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1. Introduction and Outline

The study of first-order phase transitions is a fascinating subject that appears in

many branches of physics. The standard picture is to nucleate (thermally or quantum

mechanically) a bubble in a homogeneous background of the false vacuum. The

bubble interior is in the true vacuum, and it is surrounded by domain-walls—the

minimal energy field interpolation between the false and true vacua.

In this paper we will focus on thermal nucleation, where the critical bubble is the

lowest saddle point of the energy barrier. For thermal tunneling, the time variable

is not that important and focusing on theories which have vectors transforming

under the spatial rotation can shed light on many of the subtleties. In the simplest

example, a scalar field theory, one can show that the critical bubble must have SO(N)

symmetry in N dimensional space [1, 2]. This leads to the commonly used estimate

for the tunneling rate Γ,

log Γ ∼ − Es
kbT
∼ σN

∆V N−1

1

kbT
, (1.1)

σ = vF

∫
path in field space

d φ
√

2V . (1.2)

Here the critical bubble energy Es is determined by the domain-wall tension σ and

the energy difference ∆V , assuming a spherical bubble. The tension is given by the

path in the field space which minimizes that integral. The scaling with the Fermi

velocity vF follows from the equation of motion.

In this paper we will generalize the theory to include vector fields. Our motiva-

tion comes form condensed matter systems like liquid crystals, Helium 3 and Lang-

muir monolayers [4–11].1 The simplest vector fields to imagine are the non-relativistic

vector fields transforming under the spatial rotation group. In (n + 1)-dimensional

spacetime, these vectors have n components. We study the transitions between two

discrete minima ~φ± of a field with the Lagrangian

L =
1

2

(
φ̇2
i − c2

T∂iφj∂iφj − (c2
L − c2

T )∂iφi∂jφj

)
− V (φi) . (1.3)

In order to make the energy bounded from below, we need cL ≥ cT . When cL 6= cT ,

the potential can minimally break the spatial SO(N) symmetry. We will focus on

the case with minimal breaking. For any field configuration that involves these two

vacua, at least (~φ+ − ~φ−) is a special direction that specifies the longitudinal wall

and breaks the symmetry down to SO(N − 1).

In Sec.2, we study planar domain-walls. Due to the broken symmetry, the

domain-wall tension acquires an orientation dependence. We set up the general

1In cases like the famous A-B transition in liquid 3He, the system shows different longitudinal

and transverse speeds of sound, however people used to study their nucleation properties using

spherical bubbles.
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analytical and numerical process to determine σ(θ), where θ is defined as the angle

between the normal vector of the wall and (~φ+−~φ−). We demonstrate a rich behavior

of σ(θ) through examples in Appendix.A. We further show that in the orientations

which the domain-wall is heavy, it may develop an instability and spontaneously

break into zigzag segments of lighter walls.

In Sec.3, we solve for the shapes of critical bubbles from σ(θ). The solution has

a simple form when the above stated instability does not occur. When it does, the

function describing the bubble shape becomes multi-valued. We show that it still

has a simple interpretation and describes bubbles with kinks. We then calculate how

the deformed critical bubble modifies the transition rate.

The technique we use to solve for the shapes is identical to that for equilibrium

bubbles, known as the Wulff construction [3]. It has been applied to “soft matter”

systems like liquid crystals and Langmuir monolayers [4, 8–11]. Our result agrees

with the major conclusions in the these earlier works. In Sec.4 we will summarize a

few concepts sharpened by our analysis, and also provide an intuitive understanding

of when and how the tunneling rates are modified.

2. Orientation Dependence

The Lagrangian in Eq. (1.3) leads to the following equation of motion,

φ̈i − c2
T∂

2
jφi − (c2

L − c2
T )∂i∂jφj = −∂V

∂φi
, (2.1)

where it is more apparent that cT and cL correspond to the transverse and the

longitudinal sound speeds.

We want to have two isolated vacua in V . This is quite easy to achieve using

the following potential.

V (~φ) =
m2

2
|~φ|2 +

λ

4
|~φ|4 + a( ~H · ~φ) + b( ~H · ~φ)2 . (2.2)

The last two terms are the two lowest orders of the effect from an external field ~H.

We start by considering a = 0, then b < 0 picks a preferred direction along ~H. When

b| ~H|2 +m2/2 < 0, we get two degenerate vacua at

~φ± = ±

√
m2 + 2b ~H2

λ

~H

| ~H|
. (2.3)

Afterward, a small a can break the degeneracy to allow a first-order phase transition.

