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We report the determination of the Cabibbo-Kobayashi-Maskawa CP -violating angle γ through the
combination of various measurements involving B±

→ DK±, B±
→ D∗K±, and B±

→ DK∗±

decays performed by the BABAR experiment at the PEP-II e+e− collider at SLAC National Acceler-
ator Laboratory. Using up to 474 million BB pairs, we obtain γ = (69+17

−16)
◦ modulo 180◦. The total

uncertainty is dominated by the statistical component, with the experimental and amplitude-model
systematic uncertainties amounting to ±4◦. The corresponding two-standard-deviation region is
41◦ < γ < 102◦. This result is inconsistent with γ = 0 with a significance of 5.9 standard devia-
tions.

PACS numbers: 13.25.Hw, 12.15.Hh, 14.40.Nd, 11.30.Er

I. INTRODUCTION AND OVERVIEW

In the Standard Model (SM), the mechanism of CP
violation in weak interactions arises from the joint ef-
fect of three mixing angles and the single irreducible
phase in the three-family Cabibbo-Kobayashi-Maskawa
(CKM) quark-mixing matrix [1]. The unitarity of the
CKM matrix V implies a set of relations among its el-
ements, Vij , with i = u, c, t and j = d, s, b. In partic-
ular, VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, which can be de-

picted in the complex plane as a unitarity triangle whose
sides and angles are related to the magnitudes and phases
of the six elements of the first and third columns of

∗Now at the University of Tabuk, Tabuk 71491, Saudi Arabia
†Now at European Organization for Nuclear Research (CERN),
Geneva, Switzerland
‡Also with Università di Perugia, Dipartimento di Fisica, Perugia,
Italy
§Now at the University of Huddersfield, Huddersfield HD1 3DH,
UK
¶Deceased
∗∗Now at University of South Alabama, Mobile, Alabama 36688,
USA
††Also with Università di Sassari, Sassari, Italy

the matrix, Vid and Vib. The parameter γ, defined as
arg[−VudV

∗
ub/VcdV

∗
cb], is one of the three angles of this

triangle. From measurements of the sides and angles
of the unitarity triangle from many decay processes, it
is possible to overconstrain our knowledge of the CKM
mechanism, probing dynamics beyond the SM [2]. In
this context, the angle γ is particularly relevant since it
is the only CP -violating parameter that can be cleanly
determined using tree-level B meson decays [3]. In spite
of a decade of successful operation and experimental ef-
forts by the B factory experiments, BABAR and Belle, γ
is poorly known due to its large statistical uncertainty.
Its precise determination is an important goal of present
and future flavor physics experiments.

Several methods have been pursued to extract γ [4–
9]. Those using charged B meson decays into D(∗)K±

andDK∗± final states, denoted generically asD(∗)K(∗)±,
yield low theoretical uncertainties since the decays in-
volved do not receive contributions from penguin dia-
grams (see Fig. 1). This is a very important distinction
from most other measurements of the angles. Here, the
symbol D(∗) indicates either a D0 (D∗0) or a D0 (D∗0)
meson, and K∗± refers to K∗(892)± states. The meth-
ods to measure γ based on B± → D(∗)K(∗)± decays
rely on the interference between the CKM- and color-
favored b → cus and the suppressed b → ucs ampli-
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tudes, which arises when the D0 from a B− → D0K−

decay [10] (and similarly for the other related B decays)
is reconstructed in a final state which can be produced
also in the decay of a D0 originating from B− → D0K−

(see Fig 1). The interference between the b → cus and
b → ucs tree amplitudes results in observables that de-
pend on their relative weak phase γ, on the magnitude
ratio rB ≡ |A(b → ucs)/A(b → cus)| and on the relative
strong phase δB between the two amplitudes. In the case
of a nonzero weak phase γ and a nonzero strong phase
δB, the B− and B+ decay rates are different, a manifes-
tation of direct CP violation. The hadronic parameters
rB and δB are not precisely known from theory, and may
have different values for DK±, D∗K±, and DK∗± final
states. They can be measured directly from data by si-
multaneously reconstructing several D decay final states.

D0�u
s K��u

B� b W�
B� b u

�
K�
�D0

�u s�u W�
FIG. 1: Dominant Feynman diagrams for the decays B−

→

D0K− (left) and B−
→ D0K− (right). The left diagram

proceeds via b → cus transition, while the right diagram pro-
ceeds via b → ucs transition and is both CKM- and color-
suppressed.

The three main approaches employed by the B factory
experiments are:

• the Dalitz plot or Giri-Grossman-Soffer-Zupan
(GGSZ) method, based on three-body, self-
conjugate final states, such as K0

S
π+π− [7];

• the Gronau-London-Wyler (GLW) method, based
on decays to CP -eigenstate final states, such as
K+K− and K0

S
π0 [8];

• the Atwood-Dunietz-Soni (ADS) method, based
on D decays to doubly-Cabibbo-suppressed final
states, such as D0 → K+π− [9].

