input quark mass from 0.02 (mπ = 620 MeV) to 0.01(mπ = 420 MeV) and then

check the reweighted results for many important physical quantities against those computed
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directly on the dynamical ml = 0.01 ensemble. We also do this in the reverse direction,

reweighting the ml = 0.01 ensemble to 0.02. With the ensemble size up to 1000 configura-

tions (a total of 10,000 molecular dynamics time units), we find that even for such a large

range of quark mass reweighting, the reweighted results and those obtained directly on the

dynamically generated ensemble are consistent, demonstrating the success of the reweighting

technique.

We study the behavior of reweighting on both short and long distance quantities. The

paper is organized as follows: We begin in Sec. II with a description of the reweighting

method, a detailed study of the reweighting factors and an analysis of the effective number

of configurations that results after reweighting. We then discuss the reweighting of the

topological charge and susceptibility in Sec. III. In Sec. IV, we discuss the reweighting of a

short distance physical quantity, the average plaquette, and the problem of reweighting bias.

A second short distance quantity which shows significant dynamical quark mass dependence,

the residual mass, is examined in Sec. V as well as two important physical observables: the

pion mass and decay constant,. Finally the effect of reweighting on the scalar correlation

function is presented in Sec. VI and in Sec. VII we further discuss and summarize our results.

II. LIGHT QUARK MASS REWEIGHTING METHOD

We follow closely the strategy presented in Ref [6]. Reweighting an ensemble of config-

urations from the light sea quark mass m1 to m2 requires the evaluation of a reweighting

factor w(U ;m1, m2) for each configuration on which measurements are to be performed. We

can see that the expectation value for any operator O on an ensemble with light sea quark

mass m2 can be calculated from an ensemble generated with sea quark mass m1 as follows.

One begins with the usual expression for the expectation value of the operator O computed

for the case of a sea quark mass m2:

〈O〉2 =
1

Z2

∫

DU O e−Sg
det{D†(m2)D(m2)}
det{D†(1.0)D(1.0)}

√

det{D†(ms)D(ms)}
√

det{D†(1.0)D(1.0)}
. (1)

Here D(m) represents the DWF Dirac operator for a fermion of mass m, ms is the strange

quark mass and the determinant factors with mass m = 1.0 are the standard Pauli-Villars

contributions which appear in the DWF formulation. The quantity Z2 appearing in the

denominator is the partition function for the sea quark mass m2: simply the integral in
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Eq. (1) with the factor in the numerator representing the operator O removed.

Next one multiplies and divides by factors of Z1 and det{D†(U,m1)D(U,m1)} obtaining

〈O〉2 (2)

=
Z1

Z2
· 1

Z1

∫

DU

[

O
det{D†(m2)D(m2)}
det{D†(m1)D(m1)}

]

e−Sg
det{D†(m1)D(m1)}
det{D†(1.0)D(1.0)}

√

det{D†(ms)D(ms)}
√

det{D†(1.0)D(1.0)}

=
〈Ow(m1, m2)〉1
〈w(m1, m2)〉1

. (3)

Here we have introduced the reweighting factor w(U ;m1, m2) for each configuration U :

w(U ;m1, m2) =
det{D†(U,m2)D(U,m2)}
det{D†(U,m1)D(U,m1)}

(4)

and performed a similar manipulation to write the ratio Z2/Z1 as 〈w(m1, m2)〉1. In the

above formulae, we have used the notation D(U,m) to make explicit the dependence of the

DWF Dirac operator on the gauge field variable U . The reweighting factor w(U ;m1, m2)

can be determined from the stochastic average:

w(U ;m1, m2) =

∫

Dξe−{ξ†D(m1)†D(m2)†−1D(m2)−1D(m1)ξ−ξ†ξ}e−ξ†ξ

∫

Dξe−ξ†ξ
(5)

=
〈

e−{ξ†D(m1)†D(m2)†−1D(m2)−1D(m1)ξ−ξ†ξ}
〉

ξ
, (6)

where the average appearing in Eq. (6) is to be performed over the stochastic variable ξ

drawn from the random Gaussian distribution exp{−ξ†ξ}.
We have purposely arranged the product of the four D(U,m) operators in the exponent

of Eq. (6) in a form that will minimize the cost of the needed Conjugate Gradient (CG)

inversion. Let us call the exponent of that equation f(U ;m1, m2; ξ) so that w(U ;m1, m2) =
〈

e−f(U ;m1,m2;ξ)
〉

ξ
. Then f(U ;m1, m2; ξ) = η†η − ξ†ξ, where

η = D(m2)
−1D(m1)ξ = [D(m2)

†D(m2)]
−1D(m2)

†D(m1)ξ. (7)

If m2 is close to m1, then the solution for η will usually converge faster than will the

solution for a combination such as [D(m2)
†D(m2)]

−1D(m1)ξ, which would have resulted

from a different arrangement than that used above.

