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Abstract

The parity and time-reversal invariant effective lagrangian for a heavy fermion interacting
with an abelian gauge field, i.e., NRQED, is constructed through order 1/M4. The imple-
mentation of Lorentz invariance in the effective theory becomes nontrivial at this order,
and a complete solution for Wilson coefficient constraints is obtained. Matching condi-
tions in the one-fermion sector are presented in terms of form factors and two-photon
matrix elements of the nucleon. The extension of NRQED to describe interactions of
the heavy fermion with a light fermion is introduced. Sample applications are discussed;
these include the computation of nuclear structure effects in atomic bound states, the
model-independent analysis of radiative corrections to low-energy lepton-nucleon scat-
tering, and the study of static electromagnetic properties of nucleons.



1 Introduction

Nonrelativistic QED (NRQED) is an effective field theory [1] describing the interactions of
nonrelativistic fermions with electromagnetic fields. NRQED interactions at order 1/M4 have
become relevant for describing radiative corrections to proton structure contributions in hy-
drogenic bound state spectroscopy [2, 3]. The NRQED lagrangian, properly constrained by
Lorentz invariance, trivializes the derivation of low-energy theorems of Compton scatter-
ing [4] and automatically incorporates the intricate singularity structure of scattering am-
plitudes [5, 6]. It can be used to rigorously compute radiative corrections to low-energy
lepton-nucleon scattering, and it also provides a model-independent framework within which
to analyze static properties of nucleons, such as polarizabilities and generalized electromagnetic
moments [7]. In this paper we derive a complete basis of operators and coefficient constraints
through order 1/M4 for the effective theory of nonrelativistic nucleons and leptons interacting
with photons.1

An important formal issue first arises at order 1/M4. As recently discussed in [8], a
“reparameterization invariance” ansatz for enforcing relativistic invariance breaks down at
this order. We derive the correct implementation of Lorentz invariance constraints and the
resulting Wilson coefficient relations through order 1/M4. For applications involving NRQED
of the proton or neutron we perform leading order (in α) matching computations to relate the
remaining undetermined coefficients to observables of lepton-nucleon scattering.

The remainder of the paper is structured as follows. In Section 2 we construct the NRQED
lagrangian in the one-fermion sector through order 1/M4. This lagrangian describes the in-
teraction of a nucleon with arbitrary background electromagnetic fields. Section 3 enforces
constraints on the Wilson coefficients deriving from relativistic invariance, first by a variational
calculation and then by an equivalent invariant operator construction. In Section 4 we perform
matching calculations in the one-fermion sector, relating the undetermined Wilson coefficients
to form factors and observables of (virtual) Compton scattering. In Section 5 we complete the
basis of operators in the zero-fermion and two-fermion sectors, required to describe a proton
interacting with a nonrelativistic lepton and dynamical photon. For applications to electron
scattering (me, E � M) we also consider the extension to the case of a relativistic lepton.
Section 6 provides a brief discussion of applications to the computation of nuclear structure
effects in atomic bound states; to the model-independent analysis of radiative corrections to
low-energy lepton-nucleon scattering; and to the study of static electromagnetic properties of
nucleons. Section 7 provides a concluding discussion.

2 Lagrangian

Consider the lagrangian for a heavy fermion coupled to an abelian gauge field. We enforce
hermiticity and invariance under parity, time-reversal and rotational symmetries. We also
perform field redefinitions to eliminate time derivatives acting on the fermion field (apart
from the leading term); we refer to this choice as the “canonical form” of the heavy particle

1For definiteness we will often refer to the heavy fermion ψ as the “nucleon”, and to a second fermion χ in
Section 5 as the “lepton”.
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lagrangian. We thus find in the one-fermion sector through 1/M4,

L = ψ†
{
iDt + c2

D2

2M
+ c4

D4

8M3
+ cFg

σ ·B
2M

+ cDg
[∂ ·E]

8M2
+ icSg

σ · (D ×E −E ×D)

8M2

+ cW1g
{D2,σ ·B}

8M3
− cW2g

Diσ ·BDi

4M3
+ cp′pg

σ ·DB ·D +D ·Bσ ·D
8M3

+ icMg
{Di, [∂ ×B]i}

8M3
+ cA1g

2B
2 −E2

8M3
− cA2g

2 E2

16M3

+ cX1g
[D2,D ·E +E ·D]

M4
+ cX2g

{D2, [∂ ·E]}
M4

+ cX3g
[∂2∂ ·E]

M4

+ icX4g
2{Di, [E ×B]i}

M4
+ icX5g

Diσ · (D ×E −E ×D)Di

M4
+ icX6g

εijkσiDj[∂ ·E]Dk

M4

+ cX7g
2σ ·B[∂ ·E]

M4
+ cX8g

2 [E · ∂σ ·B]

M4
+ cX9g

2 [B · ∂σ ·E]

M4
+ cX10g

2 [Eiσ · ∂Bi]

M4

+ cX11g
2 [Biσ · ∂Ei]

M4
+ cX12g

2σ ·E × [∂tE − ∂ ×B]

M4
+O(1/M5)

}
ψ . (1)

We have defined Dt = ∂/∂t + igZA0, Di = ∂/∂xi − igZAi, where −gZ = −e, +e or 0
for an electron, proton or neutron, respectively. We use the summation convention X iY i ≡∑3

i=1X
iY i, and define [X, Y ] ≡ XY − Y X, {X, Y } ≡ XY + Y X to denote commutators and

anticommutators as usual. Square brackets around quantities imply that derivatives act only
within the bracket. Electric and magnetic fields are defined as usual by E = −[∂tA]− [∂A0]
and B = [∂ ×A]. By the definition of E and B, [∂ ·B] = 0 and [∂tB + ∂ ×E] = 0.

The most general term in (1) is obtained by constructing all possible rotationally invariant,
hermitian combinations of iDt, D

i, Ei, iBi, iσi, with parity requiring an even number of factors
of Di and Ei. The operators through 1/M3 were previously introduced in [1, 9, 10]. Terms
at 1/M4 with two field strength factors Ei or Bi are straightforward to tabulate; note that
we have used [∂tB] = −[∂ × E] and the assumption of canonical form to eliminate time
derivatives of the magnetic field. Remaining terms at 1/M4 involve one factor of electric field
Ei and three spatial derivatives Di. Spin-independent terms are straightforward to tabulate;
the basis of operators parameterized by cX1, cX2, cX3 differs from other possible choices by
terms involving commutators [Di, Dj], i.e., terms with two field strengths. For spin-dependent
terms we use [∂×E] = −[∂tB] and the assumption of canonical form to eliminate occurrences
of [∂ ×E]. The three-vector identity,

Di(E × σ)j + (σ ×D)jEi + σi(D ×E)j = D ·E × σδij , (2)

applied to remaining terms of the form ψ†Di(. . . )Djψ, leaves the basis of operators parame-
terized by cX5, cX6.
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3 Relativistic invariance

The lagrangian (1) is invariant, by construction, under rotations and spacetime translations.
The remaining constraints of relativity are enforced by demanding invariance under boosts.
Here we derive these additional constraints, first by a variational calculation in Section 3.1,
and then by an equivalent invariant operator construction in Section 3.2.