To date, the GGSZ method has provided the highest
statistical power in measuring γ. The other two meth-
ods provide additional information that can further con-
strain the hadronic parameters and thus allow for a more
robust determination of γ. The primary issue with all
these methods is the small product branching fraction
of the decays involved, which range from 5 × 10−6 to
5 × 10−9, and the small size of the interference, propor-
tional to rB ≈ cF |VcsV

∗
ub|/|VusV

∗
cb| ≈ 0.1, where cF ≈ 0.2

is a color suppression factor [11–13]. Therefore a pre-
cise determination of γ requires a very large data sample
and the combination of all available methods involving
different D decay modes.

Recently, Belle [14] and LHCb [15] have presented
the preliminary results of the combination of their mea-

surements related to γ, yielding γ to be
(

68+15
−14

)◦
and

(

71+17
−16

)◦
, respectively. Attempts to combine the results

by BABAR, Belle, CDF, and LHCb have been performed
by the CKMfitter and UTfit groups [2]. Their most re-
cent results are (66± 12)◦ and (72± 9)◦, respectively
The BABAR experiment [16] at the PEP-II asymmetric-

energy e+e− collider at SLAC has analyzed charged B
decays into DK±, D∗K±, and DK∗± final states using
the GGSZ [17–19], GLW [20–22] and ADS [22–24] meth-
ods, providing a variety of measurements and constraints
on γ. The results are based on a dataset collected at a
center-of-mass energy equal to the mass of the Υ (4S) res-
onance, and about 10% of data collected 40 MeV below.
We present herein the combination of published BABAR

measurements using detailed information on correlations
between parameters that we have not previously pub-
lished. This combination represents the most complete
study of the data sample collected by BABAR and bene-
fits from the possibility to access and reanalyze the data
sample (see Sec. II for detail).
Other analyses related to γ [25–27] or 2β + γ [28, 29]

have not been included, because the errors on the exper-
imental measurements are too large.

II. INPUT MEASUREMENTS

In the GGSZ approach, where D mesons are re-
constructed into the K0

S
π+π− and K0

S
K+K− final

states [17–19], the signal rates for B± → D(∗)K± and
B± → DK∗± decays are analyzed as a function of the
position in the Dalitz plot of squared invariant masses
m2

− = m2(K0
S
h−), m2

+ = m2(K0
S
h+), where h is either

a charged pion or kaon (h = π,K). We assume no CP
violation in the neutral D and K meson systems and ne-
glect small D0 − D0 mixing effects [32, 33], leading to
A(m2

−,m
2
+) = A(m2

+,m
2
−), where A (A) is the D0 (D0)

decay amplitude. In this case, the signal decay rates can
be written as [34]

Γ
(∗)
± (m2

−,m
2
+) ∝

|A±|
2 + r

(∗)
B±

2
|A∓|

2 + 2λRe[z
(∗)
± A†

±A∓],

Γs
±(m

2
−,m

2
+) ∝

|A±|
2 + r2s±|A∓|

2 + 2Re[zs±A
†
±A∓], (1)

with A± ≡ A(m2
±,m

2
∓) and A†

± is the complex conjugate
of A±. The symbol λ for B± → D∗K± accounts for the
different CP parity of the D∗ when it is reconstructed
into Dπ0 (λ = +1) and Dγ (λ = −1) final states, as a
consequence of the opposite CP eigenvalue of the π0 and

the photon [35]. Here, r
(∗)
B± and rs± are the magnitude

ratios between the b → ucs and b → cus amplitudes for
B± → D(∗)K± and B± → DK∗± decays, respectively,

and δ
(∗)
B , δs are their relative strong phases. The analysis
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extracts the CP -violating observables [19]

z
(∗)
± ≡ x

(∗)
± + iy

(∗)
± ,

zs± ≡ xs± + iys±, (2)

defined as the suppressed-to-favored complex amplitude

ratios z
(∗)
± = r

(∗)
B±e

i(δ
(∗)
B

±γ) and zs± = κrs±e
i(δs±γ), for

B± → D(∗)K± and B± → DK∗± decays, respectively.
The hadronic parameter κ is defined as

κeiδs ≡

∫

Ac(p)Au(p)e
iδ(p)dp

√

∫

A2
c(p)dp

∫

A2
u(p)dp

, (3)

whereAc(p) andAu(p) are the magnitudes of the b → cus
and b → ucs amplitudes as a function of the B± →
DK0

S
π± phase space position p, and δ(p) is their relative

strong phase. This coherence factor, with 0 < κ < 1 in
the most general case and κ = 1 for two-body B decays,
accounts for the interference between B± → DK∗± and
other B± → DK0

S
π± decays, as a consequence of the

K∗± natural width [12]. In our analysis, κ has been
fixed to 0.9 and a systematic uncertainty has been as-
signed varying its value by ±0.1, as estimated using a
Monte Carlo simulation based on Dalitz plot model of
B± → DK0

S
π± decays [18]. Thus, the parameter δs is an

effective strong-phase difference averaged over the phase
space.

TABLE I: CP -violating complex parameters z
(∗)
± ≡ x

(∗)
± +iy

(∗)
±

and zs± ≡ xs± + iys±, measured using the GGSZ tech-
nique [17]. The first uncertainty is statistical, the second is
the experimental systematic uncertainty and the third is the
systematic uncertainty associated with the D0 decay ampli-
tude models. The sample analyzed contains 468 million BB
pairs.

