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Precession during merger 1: Strong polarization changes are observationally accessible
features of strong-field gravity during binary black hole merger
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The short gravitational wave signal from the merger of compact binaries encodes a surprising
amount of information about the strong-field dynamics of merger into frequencies accessible to
ground-based interferometers. In this paper we describe a previously-unknown “precession” of the
peak emission direction with time, both before and after the merger, about the total angular mo-
mentum direction. We demonstrate that the gravitational wave polarization encodes the orientation
of this direction to the line of sight. We argue that the effects of polarization can be estimated non-
parametrically, directly from the gravitational wave signal as seen along one line of sight, as a
slowly-varying feature on top of a rapidly-varying carrier. After merger, our results can be inter-
preted as a coherent excitation of quasinormal modes of different angular orders, a superposition
which naturally “precesses” and modulates the line-of-sight amplitude. Recent analytic calculations
have arrived at a similar geometric interpretation. We suspect the line-of-sight polarization content
will be a convenient observable with which to define new high-precision tests of general relativity
using gravitational waves. Additionally, as the nonlinear merger process seeds the initial coherent
perturbation, we speculate that the amplitude of this effect provides a new probe of the strong-field
dynamics during merger. To demonstrate that the ubiquity of the effects we describe, we summarize
the post-merger evolution of 104 generic precessing binary mergers. Finally, we provide estimates for
the detectable impacts of precession on the waveforms from high-mass sources. These expressions
may identify new precessing binary parameters whose waveforms are dissimilar from the existing
sample.

I. INTRODUCTION

Coalescing comparable-mass black hole binaries are
among the most likely and useful sources of gravitational
waves for existing and planned gravitational wave de-
tectors like LIGO [1], Virgo, [2], the Einstein telescope
[3], and proposed space-based detectors. For sources in
a suitable mass range, the signal these detectors receive
contains significant features from the late-stage, strong-
field dynamics of the black hole merger. Only full nu-
merical simulations of Einstein’s equations can provide
first-principles models for this epoch, including all dy-
namics and emission [4, 5]. Given the large computa-
tional cost per simulation, relatively few well-determined
models have been produced.1

For sufficiently high mass mergers, ground-based grav-
itational wave detectors are sensitive only to the short
portion of the waveform provided by numerical simula-
tions. Historical comparisons of the leading-order emis-
sion from comparable-mass nonprecessing binaries has
suggested these waveforms look similar [5, 9]. Exist-
ing upper limits on gravitational waves from > 50M�
merging binaries imply astrophysically plausible signal

∗Electronic address: oshaughn@gravity.phys.uwm.edu
1 Most simulations have thoroughly explored nonspinning and

spin-aligned binaries [5]. Some simulations with more generic
spin have been performed (e.g., to study gravitational wave re-
coil kicks) [6–8].

amplitudes for the first few detections must be low, at
best near the detection limit of the advanced LIGO and
Virgo detectors [10]. Short, similar, low amplitude sig-
nals can carry a limited amount of information. Nonethe-
less, strong-field dynamics produces significant evolution
in the emission beampattern and polarization content
during merger. If in band, these features should be ac-
cessible to gravitational wave detectors.

In this paper we provide the first phenomenological
description of the “kinematics of merger”. Rather than
discuss properties of horizons or of the global spacetime
[11, 12], we emphasize phenomenology of the asymptotic
radiation. In particular, we identify precession-induced
changes in the polarization content as an easily-accessible
phenomenological measurable with which to distinguish
between simulations. While we adopt a simple model to
characterize this diagnostic, our results can be translated
to fully-developed parameter estimation and model selec-
tion strategies, which fit data to a model using physically-
motivated [13–18] and phenomenological [19–21] signal
parameters. For clarity we use three examples to illus-
trate the precession we have in mind and the imprint it
makes on emitted signals. To demonstrate that the fea-
tures we describe occur frequently and to connect those
features to quasinormal mode frequencies, we also de-
scribe the post-merger dynamics of a much larger array
of simulations. In Section II we describe the gravitational
wave signals, preferred orientations, and description of
polarization we use in our work. We argue that our prac-
tical approach to gravitational wave polarization, decom-
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posing the line of sight signal into left- and right-handed
components, is both observationally accessible and intu-
itive. Our study uses detailed numerical relativity simu-
lations of the late inspiral and merger of two black holes,
in general both with spin. By example, we demonstrate
that “precession” dynamics, suitably defined, continues
after merger. Again using selected examples, we illus-
trate that each line of sight encodes the relative orien-
tation of the (time dependent, precessing) preferred ori-
entation. By comparing these to a simple expression, we
argue this behavior occurs in general, for all lines of sight
and all precessing binaries. In Section III we demonstrate
that all these features change significantly, depending on
the spin magnitudes and orientations adopted. Based on
these investigations, we anticipate the polarization con-
tent can trace features of the strong-field merger event.
Then, in Section IV, we demonstrate that this polar-
ization information is experimentally accessible: similar
waveforms differing primarily through their polarization
content (i.e., time history of left- versus right-handed)
can be observationally distinguished. We demonstrate
that observations can weakly constrain orientation evo-
lution nonparametrically , independent of other informa-
tion naturally encoded in the gravitational wave signal.