This is just an example to show how achievable our setup is. Our further analysis

will either be independent of the form of the potential, or focus on examples similar

but even simpler than Eq. (2.2).
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θ

Figure 1: The blue (longer) and red (shorter) arrows represent the vector field value of two

vacua. The thick green line is the domain-wall. From left to right, we show a longitudinal

wall, a transverse wall, and a wall with orientation θ. The orientation is defined such that

for a longitudinal wall θ = 0, and for a transverse wall θ = π/2.

To study first-order phase transitions, a useful starting point is the thin-wall

bubble. First we pretend that the two vacua are degenerate and find an interpolation

between them, which is a domain-wall. The property of the domain-wall will then

later be used to form a bubble of the nucleation event.

The important property already shows up when we consider the domain-wall.

Since the interpolation between the two vacua is a vector in the field space, it breaks

the spatial rotational symmetry, as shown in Fig. 1. How the vector ~φ+ contin-

uously changes into ~φ− can be a complicated process and clearly depends on the

orientation. In the thin wall approximation, we can summarize the effect as an

orientation-dependent tension σ(θ). When the tension is a constant, a first-order

phase transition involves the nucleation of a spherically symmetric bubble. So natu-

rally in a vector field system, orientation dependence of σ(θ) can lead to a nontrivial

bubble shape. Here we will provide the general formalism to find σ(θ), and then in

Sec.3 we will use it to find the bubble shape.

2.1 Two Dimensions

We will demonstrate our technique in the simplest example—a vector field in 2D.

For a potential with two degenerate vacua ~φ±, a domain-wall is a static solution to

the equation of motion,

−c2
T (∂2

x + ∂2
y)φx − (c2

L − c2
T )∂x(∂xφx + ∂yφy) = − ∂V

∂φx
,

−c2
T (∂2

x + ∂2
y)φy − (c2

L − c2
T )∂y(∂xφx + ∂yφy) = − ∂V

∂φy
. (2.4)

The boundary condition is specified by two orthogonal vectors ~u · ~v = 0, such that

(~v · ∇)~φ = 0 , (2.5)

lim
λ→±∞

~φ(λ~u) = ~φ± . (2.6)
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Namely, the field value interpolates between the two vacua purely along the normal

vector of the domain-wall, ~u.

For simplicity, we can actually always choose ~u = ~y and instead apply a rotation

on the potential,

Vθ(φx, φy) = V (φx cos θ + φy sin θ, φy cos θ − φx sin θ) . (2.7)

This simplifies the equation of motion to

−c2
T∂

2
yφx = −∂Vθ

∂φx
,

−c2
L∂

2
yφy = −∂Vθ

∂φy
. (2.8)

The solution we get here is the ~y oriented domain-wall in potential Vθ, which is

equivalent to the ~u oriented domain-wall in the original potential V with û · ŷ = cos θ.

The tension of the domain-wall is given by the total energy per unit x.

σ(θ) =

∫
dy

[
1

2

(
c2
Lφ
′2
y + c2

Tφ
′2
x

)
+ Vθ

]
. (2.9)

Here we set V = 0 in the vacua. It is well-known that the practical way to find the

domain-wall solution is to numerically minimize this tension [12–14], which is what

we do in Appendix A.

In principle, the orientation dependence of σ can be arbitrarily complicated

through Vθ. Here we would like to start from a simple, yet in some sense typical

case. Imagine the situation where at θ = 0, the interpolation is purely longitudinal,

φx = const. 2 Since a rotation of π/2 just exchanges φx and φy, the interpolation

will become purely transverse with φy = const. It is then easy to work out from

Eq. (2.9) that

σ(0) = cL

∫
path

√
2V |d~φ| ,

σ(
π

2
) = cT

∫
path

√
2V |d~φ| , (2.10)

where the two integration paths are the same, so

σ(0)

σ(π
2
)

=
cL
cT

. (2.11)

2Note that we talk about a particular solution, instead of imposing some symmetry on V . This

is necessary. One might try a rotational (reflection in the 2D case) symmetry on V along the vector

(~φ+ − ~φ−). That turns out to be not necessary nor sufficient to guarantee that φx is constant.
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Potentials given by Eq. (2.2) when m2 > 0 satisfy the above assumptions, so do

the simpler potentials we use in Appendix A. They not only show a good agreement

with Eq. (2.11), but also demonstrate an excellent fit to a näıve interpolation,

σ(θ) = σ(0) cos2 θ + σ(
π

2
) sin2 θ , (2.12)

in the regular range of parameters. From the symmetry of the problem, it seems

natural to expand σ(θ) as a polynomial of sin2 θ and keep the lowest order terms.