Real part (%) Imaginary part (%)

z− 6.0± 3.9± 0.7± 0.6 6.2± 4.5± 0.4± 0.6
z+ −10.3 ± 3.7± 0.6± 0.7 − 2.1± 4.8± 0.4± 0.9
z
∗
− −10.4 ± 5.1± 1.9± 0.2 − 5.2± 6.3± 0.9± 0.7
z
∗
+ 14.7 ± 5.3± 1.7± 0.3 − 3.2± 7.7± 0.8± 0.6
zs− 7.5± 9.6± 2.9± 0.7 12.7 ± 9.5± 2.7± 0.6
zs+ −15.1 ± 8.3± 2.9± 0.6 4.5± 10.6± 3.6± 0.8

Table I summarizes our experimental results for the

CP -violating parameters z
(∗)
± and zs±. Complete 12× 12

covariance matrices for statistical, experimental system-
atic and amplitude model uncertainties are reported in

Ref. [17]. The z
(∗)
± and zs± observables are unbiased and

have Gaussian behavior with small correlations, even for

low values of r
(∗)
B , κrs and relatively low statistics sam-

ples. Furthermore, their uncertainties have minimal de-
pendence on their central values and are free of physical
bounds [19]. These good statistical properties allow for
easier combination of several measurements into a sin-
gle result. For example, the rather complex experimen-
tal GGSZ likelihood function can be parameterized by a

12-dimensional (correlated) Gaussian probability density

function (P.D.F.), defined in the space of the z
(∗)
± and

zs± measurements from Table I. After this combination
has been performed, the values of γ and of the hadronic

parameters r
(∗)
B , κrs, δ

(∗)
B , and δs can be obtained.

The D decay amplitudes A± have been determined
from Dalitz plot analyses of tagged D0 mesons from
D∗+ → D0π+ decays produced in e+e− → cc̄ events [18,
36], assuming an empirical model to describe the varia-
tion of the amplitude phase as a function of the Dalitz
plot variables. A model independent, binned approach
also exists [7, 37], which optimally extracts information
on γ for higher statistics samples than the ones available.
This type of analysis has been performed as a proof of
principle by the Belle collaboration [38], giving consis-
tent results to the model-dependent approach [39]. The
LHCb collaboration has also released results of a model-
independent GGSZ analysis [40].
In order to determine γ with the GLW method, the

analyses measure the direct CP -violating partial decay
rate asymmetries

A
(∗)
CP± ≡

Γ(B− → D
(∗)
CP±K

−)− Γ(B+ → D
(∗)
CP±K

+)

Γ(B− → D
(∗)
CP±K

−) + Γ(B+ → D
(∗)
CP±K

+)
,

(4)

and the ratios of charge-averaged partial rates using D
decays to CP and flavor eigenstates,

R
(∗)
CP± ≡ 2

Γ(B− → D
(∗)
CP±K

−) + Γ(B+ → D
(∗)
CP±K

+)

Γ(B− → D(∗)0K−) + Γ(B+ → D(∗)0K+)
,

(5)

where D
(∗)
CP± refers to the CP eigenstates of the D(∗) me-

son system. We select D mesons in the CP -even eigen-
states π−π+ and K−K+ (DCP+), in the CP -odd eigen-
states K0

S
π0, K0

S
φ, and K0

S
ω (DCP−), and in the non-CP

eigenstate K−π+ (D0 from B− → D0h−) or K+π− (D0

from B+ → D0h+). We recontruct D∗ mesons in the
states Dπ0 and Dγ. The observables As

CP± and Rs
CP±

for B± → DK∗± decays are defined similarly.
For later convenience, the GLW observables can be re-

lated to z
(∗)
± and zs± (neglecting mixing and CP violation

in neutral D decays) as

A
(∗)
CP± = ±

x
(∗)
− − x

(∗)
+

1 + |z(∗)|2 ± (x
(∗)
− + x

(∗)
+ )

, (6)

and

R
(∗)
CP± = 1 + |z(∗)|2 ± (x

(∗)
− + x

(∗)
+ ), (7)

where |z(∗)|2 is the average value of |z
(∗)
+ |2 and |z

(∗)
− |2. For

B± → DK∗± decays, similar relations to Eqs. (6) and (7)
hold, with κ = 1, since the effects of the non-K∗ B →
DKπ events and the width of the K∗ are incorporated
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into the systematic uncertainties of the As
CP± and Rs

CP±

measurements [22].
Table II summarizes the results obtained for the GLW

observables. In order to avoid overlaps with the sam-
ples selected in the Dalitz plot analysis, the results for
B± → DCP−K

± decays are corrected removing the
contribution from DCP− → K0

S
φ, φ → K+K− candi-

dates [20]. For the decays B± → D∗
CP−[DCP−π

0]K±,

B± → D∗
CP+[DCP−γ]K

±, and B± → DCP−K
∗±, such

information is not available. In this case, the overlap
is accounted for by increasing the uncertainties quoted
in Refs. [21, 22] by 10% while keeping the central val-
ues unchanged. The 10% increase in the experimen-
tal uncertainties is approximately the change observed
in B± → DCP−K

± decays when excluding or including
D → K0

S
φ in the measurement. The impact on the com-

bination has been found to be negligible.

