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ABSTRACT

An equivariantly gauge-fixed non-abelian gauge theory is a theory in which

a coset of the gauge group, not containing the maximal abelian subgroup, is

gauge fixed. Such theories are non-perturbatively well-defined. In a finite vol-

ume, the equivariant BRST symmetry guarantees that expectation values of

gauge-invariant operators are equal to their values in the unfixed theory. How-

ever, turning on a small breaking of this symmetry, and turning it off after the

thermodynamic limit has been taken, can in principle reveal new phases. In

this paper we use a combination of strong-coupling and mean-field techniques to

study an SU(2) Yang–Mills theory equivariantly gauge fixed to a U(1) subgroup.

We find evidence for the existence of a new phase in which two of the gluons

becomes massive while the third one stays massless, resembling the broken phase

of an SU(2) theory with an adjoint Higgs field. The difference is that here this

phase occurs in an asymptotically-free theory.

† Permanent address: Department of Physics and Astronomy, San Francisco State University, San Francisco,

CA 94132, USA
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I. INTRODUCTION

Some years ago, we proposed a new approach to discretizing non-abelian chiral gauge

theories, in order to make them accessible to the methods of lattice gauge theory [1]. An

essential ingredient in this new approach is the inclusion of a gauge-fixing action at the

level of the path integral defining the theory. Of course, whatever gauge-fixing action one

chooses, the path integral has to be well-defined non-perturbatively. It was shown in Ref. [2]

that this is impossible if one insists on maintaining BRST invariance: In a fully gauge-

fixed lattice gauge theory the BRST symmetry causes the partition function, as well as all

(un-normalized) expectation values of gauge-invariant operators, to vanish.

The problem can be circumvented if, instead of the full non-abelian group G, one gauge

fixes only a coset G/H , where H is a subgroup containing the maximal abelian subgroup of

G. Building on earlier work by Schaden [3] for the group SU(2), we showed that for G =

SU(N) and H the maximal abelian subgroup itself, partially (“equivariantly”) gauge-fixed

Yang–Mills theories can be constructed on the lattice satisfying an invariance theorem: In

such theories, expectation values of gauge-invariant operators do not vanish, and are exactly

equal to those in the unfixed theory, in any finite volume [1]. Since only the coset G/H

is gauge-fixed, ghosts are only introduced for the coset generators. Such theories are then

invariant under an equivariant BRST (eBRST) symmetry, and necessarily contain four-ghost

interaction terms. Both eBRST symmetry and the appearance of four-ghost interactions are

key ingredients for the proof of the invariance theorem. This eBRST symmetry is nilpotent

on operators which are gauge invariant under the subgroup H , guaranteeing perturbative

unitarity to all orders in much the same way that standard BRST symmetry does in the

usual case [1]. The key difference is that, contrary to the usual gauge-fixing procedure

which is inherently perturbative [2], the equivariantly gauge-fixed theory is well defined

non-perturbatively.1

Equivariantly gauge-fixed Yang–Mills theories have two independent couplings, the gauge

coupling g and the gauge-fixing parameter ξ. The latter can be traded for the “longitudinal”

coupling g̃ defined by g̃2 ≡ ξg2. The couplings g and g̃ are both asymptotically free [5].

In this article we will argue that the phase diagram in the g–g̃ plane is non-trivial, with

1 For an interesting perspective on the possible role of U(1) (sub)groups in this context, see Ref. [4].
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potentially interesting physical consequences, despite the invariance theorem.

We will limit ourselves to a study of SU(2) Yang–Mills theory, equivariantly gauge-

fixed to a U(1) gauge theory. In the framework of equivariant gauge fixing, SU(2) gauge

transformations divide into the gauge transformations contained in the U(1) subgroup, which

will remain unfixed, and the remainder, which live in the SU(2)/U(1) coset, and which will

be gauge-fixed such that the resulting gauge theory is invariant under eBRST symmetry.

While both g and g̃ grow towards the infrared because of asymptotic freedom, the

renormalization-group equation for g̃ depends on g in such a way that g̃ has to become

strong in the infrared along with g. This can happen in two different ways. One scenario

is that both couplings become strong simultaneously, going into the infrared. The other

scenario is that g̃ becomes strong first, while g remains relatively weak. A third scenario,

in which g̃ remains weak while g becomes strong is excluded by the renormalization-group

analysis.

Which of the two possible scenarios is realized depends on the relative size of the couplings

at the cutoff. Based as it is on solving the one-loop renormalization-group equations, we do

not know what actually happens when one or both couplings have become strong. However,

in the case of the second scenario, we do know that the physics of the longitudinal sector,

which is governed by g̃, becomes strongly coupled first, while g still remains weak, keeping

the transverse sector still perturbative.

A natural framework for studying the second scenario is the so-called reduced model,

which corresponds to the g = 0 boundary of the phase diagram. The reduced model is

constructed as follows. First, we perform a gauge transformation, so that the gauge trans-

formations become explicit as an SU(2)-valued scalar field in the path integral defining the

theory. The action depends on this field because the gauge-fixing and ghost terms are not

invariant under SU(2)/U(1) gauge transformations. Then, we turn off the transverse gauge

fields by setting g = 0. The result is a theory of an SU(2)-valued scalar field coupled to the

ghosts. The reduced model has one coupling, g̃, which is asymptotically free. Since only the

coset SU(2)/U(1) was gauge-fixed, the remaining U(1) remains a gauge symmetry, also in

the reduced model. The growth of g̃ towards the infrared suggests that dynamical symmetry

breaking might take place at low energy in the reduced model, and it is this question, along

with its consequences, that we investigate in this article.

The reduced model is invariant under U(1)L×SU(2)R transformations, where U(1)L is a
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local symmetry and SU(2)R is a global symmetry. The spontaneous breaking of the global

SU(2)R symmetry can be studied within the reduced model by standard methods. Using

a combination of strong-coupling and mean-field techniques, we will find that a phase in

which SU(2)R is broken to an abelian subgroup U(1)R may appear at large g̃.

While the existence of the phase with broken symmetry will have to be studied in the

future using more reliable methods than mean field, it is interesting to address the conse-

quences of such a phase for the full theory. Since the reduced model corresponds to the

g = 0 boundary of the phase diagram, we recover the full theory by turning g back on. Our

aim is then to see whether any dynamical symmetry breaking that occurs in the reduced

model might have consequences for the physics of the transverse degrees of freedom.

Naively, one expects this not to be the case. According to the standard paradigm, physics

in the transverse sector should be independent of the choice of gauge; therefore it should be

blind to any symmetry breaking in the longitudinal sector that may have occurred in the

reduced model. Indeed, in a finite volume, this is true: The invariance theorem introduced

above guarantees that gauge invariant correlation functions in the full theory are independent

of g̃, and equal to those in the unfixed theory [1].2

However, this may not be the whole story. Let us introduce a small breaking of eBRST

symmetry (which we will generically refer to as a “seed”) into the theory. We take the

infinite-volume limit first, and then turn off the seed. With this order of limits, the invariance

theorem ceases to hold. There are two possible outcomes. The first possibility is that the

consequences of the theorem are recovered when the seed is eventually taken to zero. Then

the transverse sector of the full theory has the same physics as that of the unfixed gauge

theory. Another possibility is that the dynamics of the longitudinal sector carries over to the

transverse sector, thus uncovering a new phase in the full theory with physical consequences.

In the reduced model there are local order parameters that signal the spontaneous break-

ing of the global SU(2)R symmetry. Once we turn back on the transverse gauge fields, which

is equivalent to gauging the SU(2)R symmetry, no local order parameter is available any

more to monitor its breaking [6]. Nevertheless, the phases of the theory can still be rigor-

ously distinguished. The familiar confining phase of an unfixed SU(2) Yang–Mills theory

is characterized by a mass gap. By contrast, if the spontaneous breaking of SU(2)R in the

2 The latter, of course, is well-defined in the compact formulation on the lattice.
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longitudinal sector carries over to the transverse sector, the gauge fields in the SU(2)/U(1)

coset, which we will refer to as the W fields,3 become massive. The third gauge field stays

massless, and the long-distance physics is that of an abelian theory. Therefore, phases cor-

responding to the two different possibilities can be distinguished by the presence or absence

of a mass gap [7, 8].

As in any asymptotically-free theory, the infrared physics is non-perturbative. The only

proven method for the investigation of this non-perturbative dynamics is numerical, through

Monte-Carlo evaluation of correlation functions in the lattice-regularized version of the the-

ory. However, a number of analytic techniques is available which, although heuristic and/or

generally not applicable near the continuum limit, can help in gaining insight into the nature

of the phase diagram. Here, we begin with an analytic study of parts of the phase diagram

through a combination of strong-coupling and mean-field techniques. The motivation for

this exploratory study is two-fold: First, it is interesting to use these techniques to form an

idea of what the physics of equivariantly gauge-fixed Yang–Mills theories might look like.

At a more concrete level, the results of such an analytic study provide a framework for

numerical studies, by identifying the important observables as well as the properties of a

phase in which the (consequences of the) invariance theorem are avoided.

In Sec. II we review the definition of the SU(2)/U(1) equivariantly gauge-fixed Yang–

Mills theory, listing all symmetries, and including a definition of the reduced model. This is

followed in Sec. III by a discussion of possible patterns of symmetry breaking. As a corollary

of the invariance theorem one can show that the reduced model is a topological field theory,

with a partition function that is a pure number, independent of the parameters of the action.

We demonstrate, through a toy model, that a topological field theory can nevertheless

accommodate a non-trivial effective potential for an order parameter, and phases with a

broken symmetry. In Sec. IV we derive the effective action for the reduced model to order

1/g̃2 by integrating out the ghosts in a strong-coupling expansion, to which we then apply

mean-field techniques in Sec. V. We find that spontaneous symmetry breaking from SU(2)R

to U(1)R occurs in mean field. Turning on a weakly-coupled transversal field, we derive

an expression for the massive W propagator. We then use these results, augmented by

additional considerations, to discuss the possible phase diagram of the theory in Sec. VI,

3 In more physical terms, the gauge fields which are charged under the unfixed U(1).
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and conclude in Sec. VII. There are several appendices. In App. A we generalize the

invariance theorem to the case where G = SU(N) and H is any maximal subgroup of G. In

App. B we prove a result pertaining to the toy model of Sec. III. Appendix C summarizes

some group integrals. Appendix D discusses an alternative mean-field analysis, and App. E

proves a perturbative result referred to in the main text. Throughout this article we will set

the lattice spacing equal to one.