We also analyze two extreme choices of parameters in Appendix A. One of them

corresponds to the following tension.

σ(θ) =

√
σ(0)2 cos2 θ + σ(

π

2
)2 sin2 θ . (2.13)

It turns out that Eq. (2.12) and (2.13) are quite representative for our further

analysis. Despite their simple forms which will simplify the calculation, they can

actually have dramatically different behaviors.

2.2 Flat Wall Instability

Now we can think about a very practical question. Since cL > cT , σ(0) is most likely

the maximum tension. Even if the boundary condition is set up to preserve the x

translational symmetry, the minimum energy interpolation can spontaneously break

that symmetry. In plain words, we might be able to replace the flat wall with a

large tension σ(0) by non-flat walls with smaller tensions, and hence reduce the total

energy.

The full treatment of this problem is to remove condition (2.5) and see if a

symmetry breaking configuration can further minimize the total energy. That is a

quite involved numerical work which we will not pursue in this paper. We will simply

demonstrate this possibility in the thin-wall approximation.

The total energy is a functional of the domain-wall shape, y(x).

E[y(x)] =

∫ x2

x1

σ(− tan−1 y′)
√

1 + y′2dx =

∫ x2

x1

σ(θ)

cos θ
dx . (2.14)

Now, given a symmetric boundary condition y(x1) = y(x2) that näıvely asks for a

flat wall, we can ask two questions:

• Is the solution with y′ = − tan θ = 0 a stable minimum of the total energy?

• Is there a different solution y(x) that gives the global minimum?

In other words, is a flat wall perturbatively and non-perturbatively stable?

Given that σ(0) is a local maximum, expanding E near θ = 0 gives

E ≈ Eflat +

∫ x2

x1

(
1

2

d2σ

dθ2

∣∣∣∣
θ=0

+
σ(0)

2

)
δθ2dx . (2.15)
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θc

Figure 2: When the flat, longitudinal wall on the left figure is too massive, it will spon-

taneously breaks into zigzag segments in the right figure. Although the total wall area

increases, the reduced tension still reduces total energy.

Thus, the perturbative stability condition is

1

σ(0)

d2σ

dθ2

∣∣∣∣
θ=0

> −1 . (2.16)

Next, the non-perturbative instability is about whether there is a θ 6= 0 such that

σ(θ) < σ(0) cos θ . (2.17)

When either or both instability exists, there will be a critical angle θc such that

σ(θc)/ cos θc is the global minimum, and the wall prefers to settle into the zig-zag

configuration that every segment is oriented at θc, as shown in Fig.2. One can

perform the same stability analysis for the other initial angles. In this paper we will

focus on simple cases where the global minimum θc is the only local minimum. It is

straightforward to see that domain-walls more massive than σ(θc) always break into

zigzags, while the lighter walls are unaffected.

One may question the validity of our thin-wall analysis since usually the appear-

ance of a kink means thick-wall effects are involved—it cannot be infinitely sharp

and one needs to resolve the wall to understand it. We should remind our readers

that such concern is not important at this point. Indeed a kink resolved by thick

wall analysis will contribute a finite term to the total energy3, so it is not näıvely

energetic favorable to produce them. However, in our planar wall setup, the x and y

direction can be infinitely extended. We only need a finite number of kinks to gain

an arbitrarily large amount of energy by turning flat walls into θc zigzags, so our

analysis is sufficient to determine whether it can happen.4 When later talking about

3This has been studied in various examples under the name “boojum”.
4This is just an example of the following general concept. By definition, thin wall approximation

works if the wall is thin—relatively to other length scales in the problem. For a bubble it is

compared to the bubble size. In the flat wall setup, every other length scale is infinite, so the thin

wall approximation is by definition good. In order for this approximation to be valid in calculation

of the bubble shape, we will need the bubble to be big and this is easily achievable by making the

vacua on both sides of the bubble almost degenerate.
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bubbles, we will see that only two kinks are necessary. We can tune ∆V such that

the bubble is arbitrarily large and approaches the flat wall situation, so the same

logic applies.