TABLE II: GLW observables measured for the B±
→ DK±

(based on 467 million BB pairs) [20], B±
→ D∗K± (383

million BB pairs) [21], and B±
→ DK∗± (379 million BB

pairs) [22] decays, corrected removing the contribution from
DCP− → K0

Sφ, φ → K+K− candidates. The first uncertainty
is statistical, the second is systematic.

CP -even CP -odd
RCP± 1.18± 0.09 ± 0.05 1.03 ± 0.09± 0.04
ACP± 0.25± 0.06 ± 0.02 −0.08± 0.07± 0.02
R∗

CP± 1.31± 0.13 ± 0.04 1.10 ± 0.13± 0.04
A∗

CP± −0.11± 0.09 ± 0.01 0.06 ± 0.11± 0.02
Rs

CP± 2.17± 0.35 ± 0.09 1.03 ± 0.30± 0.14
As

CP± 0.09± 0.13 ± 0.06 −0.23± 0.23± 0.08

As in the case of the GGSZ observables, A
(∗)
CP±, A

s
CP±,

R
(∗)
CP±, and Rs

CP± have Gaussian uncertainties near the
best solution, with small statistical and systematic cor-
relations, as given in Ref. [20] for B± → DCP−K

± de-
cays. The GLW method has also been exploited by the
Belle [41], CDF [42], and LHCb collaborations [43], with
consistent results.
In the ADS method, the D0 meson from the favored

b → cus amplitude is reconstructed in the doubly-
Cabibbo-suppressed decay K+π−, while the D0 from
the b → ucs suppressed amplitude is reconstructed in
the favored decay K+π− [22, 23]. The product branch-
ing fractions for these final states, which we denote
as B− → [K+π−]DK−, B− → [K+π−]∗DK−, B− →
[K+π−]DK∗−, and their CP conjugates, are small (∼
10−7). However, the two interfering amplitudes are of
the same order of magnitude, allowing for possible large
CP asymmetries. We measure charge-specific ratios for
B+ and B− decay rates to the ADS final states, which
are defined as

R
(∗)
± ≡

Γ(B± → [K∓π±]
(∗)
D K±)

Γ(B± → [K±π∓]
(∗)
D K±)

, (8)

and similarly for Rs
±, where the favored decays B− →

[K−π+]DK−, B− → [K−π+]∗DK−, and B− →
[K−π+]DK∗− serve as normalization so that many sys-
tematic uncertainties cancel. The rates in Eq. (8) depend
on γ and the B decay hadronic parameters. They are re-

lated to z
(∗)
± and zs± through

R
(∗)
± = r

(∗)
B±

2
+ r2D + 2λrD

[

x
(∗)
± cos δD − y

(∗)
± sin δD

]

,

(9)

where rD = |A(D0 → K+π−)/A(D0 → K−π+)| and
δD are the ratio between magnitudes of the suppressed
and favoredD decay amplitudes and their relative strong
phase, respectively. As in Eq. (1), the symbol λ for
B± → D∗K± decays accounts for the different CP parity
of D∗ → Dπ0 and D∗ → Dγ. The values of rD and δD
are taken as external constraints in our analysis. As for
the GLW method, the effects of other B± → DK0

S
π±

events, not going through K∗±, and the K∗± width,
are incorporated in the systematic uncertainties on Rs

±.
Thus, similar relations hold for these observables with
κ = 1.
The choice of the observables R± (and similarly for

R∗
± and Rs

±) rather than the original ADS observ-
ables RADS ≡ (R+ + R−)/2 and AADS ≡ (R− −
R+)/2RADS [9] is motivated by the fact that the set of
variables (RADS, AADS) is not well behaved since the un-
certainty on AADS depends on the central value of RADS,
while R+ and R− are statistically independent observ-
ables. Although systematic uncertainties are largely cor-
related, the measurements of R+ and R− are effectively
uncorrelated since the total uncertainties are dominated
by the statistical component.
We have also reconstructed B± → [K∓π±π0]DK± de-

cays [24] from which the observables RKππ0

± have been
measured, which are related to the GGSZ observables as

RKππ0

± = rB±
2 + r2Kππ0 + 2κKππ0rKππ0

× [x± cos δKππ0 − y± sin δKππ0 ] , (10)

where κKππ0 is a D decay coherence factor similar to
that defined in Eq. (3) for the B± → DK0

S
π± decay,

and where rKππ0 and δKππ0 are hadronic parameters for
D0 → K±π∓π0 decays analogous to rD and δD.
Table III summarizes the measurements of the ADS

charge-specific ratios for the different final states. Con-
trary to the case of the GGSZ and GLW observables,

R
(∗)
± , Rs

±, and RKππ0

± do not have Gaussian behavior.
The experimental likelihood function for each of the
four decay modes, shown in Fig. 2 for B± → DK±

and B± → D∗K± decays, is well described around the
best solution by an analytical P.D.F. composed of the
sum of two asymmetric Gaussian functions. For the
B± → DK∗± channel, we use instead a simple Gaus-
sian approximation since in this case the experimental
likelihood scans are not available. The effect of this ap-
proximation has been verified to be negligible, given the
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small statistical weight of this sample in the combination.
Measurements using the ADS technique have also been
performed by the Belle [44, 45], CDF [46], and LHCb
collaborations [43], with consistent results.