II. EQUIVARIANTLY GAUGE-FIXED YANG–MILLS THEORY

In this section we define the theory of interest, the SU(2) equivariantly gauge-fixed Yang–

Mills theory. In this case, the only non-trivial subgroup is H = U(1). We will be brief in this

section; for a general discussion of the construction of equivariantly gauge-fixed theories, we

refer to Ref. [1].

A. Vector picture

We begin with the field content of our theory. The lattice gauge field consists of SU(2)-

valued link variables Ux,µ, and can be written in terms of a Lie-algebra valued field Vx,µ

through

Ux,µ = eiVx,µ , Vx,µ = Vx,µ,i
τi
2
, (2.1)

with τi, i = 1, 2, 3, the Pauli matrices. The gauge-fixing action depends on ghost and anti-

ghost fields, Cx and Cx, and on a real auxiliary field bx. Since we are only fixing the coset

SU(2)/U(1), these fields live in the corresponding coset of the Lie algebra. In components,

the ghost field thus reads

Cx = Cx,1
τ1
2
+ Cx,2

τ2
2
, (2.2)

with similar expansions for the anti-ghost and auxiliary fields.
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The lattice action defining the theory is given by

S = Sgauge + Sgf , (2.3a)

Sgf = tr
∑

x

(
g̃2b2x − 2ibxD

−
µWx,µ , (2.3b)

+
1

2
[τ3, D

+
µCx][Ux,µτ3U

†
x,µ, D

+
µCx]

+iWx,µ{Cx, D
+
µCx}+ g̃2{Cx, Cx}2

)
.

Here Sgauge is any gauge-invariant lattice action constructed from the link variables Ux,µ that

reduces in the classical continuum limit to 1
2g2

∫
d4x tr (F 2

µν), where

Fµν = ∂µVν − ∂νVµ + i[Vµ, Vν] , (2.4)

is the corresponding Lie-algebra valued continuum field strength, and we have used the same

notation for the continuum gauge field as in Eq. (2.1). The lattice vector potential can be

decomposed as

Vx,µ = Wx,µ + Ax,µ
τ3
2
, (2.5)

Wx,µ = Wx,µ,1
τ1
2
+Wx,µ,2

τ2
2
,

with Wµ,1 and Wµ,2 the coset fields, and Aµ the U(1) field. In Eq. (2.3b), we have used the

definitions

Wx,µ = − i

4
[Ux,µτ3U

†
x,µ, τ3] , (2.6a)

D+
µΦx = Ux,µΦx+µ̂U

†
x,µ − Φx , (2.6b)

D−
µΦx = Φx − U †

x−µ̂,µΦx−µUx−µ̂,µ , (2.6c)

where Φ is any Lie-algebra valued field. It follows from Eq. (2.6a) that also Wx,µ has

components only in the coset. In the classical continuum limit Wx,µ →Wx,µ, andD
−
µWx,µ →

Dµ(A)Wµ, with Dµ(A) the U(1) covariant derivative. Indeed, we see that this is a gauge-

fixing condition for the coset gauge field W , which leaves the U(1) gauge invariance intact.

A gauge-fixing parameter ξ may be defined by identifying

g̃2 ≡ ξg2 . (2.7)
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Under U(1) gauge transformations, hx = eiθxτ3/2, all coset fields (Wx,µ, Cx, Cx and bx)

transform as

Φx → hxΦxh
†
x , (2.8)

and the action is thus U(1) gauge invariant. The remaining SU(2) gauge transformations

are broken by Sgf . Instead, the action is invariant under the eBRST transformations

sUx,µ = i(D+
µC)xUx,µ = i (Ux,µCx+µ̂ − CxUx,µ) , (2.9)

sCx = 0 ,

sCx = −ibx ,

sbx = i[C2
x, Cx] .

Normally, one would expect the ghost field to transform as sC = −iC2, but since C2 points

in the τ3 direction, this is not allowed. This change in the transformation rule of Cx modifies

the nilpotency property of s: Instead of s2 = 0, we now have

s2(field) = δX(field) , X = iC2 , (2.10)

where δX is an infinitesimal U(1) gauge transformation with parameter X . It follows that s

is nilpotent when acting on operators which are invariant under U(1) gauge transformations.

The action breaks not only the local, but also the global SU(2) symmetry. Apart from

the U(1) subgroup, the action is invariant under a discrete subgroup S̃2 generated by

P̃α = eiπτα/2 = iτα , α = 1, 2 , (2.11)

under which

Ux,µ → P̃αUx,µP̃
†
α , (2.12)

with the other fields all transforming in the same way.

In addition, the action is invariant under a symmetry of the ghost sector that we will

refer to as Schaden symmetry [9], generated by

Π+ = Cα
δ

δCα

, Π− = Cα
δ

δCα
, (2.13)

and

Π3 =
1

2

(
Cα

δ

δCα
− Cα

δ

δCα

)
, (2.14)
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where the latter generates the U(1) ghost-number symmetry. These three generators to-

gether generate the group SL(2, R).

The construction described above applies to a more general class of theories, in which

G = SU(N), and H is any maximal subgroup of SU(N). This class of theories is introduced

in App. A, where we also observe that the invariance theorem applies to all theories in this

class. For such theories the gauge-fixing action, generalizing Eq. (2.3b), and defined in

App. A, is the most general possible form. In particular, all such theories have only two

couplings, g and g̃.

Finally, for theories in this class “flip” symmetry, defined in Ref. [1], takes a simple form.

It transforms only the ghost and anti-ghost fields, according to C → C, C → −C, while
leaving all other fields invariant. Applying flip symmetry to Eq. (2.9), it follows that the

action is also invariant under an anti-eBRST symmetry s̄.4 It is then straightforward to

show that

s̄2(field) = δX(field) , X = iC
2
, (2.15)

{s, s̄}(field) = δX̃(field) , X̃ = i{C,C} ,

analogous to Eq. (2.10).

B. Higgs picture and reduced model

The action (2.3) is not gauge invariant (except under the U(1) subgroup), and the longi-

tudinal part of the gauge field, or equivalently, the gauge degrees of freedom thus couple to

the other fields in the theory. The standard paradigm is that SU(2) gauge invariant corre-

lators remain the same as in the unfixed theory; but it is precisely the aim of this article to

investigate whether this is indeed true everywhere in the phase diagram.

The gauge degrees of freedom can be exposed by carrying out a gauge transformation on

the theory defined by Eq. (2.3). In technical terms, the “Higgs–Stückelberg” picture, or, for

short, the “Higgs” picture of our theory is obtained by making the replacement

Ux,µ → Uφ
x,µ ≡ φxUx,µφ

†
x+µ̂ (2.16)

4 While other equivariantly gauge-fixed theories may have flip symmetry and anti-eBRST symmetry, these

symmetries, as well as the eBRST symmetry (2.9), take a more complicated form in general [1].
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in Eq. (2.3), and integrating over the SU(2) valued field φx. Explicitly,

Z =

∫
DUDbDCDC exp

(
− Sgauge(U)− Sgf(U, b, C, C)

)
(2.17a)

=

∫
DU exp

(
− Sgauge(U)

)
Z̃(U) , (2.17b)

where

Z̃(U) =

∫
DφDbDCDC exp

(
− Sgf(U

φ, b, C, C)
)
. (2.18)

Equation (2.17a) is the partition function in the vector picture, introduced in the previous

subsection. Equation (2.17b), together with Eq. (2.18), gives the Higgs-picture partition

function. Except for the integration over the gauge field itself, we have absorbed the in-

tegration over all other fields, including the gauge transformations described by φx, into

Eq. (2.18). The motivation for doing so will become clear shortly. Since Sgauge is gauge

invariant, only Sgf is effected by the gauge transformation. One can always go back to the

vector picture by making the field redefinition Ux,µ → φ†
xUx,µφx+µ̂ which, when substituted

into the right-hand side of Eq. (2.18) eliminates all dependence on φx from the action.

The symmetry structure of the action is modified in the Higgs picture. Equivariant

BRST transformations are as in Eq. (2.9), except that now Ux,µ is invariant, while the

Higgs–Stückelberg field φx transforms as

sφx = −iCxφx . (2.19)

This makes the combination (2.16) transform as in the first line of Eq. (2.9), thus maintaining

the eBRST invariance of the action.

An inspection of Eq. (2.16) shows that the theory is now invariant under an extra SU(2)

gauge symmetry,

Ux,µ → gxUx,µg
†
x+µ̂ , (2.20)

φx → hxφxg
†
x ,

in which gx ∈ SU(2). In Eq. (2.20) we also show how these fields transform under the

U(1) gauge symmetry (2.8) in the Higgs picture. The full gauge symmetry of the action in

the Higgs picture is thus the group U(1)L × SU(2)R, where we used the labels L and R to

indicate on which side of the field φx these transformations act.

The action Sgauge, with gauge coupling g, participates only in the dynamics of the trans-

verse part of the gauge field, while Sgf , with coupling g̃, also governs the dynamics of the
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rest of the degrees of freedom. Here, we are interested in possible strong g̃-dynamics while

keeping the gauge coupling g perturbative. It then makes sense to first consider the lim-

iting case g = 0, which freezes out the transverse part of the gauge field described in the

Higgs picture by Ux,µ. In this limit, the theory is thus defined by Sgf , in which first the

replacement (2.16) has been made, followed by setting Ux,µ = I.

We will refer to this simplified version of the theory as the reduced model. In short,

the reduced model’s action is given by Eq. (2.3b), with the replacement Ux,µ → φxφ
†
x+µ̂.

Its partition function is Zred = Z̃(I). This theory is invariant under eBRST with the

rule (2.19), as well as under the group U(1)L × SU(2)R, where now SU(2)R has become

a global symmetry.5 The role of the local U(1)L symmetry is to effectively make φx take

values in the coset SU(2)/U(1), with two fields φx and φ′
x being in the same equivalence

class if they differ only by a U(1)L gauge transformation.

A key question we will address in this article is how the global SU(2)R symmetry of the

reduced model is realized as a function of g̃.

III. PATTERNS OF SYMMETRY BREAKING

The invariance theorem states that finite-volume expectation values of gauge-invariant

operators in the eBRST gauge-fixed theory are exactly equal to their values in the unfixed

theory [1]. The partition function Z is equal to that of the unfixed theory up to a non-

vanishing multiplicative constant. Briefly, the proof works by noting that Sgf can be written

as an eBRST variation, cf. Eq. (A3). Multiplying the first term on the right-hand side of

Eq. (A3) by a parameter t, it follows that ∂Z/∂t vanishes, because it is the expectation value

of an eBRST variation. This conclusion generalizes to expectation values of gauge invariant

operators. In the limit t → 0, the first term on the right-hand side of Eq. (A3) drops out,

while the remaining terms depend only on the ghost-sector fields. The partition function Z

of Eq. (2.17) is therefore a product of the original gauge-invariant partition function, and a

decoupled partition function for the ghost-sector fields. Moreover, the latter is a product of

decoupled integrals at each lattice site, which can be shown to yield a non-zero constant [1].