3.1 Variational method

As detailed in [8], under infinitesimal boosts, with infinitesimal boost parameter η = −q/M ,
we may choose the heavy fermion to transform as

ψ →e−iq·x
{

1 +
iq ·D
2M2

+
iq ·DD2

4M4
− σ × q ·D

4M2

[
1 +

D2

4M2

]
+
icDg

8M3
q ·E +

cSg

8M3
q · σ ×E +O(g/M4, 1/M6) + . . .

}
ψ , (3)

while derivatives and gauge fields transform as Lorentz vectors, so that:

Dt → Dt +
1

M
q ·D , D →D +

1

M
qDt , E → E +

1

M
q ×B , B → B − 1

M
q ×E .

(4)

Field strength-dependent terms in (3) have been chosen to maintain canonical form. Since
we are interested in the canonical lagrangian through order 1/M4, we need not specify the
explicit form of the order 1/M4 field strength-dependent terms, denoted by O(g/M4). A
straightforward computation yields

δL =
1

M
δL1 +

1

M2
δL2 +

1

M3
δL3 +

1

M4
δL4 + . . . , (5)

where

δL1 = ψ† [(1− c2)iq ·D]ψ ,

δL2 = ψ†
[
−1

2
(1− c2){q ·D, Dt}+

g

4
(Z − 2cF + cS)σ × q ·E

]
ψ ,

δL3 = ψ†
[
g

8
q · [∂ ×B] (cF − cD + 2cM) +

i

4
{q ·D,D2} (c2 − c4)

+
ig

8
{q ·D,σ ·B} (c2Z + 2cF − cS − 2cW1 + 2cW2)

+
ig

8
{σ ·D, q ·B} (−c2Z + cF − cp′p) +

ig

8
q · σ(D ·B +B ·D) (−cF + cS − cp′p)

]
ψ.

(6)
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From δL1, δL2 and δL3, we find [10, 3]2

c2 = 1 , cS = 2cF − Z , c4 = 1 , 2cM = cD − cF , cW2 = cW1 − Z , cp′p = cF − Z .
(7)

Employing the above relations, the variation δL4 takes the form

δL4 = ψ†
[
ig

8
[D2, q ·E]

(
5Z

4
− cF + cD − 32cX1

)
+
ig

8
{q ·D, [∂ ·E]}

(
−Z

4
+ cF − 16cX2

)
+
g2

8
q ·E ×B

(
Z2

2
+ 2cF (Z − cF )− 2ZcD + cA2 + 16cX4

)
+
g

8
[q · σ × ∂∂ ·E]

(
−Z + cF −

1

4
cD + cW1 + 8cX6

)
+
g

8
Di
(
qi(E × σ)j + (E × σ)iqj + σ × q ·Eδij

)
Dj

(
Z

2
− 2cF + 16cX5

)]
ψ , (8)

where we have suppressed terms that are removed by field strength-dependent modifications
of the boost generator, denoted by O(g/M4) in (3). We readily find,

32cX1 =
5Z

4
− cF + cD ,

32cX2 = −Z
2

+ 2cF ,

32cX4 = −Z2 − 4cF (Z − cF ) + 4ZcD − 2cA2 ,

32cX5 = −Z + 4cF ,

32cX6 = 4(Z − cF ) + cD − 4cW1 , (9)

while coefficients cX3 and cX7...X12 are not constrained by Lorentz invariance. We thus find
that seven new quantities are required at order 1/M4 to describe the proton’s response to
arbitrary background electromagnetic fields.

3.2 Invariant operators

An alternate method for enforcing Lorentz invariance is to construct the lagrangian from
explicitly invariant operators. We summarize here the main points; for details see [8].

The basic building block in the construction is the field Ψv = Γ(v, iD)ψv, where ψv is a
Dirac spinor field with v/ψv = ψv. The matrix-valued operator Γ(v, iD) is determined such
that under an infinitesimal boost Λ, where Λµ

νv
ν = vµ + qµ/M , the field Ψv has a simple

transformation law: Ψv → eiq·xΨv. Noting that e−iq·x(iDµ + Mvµ + qµ)eiq·x = iDµ + Mvµ,

2The relations in [10] assume Z = 1. As noted in [3], we find the opposite sign in the relation for cM in (7)
compared to [10].
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we may thus build invariant bilinears from contractions of polynomials of γµ and Vµ ≡ vµ +
iDµ/M , between Ψv and Ψv.

The function Γ(v, iD) is a solution to the invariance equation,

Γ(v + q/M, iD − q)Λ−1W (Λ, iD +Mv) = Γ(v, iD), (10)

where W (Λ, p) is an element of the little group for timelike invariant vector vµ, following
from the theory of induced representations of the Lorentz group. Up to the relevant order for
determining the 1/M4 lagrangian we have [8]

Γ = 1+
i /D⊥
2M

+
1

M2

{
−1

8
(iD⊥)2 − 1

2
i /D⊥iv ·D

}
+

1

M3

{
1

4
(iD⊥)2iv ·D

+
i /D⊥

2

[
−3

8
(iD⊥)2 + (iv ·D)2

]
+
gZ

8
Fµνv

µDν
⊥ +

gZ

16
σµν⊥ Fµνi /D⊥

}
+ . . . , (11)

where we have defined Dµ
⊥ ≡ Dµ − vµv ·D, and for abelian gauge fields Fµν ≡ ∂µAν − ∂νAµ.

Note that the last two terms of (11) are absent in the ansatz for reparameterization invariance
given in [11], leading to incorrect Lorentz invariance constraints at 1/M4 and beyond. This
subtlety is explained in [8].

A complete basis of invariant bilinears required through order 1/M4 is

L = Ψv

{
M(V/ − 1)− aFg

σµνFµν
4M

+ iaDg
{Vµ, [MVν , F µν ]}

16M2
− aW1g

[MVα, [MVα, σµνFµν ]]
16M3

+ aA1g
2FµνF

µν

16M3
+ aA2g

2VαF µαFµβVβ
16M3

}
Ψv + aX3BX3 +

12∑
i=7

aXiBXi. (12)

The bilinears BXi for i = 3, 7 . . . 12 are chosen to reduce to the respective operators multiplying
cXi in (1) upon setting vµ = (1, 0, 0, 0) and neglecting 1/M suppressed corrections. Since we
are concerned only with the lagrangian through order 1/M4 we do not specify an explicit
choice for these BXi. A computation shows that the field redefinition to recover canonical
form is

ψv =

{
1 +

1

4M2
(iD⊥)2

(
1− iv ·D

M

)
− gZ

16M2
σµν⊥ Fµν −

gZ

4M3
Dµ
⊥v

αFαµ +
igZ

4M3
σµνD

µ
⊥vαF

αν

− gZ

8M3
vαFαµD

µ
⊥ +

gaF
4M3

[−Dµ
⊥v

αFαµ + iσµνD
µ
⊥vαF

αν ]− gaD
8M3

vαFαµD
µ
⊥

+
igaW1

8M3
σµν [D

µ
⊥, vαF

αν ]

}
ψ′v . (13)

Upon setting vµ = (1, 0, 0, 0), the resulting lagrangian, expressed in terms of ψ′v, is identical
to the previous result (1) with constraints (7) and (9).