Now take a look at the two examples for σ(θ), Eq. (2.12) and (2.13). Their

stability features are dramatically different. If the orientation dependence is given

by Eq. (2.13), then the flat wall is always stable. On the other hand, the tension

given by Eq. (2.12) develops a perturbative instability once

σ(0)

σ(π/2)
=
cL
cT

> 2 . (2.18)

A flat wall with θ = 0 would break and settle into zigzag segments with

θc = sin−1

√
σ(0)− 2σ(π

2
)

σ(0)− σ(π
2
)

= sin−1

√
cL − 2cT
cL − cT

. (2.19)

3. Bubble Shape

Now we break the degeneracy between the two vacua by a small amount ∆V such

that the thin wall approximation is still valid. The phase transition mediated by a

thermally nucleated bubble has the rate

Γ ∼ exp

[
− Es
kbT

]
, (3.1)

where Es is the saddle point energy of the bubble. We can find this saddle point by

treating E as a functional of the bubble shape y(x),

E[y(x)] = σ(surface area)−∆V (volume)

= 4

∫
dx
[
σ
(
− tan−1 y′

)√
1 + y′2 − y ∆V

]
, (3.2)

where the symmetry allows us to cut the bubble into four quadrants. We will focus on

the first quadrant where y′ = − tan θ. In order to perform functional variation, the

standard boundary condition is y(xmax) = 0 at an undetermined xmax, and y′(0) = 0.

From Sec.2.2 we learned to replace y′(0) = 0 by y′(0) = − tan θc instead. Despite

that it is not smooth, it does eliminate the boundary variation and is indeed what

we get from the Euler-Lagrange equation. A more formal argument is to write down

E[x(y)] instead, for which the standard choice, x = 0 and x′ = 0 does not exclude

the kink. The resulting Euler-Lagrange equation is essentially the same and we can

just use it.

We will keep it simple and solve the Euler-Lagrange equation for y(x).

∆V =
d

dx

[
dσ

dy′

√
1 + y′2 + σ

y′√
1 + y′2

]
=

d

dx

(
σ sin θ +

dσ

dθ
cos θ

)
. (3.3)
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The general solution can be parametrized by θ,

x(θ) = const.+
1

∆V

(
σ sin θ +

dσ

dθ
cos θ

)
. (3.4)

Note that the quantity in the parenthesis is zero at both θ = θc and θ = 0. Therefore,

solutions starting at either value will eliminate boundary variations as promised, and

also set that integration constant to zero. We can then integrate to find

y(θ) =
1

∆V

(
σ cos θ − dσ

dθ
sin θ

)
. (3.5)

We can try to generalize this to N dimensions, such as taking xN as the longi-

tudinal direction along (~φ+ − ~φ−) which we will denote by xL, and x1 to xN−1 as

the transverse directions. Be aware that in general the structure of the potential

can further break the SO(N − 1) symmetry, since the exact interpolation between
~φ± may still involve nontrivial profile of the transverse fields. That being said, we

will focus on the simple cases with SO(N − 1) symmetry, in which σ is again only a

function of θ. We can simply write down the energy

E[xL(xT )] = 2SN−2

∫
dxT x

N−2
T

(
σ(tan−1 x′L)

√
1 + x′2L −∆V xL

)
, (3.6)

where SN−2 is the area for an (N − 2) unit sphere, xT =
√∑N−1

i=1 x2
i .

This leads to the general solution,

xT (θ) =
(N − 1)

∆V

(
σ sin θ +

dσ

dθ
cos θ

)
, (3.7)

xL(θ) =
(N − 1)

∆V

(
σ cos θ − dσ

dθ
sin θ

)
. (3.8)

Although this is a näıve generalization of [3], we should take a closer look. Note

that by symmetry, we have dσ
dθ

= 0 at 0 and π/2. Also for simplicity we can treat σ(θ)

as a monotonically decreasing function. So we can see that xN is positive definite,

but there is a risk of x being negative. Since x(π/2) is still always positive definite,

and x goes to zero exactly at θc, if we näıvely plot Eq. (3.8) we may get something

like a wrapped candy, as in Fig.3.

We will provide a simple argument to prove the following statement.