In the Higgs picture, the invariance theorem applies even if we keep the gauge field Ux,µ

5 The full theory, in the Higgs picture, can be recovered from the reduced model by introducing an SU(2)

gauge field and promoting SU(2)R to a local symmetry.
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external, because Ux,µ does not transform under eBRST in this case. It follows that the

partition function Z̃(U) of Eq. (2.18) defines a topological field theory: While the action

Sgf depends on g̃, the partition function Z̃(U) does not, and it is also independent of the

external gauge field Ux,µ. It is just a pure number.

The existence of the invariance theorem would lead one to expect that if any spontaneous

symmetry breaking took place in the reduced model, this could not possibly have any effect

on the physics of the transverse gauge fields. This state of affairs would be in accordance with

the standard paradigm that, whatever gauge-fixing procedure one applies to a Yang–Mills

theory, the transverse dynamics is unchanged. Indeed, to the extent that exact eBRST

invariance is maintained in any finite volume, the invariance theorem applies, with the

anticipated consequences.

Furthermore, one can question the proposition that the reduced model could have any

non-trivial phase structure at all. A phase transition occurs when the effective potential

for some order parameter develops a new global minimum, as a function of the couplings of

the theory. For this to happen, the effective potential should depend on the couplings (here

only g̃) in a non-trivial way in the first place. But the reduced model is a topological field

theory, with a partition function that is independent of the parameter g̃. The question arises

whether such a partition function can nevertheless accommodate a dynamics that generates

a non-trivial effective potential and gives rise to spontaneous symmetry breaking.

In the following subsection we will illustrate and address these questions in a toy model

that shares the most relevant features of the reduced model. The toy model is a zero-

dimensional “field theory,” i.e., an ordinary integral. This exercise will show that a topo-

logical (field) theory can in principle break a symmetry spontaneously. Encouraged by

this result we return in Sec. III B to the equivariantly gauge-fixed theory itself, and study

patterns of spontaneous symmetry breaking that might be triggered by strong g̃ dynamics.

A. Toy model

In this subsection we demonstrate through a toy model that global symmetries can, in

principle, break spontaneously in a theory satisfying a similar invariance theorem. Our toy

model is a zero-dimensional field theory with an exact BRST-type invariance, as well as a

discrete Z2 symmetry. In a sense that will be clarified below, the Z2 symmetry gets broken

12



spontaneously, whereas BRST symmetry remains unbroken.

The model contains two real degrees of freedom, φ and b, and a ghost, anti-ghost pair c,

c. The nilpotent BRST transformation s acts as follows

sφ = c , (3.1)

sc = 0 ,

sc = ib ,

sb = 0 .

We choose the action to be6

S = s (−icb+ cf(φ)) = b2 + ibf(φ)− cf ′(φ)c , (3.2)

where f ′(φ) = ∂f/∂φ. We assume that, as φ ranges from −∞ to +∞, so does f(φ).

BRST invariance of the toy model, together with the fact that the action is a BRST

variation, leads to an invariance theorem: The partition function Z is independent of any

parameters inside f . Indeed,

Z ≡ 1

2π

∫ ∞

−∞

dφ

∫ ∞

−∞

db

∫
dcdc e−(b

2+ibf(φ)−cf ′(φ)c) (3.3a)

=
1

2
√
π

∫ ∞

−∞

dφ f ′(φ) e−f
2(φ)/4 = 1 . (3.3b)

The only reservation is that the assumption we have made about the asymptotic behavior

of f(φ) must be respected. Therefore, if f(φ) is a polynomial, it must be of odd degree,

and the coefficient of the highest power must be positive. The coefficients of the rest of the

polynomial can then be changed at will, without altering the value of Z.

Now, let us consider a concrete example. We choose

f(φ) =
1

λ

(
φ3 − v2φ

)
, (3.4)

with λ and v2 two real parameters. In addition to the BRST symmetry (3.1), this choice

leads to invariance under a discrete Z2 symmetry that flips the signs of φ and b.

The “classical potential” f 2(φ)/4 has a single minimum at φ = 0 when v2 < 0. But,

for v2 > 0, additional degenerate minima appear at φ = ±v. These new minima are not

6 This action is reminiscent of the supersymmetric Wess–Zumino model, except here we can use real bosonic

fields.
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invariant under the Z2 discrete symmetry. Were we dealing with a true field theory, we

would observe a spontaneous breaking of the Z2 symmetry by introducing a “seed” that

breaks this symmetry explicitly into the finite-volume action, and turning it off after the

thermodynamic limit has been taken.7 Choosing the seed to be

Sseed = −ǫφ , (3.5)

the minimum φ = v > 0 would be selected for ǫ > 0, while φ = −v would be selected for

ǫ < 0.

Being a zero-dimensional field theory, in the toy model there is no thermodynamic limit

to be taken. Strictly speaking, we must always keep ǫ non-zero to maintain a preference

for a particular saddle point with broken symmetry. The situation is more favorable in

perturbation theory. As usual, when the coupling constant λ is small, we may select any

one of the saddle points and develop a perturbative expansion around it.8 Within this

framework, a seed is not introduced. We will denote perturbatively calculated quantities

obtained this way with a subscript that identifies the saddle point.

We first consider the perturbative expansion around the minimum at φ = 0. Setting

φ = λψ and integrating over ψ we find

Z0 = −1 , to all orders, (3.6a)

〈φ〉0 = 0 , to all orders. (3.6b)

An explicit calculation of Z0 can be found in App. B. It is easily seen that the vanishing

result for 〈φ〉0 generalizes to every order parameter for the Z2 symmetry, and therefore this

symmetry is not broken spontaneously at the φ = 0 saddle point.

For the other two saddle points we expand φ = ±v + λψ. We find

Z±v = 1 , to all orders, (3.7a)

〈φ〉±v = ±v
(
1− 3

4

λ2

v6
+O

(
(λ2/v6)2

))
, (3.7b)

showing that indeed the Z2 symmetry is broken spontaneously at these saddle points. Of

course, summing over all the saddle points (for vanishing seed) will restore the symmetry.

We will return to the proof of Eq. (3.7a) below.

7 As an example, a similar discrete symmetry undergoes spontaneous breaking in the Ising model in d ≥ 2

euclidean dimensions.
8 As usual, the expansion in λ is an asymptotic expansion.
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Let us now consider how BRST symmetry is realized at the φ = ±v saddle points. While

φ is not invariant under BRST, an expectation value 〈φ〉±v 6= 0 does not imply the breaking

of BRST symmetry, because φ is not the BRST variation of anything; spontaneous BRST

symmetry breaking would be signaled by 〈sX〉±v 6= 0 for some X . We can in fact prove that

BRST symmetry is not broken within the perturbative expansion around any saddle point.

Taking for example the saddle point φ = v we first expand φ = v + λψ, and then define the

BRST rule to be sψ = c/λ. This rule is clearly consistent with Eq. (3.1). It follows that the

perturbative expansion around the saddle point respects BRST symmetry. We may derive

BRST Ward identities in the usual way, obtaining that 〈sX〉v = 0 for any X . The same

reasoning applies at the other saddle points.

An interesting corollary is that the invariance theorem applies within the perturbative

expansion around each saddle point of the toy model. The saddle-point partition functions

Z0 and Z±v must therefore be independent, in particular, of the coupling constant λ. Since

these partition functions are intrinsically defined within a perturbative expansion in λ, it

follows that their tree-level values receive no corrections to all orders in λ. The tree-level

values can easily be found, leading to Eqs. (3.6a) and (3.7a).9

While the saddle-point partition functions are independent of λ and v, our explicit cal-

culation shows that observables, such as 〈φ〉±v, depend on these parameters in a non-trivial

way. The technical reason is easily understood. We may calculate 〈φ〉±v by augmenting the

action with a source term, −Jψ, and taking the derivative of W±v(J) = − logZ±v(J) with

respect to J . The source term is recognized as nothing but the seed, Eq. (3.5), with ǫ→ J .

This term is not invariant under BRST, leading to the failure of the invariance theorem.

Hence, W±v(J) can depend non-trivially on λ and v. The same conclusion applies to the

effective action Γ±v(φeff) obtained through a Legendre transformation, which, in the case of

the toy model, coincides with the effective potential for the order parameter 〈φ〉±v.
The main lesson we have learned is that topological (field) theories can accommodate non-

trivial effective potentials for order parameters, as well as symmetry-breaking saddle points.

Later on we will find evidence that similar conclusions hold in the eBRST gauge-fixed theory

that is the main subject of this paper.

9 Note that the sum over the three saddle points Z+v+Z−v+Z0 reproduces the exact partition function (3.3).

As already mentioned, an explicit verification of Eq. (3.6a) to all orders is given in App. B.
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B. Symmetry breaking in the equivariantly gauge-fixed theory

In this subsection we consider a symmetry breaking pattern that might be triggered by

strong g̃ dynamics in the reduced model, and address its implications for the full theory.

We are encouraged by the results of the previous subsection, which show that spontaneous

symmetry breaking can in principle take place in a topological field theory. Even though

the reduced model’s partition function is independent of the coupling constant g̃ (and of

the external gauge field, cf. Eq. (2.18)), this does not preclude the existence of an effective

potential with non-trivial minima for order parameters.

We will be interested in a symmetry breaking pattern where the global SU(2)R is broken

down to an abelian subgroup U(1)R, while eBRST symmetry remains unbroken. A natural

order parameter for this symmetry breaking is the expectation value of

Ãx = φ†
xτ3φx . (3.8)

This operator is invariant under the local U(1)L symmetry, as it should be. It transforms in

the adjoint representation of SU(2)R, and therefore a non-zero expectation value, 〈Ã〉 6= 0,

signals the symmetry breaking SU(2)R → U(1)R.

While the operator Ã is not invariant under eBRST, its expectation value cannot serve

as an order parameter for eBRST symmetry breaking. Again the reason is that Ã is not the

eBRST variation of any other operator, and therefore it will not occur in any Ward identity

for eBRST symmetry.

Following standard practice, in order to study the anticipated symmetry breaking pattern

we add to the finite-volume action the term

Sseed = −h
∑

x

tr (τ3Ãx) , (3.9)

choosing h > 0. The limit h → 0 is taken after the thermodynamic limit. The seed tilts

the effective potential for the order parameter, and, in the broken phase, selects the vacuum

state where 〈Ã〉 points in the τ3 direction. Once the infinite-volume limit has been taken,

transitions between different vacua are kinematically suppressed. Hence the vacuum state

will remain that selected by the seed when the latter is turned off.