5



4 Matching: one-fermion sector

In contrast to NRQED for the electron or other fundamental fermions, the matching for a
composite particle such as the proton cannot be performed perturbatively. We instead must
appeal to nonperturbative (e.g. lattice) methods, or to experimental measurements. This
section relates the matching conditions in the one-fermion sector to standard form factors and
two-photon matrix elements of the nucleon.

4.1 One-photon matching

Diagrams for 1-Photon and 2-Photon Scattering

Gabriel Lee

December 12, 2012

p

q

p′ = p

q

p′

Figure 1: Diagrammatic representation of tree-level matching for the one-photon
amplitude in the full theory and in NRQED. The black dot in the dia-
gram on the right-hand side represents insertions of NRQED one-photon
operators.

1

Figure 1: Tree level matching of the one-photon amplitude in the full theory and NRQED. The
black dot in the diagram on the right-hand side represents single-photon NRQED vertices.

Consider first the operators contributing to the one-photon matrix element of the nucleon.
The matching is performed in terms of standard invariant form factors,

〈N(p′)|Jem
µ |N(p)〉 = u(p′)Γµ(q)u(p) , Γµ(q) ≡ γµF

N
1 (q2) +

iσµν
2MN

FN
2 (q2)qν , (14)

where q = p′ − p and N denotes a proton or neutron; we suppress the superscript N in the
following. Equating the effective theory with the full theory3, we find (cf. Fig. 1)

cF = F̄1 + F̄2 ≡ Z + aN +O(α) ,

cD = F̄1 + 2F̄2 + 8F̄ ′1 ≡ Z +
4

3
M2(rNE )2 +O(α) ,

cW1 = F̄1 +
1

2
F̄2 + 4F̄ ′1 + 4F̄ ′2 ,

cX3 =
1

8
F̄ ′1 +

1

4
F̄ ′2 +

1

2
F̄ ′′1 , (15)

where Z denotes the electric charge, aN is the anomalous magnetic moment of the nucleon,
and rNE is the nucleon charge radius. We have introduced dimensionless barred quantities to
denote derivatives with respect to q2/M2 at q2 = 0: F̄1 ≡ F1(0) = Z, F̄2 ≡ F2(0) = aN ,
F̄ ′i ≡ M2F ′i (0), etc. The new quantity F̄ ′′1 appears at 1/M4. Expressions for other Wilson

3The nonrelativistic normalization of states in NRQED is obtained using ū(p)u(p) = M/Ep in (14).
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coefficients through 1/M3 in terms of form factors can be found using (7). At 1/M4, we also
find

cX1 =
5

128
F̄1 +

1

32
F̄2 +

1

4
F̄ ′1 ,

cX2 =
3

64
F̄1 +

1

16
F̄2 ,

cX5 =
3

32
F̄1 +

1

8
F̄2 ,

cX6 = − 3

32
F̄1 −

1

8
F̄2 −

1

4
F̄ ′1 −

1

2
F̄ ′2 , (16)

and it is readily verified that these expressions satisfy the constraints (9). In the presence
of radiative corrections, the form factors on the right hand sides of (15) and (16) should be
interpreted in an appropriate infrared regularization scheme; alternatively, the matching may
be performed with infrared finite observables. The corresponding infrared subtractions and
ultraviolet renormalizations must be performed to obtain the Wilson coefficients including
radiative corrections.4

4.2 Two-photon matching

p

q

p′

q′

= p

q

p′

q′

+ p

q

p′

q′

+ p

q

q′

p′

Figure 2: Diagrammatic representation of the matching of the amplitude for Comp-
ton scattering obtained in the full theory and NRQED, to leading order
in e. The black vertices in the diagrams on the right-hand side represent
insertions of NRQED 1-photon operators.

p

k k − L + p

L − p

k′

L p′

L − p′

p

k k + L − p′ k′

L p′

Figure 3: Feynman diagrams for two-photon exchange with momentum labels.

2

Figure 2: Tree-level matching of the Compton scattering amplitude in the full theory and
NRQED. The black vertices in the diagrams on the right-hand side represent NRQED vertices.

The Compton scattering process, γ∗(q)N(p) → γ(q′)N(p′), with one virtual and one real
photon is sufficient to determine the remaining coefficients in the 1/M4 NRQED lagrangian.
Consider the low-energy expansion of the virtual Compton scattering amplitude as depicted
in Fig. 2. Let us define a conventional separation

Mµν ≡Mµν
Born +Mµν

non−Born , (17)

4The expressions on the right hand side of (15) and (16) correspond to those referred to as cQED
i in [9].

The renormalization procedure in dimensional regularization is described in [10].
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by declaring that “Born” terms are defined by the “Sticking In Form Factors” (SIFF) pre-
scription using the form factors of (14). Explicitly,

Mµν
Born ≡ −g2ū(p′)

{
Γν(−q′) 1

p/ + q/ −M Γµ(q) + Γµ(q)
1

p/ − q/ ′ −M Γν(−q′)
}
u(p) . (18)

This convention ensures that qµMµν
Born = q′νMµν

Born = 0, so that the same Ward identities,
qµMµν

non−Born = q′νMµν
non−Born = 0, may be applied to constrain Mµν

non−Born. We adopt a conve-
nient basis for Mµν

non−Born as given by Drechsel et al (Eq. (A10) of [12]),

Mµν
non−Born =

12∑
i=1

fi(q
2, q · q′, q · p)ρµνi . (19)