Eq. (3.8) always gives the correct critical bubble profile. When the

flat longitudinal domain-wall is stable, it works with 0 < θ < π/2. When

the flat longitudinal domain-wall is unstable, we should take the largest

θc such that xT (θc) = 0 and use the portion θc < θ < π/2. In other words,

cut the extra wrappings and keep the candy.

First of all, the saddle point we are looking for has only one negative mode,

which corresponds to the expansion/contraction of the bubble. This means that
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Figure 3: The bubble profile given by Eq. (3.8) and (2.12) when cL > 2cT . The correct

profile of the critical bubble is simply the middle portion.

fluctuations of the wall shape should still correspond to positive modes. So locally

every wall segment still settles to the minimum energy configuration. As shown in

Sec.2.2, domain-walls with θ > θc can stay, but those with θ < θc cannot exist on

the critical bubble profile. Therefore, we have to cut off the tails, and the profile

necessarily includes a kink.

Next, can the kink occur at some θ > θc? Picture this in 2D for better intuition,

that is like using a smaller portion of the two shells. Also, can we take the two shells

further apart and interpolate between them with zigzag walls? The former possibility

is making the bubble smaller, while the later is making it bigger. Through a pictorial

argument, we can show that they both make the total energy smaller, establishing

that Eq. (3.19) is really the saddle point with this unique negative mode. The

foundation of our argument is

∆V xL(θc) = (N − 1)
σ(θc)

cos θc
, (3.9)

which we can get from Eq. (3.8). The physical meaning is that the energy difference

due to volume for a cylinder—an (N − 1) sphere times height xL(θc), is equal to the

energy in the domain-wall that covers the (N − 1) sphere by a zigzag profile with

orientation θc.
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Figure 4: The left figure visualizes Eq. (3.10), where we attempt to make a larger bubble

by inserting true vacuum regions and extra interpolation walls. The right figure visualizes

Eq. (3.11), where we try to make a smaller bubble by removing some part of the walls and

the true vacuum region. Both result in smaller total energy, which shows that the kinky

shape is indeed a saddle point.

5 Then, as shown in the left portion of Fig.4, the energy lost due to the green

(shaded) region is equal to the contribution from the dotted domain-wall. After they

cancel each other, the two extra triangular regions still contribute −∆V , so the total

energy is indeed less.

(zigzag wall) = ∆V (rectangle) < ∆V (extra false vacuum region) . (3.10)

In the right portion of Fig.4 we try to make a smaller bubble by removing the

true vacuum region and domain-walls covered by the green (shaded) rectangle. Then

patching the remaining two shells together as a smaller bubble, with a kink angle

larger than θc. Since σ(θc)/ cos θc is a minimum of σ(θ)/ cos θ, losing those wall

segments over-compensates the energy gain even if we remove −∆V of the entire

green (shaded) rectangle, and there are even those 4 corners that we are not really

5There are two different hierarchy of scales and approximations involved in this problem. The

first one is using a flat-wall approximation to derive the orientation dependence of the tension and

the second is the ratio of the contribution of the kink to the wall in the bubble energy which we

neglected here. Both of these approximations are valid if we choose a small energy difference between

the two vacua (for example by choosing a very small a in Eq. (2.2))which makes the bubble bigger

and flatter and meanwhile by increasing the area of the bubble and keeping the kink contribution

unchanged, makes the kink contribution negligible.
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removing. So the energy of the resulting smaller bubble is also less.

(removed wall) > (zigzag wall) = ∆V (rectangle) > ∆V (removed false vacuum region) .

(3.11)

3.1 Smooth Bubbles

We can get more intuition by solving the exact bubble shape from a specific σ(θ). In

the first example we will use Eq. (2.13), where no spontaneous symmetry breaking

should occur. Thus, we are expecting a smooth bubble. Plugging into Eq. (3.8), we

get

xT (θ) =
N − 1

∆V

σ(π/2)2 sin θ√
σ(0)2 cos2 θ + σ(π/2)2 sin2 θ

, (3.12)

xL(θ) =
N − 1

∆V

σ(0)2 cos θ√
σ(0)2 cos2 θ + σ(π/2)2 sin2 θ

. (3.13)

Obviously, the bubble takes the shape of an ellipsoid,∑N−1
i=1 x2

i

c2
T

+
x2
L

c2
L

= (N − 1)2r2
0 , (3.14)

where

r0 =
σ(0)

cL ∆V
=
σ(π/2)

cT ∆V
=

1

∆V

∫
path

√
2V |d~φ| (3.15)

comes from Eq. (2.10).