A. Context

Though the gravitational-wave signal from merging
binaries nominally encodes all information about the
spacetime, previous investigations of the (2, 2) mode sug-
gest universality of the merger signal [5, 9], giving the
informal impression that previously hypothesized com-
plicated nonlinearities in general relativity do not sig-
nificantly complicate the short signal from the merger
epoch. In other words, simulations seemed to suggest
that the merger signal provides little unambiguous in-
formation about strong-field general relativity. However,
the unique contribution of merger to the waveforms is in-
variably mixed with the preceding (inspiral) and subse-
quent (ringdown) signal, making nonlinear behavior dif-
ficult to identify. In principle the mass loss, angular mo-
mentum change, and recoil kick can all be tabulated, fit,
and constrain the nonlinear response at merger. Never-
theless, in practice the contribution from merger cannot
be cleanly distinguished from the contributions from in-
spiral and ringdown. While symmetry demands a general
form [22], it does not strongly forbid inspiral or merger
epochs from contributing to these integrated quantities.
The contribution from merger can be partially disentan-
gled in the time domain, for example by plotting fluxes
like dE/dt, or possibly the time-angular domain. Un-
fortunately, investigations looking for strong mode-mode
couplings indicative of nonlinearity have recovered the
familiar perturbative results [23–25]. Previous investiga-
tions suggest that the asymptotic radiation encodes pre-
ferred directions with different symmetry properties, not
tied to the orientations associated with standard con-

served constants. These orientations are well resolved
through merger and seem to evolve nontrivially both be-
fore and after the merger [26, 27]. This preferred orienta-
tion may therefore provide a new signature of strong-field
dynamics.

After this study was completed, we became aware of
an analytic study providing a simple, geometric inter-
pretation of (short-wavelength) quasinormal modes’ fre-
quencies as precession [28]. Their calculation extended
previous estimates derived in the slow-rotation limit to
arbitrary spin. We find a similar result at the lowest mul-
tipolar order, even in the strong field: all modes precess
at a nearly constant rate during and after merger.

II. SIMULATIONS AND DIAGNOSTICS

A. Simulations I: Overview

The simulations examined in this paper will be de-
scribed at greater length in a companion publication.
Initial binary properties and simulation details includ-
ing initial separation, spin configuration, and finest res-
olution are detailed in Table I. Physically, roughly half
of these binary configurations correspond to an unequal-
mass generalization of the “S series” [6], where one spin
is in the orbital plane ~a2 = ax̂ and the other spin rotates
through the (x, z) plane with comparable dimensionless

spin a = |~S1/M
2
1 | = |~S2/M

2
2 |. These simulations are de-

noted by the prefixes S and Sq in Table I. The remaining
simulations (T and Tq) correspond physically to equal
and unequal-mass binaries where the less massive object
has its spin parallel to the initial orbital angular mo-
mentum (~a1 or 2 = aẑ), while the more massive object’s
spin rotates through the (x, z) plane with comparable di-
mensionless spin.2 Initial data were evolved with Maya,
which was used in previous binary black hole (BBH) stud-
ies [6–8, 29–33]. The grid structure for each run consisted
of 10 levels of refinement provided by CARPET [34], a mesh
refinement package for CACTUS [35]. Sixth-order spatial
finite differencing was used with the BSSN equations im-
plemented with Kranc [36]. In the text, we present re-
sults for the fiducial simulation at r = 90M unless other-
wise indicated. The choice of extraction radius has min-
imal impact on the results shown here. Finally, our code
projects ψ4(r, t) onto spin-weighted spherical harmonics;

we adopt a phase convention such that Y
(s)
lm (θ, φ)eisγ =

(−1)s
√

(2l + 1)/4πdlm,−s(θ)e
imφeisγ [37].

While our principal interest remains observationally
accessible radiation at infinity, for illustration we also
estimate and plot the black hole spins and orbital an-
gular momentum as a function of time. Lacking any

2 For the equal-mass T series, object 2 rather than object 1 had
its spin tilted.
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gauge-invariant definition, not having computed ~S1,2 for
all time for all simulations, and not intending to per-
form quantitative comparisons between our results and
post-Newtonian expressions for L̂ that differ from New-
tonian expressions only at v3 order and above, we sim-
ply adopt the coordinate orbital angular momentum, cal-

culated from the two puncture locations r1, r2: ~L ≡∑
kMk ~rk × ∂t~rk. As in previous Maya simulations [6],

we extract the black hole spins from (a small neighbor-
hood surrounding the) apparent horizon, using a surface
integral as if the horizon was isolated [38–40].

To illustrate features of these simulations, we will em-
phasize one fiducial binary, denoted Sq(4,0.6,90,9) with
M1/M2 = 4, ~a1 = 0.6x̂ = −~a2, placed in orbit in the x, y
plane wth a coordinate separation d = 9M ; see Table I
for details.3 For a very similar simulation [T2(4,0.6,90)],
Figure 1 shows the inspiral-merger trajectories of the or-
bital angular momentum and spin directions, L̂(t) and

Ŝ1(t), where Ŝ1(t) corresponds to the larger black hole.
Initially, the binary’s orbital angular momentum is larger

but comparable to ~S1 = ~a1M
2
1 ; both are much larger than

the companion’s spin. Early in the inspiral, L̂(t) and

Ŝ1(t) precess around the total angular momentum direc-
tion [41]. During this process, the three angular momenta

( ~J, ~L and ~S1) are nearly coplanar, with the angle between
~L and ~S1 roughly constant, as expected from the post-
Newtonian limit. By contrast, as the orbit transitions
from inspiral to plunge, the (coordinate) orbital angular
momentum converges towards the total angular momen-
tum direction. The spin direction, by contrast, changes
far less dramatically during the plunge and merger.