Subtraction of the Born terms ensures that the residual contributions fi(q
2, q · q′, q · p) are

free of kinematic singularities, and may thus be Taylor expanded at small photon energy.
Employing q · p ∼ ω, q2 ∼ ω2, q · q′ ∼ ω2, to the relevant order, we require

fi(q
2, q · q′, q · p) ≡ fi,0 +O(ω2) , i = 1, 2, 5, 6, 11, 12 ,

fi(q
2, q · q′, q · p) ≡ fi,1 q · p+O(ω3) , i = 4, 10 , (20)

where we adopt the notation of [13].
The matching can be performed in arbitrary reference frame, with the results,5

cA1 = F̄ 2
1 + 4f̄1,0 ≡ Z2 +

4M3

α
βM +O(α) ,

cA2 = 4F̄1F̄2 + 2F̄ 2
2 + 16F̄1F̄

′
1 + 32f̄2,0 ≡ 2a2

N +
8Z

3
M2(rNE )2 − 8M3

α
(αE + βM) +O(α) ,

cX7 =
1

4
F̄1F̄

′
1 +

1

2
F̄1F̄

′
2 −

1

2
f̄5,0 − 2f̄11,0 − 2f̄12,0 ,

cX8 = − 9

32
F̄ 2

1 −
3

8
F̄1F̄2 −

1

16
F̄ 2

2 −
(
F̄1 +

1

2
F̄2

)
F̄ ′1 −

1

2
F̄1F̄

′
2 − 4f̄4,1 + 4f̄6,0 − 2f̄10,1 ,

cX9 =
5

64
F̄ 2

1 +
3

16
F̄1F̄2 +

1

8
F̄ 2

2 +
1

2
(F̄1 + F̄2)(F̄ ′1 + F̄ ′2)− 2f̄10,1 ,

cX10 =
7

32
F̄ 2

1 +
3

8
F̄1F̄2 +

1

16
F̄ 2

2 + 4f̄4,1 + 2f̄10,1 + 2f̄11,0 ,

cX11 =
7

64
F̄ 2

1 +
3

16
F̄1F̄2 −

1

2
(F̄1 + F̄2)(F̄ ′1 + F̄ ′2) + 2f̄10,1 + 2f̄11,0 ,

cX12 = − 1

16
F̄ 2

1 −
1

8
F̄1F̄2 −

1

16
F̄ 2

2 −
1

2
(F̄1 + F̄2)F̄ ′1 −

1

2
F̄1F̄

′
2 + 4f̄4,1 +

1

2
f̄5,0 + 2f̄10,1 + 2f̄11,0 ,

(21)

5We have performed the computation both in the laboratory frame, p = 0, and in the center of mass frame,
q+p = 0, by matching both the full theory and the effective theory to the twelve independent spin structures
for the virtual Compton scattering process.
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where the dimensionless form factor derivatives, F̄
(n)
i , have been introduced after (15) and we

have similarly defined dimensionless quantities f̄1 = M3f1, f̄2 = M5f2, f̄4 = M4f4, f̄5 = M4f5,
f̄6 = M5f6, f̄10 = M3f10, f̄11 = M4f11, f̄12 = M5f12. We have then used the expansion of the
amplitudes fi given in (20), with dimensionless quantities f̄i = f̄i,0+O(ω2) (i = 1, 2, 5, 6, 11, 12)
and f̄i = f̄i,1q · p/M2 +O(ω3) (i = 4, 10). Note that six new phenomenological parameters are
required at 1/M4 to match cX7...X12. An expression for cX4 in terms of scattering observables
can be found using (9). The expressions (21) can be translated to a multitude of other
conventions for the observables of Compton scattering.6

5 Pure photon and four-fermion operators

So far our analysis has focused on the one-fermion sector. We have derived the form of the
lagrangian appropriate, e.g., to a proton in a background electromagnetic field. Let us consider
the complete QED theory including dynamical photon, as well as a lepton (electron or muon)
field. The case of a nonrelativistic lepton is appropriate to bound state hydrogen studies, or
very low-energy lepton-nucleon (e.g. muon-proton) scattering, where E � Mχ,M . We first
consider this case, constructing the operator basis, deriving coefficient relations and identifying
redundant operators. We then turn to a brief discussion of the case of a relativistic lepton,
appropriate to e.g. low-energy electron-proton scattering with m`, E �M .

5.1 Pure photon operators

The pure gauge sector for NRQED is the well-known Euler-Heisenberg lagrangian. Enforcing
parity and time reversal symmetry and neglecting total derivatives we find

Lγ = −1

4
FµνF

µν+cV 2
Fµν [∂

2F µν ]

M2
+cV 4

Fµν [∂
4F µν ]

M4
+cE1g

2 (FµνF
µν)2

M4
+cE2g

2
F µ
νF

ν
ρF

ρ
σF

σ
µ

M4
+. . . .

(22)
In the literature one finds also the operator basis (1

2
εµνρσFµνFρσ)2 = 16(E·B)2 and (FµνF

µν)2 =
4(E2 −B2)2. The relation to the basis above is obtained via 4F µ

νF
ν
ρF

ρ
σF

σ
µ = 2(FµνF

µν)2 +
(1

2
εµνρσFµνFρσ)2. The coefficients cV 2 and cV 4 may be set to zero through field redefinitions

on Aµ, as discussed in Section 5.3 below.

5.2 Four-fermion operators

Consider four-fermion operators relevant for processes in the one-nucleon, one-lepton sector.
We enforce hermiticity and invariance under parity, time-reversal and rotational symmetries.

We use the notation
←−
D for a covariant derivative acting to the left, X

←−
D i ≡ [∂iX] + igZXAi,

and define D+ ≡ D +
←−
D , D− ≡ D − ←−D . Having performed field redefinitions to eliminate

6For example, Compton scattering of real photons determines all coefficients, apart from cX7 and cX12, in
terms of the conventional electric and magnetic polarizabilities αE , βM and Ragusa’s [4] spin polarizabilities
γi: M3αE/α = −f̄1,0 − 4f̄2,0, M3βM/α = f̄1,0, M4γ1/α = −8f̄4,1 − 4f̄10,1 − 4f̄11,0, M4γ2/α = 4f̄10,1,
M4γ3/α = 4f̄6,0 + 2f̄11,0, M4γ4/α = −4f̄10,1 − 2f̄11,0, where α is the fine structure constant. Compare with
Eq. (28) of [13].
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operators with time derivatives acting on heavy fermions, the lagrangian in this sector, through
1/M4, is

Lψχ =
d1

M2
ψ†σiψ χ†σiχ+

d2

M2
ψ†ψ χ†χ+

d3

M4
ψ†Di

+ψ χ†Di
+χ+

d4

M4
ψ†Di

−ψ χ†Di
−χ

+
d5

M4
ψ†(D2 +

←−
D2)ψ χ†χ+

d6

M4
ψ†ψ χ†(D2 +

←−
D2)χ

+
gd7

M4
ψ†σ ·Bψ χ†χ+

id8

M4
εijkψ†σiDj

−ψ χ†Dk
+χ+

id9

M4
εijkψ†σiDj

+ψ χ†Dk
−χ

+
gd10

M4
ψ†ψ χ†σ ·Bχ+

id11

M4
εijkψ†Dk

+ψ χ†σiDj
−χ+

id12

M4
εijkψ†Dk

−ψ χ†σiDj
+χ

+
d13

M4
ψ†σiDj

+ψ χ†σiDj
+χ+

d14

M4
ψ†σiDj

−ψ χ†σiDj
−χ+

d15

M4
ψ†σ ·D+ψ χ†σ ·D+χ

+
d16

M4
ψ†σ ·D−ψ χ†σ ·D−χ+

d17

M4
ψ†σiDj

−ψ χ†σjDi
−χ

+
d18

M4
ψ†σi(D2 +

←−
D2)ψ χ†σiχ+

d19

M4
ψ†σi(DiDj +

←−
D j←−D i)ψ χ†σjχ

+
d20

M4
ψ†σiψ χ†σi(D2 +

←−
D2)χ+

d21

M4
ψ†σiψ χ†σj(DiDj +

←−
D j←−D i)χ . (23)

