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Abstract

We develop a new method for tagging jets produced by hadronically decaying top quarks. The

method is an application of shower deconstruction, a maximum information approach that was

previously applied to identifying jets produced by Higgs bosons that decay to bb̄. We tag an

observed jet as a top jet based on a cut on a calculated variable χ that is an approximation to the

ratio of the likelihood that a top jet would have the structure of the observed jet to the likelihood

that a non-top QCD jet would have this structure. We find that the shower deconstruction based

tagger can perform better in discriminating boosted top quark jets from QCD jets than other

publicly available tagging algorithms.
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I. INTRODUCTION

A generic problem of some importance at hadron colliders like the Large Hadron Collider

(LHC) is to find events generated by a signal process of interest among events generated by

less interesting background processes. For this purpose, one often looks for events with one

or more jets containing the decay products of a heavy particle that has been produced with

a transverse momentum that is substantially larger than its mass, so that the sought decay

products are part of a visible jet [1]. An important example is looking for jets that contain

the decay products of a hadronically decaying top quark. One wants to distinguish top jets

from the more numerous ordinary QCD jets that do not contain the decay products of a top

quark. Experience shows that the analysis of jet substructure is useful for this purpose [2].

Using jet substructure, one wants to be able to tag a jet with a label t such that a jet

with t = top is likely to be a top jet and a jet with t = other is not so likely to be a top

jet. Several such top tagging algorithms are available [3–11]. Somewhat more generally, one

would like to be able to assign a real variable χ to a jet such that a large value of χ indicates

a jet that is likely to be a top jet and a small value of χ indicates a jet that is unlikely to be

a top jet. Then a top/other tag can correspond to a cut on χ, but the cut can be adjusted

at will to increase or decrease the fraction of top jets that pass the cut while correspondingly

decreasing or increasing the fraction of background jets that pass the cut.

In Ref. [12], we described a method called shower deconstruction to distinguish signal

jets from background jets. We applied the method to jets containing the decay products of

a Higgs boson decay to b + b̄. In this simple example, we found that shower deconstruction

worked well enough to perform better than the Butterworth-Davison-Rubin-Salam (BDRS)

method [13] in accomplishing the same end. In this paper, we extend the shower decon-

struction method to finding top quark jets. This case includes richer physics: a) the top

quark can decay but until it decays it can emit gluons and b) one of the daughter particles,

the W boson, itself decays.

With this richer physics to work with, one might expect that shower deconstruction

would do well compared to presently existing methods. To find out, we compute results

for background fake rate versus signal acceptance obtained with shower deconstruction and

compare to the results of existing top taggers.

Our plan is as follows. In Sec. II, we very briefly describe the general ideas of shower

2



deconstruction, referring to Ref. [12] for a fuller explanation of the method. In Sec. III, we

describe in more detail the nature of a parton shower with decays and especially with decays

of strongly interacting particles and with more than one level of decays. We concentrate

on the physical principles and the main formulas and leave some details to an appendix A.

Then in sections IV, V and VI, we study the tagging performance of shower deconstruction,

varying the boost of the possible top jet and the cone size used to define it. In Sec. VII,

we explain how shower deconstruction could be used to measure a parameter of the signal

theory, namely the W mass. Finally, in Sec. VIII, we offer some conclusions.

II. SHOWER DECONSTRUCTION

We seek to distinguish a jet that contains the decay products of a hadronically decaying

top quark from a jet produced by ordinary QCD processes that do not involve a top quark.

The jet to be examined is presumed to have a large transverse momentum, several hundred

GeV. It is constructed with a standard jet algorithm, such as the Cambridge-Aachen algo-

rithm [14], using a large effective cone size so as to have a good chance of capturing the

decay products of a top quark within the jet. This is the “fat jet.”

We group the contents of the fat jet into narrow subjets, which we call microjets. In an

experimental implementation, the microjets would be constructed directly from information

on the energy deposits in the calorimeter and tracker, using as fine an angular resolution as

is practical.

The computational time needed to analyze an event increases quite quickly with the

number of microjets. However, we find that the lowest transverse momentum microjets

carry little useful information. Accordingly, we choose a number Nmax with default value

Nmax = 9 and discard the lowest transverse momentum microjets if there are more than

Nmax microjets, keeping the Nmax microjets that have the highest transverse momenta.

Additionally, we discard microjets with pmicro
T < pmicro

T,min, with default value pmicro
T,min = 5 GeV.

This process gives the fine grained information with which we describe the fat jet in

shower deconstruction: the four-momenta {p}N = {p1, p2, . . . , pN} of the microjets. From

these variables, we wish to construct a function χ({p}N) with the property that large χ

corresponds to a high likelihood that the jet is a top jet. In fact, we define χ as the
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likelihood ratio

χ({p}N) =
P ({p}N |S)

P ({p}N |B)
, (1)

where P ({p}N |S) is the probability density that a jet in a sample of top jets (“signal jets”)

would have the configuration {p}N and P ({p}N |B) is the probability density that a jet

in a sample of background jets would have the configuration {p}N . One might imagine

constructing P ({p}N |S) and P ({p}N |B) by generating events with a trusted parton shower

Monte Carlo event generator. However, that method is not practical. Instead, we calculate

P ({p}N |S) and P ({p}N |B) by calculating the probabilities that a simplified approximation

to a shower Monte Carlo event generator would generate {p}N according to the signal

hypothesis and the background hypothesis, respectively. Our simplified approximation to a

shower Monte Carlo event generator is based on the shower algorithms described in Refs. [15–

18] and in unpublished work in this ongoing series of papers [19]. For a brief review of the

structure of parton shower event generators, see Ref. [20].