It was pointed out in Ref [6] that the average of stochastic sources and the average of

gauge fields can be performed in any order, so we can perform the average needed in Eq. (6)

using any number of random hits Nhit. By doing so, we introduce extra noise into our

system, but no systematic error. To reduce the noise following the idea of determinant
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factorization proposed by Hasenbush [6, 11], we calculate the reweighting factor by carrying

out Nstep steps. For each step we change the mass by ∆m = (m2 − m1)/Nstep. Following

this approach, the reweighting factor for a given configuration is then calculated from the

product

w(U ;m1, m2) =

Nstep
∏

s=1

w(U,m1 + (i− 1)∆m,m1 + i∆m) (8)

=

Nstep
∏

s=1

{

1

Nhit

Nhit
∑

i=1

e−f(U ;m1+(i−1)∆m,m1+i∆m;ξi,s)

}

. (9)

where for each step, Nhit hits are performed by summing over the Nhit Gaussian variables

{ξi,s}1≤i≤Nhit
for each of the steps s, 1 ≤ s ≤ Nstep.

Our goal is to calculate the reweighting factor with sufficient accuracy that the uncer-

tainty introduced by the finite number of the random hits is smaller than the fluctuation

of w(U ;m1, m2) among the underlying gauge configurations. The total number of DWF

Dirac inversions required by Eq. (9) is Nt = NhitNstep. By increasing Nstep, we reduce the

fluctuation among the independent steps. Averaging over an additional Nhit hits gives a

better estimate of the average. From our experiments with a fixed number of total inver-

sions, we find that smaller errors can be achieved from more steps than more hits. These

results confirm similar conclusions reached by the RBC and UKQCD collaborations when

reweighting in the strange quark mass.

This observation can be verified by the following explicit calculation. Consider a single

gauge configuration and evaluate the reweighting factor w as a product of the reweighting

factors ws, 1 ≤ s ≤ Nstep corresponding toNstep steps. In our stochastic evaluation the factor

ws corresponding to the step s is given by a function ws(ξ) of a set of random variables ξ

where a different stochastic vector ξ will be used for each step. Define the quantity σs from

the ratio of averages:
〈ws(ξ)

2〉
〈ws(ξ)〉2

= eσ
2
s/N

2
step (10)

where the average is taken over the stochastic vector ξ in the fixed gauge background. The

factor 1/N2
step has been extracted from the exponent on the right hand side because the

exponent in Eq. (6) will be reduced in size by 1/Nstep when a fixed mass interval is divided

into Nstep segments. Since the reweighting factor w is linear in each of the independent

stochastic factors ws(ξs), it is a straight forward exercise to express the fluctuations in w in
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terms of the quantities σs. If w is obtained from a single hit:

(δw)2 =
〈

(w − 〈w〉)2
〉

(11)

=
〈

w2
〉

− 〈w〉2 (12)

=

Nstep
∏

s=1

〈

w2
s

〉

−
Nstep
∏

s=1

〈ws〉2 (13)

= 〈w〉2
(

Nstep
∏

s=1

eσ
2
s/N

2
step − 1

)

(14)

= 〈w〉2
(

eσ
2/Nstep − 1

)

, (15)

where in the final line we have made the simplifying assumption that σs is independent of s.

If this process is repeated Nhit times and the results averaged (Nhit hits) then the resulting

error from the stochastic sampling becomes

(δw) = 〈w〉

√

eσ2/Nstep − 1

Nhit
, (16)

A smaller error results if the Nhit hits are averaged at each step, as is indicated in Eq. (9).

For this case a series of steps similar to those in Eqs. (11)-(15) gives:

δw = 〈w〉







(

1 +
1

Nhit
(e

σ2

N2
step − 1)

)Nstep

− 1







1/2

. (17)

where we write the simpler expression that results if we continue to use uniform steps and

assume that the corresponding quantities σs are independent of s.

While the fluctuations given in Eq. (17) are smaller than those in Eq. (16), both ex-

pressions are decreasing functions of Nstep for a fixed total number Nt of Dirac inversions,

making it favorable to use larger Nstep instead of larger Nhit. When Nstep is sufficient large,

both of the above formulae become approximately wσ/
√
Nt. In this limit it is unimportant

how Nt is divided between steps and hits. A second advantage of introducing a number of

Hasenbusch steps is that we can then reweight to many different intermediate mass values

in a single reweighting calculation. A third advantage can be seen from Eq. (7): splitting

the ratio m2/m1 into more factors makes the mass difference appearing in each step smaller

so that each inversion converges faster. Thus, in all our reweighting calculations, we use

only one hit, but many intermediate mass steps.
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We use two ensembles generated with 2+1 flavors of domain wall fermions, the Iwasaki

gauge action with β = 2.13, a 163 × 32 space-time volume and the extent Ls = 16 in the

fifth dimension.. The lattice spacing for this β value has been determined to be a−1 =

1.73(3)GeV [12]. Thus, these ensembles have a spatial size of 1.8 fm. As discussed in the

Introduction, while these are relatively small lattice volumes by present standards, the large

mass reweighting range results in a reweighting difficulty that is greater than that found for

a recent, physical application [9, 10] of reweighting to a 323×64 volume of spatial size 4.6 fm.