TABLE III: ADS observables included into the combination
for B±

→ DK± with D → Kπ (based on 467 million BB
pairs) and D → Kππ0 (based on 474 million BB pairs),
B±

→ D∗K± (467 million BB pairs), and B±
→ DK∗±

(379 million BB pairs) decays [22–24]. The first uncertainty
is statistical, the second is systematic.

B+ B−

R± 0.022 ± 0.009 ± 0.003 0.002 ± 0.006 ± 0.002
R∗

± [Dπ0] 0.005 ± 0.008 ± 0.003 0.037 ± 0.018 ± 0.009
R∗

± [Dγ] 0.009 ± 0.016 ± 0.007 0.019 ± 0.023 ± 0.012
Rs

± 0.076 ± 0.042 ± 0.011 0.054 ± 0.049 ± 0.011

RKππ
0

± 0.005 +0.012
−0.010

+0.001
−0.004 0.012 +0.012

−0.010
+0.002
−0.004

III. OTHER MEASUREMENTS

Similar analyses related to γ measurement have
been carried out using the decay B− → DK−

with the D → π+π−π0 final state [25], and the
neutral B decay B0 → DK∗(892)0, K∗(892)0 →
K−π+, with D → K0

S
π+π− [26] and D →

K±π∓,K±π∓π0,K±π∓π±π∓ [27]. For neutral B de-
cays, rB is naively expected to be larger (≈ 0.3) be-
cause both interfering amplitudes are color suppressed
and thus cF ≈ 1. However, the overall rate of events
is smaller than for B− → DK∗− decays. The flavor
of the neutral B meson is tagged by the charge of the
kaon produced in the K∗0 decay, K∗(892)0 → K−π+ or
K∗(892)0 → K+π−.
Experimental analyses of the time-dependent decay

rates of B → D(∗)∓π± and B → D∓ρ(770)± decays have
also been used to constrain γ [28, 29]. In these decays,
the interference occurs between the favored b → cud and
the suppressed b → ucd tree amplitudes with and without
B0 − B0 mixing, resulting in a total weak phase differ-
ence 2β + γ [30], where β is the angle of the unitarity
triangle defined as arg[−VcdV

∗
cb/VtdV

∗
tb]. The magnitude

ratios between the suppressed and favored amplitudes
rD(∗)π and rDρ are expected to be ≈ 2%, and have to
be estimated either by analyzing suppressed charged B
decays (e.g., B+ → D+π0) with an isospin assumption
or from self-tagging neutral B decays to charmed-strange
mesons (e.g., B0 → D+

s π
−) assuming SU(3) flavor sym-

metry and neglecting contributions from W -exchange di-
agrams [30]. Performing a time-dependent Dalitz plot
analysis of B → D∓K0π± decays [31] could in principle
avoid the problem of the smallness of r. In these decays
the two interfering amplitudes are color suppressed, and
rB is expected to be ≈ 0.3 but the overall rate of events
is too small with the current data sample.
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FIG. 2: Experimental likelihoods as functions of the ADS
charge-specific ratios R± (a,b), R∗

± [Dπ0] (c,d), R∗
± [Dγ] (e,f),

and RKππ
0

± (g,h), from Refs. [23, 24], including systematic
uncertainties. The P.D.F.s are normalized so that their max-
imum values are equal to 1. These distributions are well pa-
rameterized by sums of two asymmetric Gaussian functions
with mean values as given in Table III.

In both cases, the errors on the experimental measure-
ments are too large for a meaningful determination of γ,
and have not been included in the combined determina-
tion of γ reported in this paper. However, these decay
channels might provide important information in future
experiments.

IV. COMBINATION PROCEDURE

We combine all the GGSZ, GLW, and ADS observables
(34 in total) to extract γ in two different stages. First, we
extract the best-fit values for the CP -violating quantities

z
(∗)
± and zs±, whose definitions correspond to those for
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the quantities z
(∗)
± and zs± of the GGSZ analysis given in

Eq. (2).

Their best-fit values are obtained by maximizing a
combined likelihood function constructed as the product
of partial likelihood P.D.F.s for GGSZ, GLW, and ADS
measurements. The GGSZ likelihood function uses a 12-
dimensional Gaussian P.D.F. with measurements z

(∗)
± and

zs± and their covariance matrices for statistical, exper-
imental, and amplitude model uncertainties, and mean

(expected) values z
(∗)
± and zs±. Similarly, the GLW like-

lihood is formed as the product of four-dimensional Gaus-

sian P.D.F.s for each B decay with measurements A
(∗)
CP±,

As
CP±, R

(∗)
CP±, R

s
CP± and their covariance matrices, and

expected values given by Eqs. (6) and (7) after replacing

the z
(∗)
± and zs± observables by the z

(∗)
± and zs± parame-

ters. Finally, the ADS P.D.F. is built from the product of
experimental likelihoods shown in Fig. 2. With this con-
struction, GGSZ, GLW, and ADS observables are taken
as uncorrelated. Similarly, the individual measurements
are considered uncorrelated as the experimental uncer-
tainties are dominated by the statistical component.