How can one calculate these probabilities? Consider, for example, P ({p}N |S). We take

{p}N to be the momenta carried by partons at a fairly late stage of a parton shower. In

Fig. 1, we show a possible shower history by which an event generator might generate a

particular {p}N . A top quark is created in a hard interaction, indicated by the star in the

figure. In this shower history, the top quark emits a gluon. Then it decays into a W and a

b quark. The b quark emits a gluon. The W decays to two light quarks. Meanwhile, initial

state splittings, depicted by diamond vertices, create two gluons. After two QCD final state

splittings, the two gluons have become four. Our shower model is simplified. Really, there

are two incoming partons, “a” and “b,” that initiate the hard interaction. However, we

do not distinguish which incoming partons split to create new partons. Also, we take the

partons created by initial state splittings to be gluons.

We should emphasize that not all partons in the event are represented in the shower

history for the fat jet. One could depict a shower history for a whole event, but any parton

in the complete shower history that does not have at least one descendant in the fat jet is

left out of the shower history for the jet.

Now, given the shower history depicted in Fig. 1, we assign a splitting probability or a

decay probability to each vertex. The splitting probabilities are approximately the splitting

probabilities that are used in parton shower event generators. They take into account

information on color flow in the event history. The decay probabilities are approximately
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FIG. 1: Shower history for a top quark jet. The hard interaction is indicated by a star. Initial

state emissions are indicated by diamonds. Parton decays are indicated by large filled circles and

QCD splittings are indicated by small filled circles.

the decay probabilities that would be used in an event generator. Each propagator in the

shower history corresponds to a Sudakov factor that gives, approximately, the probability

not to have had a splitting between one vertex and the next or between the last vertex

and the end of the shower. Thus, for a given shower history corresponding to the signal

hypothesis, we calculate a probability density that that shower history would have produced

the observed state {p}N .

There are many shower histories that could lead to a given {p}N . We sum the corre-

sponding probabilities over all possible shower histories to calculate P ({p}N |S).

For the background hypothesis, we have different sorts of shower histories. One is shown

in Fig. 2. Again, we calculate the approximate probability density that the shower history

would have produced the observed state {p}N . Then we sum the corresponding probabilities

over all possible shower histories to calculate P ({p}N |B).

Of course, this brief description leaves out a lot of details. Most of them are presented in

Ref. [12]. Because they are of some importance to the structure of the model, we reiterate

in Sec. II A some specifics of the kinematics and the choice of shower time. Then, in Sec. III,

we address some issues that arise with particles that decay, particularly with particles that

carry color and decay.
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FIG. 2: Shower history for a QCD jet.

A. Kinematics and choice of shower time

Each parton in a shower history carries a label. We denote the momentum of parton i

by pi. The absolute value of its transverse momentum is ki; its rapidity is yi; its azimuthal

angle around the beam axis is φi; and its virtuality is µ2
i = p2

i −m2
i .

In this study, we take gluons, light quarks, and b quarks to have mass zero. This is not

right for b quarks, but it should be a reasonable approximation as long as the b quark has a

transverse momentum ki with ki � mb. In the signal process, we also have top quarks and

a W boson. These have a mass mt and mW respectively.

For shower deconstruction, the momentum pJ of a mother parton is related to the mo-

menta pA and pB of the daughter partons by pJ = pA + pB. This is different from what an

ordinary parton shower event generator does. In an ordinary parton shower event generator,

pA is the sum of the momenta of its daughter particles, but modified to put it on shell, so

p2
A = 0 for a massless parton. This modification is an approximation, imposed because the

generator does not “know” what p2
A is at the time that parton A is generated in J → A+B.

Thus the best that the generator can do is to put parton A on shell. Then when parton A

splits the event generator “finds out” what p2
A should be and takes the needed extra mo-

mentum from somewhere else in the event. For shower deconstruction, however, we do not

need to make this approximation and, in fact, the relation pJ = pA + pB is quite convenient.

In each splitting function, there is a factor 1/µ2
J where µ2

J is the jet virtuality, defined by

µ2
J = (pA + pB)2 −m2

J . (2)

Here mJ is the top quark mass in the case that J represents a top quark and otherwise
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mJ = 0. In calculating (pA + pB)2, we do not approximate pA and pB as being on shell.

Parton splittings in the shower are ordered from hard to soft. Consider the splitting of

parton J with momentum pJ and absolute value of transverse momentum kJ . A convenient

way to do this is to assign to each splitting a shower time t,

e−t =
µ2
J

|Q0|kJ
. (3)

We divide the virtuality µ2
J by the transverse momentum kJ of the mother parton and, in

order to make exp(−t) dimensionless, by a reference scale |Q0| on the order of the momentum

transfer in the hard scattering that initiates the fat jet. The shower splittings are ordered

in order of increasing t. This is the choice of ordering given in Eq. (49) of Ref. [12]. It has

the property of ordering splittings from hard to soft: t→∞ for any splitting that becomes

infinitely collinear or infinitely soft.1

In the case of a parton decay J → A+B rather than a splitting, we assign to the decay

the shower time

e−t =
|p2

J −m2
J |

|Q0|kJ
. (4)

The only difference here is that p2
J can be less than m2

J , so we use the absolute value of

p2
J −m2

J .

III. DECAYING PARTICLES

The shower histories for the signal process considered have three stages, the first arising

from the creation of the top quark, the others arising from the decays of the top quark

and then of the W boson created in the top quark decay. The description of these stages

is implicit in parton showers generally. Specifically, we follow unpublished work [19] in the

series [15–18].