Here χ is the nonrelativistic lepton field with mass Mχ and for notational simplicity we write
all operators in terms of the common mass scale M .7 Covariant derivatives appearing within
a fermion bilinear in (23) are understood to act only on fields in that bilinear. The heavy field
ψ transforms under boosts as in (3). Recalling that q in (3) is related to the mass-independent
infinitesimal boost parameter by η = −q/M , the transformation law for χ is obtained by the
replacement M → rM and q → rq, where we define r ≡Mχ/M . We thus find

δLψχ =
1

M4

{
ψ†iq ·D−ψ χ†χ

[
d2

2
− 2rd4 − 2d5

]
+ ψ†ψ χ†iq ·D−χ

[
d2

2r
− 2d4 − 2rd6

]
+ ψ†σ · q ×D+ψ χ†χ

[
−d2

4
+
d1

4r
− 2d8 − 2rd9

]
+ ψ†iq ·D−σiψ χ†σiχ

[
d1

2
− 2rd14 − 2d18

]
+ ψ†ψχ†σ · q ×D+χ

[
−d2

4r
+
d1

4
− 2rd11 − 2d12

]
+ ψ†σiψχ†iq ·D−σiχ

[
d1

2r
− 2d14 − 2rd20

]
+ ψ†iσ ·D−ψ χ†σ · qχ

[
d1

4
− 2rd16 − d19

]
+ ψ†σ · qψ χ†iσ ·D−χ

[
d1

4r
− 2d16 − rd21

]
+ ψ†iσ · qDi

−ψ χ†σiχ

[
−d1

4
− 2rd17 − d19

]
+ ψ†σiψχ†iσ · qDi

−χ

[
−d1

4r
− 2d17 − rd21

]}
+O(1/M5) . (24)

7Note that the coefficients d1,2 in (23) are related to those of Caswell and Lepage [1] by a factor Mχ/M .
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This enforces the relations

rd4 + d5 =
d2

4
, d5 = r2d6 , 8r(d8 + rd9) = −rd2 + d1 , 8r(rd11 + d12) = −d2 + rd1 ,

rd14 + d18 =
d1

4
, d18 = r2d20 , 2rd16 + d19 =

d1

4
, r(d16 + d17) + d19 = 0 , d19 = r2d21,

(25)

implying a total of twelve independent four-fermion operators through 1/M4, including two
at order 1/M2. By performing field redefinitions on the gauge field Aµ, some of these four-
fermion operators are found to mix with one-heavy particle sector operators, as discussed in
Section 5.3 below.

The lagrangian (23), with constraints (25), applies to the case of distinct heavy parti-
cles represented by ψ, χ, with arbitrary mass ratio Mχ/M . For certain applications, e.g.
positronium or heavy quarkonium bound states, the fields ψ and χ can be taken to represent
particle-antiparticle pairs with r = Mχ/M = 1. Charge conjugation symmetry is then im-
plemented by enforcing invariance under ψ ↔ χ, thus reducing the basis of operators. This
case has been investigated for QCD through O(1/M4) by Brambilla et al. [14]. We find that
our basis of four-fermion operators (23) and constraints (25) are equivalent to those found in
Ref. [14] for this special case.8

5.3 Field redefinitions and redundant operators

With a dynamical photon field, we may perform field redefinitions that maintain reality and
gauge, parity, time reversal and rotational symmetries. In order to avoid upsetting the pre-
viously determined coefficient relations, we must also maintain the transformation law for Aµ

as a four-vector under Lorentz transformations, i.e.,

A0 → A0 − 1

M
q ·A , A→ A− 1

M
qA0 . (26)

Let us write
Aµ = A′µ + ∆γAµ + ∆ψAµ + ∆χAµ + . . . . (27)

For the pure gauge field terms the most general expression is

∆γA
µ = aγ1

∂νF
νµ

M2
+ aγ2

∂2∂νF
νµ

M4
+O(1/M6) . (28)

Terms involving the heavy fermion ψ take the form

∆ψA
µ

g
= ãψ1

Ψvγ
µΨv

M2
+ ãψ2

∂α(Ψvσ
αµΨv)

M3
+ ãψ3g

Ψv{γµ, σαβFαβ}Ψv

M4
+ ãψ4

∂2(Ψvγ
µΨv)

M4

+ ãψ5g
Ψvσ

µα{Vβ, Fαβ}Ψv

M4
+O(1/M5) , (29)

8The difference between abelian and nonabelian gauge fields is trivial for four-fermion operators through
this order.
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where we have employed the invariant operator formalism of Section 3.2. In particular, Ψv =
Γψv with Γ from (11) and ψv from (13), expressed in terms of the field ψ′v ≡ ψ with canonical
lagrangian (1). As an alternative to the invariant operator formalism employed in (29) we
may expand ∆ψA

0 and ∆ψA in a series of rotationally invariant operators with arbitrary
coefficients, and subsequently constrain these coefficients using (26). The result is equivalent
to (29), with five free parameters through O(1/M4),

∆ψA
0

g
= aψ1

ψ†ψ

M2
+ aψ2

∂2(ψ†ψ)

M4
− i
(aψ1

4
− aψ4

)ψ†σ · ←−D ×Dψ
M4

+ aψ3g
ψ†σ ·Bψ

M4
+O(1/M5),

∆ψA

g
= −aψ1

ψ†iD−ψ

2M3
+ aψ4

∂ × (ψ†σψ)

M3
+ aψ5g

ψ†σ ×Eψ
M4

+O(1/M5) . (30)

The expansion of ∆χA
µ is obtained from (30) with the replacements ψ → χ, M → Mχ,

Z → Zχ and aψ i → aχ i. In terms of the field A′µ in (27), we find in the pure photon sector,

δcV 2 = −1

2
aγ1 , δcV 4 = −1

2
aγ2 −

1

4
a2
γ1 + 2aγ1cV 2 , (31)

while for the ψ sector,

δcD = −8Zaγ1 + 8aψ1 , δcW1 = −4cFaγ1 + 8aψ4 , δcA2 = −16Z2aγ1 + 16Zaψ1 ,

δcX3 = −cDaγ1

8
+ Zaγ2 − aγ1aψ1 + 4cV 2aψ1 + aψ2 , δcX7 = −cSZaγ1

4
+ aψ3 ,

δcX8 = cFZaγ1 −
cFaψ1

2
− Zaψ4 , δcX9 = −c

2
Faγ1

2
+ cFaψ4 , δcX11 =

c2
Faγ1

2
− cFaψ4 ,

δcX12 =
cSZaγ1

2
+ aψ5 . (32)