As usual, we may obtain the order parameter 〈Ã〉 from the logarithmic derivative of the

partition function with respect to the external magnetic field h. Once again, the seed (3.9) is
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not invariant under eBRST transformations, leading to the failure of the invariance theorem

for non-zero h. Much like the toy model of Sec. IIIA, this allows 〈Ã〉 to depend non-trivially

on the coupling g̃.

Next, we turn to the full theory, which corresponds to moving away from the g = 0

boundary into the g > 0 phase diagram. We will assume that the symmetry breaking

discussed above takes place in the reduced model. For definiteness, anticipating our analysis

in subsequent sections, we assume the existence of a critical value g̃c such that, if we start

from the strong-coupling limit, the reduced model is in a symmetric phase for g̃c < g̃ <∞,

while for g̃ < g̃c we enter the phase in which SU(2)R is broken down to U(1)R.

In lattice Higgs models such as Ref. [8], no symmetry-breaking seed is needed once the

global symmetry is promoted to a local symmetry. Here, too, a seed that breaks the SU(2)R

symmetry is not needed for g > 0. But, as explained above, in the equivariantly gauge-fixed

theory it is necessary to turn on a seed that breaks the eBRST symmetry in order to probe

any non-trivial phase structure. Because of the invariance theorem, we are bound to recover

the usual confining physics everywhere in the g > 0 phase diagram if we did not introduce

an eBRST-breaking seed.

Let us first consider what happens when we move into the phase diagram starting from

some g̃ > g̃c in the symmetric phase. The presence of the eBRST-breaking seed, and the

ensuing failure of the invariance theorem, imply that gauge invariant observables will be

somewhat distorted relative to the un-gauge fixed Yang–Mills theory. However, in this

region of the phase diagram we expect to recover the consequences of the theorem in the

thermodynamic limit, and thus, that the theory is in the usual confining phase.

If, instead, we move into the g > 0 phase diagram starting at a point inside the broken

phase of the reduced model, it is in fact very natural to find the full theory in a different

phase resembling the broken phase of the SU(2) theory with an adjoint Higgs field [7,

8]. In the reduced model, the symmetry breaking of SU(2)R down to U(1)R produces

two Goldstone bosons. In the full theory, SU(2)R is promoted to a gauge symmetry (see

Sec. II B). Therefore, we would expect a Higgs-like phenomenon: the two Goldstone bosons

will turn into the longitudinal modes of the W fields which, in turn, will become massive.

Since the remaining unbroken gauge symmetry is abelian, the gauge coupling will stop

growing on larger distance scales, and the third gauge field will stay massless. We will refer

to such a phase, if it exists, as a Coulomb phase.
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As it turns out, the emergence of aW -boson mass term is consistent with the preservation

of eBRST symmetry in the limit of vanishing seed, provided that the ghost fields acquire

the same mass. Indeed, if we consider the (continuum) action

Sm = m2

∫
d4x tr (W 2

µ/2 + CC) , (3.10)

we find that it is eBRST invariant on-shell,

sSm = m2

∫
d4x tr (WµDµ(A)C − ibC) (3.11)

= −m2

∫
d4x tr

(
(Dµ(A)Wµ + ib)C

)
= 0 ,

where we have integrated by parts and, in the last step, used the auxiliary field’s equation

of motion.10

Finally, we recall that the couplings g and g̃ are both asymptotically free. If a Coulomb

phase indeed exists in the phase diagram of the full theory, the most interesting question is

whether this phase extends to the gaussian fixed point (g, g̃) = (0, 0), where the correlation

lengths associated with both the transverse and longitudinal sectors diverge in lattice units.

While we will not be able to answer this question in this article, we will return to a further

discussion of this possibility, as well as a discussion of the renormalization-group evolution,

in Sec. VI.

IV. EFFECTIVE THEORY AT LARGE g̃: INTEGRATING OUT THE GHOSTS

In the next two sections, we will use a combination of strong-coupling and mean-field

techniques in order to investigate the phase diagram of the reduced model. The reduced

model has only one coupling, g̃, and its phase diagram is thus one-dimensional. This phase

diagram corresponds to the g = 0 boundary of the two-dimensional phase diagram of the

full theory.

In this section, we will integrate over the ghost and anti-ghost fields in a 1/g̃2 expansion,

thus deriving an effective action for the gauge field Ux,µ, to leading order in this expansion.

In the next section, we will first restrict ourselves to the reduced model by setting Ux,µ =

10 In view of the eBRST invariance of Sm, the question arises whether this mass term could be induced in

perturbation theory. In App. E we prove that this is not the case.
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φxφ
†
x+µ̂, and look for phase transitions in the reduced model by applying mean-field methods

to this effective action. We will then investigate the implications of the mean-field results

for the full theory.

Integrating over the auxiliary field bx in Eq. (2.3b), we obtain the on-shell version of the

gauge-fixing action,

Son
gf =

1

g̃2
tr
∑

x,µ

(D−
µWx,µ)

2 + g̃2 tr
∑

x

{Cx, Cx}2 +
∑

xy,αβ

Cx,αΩx,α;y,βCy,β . (4.1)

The matrix Ω, defining the bilinear ghost action, has the following non-zero components:

Ωx,α;x,β =
1

2
δαβ tr

(
τ3Ux−µ̂,µτ3U

†
x−µ̂,µ + τ3Ux,µτ3U

†
x,µ

)
≡ 1

2
δαβΩ̂xx , (4.2)

Ωx,α;x+µ̂,β =
1

2

(
tr
(
Ux,µταU

†
x,µτβ

)
− δαβ

∑

γ

tr
(
Ux,µτγU

†
x,µτγ

)
)

,

Ωx+µ̂,α;x,β =
1

2

(
tr
(
ταUx,µτβU

†
x,µ

)
− δαβ

∑

γ

tr
(
Ux,µτγU

†
x,µτγ

)
)

,

with coset indices α, β, γ = 1, 2, and a sum over µ implied in the first line. It can be checked

that Ω is symmetric and real.

We may now integrate over the ghost fields in a strong-coupling expansion in g̃, using

that for large g̃ the dominant term in Eq. (4.1) is the single-site four-ghost term. We define

the normalization of single-site ghost integrals by requiring that

∫
[dCdC]CαCβCγCδ = ǫαγǫβδ , (4.3)

where ǫαβ is the two-dimensional epsilon tensor. It is then straightforward to calculate the

effective action for Ux,µ to order 1/g̃2, and we find

Seff =
1

g̃2

∑

x

(
tr
(
D−
µWx,µ

)2 − 1

4
Ω̂2
xx

)
+O

(
1

g̃4

)
. (4.4)

At this order, Seff only depends on the diagonal elements of Ω.

V. DYNAMICAL SYMMETRY BREAKING: MEAN-FIELD STUDY

Our next step is to transition to the reduced model by substituting

Ux,µ = φxe
igVx,µφ†

x+µ̂ (5.1)
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into Eq. (4.4), keeping the transverse gauge field Vx,µ external. This turns Seff into a scalar

theory, to which we will apply a mean-field analysis. First, in Sec. VA, we set Vx,µ = 0

and study the phase diagram of the reduced model as a function of β̃ = 1/g̃2. Starting

from β̃ = 0, as we increase β̃ the mean-field analysis predicts a first-order transition into

a phase where SU(2)R is spontaneously broken to U(1)R. Then, in Sec. VB, in order to

probe the consequences of the spontaneous symmetry breaking in the reduced model for the

transverse gauge fields, we expand the full theory around the mean-field solution to order

g2. We find that in the broken phase the W fields pick up a mass, in accordance with our

general remarks in Sec. III. Some further remarks on the mean-field analysis that put it into

a broader context are collected in Sec. VC.

A. The reduced model

The reduced model is invariant under a local U(1) symmetry and a global SU(2) sym-

metry,

φx → hxφxg
† , (5.2)

with hx ∈ U(1)L and g ∈ SU(2)R, cf. Eq. (2.20). We repeat the definition of the order

parameter introduced in Sec. III,

Ã(φ) = φ†τ3φ . (5.3)

This operator is invariant under the local U(1)L. A non-zero expectation value for this

composite field signals the symmetry breaking of SU(2)R down to U(1)R. Indeed, we may

define a three-dimensional vector Ãi(φ) through

Ã(φ) = Ãi(φ)τi ⇒ Ãi(φ) =
1

2
tr (Ã(φ)τi) . (5.4)

This unit vector transforms in the adjoint representation of SU(2)R. If it acquires a non-

zero expectation value this breaks SU(2)R, while leaving unbroken the U(1)R subgroup

corresponding to rotations around this vector.

At order β̃, the effective action of the reduced model is obtained by substituting Eq. (5.1)

with Vx,µ = 0 into Eq. (4.4). As it turns out, this effective action can be expressed solely in

terms of Ã(φ).11 We may thus rewrite the partition function of the effective theory for the

11 For some details on the determination of Seff(Ã) from Seff(φ), see App. D.
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reduced model as

Z =

∫ ∏

x

dHφx e
−Seff (φ) (5.5)

=

∫ ∏

x

dHφx e
−Seff (φ)

∏

x

∫
dai,x

∫ i∞

−i∞

dhi,x e
− 1

2

∑
x
tr (Hx(Ax−Ã(φx)))

=
∏

x

∫
dai,x

∫
dhi,x e

−
∑

x( 1

2
tr (HxAx)+Seff (Ax)−u(Hx)) ,

where dHφ is the Haar measure on SU(2),

H = hiτi , A = aiτi , (5.6)

are new fields with unconstrained real components hi and ai, and

eu(H) =

∫
dHφ e

1

2
tr (Hφ†τ3φ) . (5.7)

The latter integral can be calculated by making use of the invariance under SU(2)R. We

find

eu(H) =
sinh h

h
. (5.8)

where h = |~h| is the length of the vector. For some steps of the calculation of this integral,

we refer to App. C.

So far, our manipulations were exact. The mean-field solution is obtained by calculating

the partition function in the saddle-point approximation [10]. To this end we minimize the

free energy

f(H,A) = hiai + seff(A)− u(H) . (5.9)

We assume that the mean-field solution is translationally invariant, so that A and H are

x-independent. This leads to the mean-field equations

ai =
∂u

∂hi
=
∂u

∂h

hi
h
, (5.10a)

hi = − ∂seff
∂ai

, (5.10b)

with

seff =
1

V
Seff = −β̃

(
d

4
(1− 2d) trA2 + d2

(
trA2

)2
+
d2

2
trA4

)
, (5.11)

where we wrote the mean-field action in d rather than four dimensions. Equation (5.10a)

implies that the orientation of the vector ~a will follow that of ~h. We may thus choose

h1 = h2 = a1 = a2 = 0 and write h3 = h and a3 = a.
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FIG. 1: The free energy (5.9) as a function of h, with d = 4 and β̃ = 0.04850.