The configurations we use begin with trajectory 160 and extend to trajectory 3155 sampled

every 5 trajectories for the ml = 0.02 ensemble (600 configurations in total) and extend from

trajectory 500 to 10490, sampled every 10 trajectories, for the ml = 0.01 ensemble (1000

configurations in total). We reweight the ml = 0.02 ensemble to ml = 0.01, and ml = 0.01 to

ml = 0.02 through 80 steps performing only one hit for each configuration. The calculated

reweighting factors are shown in Fig. 1.

 0.001

 0.01

 0.1

 1

 10

 100

 500  1000  1500  2000  2500  3000

trajectory

w(0.02,0.01)

 0.001

 0.01

 0.1

 1

 10

 100

 2000  4000  6000  8000  10000

trajectory

w(0.01,0.02)

FIG. 1. Left: normalized reweighting factors computed from the ml = 0.02 configurations which

can be used to reweight the light quark mass fromml = 0.02 → 0.01. Right: normalized reweighting

factors computed from the ml = 0.01 configurations which can be used to reweight from ml =

0.01 → 0.02. Here we plot the normalized reweighting factors ŵi = Nwi/
∑

j wj which become

unity in the case of equal weights.

Because of the large shift in mass that we are attempting to achieve with reweighting,

the reweighting factors presented in Fig. 1 vary in size by a few orders of magnitude. Such

large fluctuations in the reweighting factors may cause concern that such a substantial

reweighting is doomed to fail. However, the large fluctuations of these factors toward lower

values are not important. No mater how small they are, their only consequence is that
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the corresponding configurations make a negligible contribution in the reweighted ensemble.

By simply counting the number of configurations that have reweighting factor larger than

1, we see a variation in size of 100 and 200 for the 0.02 and 0.01 ensembles respectively.

Thus, the reweighting may be more successful than Fig. 1 naively suggests. The efficiency

of reweighting can be estimated in a more systematic way as follows.

Suppose that we have a specific ensemble of N configurations. The reweighted value for

any physical quantity O based on Eq. (3) is

〈Ow〉N =

∑N
i=1wiOi
∑N

j=1wj

. (18)

With the assumption that the reweighting factors wi and the measurements Oi are weakly

correlated, we can derive an approximate expression for the statistical fluctuations of the

reweighted average 〈Ow〉N around the average value 〈〈〈Ow〉N 〉〉. Here the brackets 〈〈. . .〉〉
indicate the result that would be obtained when many ensembles of N configurations are

generated and the results of each such calculation averaged. Of course, such an average will

normally give the true value, i.e. the value in the limit of large N , except for quantities

which are not simple averages where a bias may result if N is insufficiently large. If we

keep only the dominant term we find (for a more detailed discussion and a derivation, see

Appendix C of Ref. [2]):

〈〈

(

〈Ow〉N − 〈〈〈Ow〉N 〉〉
)2
〉〉

≈ δO2 τcorr
N

w2

w2 (19)

where the quantities appearing on the right-hand side can be approximately calculated from

a single ensemble of N configurations according to the equations:

δO2 =
1

N

N
∑

i=1

(Oi − 〈O〉N)2 (20)

w =
1

N

N
∑

i=1

wi (21)

w2 =
1

N

N
∑

i=1

w2
i (22)

τcorr =

Lmax
∑

l=−Lmax

C(l)W (l). (23)

The quantities C(l) and W (l) appearing in Eq. (23) are the autocorrelation functions for

the measured quantity, Oi and the the reweighting factors wi and can be estimated from a
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single ensemble using the formulae:

C(l) =
1

N − l

N−l
∑

i=1

(Oi − 〈O〉N )(Oi+l − 〈O〉N)
δO2

(24)

W (l) =
1

N − l

N−l
∑

i=1

wiwi+l

w2
, (25)

for the case l ≥ 0. When evaluating the autocorrelation time with a finite sample size N, we

must impose a maximum length Lmax ≪ N . Here, we use the smallest value of l at which

C(l + 1) becomes negative.