In the first stage, a top quark is created in a hard process. We look for a high transverse

momentum jet that contains the top quark. If we are to have a top quark jet, the top quark

transverse momentum kt must be larger than the top mass mt. We may place cuts that

require kt � mt. Thus in a parton shower picture the top quark has a potentially large

1 There are a number of choices of ordering parameter that have this property. Our particular choice follows

that made in from Ref. [19].
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virtuality to start with and can radiate gluons. This gives what we can call shower I: the top

quark can radiate one or more gluons and create a full parton shower as the gluons split. In

this first shower, radiation from the initial state partons can also occur and create partons

with angles that place them as part of the fat jet.

For this first shower, we need splitting functions for quarks and gluons other than the

top quark, possibly with the top quark serving as color connected partner. Thus we allow

a large mass for the color connected partner. We also need a splitting function for the top

quark, this time with a massless color connected partner.

The first shower is suspended when the top quark decays. This happens at a varying

shower time corresponding roughly to |µ2
t | = |p2

t − m2
t | ∼ mtΓt. With our definition of

shower time, the first shower is suspended at shower time

|Q0|e−t1 =
|p2

t −m2
t |

kt
∼ mtΓt

kt
. (5)

Now a second shower, shower II, is created by the decay t → b + W. The b quark can

emit a gluon, initiating a shower. There is a minimum value for the starting shower time,

tII0 , for shower II. This is determined by the maximum of

|Q0|e−t
II
0 =

µ2
J

kJ
. (6)

Here J is the bottom quark just after the decay and µ2
J is the virtuality in the splitting of the

bottom quark. Let us look at this using +,−,⊥momentum components2 in a frame in which

the top quark before the decay has large + momentum, much larger than the top mass, and

zero transverse momentum. In this frame, the top quark momentum is approximately

pt =

(√
2kt,

m2
t

2
√

2kt
,0

)
. (7)

The momentum of the bottom quark is

pJ =

(√
2zkt,

µ2
J + κ2

2
√

2zkt
,κ

)
. (8)

Here kJ = zkt. The momentum of the W boson is

pW =

(√
2(1− z)kt,

m2
W + κ2

2
√

2(1− z)kt
,−κ

)
. (9)

2 We use v± = (v0 ± v3)/
√

2.
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Momentum conservation for the − component of momentum gives

m2
t

2
√

2kt
=
µ2
J + κ2

2
√

2zkt
+

m2
W + κ2

2
√

2(1− z)kt
. (10)

Thus
µ2
J

kJ
=
m2

t

kt
− m2

W

(1− z)kt
− κ2

z(1− z)kt
. (11)

This is maximized for κ = 0 and then for z = 0. This gives

µ2
J

kJ
<
m2

t −m2
W

kt
. (12)

Thus shower II starts at the starting splitting scale

|Q0|e−t
II
0 =

m2
t −m2

W

kt
. (13)

Of course, this calculation has assumed that the top quark and the W boson are on shell.

This is not exactly true in a real shower event, but it should be an adequate approximation.

In shower II, the bottom quark and its descendants can emit gluons, which can either be

collinear to the mother parton or soft. One can also have initial state radiation of gluons:

the top quark is the initial state parton whose decay starts shower II and it can radiate

gluons just before the decay. Now, in shower II, the virtuality of a splitting is never large

compared to m2
t . For that reason, there is never an approximate collinear singularity for

gluon emission collinear with the top quark. However, there is a singularity corresponding

to soft gluon emission. Recall that one can think of soft gluons as being emitted from color

dipoles. Thus, in shower II, a soft gluon can be emitted from a dipole consisting of the top

quark just before the decay and the bottom quark or one if its daughter partons. Normally,

one would partition the splitting function for gluon emission from such a dipole into two

terms, as we do for other dipoles. One term would correspond to gluon emission from the

top quark and the other would correspond to gluon emission from the bottom quark or its

daughter parton. However, it will be simpler for us not partition emissions from this dipole.

We simply treat the gluon emissions kinematically as coming from the bottom quark or its

descendants, with a splitting function that accounts for graphs in which the gluon is soft

and connects with the top quark in the eikonal approximation.

Shower II is suspended at a splitting time corresponding to the W boson decay. This

happens roughly when |p2
W−m2

W| ∼ mWΓW. With our definition of shower time, the second
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shower is suspended at shower time around

|Q0|e−t2 ∼
mWΓW

kW

. (14)

Now a third shower is created by the decay W → q + q̄. Either of the new quarks can

emit a gluon, initiating a shower. Shower III starts at the starting splitting scale

|Q0|e−t
III
0 =

[
µ2
J

kJ

]
max

=
m2

W

kW

. (15)

(The derivation of this follows the derivation above for the start of shower II.)

What happens to the “suspended” showers? Let us suppose that t1 > t2. Then the second

shower is suspended before it reaches shower time t1. Now we start the third shower. When

the third shower reaches shower time t2, the partons in the third shower are splitting on

a slow enough time scale that their splittings can interfere with splittings from the second

shower. Thus we continue both of these showers together. We now have the possibility

that partons in shower II can have partons in shower III as color connected partners and

vice versa. However, this doesn’t happen because the W boson carries no color, so that

the partons in shower III are in any case color connected only to each other. Now the

combined showers II and III continue until they reach shower time t1. Then the partons in

the combined showers II and III are splitting on a slow enough time scale that their splittings

can interfere with splittings from shower I. Thus we continue all three showers together. We

now have the possibility that any parton can be color connected to any other parton. The

complete shower evolves until the end of showering. The method for restarting suspended

showers is analogous if t2 > t1.

We see that a parton shower that properly accounts for interference effects within the

leading color approximation will reset color connected partners when one of the subshowers

reaches the shower time at which a parent shower was suspended. This procedure will affect

wide angle splittings at rather small virtualities. We expect that the effect of reseting color

connections will not be numerically very significant. Thus in shower deconstruction in this

paper, we omit the step of reseting color connections in this way.