B. Preferred orientations

Conserved quantities of the spacetime and radiation
escaping to infinity encode several preferred orienta-
tions. One preferred, manifestly physical, but nearly-
time-independent orientation is Ĵ , the nearly conserved
orientation of the total angular momentum. Another ori-
entation extremizes the quadrupolar radiation, such that
the (2, 2) mode of the radiative Weyl scalar (ψ4) is largest

[43, 44]; we denote this orientation as Q̂(t). Finally, a

third orientation V̂ (t) is the principal axis of [26, 27, 42]

〈
L(aLb)

〉
t
≡
∫
dΩψ4

∗(t)L(aLb)ψ4(t)∫
dΩ|ψ4|2

(1)

=

∑
lmm′ ψ4

∗
lm′ψ4lm

〈
lm′

∣∣L(aLb)
∣∣ lm〉∫

dΩ|ψ4|2

where L are rotation group generators; where ψ4 is the
Weyl scalar; and where in the second line we expand

3 Our fiducial initial conditions are comparable to those adopted
in a companion paper on orientation-dependent emission [27].

FIG. 1: Evolution of angular momenta and V̂ with
time: For one simulation (Tq(4,0.6,90), with M1/M2 = 4,
a1 = 0.6x̂, a2 = 0.6ẑ starting at d = 10M), a plot of the

preferred direction V̂ (thick black; see Eq. (1)) superimposed
on the coordinate orbital (black) and spin (green) angular

momenta directions L̂, Ŝ1 as a function of time. The paths
indicate how all three evolve with time; the arrows are evalu-
ated at a specific instant shortly before merger. A blue arrow
also indicates the final (' initial) total angular momentum

J . At very early times, the directions V̂ and L̂ nearly agree
[42]; at merger, however, L̂ converges to Ĵ while V̂ contin-
ues to precess. Compare to figures in O’Shaughnessy et al.
[27]. This simulation is longer than but physically similar
to the fiducial simulation adopted in all subsequent figures
(Sq(4,0.6,90,9)).

ψ4 =
∑
lm ψ4lm(t)Y

(−2)
l,m (θ, φ) and perform the angular

integral; see Ochsner and O’Shaughnessy [42] for explicit
formulae.

These three quantities do not agree. For example, early
in the inspiral Ĵ is manifestly distinct from the two pre-
cessing, dynamic orientations V̂ , Q̂, which both nearly
correspond to L̂ [42, 43]. The two dynamic orientations
also generally differ, albeit less significantly.4 As a con-
crete example, if the Weyl scalar consists only of the l = 2
subspace with the time-independent value

ψ4 = Y
(−2)
2,2 + Y

(−2)
2−,2 + (Y

(−2)
2,1 + Y

(−2)
2,−1 )/4 + Y

(−2)
2,1 /3 (2)

then on the one hand our preferred direction has V̂ '

4 While the differences between the two approaches to preferred
orientations are often small in absolute scale, these small an-
gular differences imply significant disagreement about the rela-
tive magnitude of strongly suppressed modes, particularly in the
merger phase.
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n̂(0.045, 0) but the direction that maximizes the (2, 2)
mode lies along n̂(0.66, 0), where n̂(θ, φ) is a cartesian
unit vector with polar coordinates θ, φ. For simplicity,
in this work we only present results for a single dynamic
orientation V̂ .

Figure 1 shows the trajectories of L̂, V̂ and Ĵ . While
L̂ and V̂ nearly agree prior to merger, they differ signifi-
cantly at and after merger. In the time domain, the direc-
tion V̂ roughly corresponds to the direction of peak |ψ4|.
More critically, when averaged over mass and frequency,
this direction corresponds very closely to the direction of
largest signal amplitude

ρ2(n̂) ≡ 2

∫ ∞
−∞

df

Sh

|ψ4(f, n̂)|2

(2πf)4
(3)

where we adopt the isotropic two-detector network defi-
nition of ρ2(n̂) used in O’Shaughnessy et al. [27]. Mov-

ing forward in time, both V̂ and L̂ precess around the
total angular momentum Ĵ [41]. When the two black
holes merge, the orbital angular momentum has con-
verged to the total angular momentum (L̂ → Ĵ). This
direction no longer evolves past merger. By contrast, the
observationally-relevant direction V̂ continues to evolve
through and beyond merger.

As will be demonstrated using the fiducial simulation,
different preferred directions identify different physics.
In particular, V̂ is directly connected to observations,
and indicates interesting new dynamics that could be im-
printed on the gravitational wave signal.

Here, we identified this imprint at each time using
all gravitational wave emission directions. Experiments
have access to only one line of sight. Below, we describe
a concrete method to identify the imprint of V̂ using only
a single emission direction, via the polarization evolution
versus time.

C. Line of sight diagnostics: amplitude, phase,
polarization

Real gravitational wave detectors only have access to
a single line of sight. Despite this limitation, they still
have access to the rich and distinctive modulations that
the orbit and precession imparts on the line-of-sight time-
evolving gravitational wave signal, h ≡ h+ + ih×. To in-
terpret these modulations, we change basis from the stan-
dard linear polarizations (h+, h×) to two circular polar-
izations (hR, hL with h = hR+hL). Strictly, we split the
Weyl scalar ψ4 rather than h(t), to minimize errors from
poorly-constrained early-time and late-time effects.5 We

5 We anticipate the gravitational wave content of the (2, 2) mode
to be almost exclusively right-handed. However, the linear trans-
formation from h→ hR,L is highly nonlocal, depending in prin-
ciple on arbitrarily early and late times. The gravitational wave
strain at the start (inspiral) or end (nonlinear memory) can be

will see below that precession distinctively modulates the
amplitude and phase of both circular polarizations.