If we interpret the error given in Eq. (19) as the size of the fluctuations among our

samples divided by the square root of an effective number of configurations,
√

δO2/Neff , we

can determine Neff to be:

Neff =
N

τcorr

w2

w2
(26)

In the case of no reweighting(wi ≡ 1), this expression reverts to our normal expression for the

effective number of configurations N/τcorr. Even though different physical quantities have

different autocorrelation times, the reweighted auto correlation times τcorr in Eq. (23) are

usually very close to 1 for our data, because C(l) and W (l) are both small numbers except

when l=0. Therefore, the estimated effective number of configurations can be calculated from

the reweighting factors alone. We find Neff = 48 for the ml = 0.02 ensemble (reweighting to

0.01) and Neff = 63 for the ml = 0.01 ensemble (reweighting to 0.02). Clearly, the effective

sample size decreases dramatically because of our large range of mass reweighting. However,

with a sample size of roughly 50 configurations, we can expect that the reweighting still

works well for many interesting physical quantities.

To justify our assumption that τcorr ∼ 1, we calculated the autocorrelation function C(l)

for a few of quantities that we will study later. Figure 2 shows the autocorrelation function

C(l) of the average plaquette(P), topological charge(Q) and susceptibility (Q2) as well as

the autocorrelation function W (l) defined in Eq. (25). The W (l) function converges to the

constant value w2/w2 for large separations. From these results the integrated autocorrelation

times τcorr defined by Eq. (23) for the unreweighted and reweighted ensembles are calculated

and summarized in Tab. I. We can see that even for the topological charge which has the

longest autocorrelation time, the reweighted integrated autocorrelation time is less than 2.

Since most quantities have significantly shorter autocorrelation time compared to that of the

topological charge, we can expect that τ → 1, thus supporting our estimate of the number of

10



TABLE I. The integrated autocorrelation time defined in Eq. (23) for both the unreweighted and

reweighted data. Notice that the time is given in units of 5 trajectories for the ml = 0.02 ensemble

and 10 trajectories for the ml = 0.01 ensemble. The columns are labeled by the light quark mass

used to generate the original ensemble.

unreweighted ml = 0.02 ml = 0.01 reweighted ml = 0.02 ml = 0.01

P 1.8 1.1 Pw 1.1 1.0

Q 7.5 3.8 Qw 1.8 1.1

Q2 3.8 2.5 Q2
w 1.4 1.1

effective configurations. As can be seen in Tab. I, the reweighted ensembles typically show

a decreased autocorrelation time. This should be expected because reweighting effectively

thins the initial ensemble. Note this decrease in τcorr partially compensates for the decrease

in Neff arising from the ω2/ω2 factor in Eq. (26).

-0.2

 0

 0.2

 0.4

 0.6

 0.8
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 0  10  20  30  40  50  60  70  80  90  100

C
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trajectory

P 
Q 
Q2

W(l) 
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Q 
Q2

W(l) 

FIG. 2. The autocorrelation function C(l) defined in Eq. (24) plotted versus l for the average pla-

quette (P ) , topological charge (Q) and Q2. The autocorrelation function W(l) for the reweighting

factor defined in Eq. (25) is also shown. The left panel shows results calculated from the ml = 0.02

ensemble while that on the right shows the results from the ml = 0.01 ensemble.

III. TOPOLOGICAL CHARGE AND SUSCEPTIBILITY

The topological charge typically has the longest autocorrelation time among the usual

observables and represents long distance physics. We will examine the reweighting effect
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on it first. We will later study short distance quantities such as the average plaquette and

residual mass.

As the first step in determining the topological charge we use Wilson flow [13, 14] devel-

oped by Lüscher to smooth or cool the gauge configurations. As a function of the Wilson

flow time, the gauge fields obey the following differential equation and initial conditions:

dUt(x, µ)

dt
= ig20

∑

a

d

ds
Sw(e

−isXa

Ut)|s=0T
aUt(x, µ), Ut(x, µ)|t=0 = U(x, µ), (27)

where Sw(U) = 1
g20

∑

pReTr{1− U(p)} is the Wilson gauge action and {T a}1≤a≤8 the eight

hermitian generators of SU(3). When acting on a particular link matrix U(y, ν) the matrix

Xa = T a if y = x and ν = µ and is zero otherwise. We follow the Runge-Kutta integration

scheme (see Appendix C of Ref [14] ). This realizes a continuous version of the stout smearing

technique developed by C. Morningstar and M. Peardon [15]. We have used an integration

time step δt = 0.04, which gives an error smaller than 10−5 for t ≤ 16 as seen by comparing

the results to those obtained with δt = 0.005 for dozens of configurations. All results given

here use δt = 0.04 and the integration error should be negligible for the topological charge

calculation of interest.

We then determine the topological charge using the “5Li” (5-loop-improved) algo-

rithm [16] on these “cooled” configurations, finding values of topological charge very close

to integers. Figure 3 shows a few typical evolution curves for the topological charge Q as a

function of the flow time t. Notice that there are ambiguities for some of the configurations:

the topological charge converges to one integer, stays there for a while and then moves away

converging to a neighboring integer. The problem of defining the topological charge on the

lattice and its ambiguities are not the focus of this paper. We will simply adopt the Wilson

flow prescription and use the value of Q at t = 16 as our result for the topological charge.