It is then straightforward to calculate the saddle point energy,

Es = SN−1
(N − 1)N−1

N

(∫
path

√
2V |d~φ|

)N
∆V N−1

cLc
N−1
T . (3.16)

Compare this answer to the usual form people use assuming a spherical bubble,

Eq. (1.2), the difference can be characterized by an effective Fermi velocity,

vF → (cLc
N−1
T )1/N , (3.17)

which is a weighted geometric average of sound speeds.

3.2 Kinky Bubbles

Now we turn our attention to Eq. (2.12). Plugging it into Eq. (3.8), we get

xT (θ) =
(N − 1)

∆V

([
2σ(π/2)− σ(0)

]
sin θ +

[
σ(0)− σ(π/2)

]
sin3 θ

)
, (3.18)

xL(θ) =
(N − 1)

∆V

([
2σ(0)− σ(π/2)

]
cos θ −

[
σ(0)− σ(π/2)

]
cos3 θ

)
. (3.19)
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As expected, when σ(0) < 2σ(π/2), we still have a smooth bubble profile. When

σ(0) > 2σ(π/2), as proved in Sec.3 we just use the portion θc < θ < π/2.

The expression of Es is quite complicated in arbitrary dimensions, so we only

present the “realistic” dimensions. For N = 2, we have

EN=2
s =

(∫
path

√
2V |d~φ|

)2

4∆V
(10cLcT − c2

L − c2
T )
π

2
, for cL < 2cT , (3.20)

=

(∫
path

√
2V |d~φ|

)2

4∆V

(
(10cLcT − c2

L − c2
T ) cos−1

√
cL − 2cT
cL − cT

+ (cL + 13cT )
√

(cL − 2cT )cT

)
, for cL > 2cT (3.21)

This is quite complicated. We should again compare it to the spherical bubble

and think in terms of the effective Fermi velocity, especially in the limit cL � cT .

vF →
(

10cLcT − c2
L − c2

T

8

)1/2

, for cL < 2cT ,

vF →
4√
3

(cLc
3
T )1/4 , for cL � cT . (3.22)

For N = 3, we have

EN=3
s = 4π

(∫
path

√
2V |d~φ|

)3

∆V 2

4(c2
L − 10c2

LcT + 52cLc
2
T − 8c3

T )

105
, for cL < 2cT ,

= 4π

(∫
path

√
2V |d~φ|

)3

∆V 2

32c2
T (7cL − 6cT )

√
cT

105
√
cL − cT

, for cL > 2cT . (3.23)

Similarly we have

vF →
(

8

5
c

1/2
L c

5/2
T

)1/3

, for cL � cT . (3.24)

Comparing these to Eq. (3.17), we found that the effective Fermi velocity is still

a weighted geometric mean, but the weight on cL is always reduced by half. This

is quite understandable since the critical bubble approaches a thin slit. A major

portion of its domain-wall is aligned in the transverse direction. It is straightforward

to show that this limit generalizes to N dimensions as

vF ∼ (c
1/2
L c

N−1/2
T )1/N . (3.25)
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4. Conclusion

We studied the orientation dependence of the domain-wall tension in a vector field

theory. We then constructed critical bubbles for thermal nucleation. The shape of

the bubble directly depends on the tension through a simple formula, Eq. (3.8) and

the tunneling exponent is modified by a factor of sound speed ratio. This implies

a big modification in the tunneling rate . The longitudinally oriented domain-wall

is usually the most massive, thus it may spontaneously break into zigzag segments

of a critical orientation θc. When that happens, the critical bubble develops two

kinks of angle θc, and the overall shape is still described by Eq. (3.8) with a careful

interpretation.6

Our analytic and numerical study shows that the freedom to take different paths

in a multi-dimensional field space is essential for the instability. If we choose pa-

rameters that reduce the number of dynamical fields down to one, the longitudinal

wall is always stable. That is however an extreme choice. For typical choices of

parameters, at cL/cT > 2 the longitudinal wall becomes unstable, and the critical

bubble develops two kinks. Such behavior can appear with an even smaller sound

speed ratio, cL/cT >
√

2, if we tune the potential to the other extreme limit. This

range of sound speed ratio is not hard to find in real materials.