The left and right-handed circularly polarized parts
of ψ4(t) are naturally isolated in the frequency domain
[27]: positive frequency components are right-handed,
and negative frequency components are left-handed. In
the time domain, this procedure corresponds to convolu-
tion of ψ4 with a specific (acausal) kernel:

ψ4R =

∫ ∞
0

dfψ̃4(f)e−2πift (4a)

=

∫ ∞
−∞

dτKR(t− τ)ψ4(τ) (4b)

KR(τ) = lim
ε→0+

−i
τ − iε

1

2π
(4c)

ψ4L =

∫ 0

−∞
dfψ̃4(f)e−2πift (4d)

KL(τ) = lim
ε→0+

+i

τ + iε

1

2π
(4e)

where KR,L(τ) are suitable inverse fourier transforms of
the unit step function. For each polarization, we can de-
fine an amplitude |hR| and phase arg(hR). In general,
the amplitude evolves on a precession (or, if none, radia-
tion reaction) timescale; the phase increases secularly, on
a radiation reaction timescale, with precession-induced
modulations on shorter timescales [41].

This procedure for separating left- and right-handed
signals can be perfomed with real gravitational wave
data. For each line of sight, experiments with comparable
sensitivity to two linear polarizations can reorganize their
data analysis procedure to be sensitive to only these left-
or right-handed polarizations. Additionally, this projec-
tion process has physically expected properties, applied
to nonprecessing binaries. The angular modes ψ4lm de-
scribe emission preferentially above (m > 0) or below
(m < 0) the orbital plane, where m is the mode order

(i.e., each term in ψ4 =
∑
lm ψ4lmY

(−2)
l,m (θ, φ)’s mode de-

composition is proportional to some ψ4lm exp imφ). One
can empirically verify that the angular modes from non-
precessing binaries are nearly chiral:

ψ̃4lm(f) ' 0 for mf < 0 (5)

In the stationary-phase limit, this relationship corre-
sponds to a desirable and usually satisfied requirement on
the angular frequency versus time:6 ∂targψ4lm is mono-
tonically increasing for m > 0 and decreasing for m < 0.
For nonprecessing binaries, to a good approximation our

significant. By contrast, the Weyl scalar’s diminished early-time
amplitude and lack of memory terms leads to a well-behaved
projection.

6 Due to projection effects of spheroidal harmonics onto spheri-
cal harmonics, this property need not hold for all higher-order
modes. We will not address angular mode mixing in this paper.
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polarization projection corresponds to eliminating modes
of either m < 0 (projecting to R) or m > 0 (projecting
to L).

To decouple polarization content from secular trends
in amplitude and phase seen in nonprecessing binaries,
we once again change variables from ψ4R,L (2 complex
or 4 real quantities) to a real typical amplitude A, a real
typical phase Φ, and a complex polarization amplitude
zψ (one complex and two real quantities):

zψ ≡
ψ4
∗
L

ψ4R

(6)

A2 ≡ |ψ4L|2 + |ψ4R|2 (7)

eiΦ ≡
(
ψ4
∗
L

ψ4L

ψ4R

ψ4
∗
R

)1/2

(8)

By construction, the polarization amplitude zψ is
nearly constant in time for nonprecessing binaries whose
gravitational wave emission is dominated by equal in
magnitude and conjugate in phase (l,m) = (2, 2) and
(2,−2) modes. In this limit, the Weyl scalar asymptoti-
cally takes the form

rψ4(n̂, t) =
A(t)√

2
[eiΦ(t)Y

(−2)
2,2 (n̂) + e−iΦ(t)Y

(−2)
2,−2 (n̂)] (9)

To recover the correct limits along the ẑ axis (i.e., the ±ẑ
direction), the basis coefficients of the two spin-weighted

harmonics Y
(−2)
2,±2 are necessarily right and left circularly

polarized. As a result, for a signal dominated by equal
and conjugate (2, 2) and (2,−2) modes in a frame aligned

with L̂, the polarization amplitude is a time-independent
and purely geometrical expression:

zψ ' Y
(−2)
2−2

∗(n̂|L̂)/Y
(−2)
2,2 (n̂|L̂) = ei4ΨL

(1− cos θ)2

(1 + cos θ)2

(10)

where Y
(−2)
l,m (n̂|V ) are spin-weighted harmonics in a

frame aligned with V̂ and where θ = cos−1 L̂ · n̂ and ΨL

characterize the orientation of the orbital angular mo-
mentum along the line of sight and in the plane of the
sky, respectively; see, e.g. [45].

Reversing the sense of the approximation above, as-
suming instantaneous and symmetric (2,±2) emission

along a proposed slowly-varying orientation Ô(t) , we
estimate the polarization content z̃O(t) along a line of
sight n̂ by

z̃O =
[Ô · (x̂n + iŷn)]4

(1− (Ô · n̂)2)2

(1− Ô · n̂)2

(1 + Ô · n̂)2

=
[Ô · (x̂n + iŷn)]4

(1 + Ô · n̂)4
(11)

where the two vectors x̂n, ŷn define a frame of reference
in the plane of the sky, perpendicular to n̂. As this sim-
ple approximation suggests, for a precessing binary the

polarization amplitude z̃O should fluctuate, reflecting the
relative importance and phasing of left- and right-handed
emission in the instantaneous signal.

Closer to the orbital plane, the balance of polariza-
tions is nearly equal (|zψ| ' 1). This naturally finely-
tuned region involves near-perfect cancellation of (some
of) the leading-order emission,7 allowing higher-order an-
gular dependence to contribute significantly to the polar-
ization content. Unlike the leading-order factors, these
higher-order multipoles sometimes treat the component
masses asymmetrically. As a result, the waveform and
polarization content near the orbital plane has additional
modulations at the orbital period. For example, for a
nonprecessing binary with both conjugate and symmet-
ric emission in all l = 2 modes, the Weyl scalar has the
form

rψ4(n̂, t) =

2∑
m=1

am(t)[eiΦm(t)Y
(−2)
2,m (n̂) + e−iΦm(t)Y

(−2)
2,−m(n̂)]

(12)

As instantaneous quadrupole emission almost always
dominates, the polarization amplitude zψ can be approx-
imated by an oscillating but nearly-constant correction
to the leading order term [Eq. (10)]:

zψ ' ei4ΨL
(1− cos θ)2

(1 + cos θ)2

×
(

1 +
4a1e

−i(φ−Φ1+Φ2) cot θ

a2
+ . . .