Figures 4 (a) and (b) show the evolution of the topological charge for the ml = 0.02 and

ml = 0.01 ensemble respectively. There are apparent autocorrelations among configurations

which we have also seen in the corresponding autocorrelation functions shown in Fig. 2. The

lower two graphs of Fig. 4 present the topological charge distributions and the corresponding

distributions obtained after reweighting. The reweighted topological charge distribution is

given by the probability function Pw(Q) computed from the relation:

Pw(Q) =

∑N
i′=1wi′δQi′ ,Q
∑N

i=1wi

(28)
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FIG. 3. Topological charge Q(t) as the function of the Wilison flow time t. We show results from

those configurations numbered between 500 and 4500 separated by steps of 100 trajectories from

the ml = 0.01 ensemble.

where the Kronecker delta factor δQi′ ,Q
ensures that sum over i′ only includes those config-

urations having topological charge Q.

The most important property of the topological charge distribution (given its central

value of zero) is the width 〈Q2〉 of the distribution, which is related to the topological

susceptibility. The calculated values of 〈Q2〉 with the average 〈Q〉 and the reweighted values

〈Q2
w〉 and 〈Qw〉 are summarized below the distributions shown in Fig. 4. The quoted errors

are calculated from the fluctuations seen among blocks of 100 trajectories to remove any

effect of autocorrelation.

We can see very clearly how we have successfully reweighted one distribution to another.

If we reweight the light sea quark mass from 0.02 to 0.01, the resulting ml − 0.01 ensemble

reweighted from ml = 0.02 gives a distribution with second moment 〈Q2
w〉 = 5.9(1.4), in ex-

cellent agreement with the ‘true’ value from our dynamically generated ml = 0.01 ensemble,

which gives 〈Q2〉 = 6.17(38). In fact, a detailed comparison of the two ml = 0.01 ensembles

in Fig. 4 (the reweighted histogram in the bottom row, left column and the directly com-

puted histogram in the middle row, right column) shows very similar features. Comparing

the tails of the distribution one clearly sees that the configurations with large topological

charge are strongly suppressed by the reweighting factors: the reweighting really reflects the

underlying physics by giving small weights to large topological charge configurations and

large weights to small topological charge configurations. Similarly, the reweighting from the
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〈Q〉 = −0.25(31),
〈

Q2
〉

= 10.4(1.3) 〈Q〉 = −0.24(14),
〈

Q2
〉

= 6.17(38)

〈Qw〉 = −0.54(31),
〈

Q2
w

〉

= 5.9(1.4) 〈Qw〉 = −0.76(62),
〈

Q2
w

〉

= 10.5(2.0)

FIG. 4. Topological charge evolution (top row) for the ml = 0.02 ensemble, measured every fifth

trajectory (left), and for the ml = 0.01 ensemble, measured at every tenth trajectory (right). The

middle row shows the resulting topological charge distribution for ml = 0.02 (left) and ml = 0.01

(right). The bottom row shows the histograms after reweighting: ml = 0.02 → 0.01 (left) and

ml = 0.01 → 0.02 (right) . Shown below the histograms are the results for 〈Q〉 and 〈Q2〉 for the

original and reweighted ensembles.
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ml = 0.01 ensemble to that with ml = 0.02 is also successful but looks less impressive as can

be seen by comparing the reweighted histogram in the bottom row, right column and the

directly computed histogram in the middle row, left column. This should be expected as

we try to reweight a narrower distribution to a wider one. The reweighting must give large

weights to the configurations with large topological charge, which are rare in the ml = 0.01

ensemble. Thus, in the reweighted distribution the far ends of the tails which are popu-

lated in the directly computed ensemble are missing from the reweighted one: these bins are

empty in our finite sample and it is not possible to create something by reweighting. This

may suggest that it is more favorable to reweight from heavier mass to lighter mass.

The spike at Q = −5 in the ml = 0.02 distribution reweighted from the ml = 0.01

ensemble in Fig. 4 (bottom row, right-hand column) may look troublesome. We find that

its contribution comes to a large extent from a single configuration that has the largest

reweighting factor in Fig. 1. Therefore, this large spike has very large inherent uncertainly.

To evaluate the quality of the data set, we (incorrectly) dropped this configuration and

performed a complete analysis, repeating all the calculations in this paper. This experiment

revealed no surprises, giving results consistent with those presented here which included all

configurations. Nonetheless, the unphysical topological charge distribution for the ensemble

reweighted toml = 0.02 ensemble suggests that our calculation is not far from being sensitive

to uncontrolled statistical fluctuations. The reweighting is not ideal. It would be prudent

either to have more configurations or to reweight less aggressively in the mass difference.