The combination requires external inputs for the
D hadronic parameters rD, δD, rKππ0 , δKππ0 , and
κKππ0 . We assume Gaussian P.D.F.s for rD = 0.0575±
0.0007 [32] and rKππ0 = 0.0469±0.0011 [47], while for the
other three we adopt asymmetric Gaussian parameteri-
zations based on the experimental likelihoods available
either from world averages for δD = (202.0+9.9

−11.2)
◦ [32] or

from the CLEOc collaboration for δKππ0 = (47+14
−17)

◦ and
κKππ0 = 0.84 ± 0.07 [48]. The values of δD and δKππ0

have been corrected for a shift of 180◦ in the definition
of the phases between Refs. [23, 24] and Refs. [32, 48].
The correlations between rD and δD, and between κKππ0

and δKππ0 , are small and have been neglected. All five
external observables are assumed to be uncorrelated with
the rest of the input observables.

The results for the combined CP -violating parameters

z
(∗)
± and zs± are summarized in Table IV. Figure 3 shows
comparisons of two-dimensional regions corresponding to
one-, two-, and three-standard-deviation regions in the
z±, z

∗
±, and zs± planes, including statistical and sys-

tematic uncertainties, for GGSZ only, GGSZ and GLW
methods combined, and the overall combination. These
contours have been obtained using the likelihood ratio
method, −2∆ lnL = s2, where s is the number of stan-
dard deviations, where 2∆ lnL represents the variation
of the combined log-likelihood with respect to its maxi-
mum value [47]. With this construction, the approximate
confidence level (C.L.) in two dimensions for each pair
of variables is 39.3%, 86.5%, and 98.9%. In these two-
dimensional regions, the separation of the B− and B+

positions is equal to 2rB | sin γ|, 2r∗B| sin γ|, 2κrs| sin γ|
and is a measurement of direct CP violation, while the
angle between the lines connecting the B− and B+ cen-
ters with the origin (0, 0) is equal to 2γ. Therefore, the
net difference between x+ and x− observed in Table IV
and Fig. 3 is clear evidence for direct CP violation in

B± → DK± decays.
In Fig. 3, we observe that when the information from

the GLW measurements is included the constraints on
the best fit values of the parameters are improved. How-
ever, the constraints on y± are poor due to the quadratic
dependence and the fact that rB ≪ 1. This is the reason
why the GLWmethod alone can hardly constrain γ. Sim-
ilarly, Eq. (9) for the ADS method represents two circles
in the (x±, y±) plane centered at (rB cos δD, rD sin δD)

and with radii
√

R±. It is not possible to determine
γ with only ADS observables because the true (x±, y±)
points are distributed over two circles [49]. Therefore,
while the GLW and ADS methods alone can hardly de-
termine γ, when combined with the GGSZ measurements
they help to improve significantly the constraints on the
CP -violating parameters z±, z

∗
±, and zs±.

TABLE IV: CP -violating complex parameters z
(∗)
± = x

(∗)
± +

iy
(∗)
± and zs± = xs± + iy

s± obtained from the combination
of GGSZ, GLW, and ADS measurements. The first error is
statistical (corresponding to −2∆ lnL = 1), the second is the
experimental systematic uncertainty including the systematic
uncertainty associated to the GGSZ decay amplitude models.

Real part (%) Imaginary part (%)

z− 8.1± 2.3± 0.7 4.4 ± 3.4 ± 0.5
z+ −9.3± 2.2± 0.3 −1.7± 4.6 ± 0.4
z
∗
− −7.0± 3.6± 1.1 −10.6 ± 5.4 ± 2.0
z
∗
+ 10.3± 2.9± 0.8 −1.4± 8.3 ± 2.5
zs− 13.3± 8.1± 2.6 13.9 ± 8.8 ± 3.6
zs+ −9.8± 6.9± 1.2 11.0± 11.0 ± 6.1

V. INTERPRETATION OF RESULTS

In a second stage, we transform the combined (x±, y±),
(x∗

±, y
∗
±), and (xs±, ys±) measurements into the physi-

cally relevant quantities γ and the set of hadronic pa-
rameters u ≡ (rB , r

∗
B , κrs, δB, δ

∗
B, δs). We adopt a fre-

quentist procedure [50] to obtain one-dimensional con-
fidence intervals of well-defined C.L. that takes into
account non-Gaussian effects due to the nonlinearity
of the relations between the observables and physical
quantities. This procedure is identical to that used in
Refs. [17, 18, 20, 22, 23].
We define a χ2 function as

χ2(γ,u) ≡ −2∆ lnL(γ,u)