If the original top quark has high enough transverse momentum, more top quarks can

be created within shower I: the top quark can emit a gluon and the gluon can split into

a t-̄t pair. This can happen more than once. Each t or t̄ thus created evolves until it is

nearly on shell. Then each decays to b+W+ or b̄+W−, creating a new independent bottom
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quark sub-shower. Each W also decays, creating a new independent subshower if it decays

hadronically. At later stages, all of the subshowers rejoin. In the situation that we consider

in this paper, the top quark transverse momentum is not large enough compared to 2mt for

these effects to be important, so we simply ignore the possibility of multiple t-̄t creation.

IV. RESULTS FOR MODERATELY BOOSTED TOP JET

A. Generating events

In order to test how well shower deconstruction works for finding top quark jets, we

generate signal tt̄ and background dijet samples using standard QCD processes in Pythia

8 [21] and Herwig++ [22]. We remove the invisible particles from the fully hadronized

final state and use the remaining particles with |y| < 5.0 as input for the Cambridge-Aachen

jet-finding algorithm [14] as implemented in Fastjet [23] with R = 1.0. To accept an event

we require at least two jets with pT,j > 500 GeV each. We then analyzed the two jets with

the highest pT,j.

We analyze each fat jet using shower deconstruction. Additionally, we independently tag

each of the jets as a top quark jet or not using four different taggers: the Johns Hopkins

tagger [5], the CMS tagger [7], the HEPTopTagger [8], the NSubjettiness tagger [10]. These

taggers take as input the individual hadrons that make up the fat jet. Shower deconstruc-

tion aims to take the finite resolution of the detector into account by operating on small

reconstructed jets instead of hadrons. We call the small jets microjets. To construct the

microjets, we use the kT -algorithm [24] with R = 0.2.

B. Parameters for top taggers

For shower deconstruction, we remove microjets from the analysis unless pmicro
T > 5.0

GeV. If more than nine microjets are left, we remove those with the lowest PT values until

nine microjets remain.

Each of the top taggers other than shower deconstruction constructs a top mass and

a W mass for each jet that meets the structural criteria of the tagger. Each tagger then

requires that these reconstructed masses be in specified windows. We specify that a top is
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FIG. 3: (1/N) dN/d logχ for signal events (upper curve) and (1/N) dN/d logχ for background

events (lower curve) for samples of signal and background events generated by Pythia. We use

the cuts described in Sec. IV A.

correctly reconstructed in a window3 of 172.3±25.0 GeV and a W in a window of 80.4±10.0

GeV, except for the NSubjettiness tagger where 160.0 ≤ mt ≤ 240 GeV and τ3/τ2 < 0.6 as

recommended in [10].

Top tagging based on shower deconstruction uses the full decay matrix element including

a Breit-Wigner factor to assign a weight for a given microjet configuration. Thus, the

total widths of the top quark and the W boson are input parameters. However, because the

physical widths are very small, we assume that the invariant mass of a set of microjets cannot

be resolved at the level of the physical widths. To take these experimental uncertainties into

account, we use values for the top width and the W width equal to half of the corresponding

total mass window, i.e. Γt → 25 GeV and ΓW → 10 GeV. We have checked that the

performance of shower deconstruction is not highly sensitive to this choice.

Other parameters for shower deconstruction are as in Ref. [12].

3 The measurement of the resonance’s mass is subject to experimental limitations. We choose the mass

windows large enough to reflect these limitations [5, 7, 8].
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C. Distributions versus χ

Using shower deconstruction, for each fat jet in the event, we calculate χ. About 32%

of signal jets have χ = 0 because the shower deconstruction algorithm cannot find a shower

history that matches the signal hypothesis within the cuts that are built into the algorithm.

This represents a failing suggesting that the algorithm is overly strict. However, 68% of

the signal jets remain. This number can be increased by increasing the top and W mass

windows. The distribution of the logχ values for logχ > −10 is shown in the upper curve

in figure 3. The bin with with χ = 0 is not displayed. The distribution is normalized to

the total number of generated signal jets, so that the integral under the curve including the

χ = 0 bin is 1 and the integral above logχ = −10 is about 0.68.

Similarly, for each generated background jet, we calculate χ. About 86% of these jets

have χ = 0 because the shower deconstruction algorithm cannot find a shower history that

matches the signal hypothesis within the cuts that are built into the algorithm. That is,

most of the background jets do not look at all like signal jets. About 14% of the background

jets remain. The distribution of the logχ values for logχ > −10 is shown in the lower curve

in Fig. 3. The distribution is normalized to the total number of generated background jets,

so that the integral under the curve including the χ = 0 bin is 1 and the integral above

logχ = −10 is about 0.12.

The idea of shower deconstruction is that the distribution in logχ for signal jets should

be very different from the distribution for background jets. We see in Fig. 3 that this is the

case. First of all, most of the background jets have logχ = −∞ and are not visible in the

graph. Second, few background jets have χ > e2. On the other hand, signal jets frequently

have χ ≈ e4.

D. Discriminating signal from background

The simplest way to make use of the differing χ distributions between signal jets and

background jets is to tag the fat jet as top or other according to whether χ is greater than

or less than some fixed value χcut. With such a cut, some fraction A of the signal jets will be

correctly labeled as top jets. One calls A the signal acceptance (or the tagging efficiency).

Correspondingly, some fraction F of the background jets will be incorrectly labeled as top
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FIG. 4: Background fake rate F as a function of signal acceptance A for shower deconstruction

with the signal and background event samples described in Sec. IV A. The curve for shower

deconstruction is compared to F vs A points for the Johns Hopkins top tagger (JH), the top

tagger of the CMS group (CMS), the Heidelberg-Eugene-Paris top tagger (HEP), and the use

of N-subjettiness as a top tagger (NSUB). We show the results on a linear scale (left) and on a

logarithmic scale (right).

jets. One calls F the background fake rate (or the misstag rate). We want A to be big

and F to be small. If we lower χcut, we make A bigger, but unfortunately F gets bigger at

the same time. We can make F smaller by raising χcut, but then A gets smaller. This is

illustrated in Fig. 4.