Similar relations hold for the Wilson coefficients c
(χ)
i in the χ lagrangian, defined as in (1),

with ψ → χ, Z → Zχ, M →Mχ, ci → c
(χ)
i . Finally, for the four-fermion operator coefficients,

δd2

g2
= −Zχaψ1 −

Zaχ1

r2
,

δd3

g2
=
c

(χ)
D aψ1

8r2
+
cDaχ1

8r2
+ Zχaψ2 +

Zaχ2

r4
,

δd4

g2
= −Zχaψ1

4r
− Zaχ1

4r3
,

δd7

g2
= −ZZχ

4
(aψ1 − 4aψ4)− Zχaψ3 ,

δd8

g2
=
Zχ
8

(aψ1 − 4aψ4)− cSaχ1

8r2
,

δd10

g2
= −ZZχ

4r4
(aχ1 − 4aχ4)− Zaχ3

r4
,

δd11

g2
= −c

(χ)
S aψ1

8r2
+

Z

8r4
(aχ1 − 4aχ4) ,

δd13

g2
= −δd15

g2
=
c

(χ)
F aψ4

2r
+
cFaχ4

2r3
. (33)

The coefficient relations (7), (9) and (25) are preserved, since by construction the Lorentz
transformation properties of Aµ are unchanged and hence the boost transformation rules (3)
and (4) still apply.
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We may use (31) to eliminate vacuum polarization terms cV 2 and cV 4 in favor of compen-

sating terms in (32). Similarly, (32), together with the analogous relations for c
(χ)
i , and (33),

can be used to eliminate 10 linear combinations of Wilson coefficients for two-fermion and
four-fermion operators. Different applications may favor elimination of different operators.9

5.4 Relativistic lepton

For applications such as lepton-nucleon scattering at energies m`, E � M (e.g., low-energy
electron-proton scattering), the relevant effective theory involves a heavy fermion (e.g., the
proton) interacting with an electromagnetically charged relativistic fermion (e.g., the electron).
Let us briefly discuss this case. Enforcing parity, time-reversal, gauge, Lorentz, as well as chiral
symmetry at m` = 0, we find the leptonic interactions with the photon,

L` = ¯̀
[
i /D −m` + gc

(`)
F m`

σµνFµν
M2

+ gc
(`)
2 m`

D2

M2
+ gc

(`)
D

[∂µFµν ]γ
ν

M2
+O(1/M4)

]
` , (34)

where we assume field redefinitions have been performed to remove power suppressed terms
involving (i /D −m`)`.

Having performed field redefinitions to eliminate operators with time derivatives acting on
fermion fields, the lagrangian for the nucleon-relativistic lepton sector through O(1/M3) is

Lψ` =
b1

M2
ψ†ψ ¯̀γ0`+

b2

M2
ψ†σiψ ¯̀γiγ5`+

b3

M3
ψ†ψ m`

¯̀̀ +
b4

M3
ψ†iDi

−ψ ¯̀γi`

+
b5

M3
ψ†ψ ¯̀iγ ·D−`+

b6

M3
εijkψ†σiψ m`

¯̀σjk`+
b7

M3
εijkψ†σiψ ¯̀γjDk

+`

+
b8

M3
ψ†σiψ ¯̀γ0γ5iD

i
−`+

b9

M3
ψ†σiiDi

−ψ ¯̀γ0γ5`+O(1/M4), (35)

where ` is the relativistic lepton field with mass m` and σij ≡ i
2
[γi, γj]. The heavy field ψ

transforms under boosts as in (3), while ` transforms under finite dimensional representations
of the Lorentz group in the usual way. Under Lorentz transformation, we thus find

δLψ` = − 1

M3
ψ†ψ ¯̀γ · q` (b1 + 2b4)− 1

M3
ψ†σ · qψ ¯̀γ0γ5` (b2 + 2b9) +O(1/M4). (36)

This enforces the relations

b4 =
1

2
b1 , b9 = −1

2
b2 , (37)

leaving seven operators in this sector through order 1/M3, including two at order 1/M2.
By performing field redefinitions on the gauge field Aµ, some of these four-fermion operators

are found to mix with one-heavy particle operators. In addition to the contributions ∆γA
µ

and ∆ψA
µ from (27) we may employ

∆`A
µ = ga`1

¯̀γµ`

M2
+O(1/M4) . (38)

9We have not specified gauge fixing and source terms, which are also affected by field redefinitions.
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We thus find the modified couplings in L`,

δc
(`)
D = −Z`aγ1 + a`1 , (39)

and for the four fermion operators in Lψ`,

δb1

g2
= −Za`1 − Z`aψ1 ,

δb7

g2
= −Z`aψ4 −

1

2
cFa`1 , (40)

with relation (37) remaining intact.

6 Applications

Applications of the NRQED lagrangian for the nucleon include: the computation of pro-
ton structure effects in atomic bound states; the model-independent analysis of radiative
corrections to low-energy lepton-nucleon scattering; and the study of static electromagnetic
properties of nucleons. Let us discuss sample applications in each of these areas.

6.1 Proton structure in atomic bound states

As a sample computation involving the 1/M4 NRQED lagrangian,10 let us analyze the effects
of nuclear structure on the two-photon exchange contribution to the 2S − 2P Lamb shift
in hydrogenic bound states; this contribution is the subject of intense scrutiny [16, 17, 18,
19, 3, 20, 21] due to the discrepant measurements in muonic and electronic hydrogen [2].
The dominant theoretical uncertainties in the muonic hydrogen Lamb shift arise from proton
structure, represented by contributions through O(α) to cD in (1), arising from first order
vertex corrections, and O(α2) contributions to d2 in (23) arising from two-photon exchange [3].
We let ψ of Section 2 denote the proton of mass M , and χ of Section 5 denote the electron
(or muon) of mass Mχ = me. Electric charge assignments are given after (1). We focus here
on the model-independent result for the leading two-photon exchange corrections in the limit
me/M � 1.

Structure dependent corrections to d2 lead to first order energy shifts in hydrogen,11

δE(n, `) = δ`0
m3
rα

3

πn3

(
− δd2

M2

)
, (41)

where (n, `) are principal and orbital quantum numbers and mr = meM/(me + M) is the
reduced mass. The matching condition for d2 involves a weighted moment of the structure

10For bound state applications it may be computationally efficient to further integrate out offshell momentum
modes and/or higher Fock states to arrive at an explicitly v/c expanded NRQED [1, 9], or fixed particle number
quantum mechanics [15]. Our purpose here is to examine the impact of nucleon structure, as described by
finite shifts in the Wilson coefficients of the theory described by (1), (22), (23).