≡ −2[lnL(γ,u)− lnLmax], (11)

where 2∆ lnL(γ,u) is the variation of the combined
log-likelihood with respect to its maximum value, with

the z
(∗)
± and zs± expected values written in terms of γ

and u, i.e., replacing z
(∗)
± and zs± by r

(∗)
B ei(δ

(∗)
B

±γ) and
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FIG. 3: (color online). Two-dimensional −2∆ lnL = s2 contours (up to three standard deviations, i.e., s = 1, 2, 3) in the z±

(left column), z∗± (center column), and zs± (right column) planes, for the GGSZ measurement only (top row), the GGSZ and
GLW combination (middle row), and the GGSZ, GLW, and ADS combination (bottom row). The solid (blue) and dashed (red)
lines correspond to B− and B+ decays.

κrse
i(δs±γ), respectively. To evaluate the C.L. of a cer-

tain parameter (for example γ) at a given value (γ0), we
consider the value of the χ2 function at the new mini-
mum, χ2

min(γ0,u0), satisfying ∆χ2(γ0) = χ2
min(γ0,u0) −

χ2
min ≥ 0. In a purely Gaussian situation, the C.L. is

given by the probability that ∆χ2(γ0) is exceeded for a
χ2 distribution with one degree of freedom, 1 − C.L. =
Prob[∆χ2(γ0); ν = 1], where Prob[∆χ2(γ0); ν = 1] is the
corresponding cumulative distribution function (this ap-
proach is later referred to as “Prob method”) [47]. In
a non-Gaussian situation one has to consider ∆χ2(γ0)
as a test statistic, and rely on a Monte Carlo simula-
tion to obtain its expected distribution. This Monte
Carlo simulation is performed by generating more than

109 samples (sets of the 39 GGSZ, GLW, ADS, and D
decay observable values), using the combined likelihood
evaluated at values (γ0,u0), i.e., L(γ0,u0). The confi-
dence level C.L. is determined from the fraction of exper-
iments for which ∆χ′2(γ0) > ∆χ2(γ0), where ∆χ′2(γ0) =
χ′2(γ0,u

′
0) − χ′2

min for each simulated experiment is de-
termined as in the case of the actual data sample. We
adopt the Monte Carlo simulation method as baseline

to determine the C.L., and allow 0 ≤ r
(∗)
B , κrs ≤ 1 and

−180◦ ≤ γ, δ
(∗)
B , δs ≤ 180◦.

Figure 4 illustrates 1 − C.L. as a function of γ, r
(∗)
B ,

κrs, δ
(∗)
B , and δs, for each of the three B decay chan-

nels separately and, in the case of γ, their combination.



12

The combination has the same twofold ambiguity in the
weak and strong phases as that of the GGSZ method,

(γ; δ
(∗)
B , δs) → (γ + 180◦; δ

(∗)
B + 180◦, δs + 180◦). From

these distributions, we extract one- and two-standard-
deviation intervals as the sets of values for which 1−C.L.
is greater than 31.73% and 4.55%, respectively, as sum-
marized in Table V. When comparing these intervals to
those obtained with the GGSZ method only, also shown
in Table V, we observe that the combination helps im-

proving the constraints on r
(∗)
B and κrs, but not those on

γ. To assess the impact of the GLW and ADS observables
in the determination of γ, we compare 1−C.L. as a func-

tion of r
(∗)
B and γ for all B decay channels combined using

the GGSZ method alone, the combination with the GLW
measurements, and the global combination, as shown in
Fig. 5. While the constraints on rB are clearly improved
at the one- and two-standard-deviation level, and to a
lesser extent on r∗B , their best (central) values move to-
wards slightly lower values. Since the uncertainty on γ

scales approximately as 1/r
(∗)
B , the constraints on γ at

68.3% and 95.4% C.L. do not improve, in spite of the
tighter constraints on the combined measurements shown
in Fig. 3. However, adding GLW and ADS information
reduces the confidence intervals for smaller 1 − C.L., as
a consequence of the more Gaussian behavior when the

significance of excluding r
(∗)
B = 0 increases. Thus, for

example, in the region close to four standard deviations,
the GGSZ method alone does not constrain γ, while the
combination is able to exclude large regions.

TABLE V: 68.3% and 95.5% 1-dimensional C.L. regions,
equivalent to one- and two-standard-deviation intervals, for

γ, δ
(∗)
B

, δs, r
(∗)
B

, and κrs, including all sources of uncertainty,
obtained from the combination of GGSZ, GLW, and ADS
measurements. The combined results are compared to those
obtained using the GGSZ measurements only, taken from

Ref. [17]. The results for γ, δ
(∗)
B

, and δs are given modulo
a 180◦ phase.