IV. AVERAGE PLAQUETTE

Now let us discuss how well reweighting works when applied to a representative short

distance quantity, the average plaquette. The reweighting is performed in 80 steps, so we

can examine all the intermediate reweighted results. We plot the reweighted results from

each mass change of 0.001 for reweighting in both directions in Fig. 5. As we can see, the

average plaquette is successfully reweighted from 0.587938(18) for the ml = 0.02 ensemble

to the 0.588103(49) value predicted for ml = 0.01 as well as from the 0.588047(11) for

the ml = 0.01 ensemble back to 0.587971(28) value predicted for ml = 0.02. The results,

including all the intermediate mass values, agree within 1σ. The quoted error is calculated

using a block size of 50 trajectories to remove any effect of autocorrelation. We will also use
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FIG. 5. Reweighted values for the average plaquette as the dynamical light quark mass is decreased

from ml = 0.02 to ml = 0.01 using the ml = 0.02 ensemble (open triangles). Also shown are results

from the ml = 0.01 ensemble (open circles) as ml is increased by reweighting from ml = 0.01 to

ml = 0.02. The data from theml = 0.02 ensemble are slightly offset in order to show the overlapped

data points more clearly. While each reweighting sequence was performed in 80 steps, we plot only

the result of each eighth step of 0.001.

a block size of 50 trajectories to calculate the error in our later calculation of mres, fπ and

mπ. At this point, we have shown that light-quark mass reweighting is very successful for

both long distance and short distance physics.

So far we have ignored the bias which arises from the finite sample size used in our

stochastic estimate of the reweighted quantity 〈Ow〉N given by the ratio in Eq. (18). Let us

take the average plaquette as an example and see how large it is. Suppose the sample size is

N. The reweighted result 〈Pw〉N is biased in the sense that the expectation value 〈〈〈Pw〉N 〉〉
will not agree with the true value Pw = limN→∞ 〈Pw〉N . It is straightforward to work out

the difference, keeping only the lowest order terms:

〈〈〈Pw〉N〉〉 =
〈〈

∑N
i=1wiPi
∑N

j=1wj

〉〉

(29)

≈ Pw

{

1 +
1

N2

1

w2Pw

N
∑

i=1

N
∑

l=1

〈〈

wiwl(Pw − Pi)
〉〉

}

. (30)

We can see that the bias is proportional to 1/N , and the coefficient is related to the

correlation of wi and Pi. We might attempt to estimate the bias given in this equa-

tion for our single sample by omitting the average over samples, 〈〈. . .〉〉 and by examining

the l = i term which might be expected to be dominant. This term can be written as
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FIG. 6. Biased estimator of the reweighted average plaquette. For ml = 0.02 ensemble(left), we

choose sample size to be N=10, 20, 30, 50, and 100. The corresponding number of measurements

are 60, 30, 20, 12 and 6. For ml = 0.01 ensemble(right), we choose sample size to be N=10, 20,

50, 100, and 200. The corresponding number of measurements are 100,50,20,10 and 5. The data

is then fit with function f(x) = Pw(1 + c/N).

−∑N
i,j=1wiwj(wi −wj)(Pi − Pj)/2N

3w3. This expression hints that the bias is negative for

a positive correlation between wi and Pi, and vice versa. As should be expected, if there

is no correlation between Pi and wi, the coefficient vanishes. Taking all of our data and

dividing them into small samples, we calculate the expectation value of 〈Pw〉N . The results

are shown in Fig. 6 and suggest that the bias for the ml = 0.02 ensemble is negative and the

bias for the ml = 0.01 ensemble is positive although these effects are at or below the one

σ level. These results also suggest that the bias is negligible for reasonably large ensemble

size N > 20.

V. PION MASS AND DECAY CONSTANT

Let us next study the effect of reweighting on some additional, interesting physical quan-

tities. In this section, we will examine the sea quark dependence of the residual mass, the

pion mass, and the pion decay constant. In the following, for the ml = 0.02(0.01) ensem-

ble, we fix the valence quark mass at 0.01(0.02) and gradually reweight the sea quark mass

from 0.02(0.01) to 0.01(0.02), and study the change in each of these physical quantities.

Once each measurements has been reweighted to ml = 0.01(0.02), it becomes unitary with

equal valence and sea light quark masses and we compare the reweighted result with the
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unitary result directly calculated from the ml = 0.01(0.02) ensemble. Note we will express

all quantities in lattice units unless other units are explicitly specified.
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FIG. 7. Reweighted results for the residual mass. The blue triangular (red circle) points are the

residual mass calculated with ml = 0.02(0.01) ensemble, using valence quark mass 0.01(0.02). The

two box-shaped points give the results from a direct, unitary calculation with mval = 0.02 on

ml = 0.02 ensemble, and mval = 0.01 on ml = 0.01 ensemble. They are intentionally shifted by a

small amount horizontally to avoid overlap with the reweighted results.