There are a number of available algorithms for tagging top jets. We compare shower

deconstruction with the publicly available taggers mentioned in Sec. IV A. We have used

each of these in turn to tag the jets in our signal and background event samples, using

the default parameters of the algorithm. For a specific choice of parameters the tagging

performance can be characterized by one point on the signal acceptance vs. background fake

rate plane. We have plotted the corresponding points in Fig. 4. Notice that we use fixed

windows in top mass and W mass and use the default parameters for each tagger. Then

each tagger appears as a point in Fig. 4. See Ref. [25] for graphs in which the mass windows

and input parameters are varied.

Using only fixed mt and mW windows and the default input parameters, there is no defi-
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nite answer to the question of which top tagger does the best job because each has a different

signal acceptance. One might favor the HEP tagger over the JH tagger because the HEP

tagger has a higher signal acceptance or might favor the JH tagger over the HEP tagger

because the JH tagger has a lower background fake rate. Nevertheless, for any given signal

acceptance A, a lower background fake rate F is best. The ratio of the background fake

rate FJH for the JH tagger to the background fake rate Fsd(AJH) from shower deconstruc-

tion at the same signal acceptance AJH as given by the JH tagger is about 3.6. Similarly,

FCMS/Fsd(ACMS) ≈ 2.7, FHEP/Fsd(AHEP) ≈ 2.6, and FNSUB/Fsd(ANSUB) ≈ 2.4. For this

reason, one may regard shower deconstruction as doing better than any of the previously

available top taggers. The right plot of Fig. 4 shows the results on a logarithmic scale. With

this plot, it is easier to see that one can gain a lot in making the background fake rate

smaller if one is willing to sacrifice signal acceptance. For instance, with a signal acceptance

of 0.1 one can reduce the background fake rate to about 5× 10−4.

E. Results with Herwig++

The results presented above were based on signal and background events generated

with Pythia. One may wonder whether these results are sensitive to which Monte Carlo

event generator is used to generate events. To answer this question, we repeated the

analysis using events generated with Herwig++. We find that with Herwig++ sig-

nal events, (1/N) dN/d logχ in the region χ > 0 is about 8% larger than with Pythia

events, while (1/N) dN/d logχ for background events generated with Herwig++ is close

to (1/N) dN/d logχ for background events generated with Pythia. This leads to very sim-

ilar results for the background fake rate as a function of signal acceptance. We display this

comparison in Fig. 5.

V. RESULTS FOR LOW-pT TOP JET

While the medium pT region of boosted top quarks, O(500) GeV, is a scenario most of

the taggers we compare to are designed for, reconstructing top quarks with only a small

boost, O(200) GeV, is more challenging. However, reconstructing top quarks in this low-pT

region is phenomenologically highly relevant for a large variety of standard model [8, 26]
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FIG. 5: Results using Herwig++ compared to those using Pythia from Fig. 4. The solid curve

is the F versus A curve from shower deconstruction using events generated with Pythia; the

dashed curve uses events generated with Herwig++. The solid circles show F versus A results

for the top taggers using events generated with Pythia; the open squares use events generated

with Herwig++.

and beyond the standard model [27–31] searches.

Due to the smaller boost of the top quark, the decay products are widely separated.

If the fat jet radius is not large enough to capture most of the decay products of the top

quark, the taggers will not be able to positively identify a top jet. Therefore, a large cone

size is necessary to reconstruct top quarks with small boost. However, this will allow a lot of

top-uncorrelated radiation to enter the fat jet, i.e. initial state radiation and contributions

from the underlying event.

Compared to the scenario studied in Sec. IV, we only change the fat jet algorithm and the

related event selection cuts. We reconstruct the fat jets using again the Cambridge/Aachen

algorithm but now with R=1.5. Events are accepted for further analysis if they provide at

least two jets with pT,j ≥ 200 GeV each.

We find that all taggers perform worse in this scenario compared to Sec. IV; see Fig. 6.

However, even in this challenging scenario shower deconstruction performs better than the

other taggers. Here the relative improvements are FJH/Fsd(AJH) ∼ 4.2, FCMS/Fsd(ACMS) ∼

4.6, FHEP/Fsd(AHEP) ∼ 2.6, FNSUB/Fsd(ANSUB) ∼ 11.9. The HEPTopTagger is the only
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FIG. 6: Background fake rate F as a function of signal acceptance A for shower deconstruction

with the signal and background event samples using a 200 GeV cut on jet PT and a fat jet cone

size of R=1.5, as described in Sec. V. The curve for shower deconstruction is compared to F vs

A points for the Johns Hopkins top tagger (JH), the top tagger of the CMS group (CMS), the

Heidelberg-Eugene-Paris top tagger (HEP), and the use of N-subjettiness as a top tagger (NSUB).

tagger explicitly designed to work for low pT top quarks. Consequently it shows the smallest

change in the performance ratio compared to the scenario with medium boosted top quarks.

Crucial for a good performance in this scenario is a built-in grooming procedure which the

CMS and JH tagger largely and the NSubjettiness tagger completely lack. Thus, particularly

for the NSubjettiness tagger, one can expect a performance improvement by changing the

top mass window.