)
(13)

In short, for orientations where higher harmonics con-
tribute significantly, the polarization amplitude zψ
should oscillate, with the peak-to-trough amplitude in
one-to-one relation to the magnitude of these harmonics.

To summarize, any gravitational wave signal can be de-
composed into two polarizations ψ4R,L. Using the com-

plex amplitude z = ψ4
∗
L/ψ4R to characterize the relative

proportion and phasing of each signal, we find that po-
larization content encodes information about the merging
binary on at least two scales. On the one hand, on long
precession timescales, the polarization amplitude tells us
how the preferred emission direction evolves; see, e.g.,
Eq. (11). On these scales, the complex amplitude can
vary significantly. On the other hand, on the orbital and
eventually merger timescale, rapid small oscillations in
the polarization amplitude directly measure the relative
proportion of (2,±1) modes. These modes are produced
naturally in asymmetric or eccentric binaries along cer-
tain lines of sight. Finally, in our analysis we have for
simplicity assumed symmetric emission in the (2,±2)
modes. However, when expressed in a corotating frame
[26], many of our simulations emit asymmetrically, with

7 Near the oribital plane of a nonprecessing binary, gravitational
wave emission is nearly linearly polarized.



6

one mode preferentially larger than another during the
merger and ringdown phase. Without foreknowledge of
this bias, the simple estimates used above would, if in-
verted, recover the incorrect inclination of the preferred
emission direction relative to the line of sight. In other
words, while the complex polarization amplitude zψ man-
ifestly encodes information about the preferred orienta-
tion’s evolution relative to the line of sight and about
the relative significance of higher modes, we cannot un-
ambiguously interpret this information without the as-
sistance of a large catalog of candidate waveforms. For
the purposes of this paper, we will treat zψ(t) itself as a
phenomenological observable.

D. Line of sight diagnostics: Three examples

To illustrate the power of this decomposition, Figures
2, 3, and 4 apply it to nonprecessing and precessing q = 4
binaries.

Figure 2 demonstrates our polarization decomposition
with a nonprecessing q = 4 binary, extracting the Weyl
scalar along a “generic” direction [(θ, φ) = (60◦, 205◦)].
For a nonprecessing binary, the gravitational wave signal
is dominated by quadrupole emission from the (2,±2)
modes. To an excellent approximation, the two polariza-
tions ψ4R,L (red and blue curves in this figure) are pro-
portional to one or the other of these modes, respectively,
with the proportionality constants set geometrically by
spin-weighted harmonics [Eq. (9)] and hence the incli-
nation. However, this line of sight is close enough to
the orbital plane that the (2,±1) mode can contribute
significantly. As demonstrated with the dotted line in
the bottom panel of Figure 2, these modes beat against
the leading-order quadrupole, causing the complex po-
larization zψ to oscillate by roughly ten percent dur-
ing the inspiral at roughly the orbital period. Higher-
order angular modes l > 2 also beat against the leading-
order quadrupole. Including these terms in the the sum∑
lm ψ4lmY

(−2)
l,m produces richer time dependence along

each line of sight, in both polarizations (solid curves in
the top panel of Figure 2). Nonetheless, the ratio of the
two polarizations (zψ) still behaves like the l = 2 result.

Precessing binaries, by contrast, generally exhibit dra-
matic changes in polarization. Figure 3 shows features
of the precessing M1/M2 ≡ q = 4 binary started with
~a1 = 0.6x̂ = −a2 at a coordinate separation d = 9M , as
used in [27]. As seen in the top panel, the balance be-
tween the two polarizations changes significantly: though
R-handed emission (red) usually dominates, for a short
epoch L-handed emission is stronger in this direction
(blue). Critically, we can identify when this transition
occurs by comparing our line of sight with the preferred
orientation V̂ (t) extracted from

〈
L(aLb)

〉
t

[26, 27]. Fol-
lowing the discussion above, we expect and our calcula-
tions confirm (shaded region) that the two polarizations

have equal amplitudes (i.e., |zψ| = 1) when V̂ · n̂ = 0,
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FIG. 2: Polarization imprints on signal 1: Nonprecess-
ing: For a nonspinning q = 4 binary (Tq(0,4,0)), two mea-
sures of the polarization content along (θ, φ) = (60◦, 205◦).
Results are shown including all angular modes ψ4lm with
l ≤ 4 (solid) and just retaining terms with l = 2 (dotted).
Top panel : The line of sight right and left-handed amplitudes
|ψ4R,L| (red R, blue L). For this and almost all other lines of
sight, a single helicity dominates for all time. For comparison,
the solid black line shows |ψ4| = |ψ4R + ψ4L|. Bottom panel :
|zψ| = |ψ4

∗
L/ψ4R| vesus time. Though one helicity dominates,

the polarization content oscillates significantly at the orbital
period. These oscillations are proportional to the “higher-
mode” content (2,±1) and therefore measure the mass ratio
or residual eccentricity.

with R-handed emission dominating when V̂ · n̂ > 0 and
L-handed emission dominating when V̂ · n̂ < 0. More
precisely, we can estimate both the magnitude and phase
of z surprisingly reliably by combining Eq. (11) with the

orientation V̂ (t). For example, the bottom panel of Fig-
ure 3 shows that the simulated polarization amplitude
|zψ| is extremely close to the estimate |z̃V |. Small fluctu-
ations around the leading-order prediction at the orbital
period should be due to residual eccentricity.