11As mentioned in Section 5.2, we have used powers of 1/M (not 1/Mχ) to define four-fermion Wilson
coefficients in (23). We thus have d1,2/M

2 = dCL
1,2/(meM) where dCL

2 is the coefficient of Caswell and Lepage [1],
also employed in [3].
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functions for forward Compton scattering on the proton. From [3], the necessary hadronic
input is contained in

δd2

M2
= −4meα

2

πM

∫ 1

−1

dx
√

1− x2

∫ ∞
0

dQ

Q

[
(1 + 2x2)W1 − (1− x2)m2

pW2

]
Q2 + 4m2

ex
2

+ subtractions , (42)

where the subtractions depend on infrared and ultraviolet regulators. The structure functions
in this expression are evaluated at ν2 = −4x2M2Q2. They are defined by the forward proton
matrix element,

W µν(k, q, s) ≡ i

∫
d4x eiq·x〈k, s|T{Jµe.m.(x)Jνe.m.(0)}|k, s〉 . (43)

For the present application we require the spin-averaged component symmetric in µ, ν,

W µν
S =

1

2

∑
s

W µν =

(
−gµν +

qµqν

q2

)
W1(ν,Q2) +

(
kµ − k · q qµ

q2

)(
kν − k · q qν

q2

)
W2(ν,Q2) ,

(44)

where Q2 = −q2 and ν = 2k · q. Our normalizations are such that for a point particle,
W1 = 2ν2/(Q4 − ν2) and W2 = 8Q2/(Q4 − ν2).

Let us proceed to evaluate the finite shift δd2 due to proton structure, and hence δE in
(41), in the limit me �M . Details of this computation are presented elsewhere. The essential
input from NRQED is the evaluation of Wi(0, Q

2) through O(Q2),

W1(0, Q2) = −2 + 2c2
F +

Q2

2M2

(
c2
F − 2cF cW1 + 2cM + cA1

)
+O(Q4) ,

M2W2(0, Q2) =
8M2

Q2
+ 2c2

F − 2cD +
Q2

2M2

[
− 1 + c2

F − cD +
1

4
c2
D + 2cM − 2cF cW1 −

1

2
cA2

+ 32(cX1 + cX2 + cX3)

]
+O(Q4) , (45)

and the evaluation of W1(ν, 0) through O(ν2),

W1(ν, 0) = −2 +
ν2

8M4

(
−c2

F + cF cS + 2cM −
1

2
cA2

)
+O(ν4) ,

lim
Q2→0

W2(ν,Q2) = 0 , (46)

where the final relation follows from requiring that the Compton amplitude (44) is finite at
Q2 → 0. Note in particular that W2(0, Q2) relies on O(1/M4) one-photon vertices involving
cX1, cX2, cX3. This occurs because the O(Q2) terms in W2(0, Q2) arise at third order in the
Q2/M2 expansion. Employing these results in the matching relation (42) yields the leading
contribution to S-state energies at me/M → 0,
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δE(nS) =
m3
eα

5

πn3

me

M3

{
log

me

M

[
M3 (5αE − βM) /α − 3ap(1 + ap) + 2M2(rpE)2

]
+ . . .

}
. (47)

Our result for the coefficient of the logarithm containing αE and βM was obtained in a temporal
gauge analysis in [22]. We have here used NRQED to establish the complete logarithmically
enhanced contribution. The expansion at small lepton mass is not possible for muonic hydro-
gen owing to low hadronic scales scales mµ ∼ mπ ∼ m∆ −mp. Further analysis for this case
will be presented elsewhere.

6.2 Radiative corrections to lepton-nucleon scattering

p

q

p′

q′

= p

q

p′

q′

+ p

q

p′

q′

+ p

q

q′

p′

Figure 2: Diagrammatic representation of the matching of the amplitude for Comp-
ton scattering obtained in the full theory and NRQED, to leading order
in e. The black vertices in the diagrams on the right-hand side represent
insertions of NRQED 1-photon operators.

p

k k − L + p

L − p

k′

L p′

L − p′

p

k k + L − p′ k′

L p′

Figure 3: Feynman diagrams for two-photon exchange with momentum labels.

2

Figure 3: Diagrams contributing at leading order in 1/M to two-photon exchange in electron-
proton scattering.

Extraction of key hadronic quantities from elastic lepton-nucleon scattering, such as the
charge and magnetic radii of the proton, demands rigorous control over radiative correc-
tions. Traditional analyses of the two-photon exchange contribution to elastic electron-proton
scattering resort to hadronic models involving phenomenological form factor insertions into
point-particle Feynman diagrams [23, 24, 25, 26], or require modeling of soft functions to eval-
uate expressions obtained in a hard-scattering factorization framework [27]. At low energies,
E � M , a systematic and model-independent approach is provided by NRQED. This region
has overlap with current and planned electron-proton and muon-proton scattering measure-
ments, and provides a rigorous test of hadronic models employed at higher energy.

Consider the two-photon exchange corrections to low-energy electron-proton scattering in
the limit m` = me � E � M , where E is the energy of the incident electron in the rest
frame of the initial-state proton. The appropriate effective theory consists of a relativistic
lepton and heavy proton, as described in Section 5.4. The leading order NRQED diagrams
are not sensitive to proton structure, yielding, in Feynman gauge, [electric charge assignments
are given after (1)]

iM≈ e4ū(p′)γ0γµγ0u(p)

×
∫

d4L

(2π)4

Lµ
L2 + i0

1

(L− p)2 − λ2 + i0

1

(L− p′)2 − λ2 + i0

(
1

−L0 + E + i0
+

1

L0 − E + i0

)
,

(48)

16



where we have neglected the electron mass and used that p0 − p′0, k0 − M , and k′0 − M
are subleading in the 1/M expansion to simplify the integrand. A photon mass λ is used
to regulate infrared divergences. Evaluating the integral in the limit λ � E, we recover the
expression for relativistic lepton scattering in an external Coulomb field [28, 29],12

M =
4πα

Q2
ū(p)γ0u(p)

{
1 + α

[
π

2

Q

2E +Q
+ i

(
− 2 log

λ

Q
+

Q2

(2E)2 −Q2
log

Q

2E

)]
+O[α2, λ/E,me/E,E/M ]

}
. (49)

The power of the effective theory lies in the possibility to systematically compute corrections
in powers of E/M and to relate observables such as scattering amplitudes and bound state
energies, in a model-independent fashion. Sensitivity to the Wilson coefficient cF appears at
order 1/M in the proton spin-dependent amplitude. At order 1/M2 there is a dependence on
cD, and on the constants b1 and b2 from (35), which encode information on proton excitations
and may be related to moments of the forward Compton amplitude.

A similar analysis may be performed to compute radiative corrections to muon-proton
scattering in the limit E � mµ ∼ M , where now the effective theory consists of heavy muon
and proton fields, as discussed in Section 5.2. Proton structure not captured by elastic form
factors is first encountered at O(1/M2), encoded in coefficients d1 and d2 in (23). NRQED
may similarly be used to compute radiative backgrounds to searches for possible new low-mass
and weakly coupled particles using low-energy electron-proton scattering [30].