VI. CONE SIZE DEPENDENCE

In this section, we study how sensitive shower deconstruction is with respect to the cone

size and the overall amount of uncorrelated soft radiation in the fat jet. We use an event

sample in which the fat jet is highly boosted: we require PT > 800 GeV. We then plot in

Fig. 7 the background fake rate versus signal acceptance for cone sizes R = 1.5, 1.25, and

1.00. We see that the cone size makes very little difference. The larger cone sizes include

more debris from initial state radiation, but the shower deconstruction algorithm seems not
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FIG. 7: Shower deconstruction results for highly boosted jets (PT > 800 GeV) showing the de-

pendence on the cone size of the fat jet. The solid curve is the F versus A curve from shower

deconstruction for fat jets defined with R = 1.50; the long dashed curve uses jets with R = 1.25;

the short dashed curve uses jets with R = 1.00.

to be confused by this debris.

VII. MEASURING PARAMETERS OF THE THEORY

In many applications of shower deconstruction, some parameters of the theory for the

sought signal events may not be known. In that case, one would like not only to show from

the data that the sought signal is present in nature but one would also like to measure the

unknown parameters. In the example used in this paper, suppose that we did not know the

mass MW of the W boson. Then we could find MW from the data. There is one true MW

in nature (80.4 GeV in our Monte Carlo event sample). However MW is also a parameter in

the model used in the shower deconstruction algorithm. If the model MW is not right, then

the shower deconstruction results should tell us.

In a complete analysis, one would construct from the data the ratio of the likelihood that

the observed data is generated by the signal plus the QCD background to the likelihood

that the data is generated by background only. Then this likelihood ratio should be small

if the model MW is far from the true MW and should peak at Mmodel
W = MW.
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FIG. 8: Signal acceptance divided by background fake rate for a cut χ > 384 as a function of the

W mass, Mmodel
W , used in the shower deconstruction algorithm. There is a peak at the true W

mass.

To explore this with a simpler calculation, we have, for the event sample described in

Sec. IV A, applied shower deconstruction for a range of model MW choices. Then we have

calculated the background fake rate and the signal acceptance with the cut χ > 384, which

corresponds to approximately a 20% signal acceptance when Mmodel
W = MW. The background

fake rate rises slowly as Mmodel
W increases. The signal acceptance has a peak at Mmodel

W = MW.

We calculated the ratio of signal acceptance to background fake rate as a function of Mmodel
W .

The results are shown in Fig. 8. We see that this ratio, as expected, exhibits a peak at

Mmodel
W = MW. We notice that the shape of the curve is not symmetric: a real signal

event can look like a Mmodel
W > MW signal event when extraneous gluons from initial state

radiation get counted as part of the W decay products.

VIII. CONCLUSION AND PROSPECTS

In this paper, we have developed an algorithm for tagging top jets based on the method

of shower deconstruction. For this purpose we had to considerably extend the shower de-

construction approach designed to reconstruct a Higgs boson as outlined in Ref. [12]. The

approach models parton evolution from the hard interaction scale at which a boosted top

quark is created down to the virtuality scale of the microjets that serve as the input to
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the calculation. For this, one needs the decay matrix elements for t → W + b and then

W→ q + q̄. Then one needs the splitting probabilities and Sudakov factors for QCD show-

ering for the massive top quark, a massless bottom quark, and light partons created in the W

boson decay. The splitting probabilities include appropriate factors for quantum interference

for radiation of soft gluons from color dipoles.

We find that shower deconstruction performs significantly better than any of the publicly

available taggers that we compared with for either a moderately boosted top quark with

P jet
T > 500 GeV or one that is only boosted to P jet

T > 200 GeV. Also, we found that the

performance of shower deconstruction is not very sensitive to the cone size used to define

the fat jet as long as the cone size is large enough to contain the top quark decay products.

Because shower deconstruction performs a hypothesis test for competing theories or pro-

cesses it can be used to measure their parameters. As an example we varied the W boson

mass in the reconstruction algorithm of the top. When the hypothesis matched nature, as

simulated by a full event generator, the reconstruction significance was maximized, thereby

allowing to measure the W boson’s mass.

Our subject in this paper has been limited to distinguishing top quark jets from back-

ground jets. One can also imagine assigning a variable χ to events containing multiple jets

according to the ratio of the likelihoods that the event was produced by a signal process of

interest or was produced by an ordinary background process. For instance, one could look

for events produced by the decay of a new, heavy, vector boson Z′ that decays to t+ t̄. Then

we need to distinguish such signal events from Standard Model events with two jets that

may, or may not, be top jets. Shower deconstruction of individual jets can, we believe, be

extended to cover event deconstruction of whole events. We leave this extension to future

work.
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Appendix A: Appendix

In this appendix, we fill in some of the details about the factors that go into shower

deconstruction for this analysis. Most of the ingredients are the same as in Ref. [12]. Thus

we present only new features that are needed to include the decays of top quarks and W

bosons and to include gluon radiation from the top quark.

1. Top quark decay probability

In a parton shower, the total probability for a splitting has the form He−S, where H is

the probability that the parton splits at shower time t and e−S is the probability that it has

not split at an earlier shower time. We can formulate parton decay in the same way. For

the decay, let us denote He−S = H̃. Then for a top quark decay, we take

H̃t = Ct
2πmtΓt

2 arctan(∆t/Γt)

Θ(|p2
t −m2

t | < mt∆t)

(p2
t −m2

t )2 +m2
t Γ2

t

, (A1)

where

Ct =
8πm2

t

m2
t −m2

W

. (A2)

The main feature of this is the standard Breit-Wigner denominator, (p2
t−m2

t )2+m2
t Γ2

t , where

Γt is the decay width.4 For shower deconstruction, we supply an extra factor, Θ(|p2
t −m2

t | <

Mt∆t), where ∆t is greater than Γt. We insert this factor as an approximation in order to

eliminate entirely shower histories for which H̃ would be small. There are two normalization

factors. One is fixed by∫
dp2

t

2π

2πmtΓt

2 arctan(∆t/Γt)

Θ(|p2
t −m2

t | < mt∆t)

(p2
t −m2

t )2 +m2
t Γ2

t

= 1 . (A3)

The second, Ct, is fixed by

Ct (2π)−3

∫
d~pb
2ωb

(2π)−3

∫
d~pW
2ωW

(2π)4δ(pb + pW − pt) = 1 (A4)

4 We choose the simulated width Γt larger than the physical top quark width in order to approximately

simulate an imperfect resolution in measuring jet momenta. See Sec. IV B.
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as long as p2
t = m2

t and p2
W = m2

W are good approximations. Together, these normalization

factors insure that the top quark decays with probability 1.