Solving for a in terms of h, and substituting into Eq. (5.9), we may plot the free energy

as a function of h. The free energy always has a zero at h = 0. For small h, the d = 4 free

energy may be expanded as

f(h) =

(
1

6
+

14

9
β̃

)
h2 +O(h4) . (5.12)

showing that the curvature at the origin is always positive. This rules out a continuous

phase transition.

For very small β̃, the free energy is positive for h > 0, and its absolute minimum is at

h = 0. When β̃ increases, a new local minimum, h1(β̃), develops. This minimum becomes

degenerate with the global minimum at h = 0 for β̃ = β̃c = 0.04850. The free energy for

β̃ = β̃c is shown in Fig. 1. The non-trivial minimum is at h = h1(β̃c) = 10.084, and the order

parameter at this minimum is a(h1(β̃c)) = 0.90083. For β̃ > β̃c the minimum h1(β̃) becomes

negative, and thus the absolute minimum of the free energy. This implies that there is a

first-order phase transition at β̃ = β̃c, with 〈Ã〉 = 0 for β̃ < β̃c, and 〈Ã〉 6= 0 for β̃ > β̃c,

with SU(2)R broken down to U(1)R in the latter case.

Our mean-field approximation depends, in particular, on the choice of the mean field.

In order to test the robustness of our conclusions we performed a similar analysis, but now

starting from a mean field for φ itself, rather than for φ†τ3φ. The details are summarized
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in App. D. Once again we find a first-order transition to a phase with the same pattern of

spontaneous symmetry breaking, except with a different estimate for the value of β̃c.

B. The W mass

In Sec. III we argued that, much like in the adjoint-Higgs theory [7, 8], the spontaneous

symmetry breaking pattern SU(2)R → U(1)R in the reduced model will cause the W fields

to acquire a mass in the full theory. Using the results from the previous subsection, we can

now check this within the mean-field approximation. To this end, we restore the external

gauge field eigVx,µ of Eq. (5.1), and expand the action to order g2. The φ dependence is

still through the composite operator Ã(φ) of Eq. (5.3), and upon substituting its mean-field

value we obtain the quadratic part of the effective action for the gauge fields in the broken

phase.

We find that the terms linear in Vx,µ vanish, and those quadratic in Vx,µ are given by

1

ξ
a2
∑

x

(
2d(5a2 − 1) tr (W 2

x,µ) +
1

2
(a2 + 1) tr

(
(∂−µWx,µ)

2
))

, (5.13)

where ∂−µ is the backward derivative. In this subsection, a = a(hmin) is the mean-field

value of the order parameter at the global minimum hmin of the free energy. Indeed, a mass

term for the W fields is generated inside the broken phase, where a 6= 0. The U(1)R gauge

invariance implies that, if higher orders in g would be included, the derivative ∂−µ would

change into the derivative D−
µ covariant with respect to U(1)R. Likewise, we observe that

no mass term for the U(1)R gauge field Aµ is generated.12

The field Ã(φ) fluctuates around its mean-field value, and to go beyond mean-field, this

would have to be taken into account. Some of the fluctuations in Ã(φ) correspond to the

Goldstone bosons resulting from the symmetry breaking. Other fluctuations, usually re-

ferred to as radial ones, may be generated dynamically. In general, it is difficult to system-

atically investigate all possible fluctuations, because the mean-field approximation does not

correspond to the leading order in a systematic expansion in these fluctuations. However,

fluctuations of the field Ã(φ) that follow from performing an SU(2)R gauge transformation

12 The role of U(1)L symmetry is only to turn the field φ into an SU(2)/U(1) coset-valued field, as discussed

in Sec. II B.
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on φ can be removed by returning to the vector picture, as explained in Sec. II B. In physical

terms, this is how the Goldstone bosons are being “eaten” by the massive gauge fields.

Combining Eq. (5.13) with the transverse kinetic term for the W fields, one finds the W

propagator in momentum space

〈Wµ,α(p)Wν,β(q)〉 = δ(p+ q)δαβ

[(
δµν −

pµpν
p2

)
1

p2 +m2
W

+
pµpν
p2

η

p2 + ηm2
W

]
, (5.14)

with

η =
2ξ

a2(a2 + 1)
, (5.15)

and where the W mass is given by

m2
W = 2d(5a2 − 1)a2/ξ . (5.16)

The question arises whether or not this is positive in the broken phase. At the first-order

phase transition, the order parameter a = a(hmin) jumps discontinuously from zero to a

different value, as does the global minimum hmin itself. The new value, which is a = 0.90083

at the transition, increases to one for increasing β̃. Thus, m2
W is positive everywhere in the

broken phase.13

The W mass vanishes in the symmetric phase where a = 0. In fact, all of Eq. (5.13)

vanishes in that phase. In other words, within our mean-field approximation, an effective

potential for the gauge field is generated only in the broken phase, in accordance with the

physical picture advocated in Sec. III.

C. Discussion of the mean-field solution

The main weakness of our analysis is that a mean-field approach does not provide a

controlled approximation. Nevertheless, we believe that the mean-field calculation is a

useful exercise, since it gives a concrete description of how symmetry breaking might take

place in the equivariantly gauge-fixed theory. This provides guidance for future numerical

simulations that are the only way to convincingly determine the phase diagram.

Notwithstanding the basic limitations of the mean-field solution, we believe that it passes

a number of consistency checks, which are discussed in the rest of this subsection.

13 The same holds in the mean-field approximation considered in App. D.
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As a preparatory step to the mean-field analysis, we have computed the effective ac-

tion (4.4) to leading non-trivial order in β̃. The question arises whether neglecting higher

orders is justified. Put differently, the question is when different orders in the β̃-expansion

might start competing with each other.

In order to address this question, we have calculated the CC bound-state propagator

within the strong-coupling expansion in the reduced model by employing the techniques

developed in Ref. [11]. To lowest order in β̃ we find for the bound-state propagator

D(p) =
2

1 + 4β̃
3

(∑
µ cos pµ + 2

) . (5.17)

The smallest β̃ for which the denominator vanishes is found by setting all the momentum

components to pµ = π. This happens at β̃ = 3/8. We take this value as a rough estimate of

the place where successive orders in the β̃-expansion become comparable. Since the point

β̃ = 3/8 lies deep inside the broken phase we found in mean field,14 this supports the

(self-)consistency of applying a mean-field approximation to Eq. (4.4).

For technical convenience, we have studied in this section the free energy f = f(h, a(h))

as a function of h. Since the saddle-point condition (5.10a) defines a one-to-one mapping

between h and a, we may regard the free energy instead as a function of a, f = f(h(a), a).

This function is interpreted as the mean-field value of the effective potential for the order

parameter a. Thus, even though the reduced model is a topological field theory, we find

that the effective potential has non-trivial minima. Given our findings for the toy model of

Sec. IIIA, this should not come as a surprise. While the mean-field estimate of the effective

potential may or may not be correct, the topological nature of the reduced model does not

prevent the effective potential from depending non-trivially on β̃.

We have assumed that eBRST symmetry is restored in the thermodynamic limit of the

equivariantly gauge-fixed theory, in both the symmetric and the broken phases of the reduced

model, as well as everywhere in the phase diagram of the full theory. Unlike in the toy model,

confirming this result is much more difficult in the field theory case, and goes beyond the

scope of the present paper. However, it is important to note that the assumption about

eBRST symmetry restoration is not in conflict with anything we know about the broken

14 Both mean-field estimates of the critical value β̃c, that of Sec. VA and that of App. D, are much smaller

than 3/8.
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phase of the reduced model. We have already noted in Sec. III B, that, first, 〈Ã〉 is not an
order parameter for eBRST symmetry breaking, and second, that a W mass is compatible

with unbroken eBRST, provided that the ghosts acquire a mass equal to the W mass.

In the toy model, we have used BRST invariance of the saddle-point expansion to prove

an invariance theorem for Z±v, from which it follows that Z±v = 1 to all orders. This can

be interpreted as the statement that the effective potential for φ vanishes at the non-trivial

minima φ = ±v of the toy model.

Turning to the reduced model, since we are assuming that eBRST symmetry is not broken

spontaneously, the question arises whether the global minimum of the effective potential for

the order parameter a should always vanish too. The answer provided by our mean-field

solution is negative. As explained above, the effective potential is identified with f(h(a), a),

whose global minimum becomes negative in the broken phase. In order to make sure that

there is no conflict here, it is useful to think in terms of an effective low-energy lagrangian for

the broken phase. Much like the chiral lagrangian of QCD, the effective lagrangian Leff will

be a non-linear model realizing the symmetry breaking pattern SU(2) → U(1). In addition,

it should have some type of eBRST symmetry ŝ which is inherited from the underlying

theory, the reduced model. Now, in order for the effective theory to satisfy an invariance

theorem, Leff would have to be cohomologically exact, namely, it should have the form of ŝX

for some X . In reality, there is no reason why this should be true. Indeed the reduced-model

version of the mass term (3.10) provides an example of a term which is eBRST invariant,

(or, eBRST-closed), and yet it is not eBRST-exact.

VI. DISCUSSION OF THE PHASE DIAGRAM

In this section we will discuss what the two-dimensional phase diagram in the plane

spanned by g and g̃ may look like. We rely on what we have learned from the strong-

coupling plus mean-field analysis of the previous sections, augmented by further general

considerations. It should be kept in mind that there is no guarantee that the mean-field

results are correct, but in this section we will assume that they are.

In the reduced model, i.e., on the g = 0 boundary, our main result is that a first-order

phase transition occurs going from a symmetric phase at small β̃ to a phase in which the

global SU(2)R symmetry breaks spontaneously to U(1)R. We are assuming that eBRST
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symmetry is not broken spontaneously in that phase (nor anywhere else in the phase dia-

gram). Some considerations supporting this assumption were presented in Sec. III B and

Sec. VC.

Since the effective action to which we applied mean-field techniques was derived in a

strong-coupling expansion, our analysis has nothing to say on what happens near g̃ = 0

(i.e., β̃ = ∞). In particular, we do not know whether or not the broken phase extends all

the way to g̃ = 0. We will return to this point below.