While we have emphasized l = 2 modes in the discus-
sion above, the inclusion of higher-order angular modes
l ≥ 2 into ψ4 produces nearly no change to |zψ|. In this
example, our naive expression relating zψ to a preferred
direction continues to apply, even when these harmonics
produce dramatic fluctuations in the line-of-sight ampli-
tude. Judging from this example, similar calculations for
the phase of zψ, and their repeated success for all lines
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FIG. 3: Polarization imprints on signal 2: Precessing:
For a precessing binary (Sq(4,0.6,90,9)), the polarization car-
ries a strong imprint from the relative orientation of the pre-
ferred emission direction relative to the line of sight. For the
precessing q = 4 binary described in the text and [27], a de-
composition of the gravitational wave signal along a “generic”
orientation [(θ, φ) = (60◦, 205◦)] is shown. Results are shown
using just l = 2 (solid) and all modes l ≤ 4 (dotted), reversing
the convention of Figure 2. Top panel : The line of sight right
and left-handed amplitudes |ψ4R,L| (red R, blue L) using all
modes (dotted) and just l = 2 (solid). The gray shaded box

shows the interval where V̂ · n̂ ≤ 0. Bottom panel : Compar-
ison of |zψ(t)| extracted along this line of sight (black solid
[l = 2] and dotted curves [l ≤ 4]) with the leading-order esti-
mate z̃V̂ provided by Eq. (11) and the preferred orientation

V̂ selected by
〈
L(aLb)

〉
t

(blue).

of sight and simulations considered, we believe zψ is pri-
marily determined by the orientation of n̂ relative to the
time-dependent preferred orientation V̂ and can usually
be well-approximated by Eq. (11).

As described in subsequent sections, our calculations
suggest the preferred orientation V̂ evolves significantly
and rapidly during merger. Equivalently, the polarization
content – the distribution of lines of sight dominated by
left versus right handed emission – changes significantly
at the merger event. As seen in Figure 4, immediately
before and after the merger event, the two points cor-
responding to predominantly left- or right-handed emis-
sion change noticeably. This interval corresponds to the
merger phase itself. As described in the next section, we
suspect this rapid, global change in polarization content

may reflect features of the strong-field merger event itself.

E. Waveforms along other fixed directions

For reference, in Figure 5 we show the polarization con-
tent for two other preferred orientations: the initial (' fi-

nal) total angular momentum direction Ĵ (top panel) and

the preferred orientation V̂ evaluated at the time of peak
emission (bottom panel). In the first case, one polariza-
tion is vastly larger than the other at early times; during
the merger, however, both polarizations become signif-
icant. Similar results are found when extracting along
ẑ, the initial orbital angular momentum. In the second
case, both polarizations are comparatively large early on.
During the merger epoch, however, only one polarization
dominates. Generally speaking, when adopting a fixed
frame one can choose to simplify some narrow epoch of
the waveform by reducing the other polarization. For
any time, frequency, or mass range, a generalization of〈
L(aLb)

〉
t

can be constructed to determine what orien-
tation would be suitable. However, in general no one
orientation works for all time.

Finally, we emphasize that we have been able to accu-
rately estimate the polarization content using the time-
dependent preferred orientation V̂ . For our simulations,
this orientation differs substantially from L̂ at all times.
Based on this performance, we anticipate that corotating-
frame waveforms along V̂ will be substantially simpler
than any analog extracted along L̂.

III. SIMULATIONS II: TRENDS AND
VARIATIONS

From the diagnostics above, we anticipate simulations
are best and most naturally characterized by (a) the
modal waveforms ψ4lm in a corotating frame and (b)
the evolution of our preferred orientation with time.
In addition, to simplify the translation between time
and frequency domain, we will also use (c) the overall
orientation-averged signal power ρ̄. In this section we
briefly report on salient ways these three features change
with spin and mass ratio.

A. Polarization bias

Generic precessing binaries exhibit a polarization bias:
at any given instant, the binary is radiating more of one
handedness than another. During the inspiral, the bal-
ance between L and R oscillates. At merger, the balance
fixes, preferring one handedness, with the choice depend-
ing on the spin-orbit configuration just prior to merger.
This asymmetry produces large kicks [46], with a signif-
icant component perpendicular to the orbital plane; see
also Healy et al (in prep) and cf. [47].



8

FIG. 4: Evolution of amplitude, polarization at merger: Three snapshots of |ψ4| (top panel) for the Sq(4,0.6,90,9)
simulation, bracketing the time of peak amplitude and demonstrating that the polarization content changes significantly during
the merger event. For aesthetic reasons, we only show the contributions from all l = 2 modes. The top panels show the relative
scale, with red indicating the largest |ψ4| at that time. For comparison, the bottom panel panel illustrates when these snapshots
occur, using a plot of |ψ422| versus time.

For the purposes of this paper, this asymmetry com-
plicates our interpretation of the preferred direction. As
with nonprecessing binaries, we use the ratio of left to
right-handed power to estimate an (instantaneous) incli-

nation. The expressions that we invert for Ô · n̂ [e.g., Eq.
(11)] assume an equal amount of left and right handed
power. More refined estimates that relate the line of sight
to the left/right ratio are required when a strong bias to-
wards one or the other handedess occurs.