Now we need the Sudakov exponent St(t, t0), which is the integral of H̃/Ct from a starting

shower time t0 defined by the previous splitting to a shower time t related to |p2
t − m2

t |

according to Eq. (4). If we define

tmin = log

(
|Q0|kt
mt∆t

)
, (A5)

then St(t, t0) = St(t, tmin)−St(t0, tmin). Taking into account the jacobian to change integra-

tion variables from pt to t, we get

St(t, tmin) = log [arctan(∆t/Γt)]− log

[
arctan

(
|Q0|kt
mtΓt

e−max(t,tmin)

)]
. (A6)

Having found St, we immediately obtain the decay function without the Sudakov factor,

Ht = Ct
2πmtΓt

2 arctan(|p2
t −m2

t |/[mtΓt])

Θ(|p2
t −m2

t | < mt∆t)

(p2
t −m2

t )2 +m2
t Γ2

t

. (A7)

We have so far considered top quark decay in isolation. However, a top quark carries

color and therefore can emit a gluon. In any interval dt of shower time, the top quark can

either emit a gluon or decay. The top quark emits a gluon with a probability determined by

a splitting function Httg that we will discuss in section A 3. The gluon emission process has

its own Sudakov exponent, Sttg. The probability that the top quark has neither emitted a

gluon nor decayed by shower time t is given by the sum of the Sudakov exponents, St +Sttg.

2. W boson decay probability

The W boson created in the top quark decay will itself decay to a quark q and an antiquark

q̄. For the total splitting probability H̃ = He−S, we take

H̃W = 8π
2πmWΓW

2 arctan(∆W/ΓW)

Θ(|p2
W −m2

W| < mW∆W)

(p2
W −m2

W)2 +m2
WΓ2

W

gW(pq, pq̄, pt) . (A8)

This is like the decay probability for the top quark except that now we have an extra function

g. The W has spin 1 and it is polarized. That is, it has a non-trivial spin density matrix.

That happens because of the decay process that created the W. The W-polarization leads to

an angular dependence of the decay products’ momenta as seen in the W rest frame. This

22



angular dependence is represented by the function gW. Since the polarization arises from

the top decay, gW depends on pt. Specifically,

gW =
12 pq̄ · pt(pt − pq̄)2

(m2
t −m2

W)(m2
t + 2m2

W)
. (A9)

Since the W boson is colorless, there is not a competition between W decay and gluon

emission. For this reason, it is enough to represent the total probability for the W to decay

by H̃W without separately using a Sudakov factor.

3. Top quark splitting function

The top quark can emit a gluon. The splitting function for this, Httg, differs from a light

quark splitting function because of the top quark mass. Following closely the reasoning in

Ref. [12], we take

Httg =
8πCFαs

µ2
J

kJ
kg

[
1 +

(
kt
kJ

)2
]
g(pg, pt, pk) Θ

(
2
µ2
J

kJ
<
µ2
K

kK

)
. (A10)

Here J refers to the mother top quark and µ2
J = p2

J−m2
t . Then t and g refer to the daughter

top quark and the daughter gluon, respectively, and kt and kg are their transverse momenta.

If we denote kg ≈ (1 − z)kJ and kt ≈ zkJ , we recognize the familiar collinear splitting

function (1+z2)/(1−z) in Httg. There is a theta function that enforces ordering of the shower

emissions in shower time. In this theta function, µ2
K denotes the virtuality in the previous

emission from the top quark and kK denotes the transverse momentum of the top quark

just before this emission. In a strongly ordered shower, we would have µ2
J/kJ � µ2

K/kK .

In our shower, we settle for a factor of 2 between these scales. In the case that there was

no previous splitting, the theta function in H̃ is not needed and we ignore it, while in the

corresponding calculation of the Sudakov exponent we replace µ2
K/kK → 2(k2

J + m2
t )/kJ in

the theta function.

When the emitted gluon is soft, there is quantum interference between emission of the

gluon from the top quark and emission from some other (massless) parton k that is color

connected to the top quark. We partition the emission probability from the whole dipole

into two terms, one of which looks mostly like emission from the top quark and the other of

which looks mostly like emission from parton k. The term that looks mostly like emission
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from the top quark is Httg. The influence of the color connected partner is seen in the

function g(pg, pt, pk), which is

g(pg, pt, pk) =
kg pg · pt

2kt

−(pg · pt pk − pg · pk pt)2

(pg · pt pg · pk)2
A′tk . (A11)

The first factor here is simply the inverse of the soft gluon limit of the factors that we have

included in the collinear part of Httg. The second factor is the squared matrix element

for emission of a soft gluon with momentum pg from a dipole consisting of partons with

momenta pt and pk. The third function is a function A′tk that serves to partition the dipole

squared matrix element into the two terms mentioned above. There is some arbitrariness in

choosing this function. As in Ref. [12], we take the choice given in Eq. (7.12) of Ref. [17],

A′tk =
pg · pk kt

pg · pk kt + pg · pt kk
. (A12)

After expanding the factors here, we have

g(pg, pt, pk) =
kg

2 pg · pt
2 pg · pt pt · pk −m2

t pg · pk
pg · pk kt + pg · pt kk

. (A13)

It is convenient to write this in terms of the angles between the partons, using the approxi-

mation that these angles are small. Using rapidities y and azimuthal angles φ of the partons,

we define

θ2
gt = (yg − yt)2 + (φg − φt)

2 ,

θ2
gk = (yg − yk)2 + (φg − φk)2 ,

θ2
tk = (yt − yk)2 + (φt − φk)2 .