The residual mass is an important quantity in the DWF formulation, representing a

contribution to the physical quark mass from the explicit chiral symmetry breaking which

is present if the lattice extent in the fifth dimension is finite. (For this calculation the fifth

dimensional extent has the value Ls = 16.) The residual mass is an interesting quantity to

study because it typically shows a strong dependence on the light sea quark mass and so

should provide an interesting test of light sea quark mass reweighting. Our results obtained

using the methods of Ref. [12] for the residual mass from both the ml = 0.02 and ml =

0.01 ensembles are shown in Fig. 7. This figure shows that the residual mass is positively

correlated with the light sea quark mass (at fixed valence quark mass). We see that the

ensemble with sea quark mass ml = 0.02 when reweighted to ml = 0.01 gives a result that

is consistent with that obtained by direct calculation on the ml = 0.01 ensemble, and vice

versa.

To obtain mπ and fπ, we calculated three different correlation functions. Using a gauge-

fixed pseudo-scalar wall source, we choose the sink to be either a gauge-fixed pseudo-scalar

wall sink, a pseudo-scalar point sink or a point sink formed from the zeroth component of
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the axial current. These correlation functions are identified as Csink1source2
O1O2

(t) which for our

three cases becomes CWW
PP (t), CLW

PP (t) and CLW
AP (t). Here the label ‘W’ means a gauge-fixed

wall source or sink, ‘L’ means a point sink, ‘P’ means pseudo-scalar operator, ’A’ means the

zeroth component of the axial current operator. We perform a simultaneous fit to all three

correlators at large times, using the functional form

Cs1s2
O1O2

(t) = N s1s2
O1O2

[e−mπt + e−mπ(T−t)] (31)

This fit give us mπ directly. From the amplitudes N s1s2
O1O2

, we construct fπ following Ref [2],

fπ = ZA

√

2

mπ

(NLW
AP )2

NWW
PP

(32)

where ZA is the renormalization constant of the local axial current Aµ, calculated in Ref. [17].

Since ZA is to be evaluated in the chiral limit and thus does not depend on sea quark mass,

we simply set ZA = 1 for the present calculation.
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FIG. 8. The pion mass computed on the ml = 0.02 ensemble (left panel) at a fixed valence quark

mass mval = 0.01 as a function of the reweighted light sea quark mass with the results shown as

open circles. The right panel shows similar results for the pion mass computed using the ml = 0.01

ensemble for fixed mval = 0.02. The triangular points in each panel show the result computed on

the other ensemble with equal sea and valence quark masses: ml = 0.01 (left panel) and ml = 0.02

(right panel).

Figure 8 shows the calculated dependence of the pion mass on the light sea quark mass.

In the left graph, we show the reweighting of the ml = 0.02 ensemble, using a fixed valence

quark mass mval = 0.01. The results from the intermediate reweighting steps are also

19



 0.115

 0.12

 0.125

 0.13

 0.135

 0.01  0.015  0.02

f π

m

ml=0.02
ml=0.01

 0.134

 0.136

 0.138

 0.14

 0.142

 0.01  0.015  0.02

f π

m

ml=0.01
ml=0.02

FIG. 9. The reweighted pion decay constant plotted in the same style as used in Fig. 8.

shown. Similarly, the right graph shows the reweighting on the ml = 0.01 ensemble. These

results demonstrate a positive dependence of the pion mass on the light sea quark mass.

The reweighted results show a clear trend, although with increasing errors, as we reweight

the sea quark mass. In both cases the result obtained in the final step of the reweighting

procedure agrees with the directly calculated result at the 1 σ level. Figure. 9 shows similar

results for fπ, presented in the same way as the data for mπ. in Fig. 8. Similar conclusions

can be drawn.

VI. SCALAR CORRELATOR

Finally, let us look at something less successful but equally interesting. The properties

of the iso-vector, scalar particle are known to be difficult to calculate because its mass is

much larger than the mass of the pion, so large are statistics are needed. For the reweighted

data, the effective number of configurations drops to less than one hundred, resulting in

such a small ensemble size that it is not possible to determine the mass of this scalar state.

However, by simply looking at the scalar correlator itself, we can see the dramatic effect of

reweighting: the partially quenched violation of positivity disappears as the sea quark mass

is reweighted to the unitary value.