An important consequence of Eq. (5.13) is that the first-order phase transition we found

on the g = 0 boundary extends into the two-dimensional phase diagram.15 The symmetric

phase of the reduced model at small g̃ is the boundary of the familiar confining phase of the

full theory. When, for g > 0, the phase-transition line is crossed towards larger β̃ the W

fields become massive, whereas the A field (the “photon”) stays massless. At large distances

the W fields decouple, leaving us with an effective abelian theory, which is why we have

referred to this phase as a Coulomb phase. We conclude that the two phases we found in

the reduced model can be unambiguously differentiated in the full phase diagram as well.

Either the theory is confining with a non-vanishing mass gap; or there exists a massless

photon.

In order to map out possibilities for the full phase diagram, let us consider the other

boundaries, starting with the boundary at g̃ = 0. Near this boundary it is convenient

to rescale W → gW in Eq. (2.3). The longitudinal kinetic term then has a prefactor

1/ξ = g2/g̃2, which still goes to infinity when g̃ → 0 at fixed non-zero g. The four-ghost

coupling in Eq. (2.3b) goes to zero, while the remaining terms, which are bilinear in the

ghost fields, provide the Faddeev–Popov determinant appropriate for a maximal abelian

gauge (see for example Ref. [12]). Near the g̃ = 0 boundary the theory is thus an SU(2)

Yang–Mills theory in a maximal abelian gauge. We thus expect gauge-invariant observables

near the g̃ = 0 boundary to be the same as in the SU(2) Yang–Mills theory without gauge

fixing. In particular, the theory should be confining, and possess a mass gap equal to the

lowest glueball mass.

Near the β̃ = 1/g̃2 = 0 boundary the gauge-fixing sector decouples. In order to see this,

15 As explained in Sec. III, for g > 0 we take the thermodynamic limit with an eBRST-breaking seed so as

to avoid the invariance theorem.
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consider the on-shell version of Sgf , Eq. (4.1), obtained by integrating over the auxiliary field

b. Rescaling the ghost and anti-ghost fields as C → C/
√
g̃, C → C/

√
g̃, and taking g̃ → ∞,

only the four-ghost term survives. The gauge-fixing sector decouples, and the theory is again

in the confining phase.

Finally, we consider the fourth boundary of the phase diagram, the one at β = 0. Working

to leading order in both β̃ and β, the effective action for φ is obtained by integrating over

the link variables Ux,µ in Eq. (4.4). For small β the link variables are randomly distributed,

and the integrals reduce to simple group integrals. Carrying out these integrals we find

that Seff reduces to a constant. This suggests that there is no phase transition near the

β = 0 boundary, and that the theory is again in the confining phase everywhere near this

boundary.

This conclusion is supported by the fact that the compact U(1) lattice theory has a phase

transition from a Coulomb phase at weak coupling to a confining phase at strong coupling.

Below the symmetry-breaking scale originating from the longitudinal dynamics we have an

effective U(1) theory, and thus we should expect a similar phase transition going towards

strong (transversal) coupling. Once again, the conclusion is that the Coulomb phase of the

full theory does not extend to the β = 0 boundary.

Putting together the information about all four boundaries, we draw two possible phase

diagrams in Fig. 2. What is common to both panels is the existence of a single confining

phase embracing the Coulomb phase.

The most interesting question concerns the precise structure of the phase diagram near

the gaussian critical point at (g, g̃) = (0, 0). Assuming that the Coulomb phase, predicted

by our mean-field approximation, does indeed exist, the two panels of Fig. 2 show the two

possibilities.

The panel on the left shows a scenario in which the broken phase ends at some non-zero

g̃ for g → 0. If this is the case, the Coulomb phase is a lattice artifact. A more detailed

knowledge of its location and properties is then only important in order to guide numerical

simulations of the theory.

The panel on the right shows a more intriguing scenario, where both the confining and

the Coulomb phases extend to the asymptotically-free critical point. The nature of the

continuum limit then depends on how it is taken: from inside the confining phase, or from

inside the Coulomb phase. The first choice will recover the standard SU(2) Yang–Mills con-
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FIG. 2: Two scenarios for the phase diagram. The confining phase A has a mass gap, while the

Coulomb (or Higgs) phase B has a massless photon. Left panel: the Coulomb phase ends at some

non-zero g̃ for g → 0. Right panel: the Coulomb phase extends to the critical point at g = g̃ = 0.

tinuum theory, characterized by confinement and a mass gap. By contrast, if the continuum

limit is taken from inside the Coulomb phase, the continuum theory will have massive W

gauge bosons and a massless photon, resembling the broken phase of the SU(2) theory with

a Higgs field in the adjoint representation [7]. A novel feature of this scenario is that the

Higgs-like behavior would emerge in a theory in which all couplings are asymptotically free,

and there is no triviality problem.

This speculative scenario raises two main questions. While answering them is outside the

scope of this article, we offer our current perspective.

The first question is whether there is any evidence supporting this scenario. In fact, we

believe there is. In Ref. [5] we derived the one-loop beta function for g̃, finding that it is

asymptotically free just like the gauge coupling g. Of course, the familiar beta function for

g does not depend on g̃, whereas the beta function for g̃ does depend on both g and g̃.

Integrating the renormalization-group equations simultaneously one encounters dimensional

transmutation for both couplings. We will denote the dynamically generated scales by Λ and

Λ̃, respectively. We choose to define them as the scale where the relevant coupling becomes

equal to one, according to the one-loop running. In physical terms, Λ and Λ̃ are estimates of

the energy scales where the couplings g and g̃ become strong. We remark that the gaussian

29



critical point at (g, g̃) = (0, 0) is the unique place in the phase diagram where both of the

dynamically generated scales, Λ and Λ̃, tend to zero in lattice units.

The g-dependence of the beta function for g̃ turns out to have a non-trivial consequence:

When g becomes strong, g̃ has to become strong, too [5]. In other words, we can have

Λ̃ ≫ Λ or Λ̃ ∼ Λ, but not Λ̃ ≪ Λ. The exclusion of the latter option leaves us with just two

possibilities. It is thus natural to identify Λ̃ ∼ Λ with the confining phase, and Λ̃ ≫ Λ with

the Coulomb phase.

An obvious caveat is that the notion of the Λ parameters is rather elusive, both due to

the freedom in selecting a criterion to define them, and since we solve the renormalization-

group equations in the one-loop approximation. With this cautionary remark we proceed to

discuss the tentative connection to the phase diagram.

When Λ̃ ∼ Λ, we would not expect the longitudinal dynamics governed by g̃ to qualita-

tively alter the dynamics of the transverse degrees of freedom governed by the coupling g.

Therefore, if we approach the continuum limit along a trajectory where the bare g̃ is small

enough relative to the bare g such that indeed Λ̃ ∼ Λ, we expect to be in the confining

phase. This is consistent with our discussion of the phase diagram near the boundary g̃ = 0.

Indeed when initially the bare g̃ is very small, its running is primarily driven by that of g,

leading to Λ̃ ∼ Λ [5].

The Coulomb phase would then correspond to choices of bare couplings such that Λ̃ ≫ Λ.

This hierarchy of scales is natural for the broken-symmetry phase: Already at energies large

compared to Λ, where g is still small, the longitudinal sector becomes strongly interacting

and, presumably, drives the spontaneous symmetry breaking we have found in mean field.

An important observation is that, while the longitudinal dynamics that drives the sym-

metry breaking must be studied by non-perturbative methods, the smallness of g allows

for a perturbative treatment of the transverse sector. In particular, the running of g is

still governed by the one-loop beta function. However, since the W fields have acquired a

non-zero mass, a mass-independent scheme would be clearly inappropriate. A physically

sensible definition of a running coupling would take the decoupling of the massive W ’s into

account. For instance, above the W mass one can take the running to be defined in a mass-

independent scheme in the full SU(2) gauge theory, while below the W mass it makes more

sense to define the running of the coupling in the surviving effective abelian theory, with

matching of the two couplings at the W mass.
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The second question is whether there is any reason to expect that the new continuum

limit taken inside the Coulomb phase would respect the rules of quantum mechanics and

relativity including, in particular, unitarity; or whether it would just be a curiosity of a

statistical system.

At this stage, we can say even less about this second question. We note that at short

distance or high energy unitarity can be investigated perturbatively, because our theory is

asymptotically free in both couplings. For a detailed discussion we refer to Ref. [1], where

we argued that the theory is indeed unitary in perturbation theory. However, this does not

probe physics in the infrared, which is where the properties of the two phases are different.

Non-perturbatively, we expect the theory to be unitary in the confining phase, simply

because the physics coincides with that of unfixed SU(2) Yang–Mills theory, which is unitary.

It is much harder to address the same question in the Coulomb phase. Within our mean-

field approximation, it is encouraging that both terms in Eq. (5.13) are positive everywhere

in this phase, leading to a standard massive W propagator, cf. Eq. (5.14). According

to Refs. [13, 14] this could therefore lead to a unitary effective low-energy theory if it is

accompanied by a dynamically-generated Higgs field. What is also likely to be relevant to

this question is our expectation that eBRST symmetry remains unbroken in the Coulomb

phase. This raises the possibility that just as in a “standard” Higgs model, also in the

Coulomb phase eBRST symmetry provides the tool to define a projection onto a physical

subspace with a unitary S-matrix.

We will postpone further investigations of these questions to the future. Clearly, first the

existence of the Coulomb phase will have to be established more firmly than is possible with

the techniques we employed in this article.

VII. CONCLUSION AND OUTLOOK

In this article, we started an investigation of the phase diagram of equivariantly gauge-

fixed SU(2) Yang–Mills theory. While originally we considered such theories in the context

of a lattice construction of chiral gauge theories, we believe that they are interesting in their

own right, even without the addition of any fermion fields. On the one hand, equivariantly

gauge-fixed Yang–Mills theories are well-defined non-perturbatively. On the other hand, the

transverse and longitudinal gauge couplings, g and g̃, are both asymptotically free, so that

31



at least one of them is expected to become strong towards the infra-red. With standard

BRST symmetry, these two couplings are also asymptotically free in common gauges such

as Lorenz gauge or maximal abelian gauge.16 The key difference is that Yang–Mills theory

with standard BRST gauge-fixing action is not defined outside of perturbation theory [2].

Since the goal is to understand this new class of gauge-fixed Yang–Mills theories non-

perturbatively, whether one is ultimately interested in the application to chiral gauge theories

or not, the first order of business is to explore the phase diagram. Naively, one does not

expect the gauge-fixing sector to alter the physics of the unitary sector of the theory, and

therefore one might expect the whole phase diagram to consist of a single phase—the usual

confining phase. This expectation is amplified by the eBRST-based invariance theorem that

was proven in Ref. [1], extended here in App. A, and reviewed in Sec. III.