(A14)

Then for small angles and m2
t/k

2
t � 1 we have the function g in the form in which we use

it to compute Httg:

g(pg, pt, pk) =
(θ2

gt +m2
t/k

2
t )(θ2

tk +m2
t/k

2
t )− (m2

t/k
2
t ) θ2

gk

(θ2
gt +m2

t/k
2
t )(θ2

gk + θ2
gt +m2

t/k
2
t )

. (A15)

Notice that, by construction, g is not singular when θ2
gk → 0.

4. Massless parton splitting functions

We treat all quarks except for the top quark as being massless. When a massless quark

splits by emitting a gluon, the splitting function is

Hqqg =
8πCFαs

µ2
J

kJ
kg

[
1 +

(
kq
kJ

)2
]
g(pg, pq, pk) Θ

(
2
µ2
J

kJ
<
µ2
K

kK

)
. (A16)
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Here J refers to the mother quark and µ2
J = p2

J . Then q and g refer to the daughter quark

and the daughter gluon, respectively, and kq and kg are their transverse momenta. When a

gluon splits by emitting a gluon, the splitting function is

Hggg =
8πCAαs

µ2
J

k2
J

kskh

[
1− kskh

k2
J

]2

g(ps, ph, pk) Θ

(
2
µ2
J

kJ
<
µ2
K

kK

)
. (A17)

Now h and s refer to the daughter gluon with the greater transverse momentum kh and

the daughter gluon with the smaller transverse momentum ks, respectively. For the gluon

splitting, if we approximate ks/kJ = 1 − z and kh/kJ = z, we see that Hggg contains a

collinear splitting factor [1 − z(1 − z)]2/[z(1 − z)], in contrast to the quark splitting factor

[1 + z2]/(1− z). In both Hqqg and Hggg, there is a theta function that enforces ordering of

the shower splittings in shower time, as in the previous subsection. Except for the function

g, these are the same functions H that we used in Ref. [12].

There is also a function g. When the emitted gluon is soft, there is quantum interference

between emission of the gluon from parton J and emission from some other parton k that is

color connected to the splitting parton. We partition the emission probability from the whole

dipole into two terms, as in the previous subsection. The influence of the color connected

partner is seen in the function g. This is the same function for emission from a quark and

emission from a gluon, but with different variable names. With the same logic as in the

previous section, we have

g(pg, pq, pk) =
(θ2

gk +m2
k/k

2
k)(θ2

qk +m2
k/k

2
k)− (m2

k/k
2
k) θ2

gq

(θ2
gk +m2

k/k
2
k)(θ2

gq + θ2
gk +m2

k/k
2
k)

. (A18)

This is the same function that we used in Ref. [12] except that here the color connected

partner k could be massive because it could be the top quark.

5. Dipole antenna splitting

In shower II, a massless parton can emit a gluon with the participation of a color connected

parton that is the top quark just before its decay. In this case, a color dipole emits the gluon

and we do not partition the emission into two pieces. Rather, we consider the dipole to be a

unit, sometimes called a dipole antenna. The splitting function is then given by Eq. (A16)

or Eq. (A17), depending on whether the emitting parton is a quark or a gluon. The only

difference with the preceding section is that now we omit the partitioning function A′qk or
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A′hk. With this choice, the angular function is

g(pg, pq, pk) =
(θ2

gk +m2
k/k

2
k)(θ2

qk +m2
k/k

2
k)− (m2

k/k
2
k) θ2

gq

(θ2
gk +m2

k/k
2
k)2

. (A19)

Here parton k is the top quark, so mk = mt. Notice that if we were to set mk to zero, this

function would be singular when θ2
gk → 0. That is the consequence of omitting A′qk. Because

mt > 0, there is no singularity.

6. Sudakov exponents

For each propagator in a shower history diagram, there is a Sudakov factor e−S. This

factor gives the probability for the parton not to have split between the shower time of its

previous splitting and the shower time of the next splitting. If there is no next splitting,

then e−S represents the probability not to have split between the previous splitting and the

shower time that corresponds to the microjet virtuality. The top quark can either split or

decay, so there are two contributions to S. The W boson can only decay, so we simply

include e−S in the function H̃ that gives the differential decay probability.

We calculate Sudakov exponents for QCD splittings using

S =
1

4(2π)3

∫
dµ2

J Θ(µ2
min < µ2

J)

∫
dz

∫
dϕ H(p̄a, p̄g) . (A20)

Here µ2
min is the virtuality of the parton splitting. There is a µ2

max corresponding to the

shower time of the previous splitting. The constraint µ2
J < µ2

max is included in the splitting

function H. The splitting functions H are given in Ref. [12] and in the preceding subsections.

The variable z is the momentum fraction of the splitting and ϕ is the azimuthal angle of

the plane of the splitting about the direction of the mother parton.

We need to express S as a quickly computable function of the variables in the shower

history. Thus we cannot use numerical integration to evaluate the integrals in the definition

(A20). On the other hand, the integrals are too complicated to evaluate analytically. For

that reason, we have developed simple numerical approximations to the integrals and we

use these approximate functions. The approximations used are not really an essential part

of the physics: the ones that we use currently are different from those used in Ref. [12] and

if we found better approximations, we would use them. For that reason, it does not seem
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useful to list the approximate functions used to represent the functions S.
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