To assess whether more complicated expressions would
be required in parameter estimation,8 we define polarized
analogs of the orientation-averaged signal amplitude ρ̄

8 We illustrate polarization asymmetry using a detection-weighted
diagnostic to demonstrate that the bias is detectable. Alterna-
tively and in a detector-agnostic way, the polarization asymmetry
also shows up clearly in (

∫
dΩ|ψR(n̂)|2)/(

∫
dΩ|ψL(n̂)|2), where

the numerator and denominator are evaluated at each time or

[48], starting from ρ2 [Eq. (3)]:

ρ̄2 ≡
∮
dΩ

4π
ρ2(n̂) =

∮
dΩ

4π
2
df

Sh

|ψ̃4(f, n̂)|2

(2πf)4
(14)

ρ̄2
R ≡

∮
dΩ

4π
2

∫ ∞
0

df

Sh

|ψ̃4(f, n̂)|2

(2πf)4
(15)

ρ̄2
L ≡

∮
dΩ

4π
2

∫ 0

−∞

df

Sh

|ψ̃4(f, n̂)|2

(2πf)4
(16)

Any given binary has directions where one polarization
dominates (e.g, along L̂ for a nonprecessing binary).
Summing over all orientations, however, nonprecessing
binaries emit symmetrically, with matching amounts of
right (R) and left (L) handed emission along mirror-
symmetry-related lines of sight. With equal amounts

each frequency.
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FIG. 5: Polarization content along fixed special di-
rections: The right- and left-handed Weyl scalar ampli-
tude |ψ4R,L| (red, blue) versus time, for the gravitational
wave signal extracted along several preferred orientations,
for Sq(4,0.6,90,9). For comparison, the gray lines show the
simulation-frame (2,±2) (solid gray) and (2,±1) modes (dot-
ted gray). For aesthetic reasons, we only show the contribu-
tions from the l = 2 modes. Top panel : Initial total angular
momentum. Bottom panel : V̂ at the time of peak emission.
From the ratio of left to right (blue to red), the direction iden-

tified by V̂ corresponds to nearly circular polarization near the
epoch of peak emission. This direction is significantly offset
from Ĵ .

of signal power, nonprecessing binaries must have ρ̄L =
ρ̄R = ρ̄/

√
2. By contrast, precessing binaries have no

symmetry that enforces symmetric emission; particu-
larly in narrow epochs or frequency intervals selected by
an outside observer or gravitational wave detector, one
handedness (R or L) can dominate. As Figure 6 demon-
strates with a specific example and Figure 7 with an
ensemble, generally a single polarization does dominate
during merger. The dominant polarization depends sen-

sitively on the spins, particularly when ~S1, ~S2 are nearly
antiparallel and in the orbital plane.

Our calculations suggest that ' 30% changes in the
overall amplitude (ρ̄ or ψ4) are not uncommon during
merger. The relative amplitude of left to right handed
radiation (ρR/ρL or z), however, changes by orders of
magnitude due to small changes in inclination; see Eq.
(11) and Figure 3. As a result, the typical polarization
bias introduces a fairly small systematic error into any
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FIG. 6: Merger signals are polarized overall: Depending
on the spins, binary black holes can emit substantially more
L or R handed power. As an example, a comparison of ρ̄R
(red) and ρ̄L (blue) to ρ̄/

√
2 (dotted) for the Tq(2,0.6,45)

simulation. In this expression we adopt a fiducial initial LIGO
design noise curve.

procedure to reconstruct the evolution of V̂ [e.g., into
the inverse of Eq. (11) for the inclination as a function
of time].

B. Corotating waveforms, chirality

The corotating-frame waveforms will be described in
detail in a subsequent publication [49]. For the pur-
poses of this paper, we will employ only two key features.
First and foremost, like their nonprecessing analogs, the
corotating frames are chiral : modes with m > 0 have
frequency content only for f > 0 and vice-versa. We
can quantify how precisely we are confident that the
modes are chiral in a way that is relevant to data analy-
sis. For example, we can decompose the contribution of
each corotating mode to ficticious9 “orientation-averaged
signal-to-noise ratios” ρ̄R,L associated with each handed-
ness:

ρ̄2
lm,R,corot ≡

1

4π
2

∫ ∞
0

df

Sh

|ψcorot4,lm (f)|2

(2πf)4
(17)

ρ̄2
lm,L,corot ≡

1

4π
2

∫ 0

−∞

df

Sh

|ψcorot4,lm (f)|2

(2πf)4
(18)

Applying these expressions, we find ρ̄lm,L/ρ̄lm ' 0 for
m > 0 : modes that should have positive helicity (m > 0)
have little negative-frequency power. As a corollary, the
corotating-frame (2, 2) and (2,−2) modes are nearly or-
thogonal – as, more generally, are the subspaces spanned
by modes with m > 0 and m < 0. We will use the orthog-
onality of the corotating-frame (2, 2) and (2,−2) modes

9 Ficticious since they are associated with a corotating frame.
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FIG. 7: Large L/R asymmetries and large kicks: Scat-
ter plot of the recoil kick velocity in the ẑ direction (top
panel) and overall (bottom panel) versus ρ̄L/ρ̄R. Large kicks
in the +ẑ direction correlate with predominantly L-handed
emission. Only a comparatively small amount of asymmetry
between L and R during merger is required to produce the
largest known kicks [46]. In this figure, colors correspond to
different simulation sets: S (blue), Sq (red), T (yellow), Tq
(green). For illustrating the correlation between R vs L bias
and kick magnitude only: kick data is computed using the
simulation series alone at a single extraction radius, without
correcting for the early inspiral.

to model how precisely we can measure the orientation
of the corotating frame, both on average and as function
of time.

C. Preferred direction precesses

For the simulations and time intervals we have simu-
lated, the preferred orientation V̂ evolves as if precessing
along a nearly-constant cone, centered along some axis
Ŵ . Figure 8 provides a concrete example. In almost all
cases we find Ŵ ' Ĵfinal empirically: V̂ precesses around
the total angular momentum. For this section only, how-
ever, we allow Ŵ to take arbitrary values.