However, as we also discussed in Sec. III, there is a loophole. A richer phase diagram,

with potentially physical consequences, could be uncovered by following a procedure familiar

in the study of spontaneous symmetry breaking: in order to evade the invariance theorem,

a small breaking of eBRST symmetry is introduced into the finite-volume system, and is

turned off after the thermodynamic limit has been taken.

Our central result concerns the phase diagram of the reduced model. The latter cor-

responds to the g = 0 boundary of the phase diagram, and inherits from the gauge-fixed

Yang–Mills theory a global symmetry, SU(2)R. We find that the reduced model has a phase

in which SU(2)R is broken down to an abelian symmetry. We discussed circumstantial

evidence in support of the assumption that eBRST symmetry is restored in the limit of

vanishing seed.

Furthermore, as we move into the g > 0 phase diagram, it is very natural for the broken

phase of the reduced model to become the boundary of a novel phase of the equivariantly

gauge-fixed theory: Two gauge bosons, the W ’s, “eat” the Goldstone bosons arising from

the symmetry breaking, and become massive. The third gauge boson, the “photon,” stays

massless. Hence the long-distance physics is that of a Coulomb phase. We stress that the

transverse sector can be treated perturbatively in g, and so it is hard to avoid this conclusion

if indeed the reduced model has the SU(2)R → U(1)R broken phase.

16 The g̃ beta function for standard BRST gauge fixing in maximal abelian gauge [12] is the same as for

equivariant BRST [5].
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We have discussed the shortcoming of our analysis. The main one is that it involves a

mean-field study that does not provide a controlled approximation. Nevertheless, the toy

model of Sec. IIIA teaches us that a topological field theory, such as the reduced model,

can have a non-trivial effective potential, and thus, a non-trivial phase diagram. We regard

the mean-field calculation as a means to gain insight into what that phase diagram might

be. Ultimately, the only reliable method for mapping out the phase diagram is through

numerical lattice computations; the results presented in this paper provide guidance for

initiating a numerical investigation.

Because of the invariance theorem, we know that turning on an eBRST-breaking seed is

a necessary condition for the unveiling of the phase diagram. This is a novel feature. In

the adjoint-Higgs model, for example, no “seed” is needed in order to probe the Coulomb

phase [8]. It remains an open question precisely how the presence of the seed can alter

the long-distance dynamics of the equivariantly gauge-fixed theory. We observe that the

invariance theorem is, ultimately, a statement about cancellations among Gribov copies.

Standard arguments show that Gribov copies can contribute to the partition function with

both signs [2, 15]. Consequently, the measure of the eBRST gauge-fixed theory can be both

positive and negative. We conjecture that this fact is relevant for the dynamical role of the

eBRST-breaking seed as well. We hope that future numerical studies will shed light on this

question.

If the new Coulomb phase predicted by the mean-field analysis truly exists, the most

conservative view would be to expect it to be a lattice artifact, disconnected from the

continuum limit defined near the gaussian critical point (g, g̃) = (0, 0). But, based on our

earlier work on the one-loop renormalization-group flow near the critical point [5], we pointed

out in Sec. VI that another possibility exists: the critical point may lie on the boundary

separating the two phases. Which phase is actually realized in the continuum limit would

then depend on how this limit is taken in the (g, g̃) plane, as we have described in some

detail in Sec. VI.

While the possibility that the new phase is connected to the gaussian critical point is

quite speculative, it is also a very exciting scenario. If indeed this happens, and if moreover

it could be shown that the continuum limit taken inside the Coulomb phase is unitary, this

would provide us with a novel type of theory in which all couplings are asymptotically free,

and yet it exhibits the physics of SU(2) → U(1) gauge symmetry breaking at low energy.
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Clearly, much work remains to be done to establish the existence of a Coulomb phase,

and, then, to investigate its properties. The results presented in this article provide us with

a framework for setting up a numerical investigation which we hope to report on in future

work. In addition, we also plan to investigate whether semi-classical methods can provide

us with more insight by compactifying the theory on one or more spacetime directions and

reducing the size of the system in those directions. Such an approach could be helpful,

in particular, in order to find out whether the Coulomb phase, if it exists, extends to the

gaussian fixed point.

We conclude with a few more thoughts on the speculation of a possible continuum limit

with massive W ’s and a massless photon in the equivariantly gauge-fixed SU(2) Yang–Mills

theory.

First, since in general gauge fixing is not unique, if such a continuum limit does exist, it

appears to open a Pandora’s box of possibilities, making our scenario less attractive from

the point of view of universality.

In fact, our construction of equivariantly gauge-fixed theories is rather unique. Consider

a (continuum) Yang–Mills theory based on some gauge group G, gauge fixed on the coset

space G/H , with H a proper subgroup of G. Since the gauge-fixing action is an integral

part of the non-perturbative definition of the theory, we demand that it will be Lorentz

invariant. Furthermore, it has to provide a kinetic term for the longitudinal component of

the coset gauge fields, which in turn should be gauge invariant under the unfixed subgroup

H . Together, this implies that the (on-shell) gauge-fixing action should contain the term

tr (DµWµ)
2, with Dµ the covariant derivative with respect to the subgroup H . This uniquely

fixes the full gauge-fixing action for the class of theories considered in App. A, where G =

SU(N) and H is a maximal subgroup. In this case, the non-perturbative construction of

the equivariantly gauge-fixed Yang–Mills theory is thus unique, up to the usual freedom of

changing irrelevant couplings on the lattice.

Finally, we comment on the potential relevance for model building. At this point, we do

not know whether it is possible to extend the non-perturbative framework to include the

case G = SU(2)L×U(1)Y , H = U(1)em. What does fit into the framework of App. A is the

choice G = SU(5), H = SU(3)×SU(2)×U(1). This raises the interesting possibility that an

SU(5) Grand Unified Theory with symmetry breaking down to SU(3)color×SU(2)L×U(1)Y
might exist without the need to introduce a Higgs field.
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Appendix A: Class of equivariantly gauge-fixed Yang–Mills theories

In Ref. [1] we discussed non-abelian theories with gauge group G = SU(N), which are

equivariantly gauge fixed to a subgroup H , such that the gauge-fixed theory has both eBRST

and anti-eBRST symmetry. In the continuum, the gauge-fixing lagrangian is given by

Lgf = s̄s tr
(
W 2 + g̃2CC

)
, (A1)

where Wµ is the restriction of the SU(N) vector potential to the coset, and likewise the

ghost fields take values in the coset. On the lattice, the same definition can be used except

that one has to provide some transcription of the W 2 term. In Ref. [1] this was done for the

case that H is the Cartan subgroup.

Here we construct a lattice gauge-fixing action for all cases whereH is a maximal subgroup

of SU(N). A maximal subgroup is uniquely defined by introducing a diagonal matrix

T̃0 =
1

2
diag( 1, 1, · · · , 1︸ ︷︷ ︸

N −M times

, −1,−1, · · · ,−1︸ ︷︷ ︸
M times

) . (A2)

The maximal subgroup is the subgroup whose generators commute with T̃0.
17 It is SU(N −

M)×SU(M)×U(1) forM > 1, and SU(N −1)×U(1) forM = 1. The lattice gauge-fixing

action is

Sgf = s̄s
∑

x

tr (−2Ux,µT̃0U
†
x,µT̃0 + g̃2CxCx) . (A3)

17 For N > 2, T̃0 is a linear combination of the generators of the Cartan subgroup and of the identity matrix.

The part proportional to the identity matrix is introduced merely for convenience, to obtain the suggestive

form in Eq. (A2).
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The eBRST transformation rules retain the simple form (2.9), and the anti-eBRST rules

again follow via flip symmetry, as discussed in Sec. IIA. It can be checked that Eq. (A3)

reduces to Eq. (A1) in the classical continuum limit. The proof of the invariance theorem,

given in Ref. [1] for the case that H is the Cartan subgroup, generalizes easily to the case

at hand by noting that the Cartan subgroup is also a subgroup of any maximal subgroup of

SU(N).

Appendix B: Proof of Eq. (3.6a)

In order to calculate Z0 we rescale φ = λψ, finding

Z0 =
1

2π

∫ ∞

−∞

db

∫ ∞

−∞

dψ
(
−v2 + 3λ2ψ2

)
e−b

2+iv2bψ e−iλ
2bψ3

(B1)

=
1

2π

∫ ∞

−∞

db

∞∑

n=0

1

n!
e−b

2

(
bλ2

v6

)n(
−v2 − 3

λ2

v4
∂2

∂2b

)
∂3n

∂3nb

∫ ∞

−∞

dψ eiv
2bψ

=

∫ ∞

−∞

db

∞∑

n=0

1

n!
e−b

2

(
bλ2

v6

)n(
−v2 − 3

λ2

v4
∂2

∂2b

)
∂3n

∂3nb
δ(v2b) .

In the transition from the first to the second line we have traded ψ in the interaction term

exp(−iλ2bψ3), as well as in the “measure” term 3λ2ψ2, with a derivative with respect to b.

The integral over b in the last line is evaluated by integration by parts, using

∂m

∂mb

(
bn e−b

2

) ∣∣∣∣∣
b=0

= (−1)
m−n

2

m!(
m−n
2

)
!
, (B2)

which is true for even m− n ≥ 0 (otherwise the result is zero). We find

Z0 = −
∞∑

n=0

(3n)!

(n!)2

(
λ2

v6

)n
+

∞∑

n=0

(3(n+ 1))!

((n+ 1)!)2

(
λ2

v6

)n+1

= −1 , (B3)

where the first and second sums come from the terms with 3n and 3n+2 derivatives respec-

tively. The final result comes from the n = 0 term in the first sum. For all higher orders in λ

there is a cancellation between the terms in the first and second sum. This proves Eq. (3.6a)

to all orders in λ.
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Appendix C: Group integrals

In this Appendix, we collect a few technical details about the calculation of the integrals

in Eqs. (5.7) and (D2). First, consider Eq. (5.7). Parametrizing the SU(2) matrix

φ = x0 + ixiτi , x2 ≡ x20 + x21 + x22 + x23 = 1 , (C1)

Eq. (5.7) takes the form

1

π2

∫
d4x δ(x2 − 1) eh(x

2
0
+x2

3
−x2

1
−x2

2
) . (C2)

We introduce new variables

x0 =
√
u cosχ , x3 =

√
u sinχ , (C3)

x1 =
√
v cosψ , x2 =

√
v sinψ ,

which transforms the integral into

∫ 1

0

du

∫ 1

0

dv δ(u+ v − 1) eh(u−v) , (C4)

where the boundaries are a consequence of the delta function. This integral is easily calcu-

lated, and yields the result (5.8).