We pick two representative forms of σ(θ), given by Eq. (2.12) and (2.13), to

calculate the exact shapes of critical bubbles. This allows us to observe the scaling

property of tunneling rates. When the critical bubble is deformed but still smooth,

we can modify the standard tunneling rate formula, Eq. (1.2), through an effective

Fermi velocity,

vF → (cLc
(N−1)
T )1/N . (4.1)

This is quite intuitive since one particular orientation is longitudinal, and all others

are transverse. They care about the sound speeds in their own orientations. When

the bubble starts to develop kinks and we further increase the sound speed ratio, the

scaling behavior changes to

vF → (c
1/2
L c

(N−1/2)
T )1/N . (4.2)

This is because the kink-development removes a large portion of the longitudinally

oriented wall, so cL becomes less important.

6Analysis of the bubble shape for nucleation is identical to those of equilibrium bubbles, known

as the Wulff construction. Earlier works [4–11] have qualitatively similar results. We further specify

that zigzag segments of θc is the configuration to which the instability settles. The recognition and

interpretation of the kinky bubble shape is also more transparent in our analysis. The tension

previously studied is often expanded as σ(θ) = σ0 + a cos θ + b cos 2θ, and most analysis focused

on the effect of a 6= 0. In our model there is a reflection symmetry—the domain-wall tension does

not change when you look at it from the other side. Thus we always have a = 0. This makes our

situation closer to a 2D lattice model [15], where similar bubble shape was observed.

– 13 –



On top of modifying the tunneling rate estimation, our result has a practical

impact. Typically, the experimental measurement of domain-wall tension involves

measuring the bubble radius [16]. That is done by observing a domain-wall popping

through a partition with holes. When it does, the radius of the hole is identified

with the bubble radius. Our result shows that for vector fields, the orientation of

that partition is important. Only for a longitudinally oriented partition, the popping

radius can be identified with x given by Eq. (3.8). For other orientations, the hole and

the bubble do not have common symmetries. Therefore the exact relation between

the popping radius and the critical radius requires further analysis.

We have only taken a small step toward a rich phenomenology. Given the new in-

sight here, many nontrivial questions arise. How does the domain-wall move/bubble

expand given this orientation dependence? Especially when there is a kink, can we

expect the tip to travel at cL, leaving behind a Cherenkov-like tail of domain-walls

bounded by cT ? How does the spontaneously broken planar symmetry interact with

impurities or other external effects? All these await future study, and may lead to-

wards a more practical understanding about some exotic theories of phase transitions

which relies on the properties of domain-walls [13,17,18].
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A. Examples of different potentials.

Here we present some analytical approaches and the numerical evaluation of the

domain-wall tension given by the relaxation method [12–14]. The first potential we

study is a double well in one direction and a quadratic in the other direction.

V (φx, φy) = −1

2
µ2φ2

y +
1

4
λφ4

y +
1

2
βφ2

x . (A.1)
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This is qualitatively similar to Eq. (2.2) when m2 > 0. The differences are some

4th order terms involving φx, which is not very important when β > 0 stabilizes a

trajectory near φx = 0. The two potentials can be roughly related by

−µ
2

2
=
m2

2
+ b| ~H|2 ,

β2

2
=
m2

2
. (A.2)

The two degenerate minima sit at (0,±
√

µ2

λ
). For the purely longitudinal (or trans-

verse) wall oriented along the ~y (or ~x), we can solve the problem analytically and get

the exact value of the tension.

Longitudinal wall (θ = 0):

φy(x, y) =

√
µ

λ
tanh

(
µy

cL
√

2

)
(A.3)

φx(x, y) = 0 (A.4)

σ = σ(0) =
2
√

2µ3cL
3λ

. (A.5)

Transverse wall (θ = π
2
):

φy(x, y) =

√
µ

λ
tanh

(
µx

cT
√

2

)
(A.6)

φx(x, y) = 0 (A.7)

σ = σ(π/2) =
2
√

2µ3cT
3λ

. (A.8)

For other orientations of the wall, we can evaluate the tension numerically. Before

that, we can analyze two extreme cases. Using the method of rotating the potential

as described in Sec.2, we have

σ(θ) =

∫
dx

c2
T

2
φ′2x +

c2
L

2
φ′2y + Vθ(φx, φy)

=

∫
dx

c2
T

2
φ′2x +

c2
L

2
φ′2y + V (φx cos θ + φy sin θ, φy cos θ − φx sin θ) . (A.9)

When β →∞, we effectively have a single field problem with

φ̄ =
φx

cos θ
=

φy
sin θ

, (A.10)

such that

σ(θ) =

∫
dx

c2
L cos2 θ + c2

T sin2 θ

2
φ̄′2 + V (φ̄, 0) . (A.11)
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Clearly, this gives us Eq. (2.13).