We calculate the scalar correlator using an identical, gauge-fixed wall source and sink so

that the resulting correlation function should be positive. A well known artifact of partial

quenching appears in the case where mval < msea: the correlator becomes negative for

large source sink time separations when the lighter, negative norm πη′ intermediate state
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dominates [18]. This behavior can be clearly seen in the left panel of Fig. 10 where the

valence quark mass is 0.01, and the sea quark mass is 0.02. The correlator becomes negative

for t > 4. After reweighting the sea quark mass from 0.02 down to the unitary value of 0.01,

the correlator data points increase and become positive as seen previously in Ref. [6]. In

the left-hand panel one can also see the result from a unitary calculation performed directly

with mval = 0.01 on the ml = 0.01 ensemble. These results agree within the larger statistical

errors of the reweighted data. In contrast, the partially quenched result with mval = 0.02

determined on the ml = 0.01 ensemble gives a positive value for the correlator as shown in

the right panel of Fig. 10. The reweighting from msea = 0.01 to 0.02 now has a less dramatic

effect but does give a result in agreement with a direct calculation with mval = 0.02 on the

ml = 0.02 ensemble. Because of the poor statistics, the comparison between the reweighted

and direct results is not accurate, especially at large t where the relative error increases

dramatically and the results become unreliable.
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FIG. 10. Reweighting results for the scalar correlation function plotted as a function of time. The

left panel shows this propagator computed with a valence quark mass of 0.01. The open circles

give the non-unitary result from 0.02 ensemble, the crosses the same observable reweighted to

the unitary, light sea quark mass of 0.01 and the triangles the result of a direct calculation on

the ml = 0.01 ensemble. The right panel shows the corresponding reweighting on the ml = 0.01

ensemble.
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VII. SUMMARY AND DISCUSSION

We have shown how reweighting can be used to vary the light sea quark mass while

working with a single ensemble generated with a single sea quark mass. We first successfully

reweighted the topological charge distribution from one of our light sea quark masses to

the another. We found that it is better to reweight from a heavier mass to a lighter mass,

because this corresponds to reweighting from a wider distribution to one that is more narrow.

In this case, the poor statistics present in the tail of the distribution is suppressed instead

of magnified by the reweighting factor. Next we studied the reweighting of the average

plaquette, examining results obtained for a sequence of intermediate masses. In addition,

we examined the bias introduced by our stochastic finite-sample reweighted measurement

of the average plaquette. We found that the bias is negligible for fairly large ensemble with

N > 20. After this study of both long distance and short distance quantities, we examined

the behavior under reweighting of the residual mass, pion mass and pion decay constant. In

each case, reweighting revealed how the given physical quantity varied with the sea quark

mass when computed on an ensemble with a fixed valence quark mass. In each case, the

final step of reweighting was chosen to duplicate the sea quark mass which had been used to

generate a second ensemble. This allowed a direct comparison between the reweighted and

a directly generated result and in each case the two results agreed within errors. Finally,

reweighting was shown to dramatically correct the partial quenching artifacts seen in the

calculation of the iso-scalar, scalar correlator initially computed with mval = 0.01 on an

ml = 0.02 ensemble.

The error on the quantities we have studied was generally increased 3-4 times by reweight-

ing, in rough agreement with our estimate of the number Neff of effective configurations.

These estimates suggested an error increase of a factor of
√

600/48 = 3.5 and
√

1000/62 = 4,

if autocorrelation is neglected. The topological charge shows the longest autocorrelation

times and the associated errors do not follow our estimated value of Neff . However, the

relative error on Q2 increases by a factor of 1.5 when reweighting the ml = 0.02 ensemble

and by 3 for the ml = 0.01 ensemble. As explained in the discussion Sec. II, this possibly

smaller increase in error may result from there being fewer independent configurations in the

original ensemble so that less information is lost when a portion of these correlated samples

is assigned a small weight.
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It should be emphasized that the change in the quark mass from ml = 0.02 to 0.01 and

the reverse is a large change to be accomplished by reweighting. This is certainly suggested

by the large fluctuations of more than 4 orders of magnitude seen in the reweighting factors.

The resulting efficiency in the reweighting procedure, Neff/N , is less than 10%, causing the

error after reweighting to increase by a factor of 4. However, such an aggressive use of

reweighting may be appropriate for a test of the method, more clearly revealing its power

and potential limitations. We have not examined the important issue of the dependence of

reweighting on the lattice volume. However, we expect that similar results will be obtain on

a larger lattice volume if a smaller mass reweighting range is employed.

In real applications of reweighting, we may choose to be more conservative and reweight

over a smaller range of mass than considered here to keep the efficiency high. Had we

only reweighted by half of the mass difference, reweighting both ensembles to ml = 0.015,

the effective number of configurations would increase dramatically from 48 to 308 for the

ml = 002 ensemble, and from 63 to 386 for the ml = 0.01 ensemble. Depending on the

physics being studied, we must ensure that Neff is large enough to give statistically useful

results. For example, Neff < 100, is apparently insufficient for a study of the iso-vector,

scalar particle mass. In conclusion, reweighting has been shown to work remarkably well,

even for a large change in the light quark mass, with the resulting errors well described by

an effective number of configurations given in Eq. 26.
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