Parameter 68.3% C.L. 95.5% C.L.
Combination GGSZ Combination GGSZ

γ (◦) 69+17
−16 68+15

−14 [41, 102] [39, 98]
rB (%) 9.2+1.3

−1.2 9.6± 2.9 [6.0, 12.6] [3.7, 15.5]
r∗B (%) 10.6+1.9

−3.6 13.3+4.2
−3.9 [3.0, 14.7] [4.9, 21.5]

κrs (%) 14.3+4.8
−4.9 14.9+6.6

−6.2 [3.3, 25.1] < 28.0
δB (◦) 105+16

−17 119+19
−20 [72, 139] [75, 157]

δ∗B (◦) −66+21
−31 −82± 21 [−132,−26] [−124,−38]

δs (◦) 101± 43 111± 32 [32, 166] [42, 178]

The significance of direct CP violation is obtained by
evaluating 1−C.L. for the most probable CP conserving
point, i.e., the set of hadronic parameters u with γ = 0.
Including statistical and systematic uncertainties, we ob-
tain 1 − C.L. = 3.4× 10−7, 2.5× 10−3, and 3.6 × 10−2,
corresponding to 5.1, 3.0, and 2.1 standard deviations,
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FIG. 4: (color online). 1 − C.L. distributions for the combi-
nation of the GGSZ, GLW and ADS methods as a function of

γ (top), r
(∗)
B

, and κrs (middle), and δ
(∗)
B

, δs (bottom), includ-
ing statistical and systematic uncertainties, for B±

→ DK±,
B±

→ D∗K±, and B±
→ DK∗± decays. The combination of

all the B decay channels is also shown for γ. The dashed (dot-
ted) horizontal line corresponds to the one- (two-) standard-
deviation C.L..

for B± → DK±, B± → D∗K±, and B± → DK∗± de-
cays, respectively. For the combination of the three decay
modes we obtain 1 − C.L. = 3.1 × 10−9, corresponding
to 5.9 standard deviations. For comparison, the corre-
sponding significances with the GGSZ method alone are
2.9, 2.8, 1.5, and 4.0 standard deviations [51], while with
the GGSZ and GLW combination they are 4.8, 2.7, 1.8,
and 5.4, respectively.
The frequentist procedure used to obtain γ and the

hadronic parameters u is not guaranteed to have perfect

coverage, especially for low values of r
(∗)
B , rs. This is due

to the treatment of nuisance parameters [50]. Instead
of scanning the entire parameter space defined by γ and
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FIG. 5: (color online). Comparison of 1−C.L. as a function of
rB (top), r∗B (middle), and γ (bottom) for all B decay chan-
nels combined with the GGSZ method only, the combination
with the GLW measurements, and the global combination,
including statistical and systematic uncertainties. The hori-
zontal lines represent the one-, two-, three- and four-standard-
deviation C.L..

u (seven dimensions), we perform one-dimensional scans,
in which, during MC generation, the nuisance parameters
are set to their re-optimized best-fit values at each scan
point. In order to evaluate the coverage properties of our
procedure, we generate more than 109 samples with true
values of (γ,u) set to their best fit values, (γbest,ubest),
as given in Table V. For each generated experiment, we
determine 1−C.L.′ at γ0 = γbest, as done previously with
the actual data sample using the Monte Carlo simulation
method. The statistical coverage α, defined as the prob-
ability for the true value of γ (γ0) to be inside the given
1 − C.L. interval, is evaluated as the fraction of exper-
iments with 1 − C.L.′ larger than 1 − C.L.. We obtain

α = 0.679 ± 0.005 (0.955 ± 0.002) for the combination,
and α = 0.670 ± 0.005 (0.950 ± 0.002) for the GGSZ
method alone, for C.L. = 0.683 (0.954), respectively.
For comparison purposes, the corresponding values using
the Prob method are α = 0.641 ± 0.005 (0.941 ± 0.003)
and α = 0.609 ± 0.005 (0.920 ± 0.003). While the Prob
method tends to underestimate the confidence intervals,
the Monte Carlo simulation method provides intervals
with correct coverage, especially for the combination
where the magnitude ratios between the suppressed and
favored decays have more stringent constraints.

VI. SUMMARY

In summary, using up to 474×106 BB decays recorded
by the BABAR detector, we have presented a combined
measurement of the CP -violating ratios between the
b → ucs and b → cus amplitudes in processes B± →
D(∗)K± and B± → DK∗±. The combination proce-
dure maximizes the information provided by the most
sensitive γ measurements and analysis techniques that
exploit a large number of D decay final states, includ-
ing three-body self-conjugate, CP , and doubly-Cabibbo-
suppressed states, resulting in the most precise measure-
ment of these ratios. From the measurements of these
ratios we determine γ = (69+17

−16)
◦ (modulo 180◦), where

the total uncertainty is dominated by the statistical com-
ponent, with the experimental and amplitude model sys-
tematic uncertainties amounting to ±4◦. We also derive
the most precise determinations of the magnitude ratios

r
(∗)
B and κrs. The two-standard-deviation region for γ is
41◦ < γ < 102◦. The combined significance of γ 6= 0
is 1 − C.L. = 3.1 × 10−9, corresponding to 5.9 standard
deviations, meaning observation of direct CP violation in
the measurement of γ. These results supersede our pre-
vious constraints based on the GGSZ, GLW, and ADS
analyses of charged B decays [17–21, 23, 24], and are
consistent with the range of values implied by other ex-
periments [38–43, 43–46].
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