The other extreme limit is β → 0, at which the potential is flat in the φx direction.

The two degenerate vacua approach two separated lines. Moving along these lines

contributes nothing to the tension. As shown in Fig. 5, the path that minimizes

the tension involves first moving along these lines to an appropriate angle φ, then

connecting through a straight line. The tension of this path is a function of both θ

and φ through the orientation dependence in Eq. (2.13), and a simple projection of

the length.

σ(θ, φ) =
σ(0)

cL

1

cos(θ − φ)

√
c2
L cos2 φ+ c2

T sin2 φ . (A.12)

Minimizing this with φ, we have

φm(θ) = arccos
c2
T cos θ√

c4
T cos2 θ + c4

L sin2 θ
. (A.13)

So the tension in this case should be

σ(θ) = σ[θ, φm(θ)] . (A.14)

We can apply the analysis in Sec.2.2 and calculate the stability condition for the

flat longitudinal wall.
1

σ(0)

d2σ

dθ2
=

(
1− c2

L

c2
T

)
> −1 . (A.15)

We can see that the wall becomes unstable as soon as cL >
√

2cT .

We next provide several plots with the numerical values on top of the three

possible fits, Eq. (2.12), (2.13) and (A.14). Fig. 6 shows that the two extreme limits

indeed fit very well with our analysis. Fig .(7) shows that with a more moderate

choice of parameters, Eq. (2.12) is quite reliable independent in various sound speeds.

In the end, we provide a much more complicated potential as in Fig .(8). It has

a general slope in the φx direction and two minima located at (0.001,±2.498). So

trivially, the interpolation path will always involve both fields.

V (φx, φy) = eqφx

{
1− S exp

[
−4

(
φx − sin(

φy − r1

r2 − r1

)

)2
]}[

tanh2

(
(φy − r1)(φy − r2)

3

)]
.

(A.16)

We numerically evaluated the tension for various orientations and plotted it

against the three analytical fits in Fig. (9). The overall shape can be quite different

from any equation given in this paper. In particular, note that in the right portion

of Fig. (9) the longitudinal domain-wall (actually an open set near θ = 0) does not

exist.7

7This comes from the same reason as described in [12]. The interpolation path breaks into two

parts, connecting each vacuum individually with the −φx region. For vector fields, such runaway

behavior also acquires an orientation dependence.
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L

φ

θ

c

c

T

Figure 5: The cL and cT axes are the directions in which the field has purely longitudinal

and transverse sound speeds. The two dots represent the two discrete vacua. In the limit

β → 0, the dashed lines through them are almost in the vacuum, too. The important

portion of the domain-wall is the red (thick) path from one line to the other, which is free

to pick the best orientation φ.
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Figure 6: The numerically calculated values of the tension for a double-well potential are

shown in dots. The three analytical fits: Eq .(2.12) is the dashed line, Eq. (2.13) is the

dot-dashed (blue) line, and Eq. (A.14) is the solid (red) line. We can see that in the for β,

Eq. (2.13) is a good fit, and for small β, Eq. (A.14) is a good fit.
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Figure 7: The numerically calculated values of the tension for a double-well potential are

shown in dots. Again the three analytical fits: Eq .(2.12) is the dashed line, Eq. (2.13) is

the dot-dashed (blue) line, and Eq. (A.14) is the solid (red) line. The two figures use the

same potential but different sound speed ratios.

Figure 8: The more complicated potential introduced in Eq .(A.16), with q = 0.5 , r1 =

−2.5 , r2 = 2.5 . We will use two values of S, 1.1 and 0.9, but that makes no visual

difference.
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Figure 9: From the potential given by Eq .(A.16), we again compare the numerical σ(θ)

with the three equations. In the left figure we have S = 1.1. In the right figure we have

S = 1 and for some orientations the domain-wall does not exist because the path runs

away toward the −φx direction.
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