Next, we also need the integral in Eq. (D2). In order to calculate this integral, we first

simplify the form of the 2× 2 complex matrix H . Using that H†H ≥ 0, we can write

H†H = Λ2 , Λ = R



 λ1 0

0 λ2



R† , (C5)

with real λ1,2 ≥ 0, and R ∈ SU(2). Therefore, H can be written as

H = UR



 λ1 0

0 λ2



R† , (C6)

with U unitary. Since the Haar measure is both left- and right-invariant, we can drop R† on

the right and the SU(2) part of UR on the left, so that

H → eiω



 λ1 0

0 λ2



 ≡



 z1 0

0 z2



 (C7)
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and Eq. (D2) simplifies to

eu(H) =
1

π2

∫
d4x δ(x2 − 1) e(z+z

∗)x0+i(z−z∗)x3 , (C8)

with z = (z∗1 + z2)/2, and where we parametrized φ as in Eq. (C1). Using polar coordinates

in four dimensions, with x0 = r cos η and x3 = r cos η sinχ, and performing the integral over

all variables except η, the integral becomes

eu(H) =
1

iπy

∫ π

0

dη sin η e2x cos η sin(2iy sin η) (C9)

=
1

πx

∫ π

0

dη cos η e2x cos η cos(2iy sin η)

=
1

4πx

∂

∂x

∫ 2π

0

dη e2x cos η cosh(2y sin η) ,

where we wrote z = x+ iy. The second line follows from an integration by parts, and in the

last line we used that the integral over the interval [0, π] is equal to that over the interval

[π, 2π]. Finally, switching to planar polar coordinates for x and y and using periodicity of

the integral over η, we find that

eu(H) =
1

2h

∂

∂h
I0(2h)

∣∣∣∣h=√x2+y2
=

1

h
I1(2h) . (C10)

Tracing back, we may identify h with a combination of invariants of the matrix H . Writing

H =
∑

µ

(hµ + igµ)τµ , τµ = (1, iτi) , (C11)

with hµ and gµ real, the combination x2 + y2 in Eq. (C10) can be written as

x2 + y2 =
1

4

(
tr (H†H) + 2RedetH

)
=
∑

µ

h2µ ≡ h2 . (C12)

Appendix D: Alternative mean field analysis

Instead of the composite field of Eq. (5.3), we may introduce a mean field for the field φ.

Analogous to Eq. (5.5), we write

Z =

∫ ∏

x

dHφx e
−Seff (φ) (D1)

=

∫ ∏

x

dHφx e
−Seff (φ)

∏

x

∫
dVx

∫ i∞

−i∞

dHx e
−

∑
x
Re tr (H†

x(Vx−φx))

=
∏

x

∫
dVx

∫
dHx e

−
∑

x(Re tr (H†
xVx)+Seff (Vx)−u(Hx)) ,
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with

eu(H) =

∫
dHφ e

Re tr (H†φ) . (D2)

This integral is calculated in App. C, and the result is given in Eq. (C10). As in Sec. V, the

mean-field approximation is again obtained by taking the fields H and V constant,18 and

evaluating Eq. (D1) in the saddle-point approximation, which corresponds to minimizing

the free energy density

f(H, V ) = Re tr (H†V ) + seff(V )− u(H) . (D3)

The action term in f is obtained as follows. Upon making the replacement (5.1) in

Eq. (4.4), one encounters the combination φxφ
†
x at several places, for which we will always

substitute the unit matrix. In all the remaining occurrences we then make the replacement

φ→ V . We find that seff(V ) is given by Eq. (5.11), where now A = V †τ3V .

Using Eq. (C11) and, likewise, parametrizing

V =
∑

µ

(vµ + iwµ)τµ , (D4)

with vµ and wµ real, Eq. (D3) leads to the saddle-point equations

vµ =
1

2

∂u(h)

∂hµ
=

1

2

hµ
h

∂u(h)

∂h
, wµ =

1

2

∂u(h)

∂gµ
= 0 , (D5)

hµ = −1

2

∂seff(V )

∂vµ
, gµ = −1

2

∂seff(V )

∂wµ
,

where we used that u(H) is independent of gµ, cf. Eq. (C10). If we set wµ = 0 in Eq. (D3),

the free energy becomes independent of gµ, and we can thus set gµ = 0 as well.

The first equation of Eq. (D5) shows that the direction of vµ is the same as that of hµ.

Multiplying both sides of this equation by τµ, and writing hµτµ = hUh and vµτµ = vUv where

the Uh,v are unitary, it follows that Uh = Uv, and we end up with the simpler equations

v =
1

2

∂u(h)

∂h
=
I2(2h)

I1(2h)
, h = −1

2

∂seff(v)

∂v
. (D6)

We have used that seff is independent of Uv thanks of the SU(2)R invariance of the reduced

model. Note that for h→ ∞, v(h) → 1 from below, increasing monotonically from v = 0 at

h = 0, reflecting the fact that the original field φx is compact.

18 In this Appendix, V always denotes the constant mean field.
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FIG. 3: Free energy (D3) as a function of h, with d = 4 and β̃ = 0.09085.

We show the free energy f(h, v(h)) as a function of h in Fig. 3. Just as in Sec. VA, there

is a first-order transition at a critical value of the coupling β̃ = β̃c, which in this case turns

out to be β̃c = 0.09085. At the transition, v jumps from zero to 0.963, increasing to one

with increasing β̃. Again this leads to a positive value for m2
W everywhere in the broken

phase.

The method we followed in this Appendix violates Elitzur’s theorem [6] with respect to

the U(1)L gauge group, under which φx is not invariant. For a detailed discussion of the

recovery of gauge invariance in the presence of a non-zero expectation value for a gauge non-

invariant operator, we refer to Ref. [10]. In any event, this does not affect the combination

A = V †τ3V , which is invariant under U(1)L. Of course, one can also resort directly to the

mean-field treatment we presented in Sec. VA.

Appendix E: Perturbative equivalence to standard gauge fixing

In this Appendix we will prove that an equivariantly gauge-fixed Yang–Mills theory [1] is

equivalent to a Yang–Mills theory in a standard Lorenz gauge at the level of weak-coupling

perturbation theory. With “equivalent” we mean that all correlation functions of gauge-

invariant operators are the same between the two theories. Of course, since Yang–Mills
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theory in standard Lorenz gauge is not well defined outside perturbation theory [2], here

the equivalence is necessarily restricted to perturbation theory. This is sufficient for our

purpose, which is to prove that the mass term of Eq. (3.10) is not generated in perturbation

theory, despite the fact that it is invariant under (on-shell) eBRST symmetry when H is a

maximal subgroup of G = SU(N). This corollary is confirmed by an explicit calculation

showing that no ghost mass is generated at one loop [16].

Using the lattice as a regulator, we start from the action

S = Sgauge(U) + SG/H(U,C, C, b) , (E1)

in which Sgauge(U) is a lattice discretization of 1
2g2

∫
d4x tr (F 2

µν), and SG/H is a discretization

of the eBRST gauge-fixing action (A1).19 In the Higgs picture, the action takes the form

S = Sgauge(U) + SG/H(U
φ, C, C, b) , (E2)

where Uφ
x,µ = φxUx,µφ

†
x+µ (cf. Eq. (2.16)). We recall that in this picture, Ux,µ is invariant

under eBRST transformations, while φx transforms as given in Eq. (2.19). The local sym-

metry of the Higgs picture is HL × GR. The transformation rules are given by Eq. (2.20)

generalized to gx ∈ GR and hx ∈ HL, where we have added the the subscripts R,L to

indicate from which side the transformation acts on the φx field.

The Higgs picture has an extra copy GR of the original local gauge group G, which we will

gauge-fix to a standard Lorenz gauge by adding yet another gauge-fixing term. Perturbation

theory in the Higgs picture is thus developed from the action

S = Sgauge(U) + SG/H(U
φ, C, C, b) + SG(U, ζ, ζ, η) , (E3)

in which the coset-valued field is expanded as

φx = exp
(
i
√
ξg θx,αTα

)
. (E4)

The restriction of the index α to the coset generators eliminates the local HL invariance. In

Eq. (E3), ζ and ζ are new ghost and anti-ghost fields, and η a new auxiliary field, while

SG = sGKG(U, ζ, ζ, η) , (E5)

19 For G = SU(N) and H a maximal subgroup, a discretization that is valid non-perturbatively is given in

App. A. Here, however, we are only interested in perturbation theory, and so any discretization with the

correct classical continuum limit will do.
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where sG is a standard BRST transformation defined for the gauge group GR in terms of

the new ghost and auxiliary fields. Furthermore, we require that s annihilates ζ , ζ and η,

and that sG annihilates C, C and b. It follows that sSG = 0, because U is invariant under

s in the Higgs picture, cf. Eqs. (2.19) and (2.20). In addition, sGSG/H = 0, because SG/H

depends only on the combination Uφ.

In Eq. (E4) we have reintroduced the gauge-fixing parameter ξ. Our next step is to

examine the dependence of (un-normalized) expectation values on this parameter:

1

g2
d

dξ
〈O〉 =

〈
O ss̄

∑

x

tr
(
CC
)〉

(E6)

= −
〈
(sO) s̄

∑

x

tr
(
CC
)
〉

,

where in the last line we used that sSG = 0. It follows that 〈O〉 is ξ-independent provided
that sO = 0, which is true, in particular, when O is gauge invariant.

The final step is to observe that, since 〈O〉 does not depend on ξ, we may obtain this

expectation value order by order in perturbation theory by considering the ξ → ∞ limit. It

is easy to see from Eq. (A1) that, in this limit, the fields φ, C, C and b decouple from the

rest. The gauge field is controlled by the action

S = Sgauge(U) + SG(U, ζ, ζ, η) , (E7)

which is recognized as (lattice discretized) Yang–Mills theory in standard Lorenz gauge. The

partition function of the decoupled sector containing the fields φ, C, C and b collapses to a

non-zero constant.

We comment that, while the argument based on Eq. (E6) closely resembles a key step

of the proof of the invariance theorem [1], the discussion in this appendix is restricted to

perturbation theory only. Indeed this is why we may invoke the Lorenz gauge in the first

place, and there is no conflict with the inability to define this gauge non-perturbatively [2].

We conclude that expectation values of gauge-invariant operators are equal, order by

order in perturbation theory, in the eBRST gauge-fixed theory defined by Eq. (E1) and in

the Lorenz gauge-fixed theory defined by Eq. (E7). In the latter theory, it is well known that

no mass term is generated perturbatively. But, had a mass term for (some of) the gluons

been generated in the eBRST gauge-fixed theory (E1), evidently this would have altered
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gauge-invariant correlation functions.20 As a corollary, it follows that the mass term (3.10)

cannot be generated perturbatively in the theory defined by Eq. (E1) either.
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