6.3 Spin polarizabilities and static properties of nucleons

Having constructed the NRQED lagrangian, it is straightforward to relate parameters ex-
tracted from scattering measurements to those determined by static nucleon properties. Con-
sider for simplicity the case of a neutral particle such as the neutron.13 For example, the shift
in energy due to an external electromagnetic field is determined by the zero-momentum limit
of the amputated two-point function,

−δM(E,B) = − lim
p→0

Σ(p)

= cFg
σ ·B
2M

+ cDg
[∂ ·E]

8M2
+ cA1g

2B
2 −E2

8M3
− cA2g

2 E2

16M3
+ cX3g

[∂2∂ ·E]

M4

+ cX7g
2σ ·B[∂ ·E]

M4
+ cX8g

2 [E · ∂σ ·B]

M4
+ cX9g

2 [B · ∂σ ·E]

M4

+ cX10g
2 [Eiσ · ∂Bi]

M4
+ cX11g

2 [Biσ · ∂Ei]

M4
− cX12g

2σ ·E × [∂ ×B]

M4
, (50)

12There is an apparent typographical error in Eq. (2.6) of [29] where in the second line the integral I should
have the opposite overall sign. This affects only the imaginary part of the O(α) correction to the leading
amplitude and is thus not relevant to first order radiative corrections in the cross section.

13Static properties of a charged particle require care in definition, see, e.g., [31].
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and we may immediately identify the various static electromagnetic moments. The identifi-
cation of cXi as coefficients of a well-defined effective theory is essential for correctly relating
static coefficients, as measured by lattice [32, 33, 34, 35] or hadronic models, to scattering
observables [36, 37]. For example, conventional definitions of the scalar electric (αE) and
magnetic (βM) polarizabilities as determined by Compton scattering [38] require that coeffi-
cients cA1 and cA2 are not proportional to these quantities, but rather14

4M3

α
αE = −cA1 −

1

2
cA2 + Z2 + 2ZcM + cF cS − c2

F ,

4M3

α
βM = cA1 − Z2 . (51)

Similar relations relate static spin polarizabilities to scattering observables: see (21) and the
associated footnote.

The coefficients of spin-dependent operators cXi contribute to the spin-dependent structure
functions of forward Compton scattering, obtained from the antisymmetric component of (43),

W µν
A = ū(k)

{
H1

(
[γµ, q/ ]kν − [γν , q/ ]kµ − [γµ, γν ]k · q

)
+H2

(
[γµ, q/ ]qν − [γν , q/ ]qµ − [γµ, γν ]q2

)}
u(k) , (52)

where our normalization conventions are such that for a point particle MH1 = Q2/(Q4 − ν2),
H2 = 0. The model-independent analysis of these functions impacts structure-dependent cor-
rections in hydrogen spectroscopy.15 Let us compute H1(0, Q2) by using NRQED to compute
W i0
A . This requires a subclass of 1/M5 interactions involving the magnetic field and four

spatial derivatives,

∆L =
g

M5
ψ†
{
cY 1{σ ·B,∂4}+ cY 2{∂2, ∂iσ ·B∂i}+ cY 3∂

2σ ·B∂2 + cY 4∂
i∂jσ ·B∂i∂j

+ cY 5(B · ∂σ · ∂∂2 + ∂2σ · ∂∂ ·B) + cY 6(σ · ∂B · ∂∂2 + ∂2∂ ·Bσ · ∂)

+ cY 7(∂iBjσ · ∂∂i∂j + ∂i∂jσ · ∂Bj∂i) +O(g)

}
ψ , (53)

where we have neglected effects in setting D → ∂ that are not relevant to the present appli-
cation. At low Q2 we find

2MH1(0, Q2) =
2

Q2
ZcF +

1

4M2

[
Z(2cF + cS − 2cW1)− cF cD

]
14Many approaches in the literature lack a systematic treatment of these effects [17, 36, 34, 35, 37]. The

NRQED lagrangian, constrained by Lorentz invariance, trivializes relations such as (51) between static nucleon
properties and scattering observables.

15These functions enter directly in the analysis of spin-dependent transitions. Additionally, ansatzes used
to model W1(0, Q2) may be compared to analogous studies of H1(0, Q2), which by virtue of an unsubtracted
dispersion relation, can be reconstructed from experimental data on elastic and inelastic scattering [39].
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+
Q2

16M4

[
cD(cW1 − cF )− 2Z(cF + cW1 − 32cY 1)

+ 32cF (cX1 + cX2 + cX3) + 16(−cX7 + cX8 + cX12)

]
+O(Q4). (54)

Using relations (15), (16), (21), and

cY 1 =
27

256
F̄1 +

23

256
F̄2 +

5

16
F̄ ′1 +

5

16
F̄ ′2 +

1

4
F̄ ′′1 +

1

4
F̄ ′′2 , (55)

the result (54) may be expressed in terms of scattering observables.

7 Summary

We have derived a complete basis of operators and coefficient constraints through order 1/M4

for the parity and time-reversal invariant effective lagrangian for a heavy fermion interacting
with an abelian gauge field, i.e., NRQED.

The computations of this paper provide an illustration of relativity constraints in high
orders of heavy particle effective theories [8]. In particular, the transformation law for fields
under Lorentz boosts receives nontrivial corrections compared to a naive reparameterization
ansatz [11]. These effects occur first in the 1/M4 lagrangian, and are validated by the explicit
matching and variational computations presented in this paper. Relations (9) and (25), and
their extensions to QCD (e.g. HQET or NRQCD) represent new non-renormalization theorems
valid to all orders in perturbation theory.

NRQED can be used to efficiently analyze processes involving long wavelength electromag-
netic probes of the nucleon. The analysis was motivated in part by the necessity to incorporate
high-order corrections of proton structure in hydrogenic bound states. A sample application
to structure-dependent two-photon exchange corrections in the small lepton mass limit was
presented in Section 6.1.

For applications to low-energy electron scattering, me � E � mp, we constructed in
Section 5.4 the effective theory for a relativistic electron and nonrelativistic proton. The
lagrangian and coefficient relations were derived through O(1/M3). This case may be applied
to a model-independent analysis of radiative corrections in the extraction of proton structure
from electron scattering, as discussed in Section 6.2.

The effects of nucleon structure are implemented by non-pointlike values for the Wilson
coefficients appearing in (1). Having determined the structure of the NRQED lagrangian, it
becomes a trivial task to define and compute static properties of nucleons, and to unambigu-
ously relate these properties to scattering measurements, as illustrated in Section 6.3.

For simplicity we focused in this paper on the effective lagrangian for a parity conserving
theory of a heavy fermion coupled to an abelian gauge field. Extensions to nonabelian gauge
fields, the inclusion of parity violation, and the consideration of different heavy particle spins
each have important applications.
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