Given the orientation and an arbitrary frame x̂W , ŷW
defined perpendicular to the constant vector Ŵ , we de-
fine the precession phase φW and precession frequency

W
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FIG. 8: Precession of preferred orientation: Exam-
ple: Demonstration that the preferred orientation precesses
around Ŵ ' Ĵ for q = 2, d = 10M,a1 = 0.6x̂, a2 = 0.6ẑ.
Top panel : Two-dimensional path of V (blue) and L̂ (green)
around a proposed value of W (point at origin), as seen in

a plane perpendicular to Ŵ . The two dashed curves are
circles of constant opening angle. For comparison, a blue
point indicates the final angular momentum direction Ĵ in
this frame. Center panel : Ĵ · V̂ (blue) and Ĵ · L̂ (green),

showing both L̂ and V̂ precess along similar cones, with a
nearly constant opening angle prior to merger. In this figure,
merger occurs at t ' 0. Bottom panel : Plot of φVW before
and after merger, demonstrating an abrupt change in the pre-
cession frequency at the merger event. For comparison, the
green curve shows φL, the precession phase extracted from L
around J . For this system, at late times the “precession rate”
ΩVW ≡ ∂tφW ' 1/12M is still an order of magnitude smaller
than ∂tΦ, the “carrier frequency” set by the (2, 2) and (2,−2)
modes.
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ΩVW via

eiφVW =
(x̂W + iŷW ) · V̂
|(x̂W + iŷW ) · V̂ |

(19a)

ΩVW = ∂tφVW (19b)

and make similar definitions for L̂ around Ĵ . During
the inspiral, the two vectors V̂ and L̂ nearly coincide,
precessing around a similar center at a similar rate. To
quantify this similarity, Figure 8 shows the opening angle
of each precession cone (Ĵ · L̂ and Ĵ · V̂ ) and the “phase”

φV J and φLJ of the vectors L̂ and V̂ as they precess
around Ĵ . Prior to merger, both quantities largely agree.

As the binary plunges and merges, the precession cones
of both L̂ and V̂ cycle around their respective axes (Ĵ and

Ŵ ) at a higher rate. By comparison to L̂, however, the

preferred axis V̂ has a much smaller precession rate and
persists in precession cycles long after merger. Further-
more, contrary to our intuition, the opening angle of the
precession cone for V̂ (i.e., arccos(Ŵ · V̂ )) rarely decays

significantly after merger. This precession cycle of V̂ is
robust: both for this simulation and all others tested, all
extraction radii and (when available) all resolutions show
quantitatively similar features.

For each simulation, we estimated Ŵ and φW by fitting
a fixed precession cone to the trajectory of V̂ . Specifi-
cally, we adopt as Ŵ the direction that mimimizes the
rms difference between V̂ (t) · Ŵ and its time average.
This choice corresponds to the assumption that the pre-
cession cone swept out by V̂ should have a constant open-
ing angle. When estimating Ŵ , we separately fit data
prior to merger and after merger. In almost all cases we
found Ŵ ' Ĵ and ΩV J ' ΩVW .

To further demonstrate the close correspondence be-
tween these two directions, Figure 9 shows both an-
gular frequencies: points appear at the median value
(ΩVW + ΩV J)/2; the bar has height ±(ΩVW − ΩV J)/2.
Except for a handful of cases, mostly associated with
nearly-aligned spins, these two expressions agree. We
conservatively adopt the difference (ΩVW −ΩV J)/2 as an
estimate of our systematic error. [Other sources of sys-
tematic error, such as extraction radius, have a smaller
effect on the recovered post-merger precession rate.]

D. Post-merger precession 1: Results

In our simulations, if the binary precesses prior to
merger, our preferred direction V̂ continues to pre-
cess after merger, never converging towards Ĵ . Preces-
sion is ubiquitous (i.e., whenever L̂ and Ĵ are initially
misaligned); we therefore expect ubiquitous precession-
induced modulations at and after merger when asym-
metric binaries merge with randomly-oriented spins. As
described in a forthcoming companion publication [49],
we have performed extensive resolution tests and remain
confident that the post-merger oscillations we observe are

resolved. Table I provides an estimate of the post-merger
“precession frequencies” ΩV J for each of our simulations.

Figure 9 demonstrates that the post-merger “preces-
sion” frequencies are principally determined by the fi-
nal black hole’s spin magnitude. Because the final black
hole can be described as a superposition of quasinormal
modes, the precession frequencies are very nearly differ-
ences between the (l,m) = (2, 2) and (2, 1) quasinormal
modes of the remnant hole [50].

By some change of basis, the long-lived post-merger
oscillations must be described as some perturbation of
the final remnant black hole: a (coherent) superposition
of multiple quasinormal modes. Our calculations suggest
precessing mergers coherently excite multiple quasinor-
mal modes of different angular order. These quasinor-
mal modes have similar decay timescales (1/Im(ω)) but
noticeably different characteristic frequencies (1/Re(ω)).
As a result, though in principle the quasinormal modes
are not exactly degenerate, in practice just after merger
these coherently-excited quasinormal modes decay at a
similar rate but with changing relative phase, leading to
a black hole state that appears to precess.

To illustrate why our preferred direction precesses, we
consider a toy model that approximates features of a su-
perposition of outgoing quasinormal modes:

rψ4con(t) ≡
∑
m

a2|m|e
−iωlmtY

(−2)
l,m (20)

where ωlm is the lowest-order complex eigenfrequency
for the (l,m) eigenspace, where the eigenmodes are de-
fined relative to the black hole’s angular momentum di-
rection Ĵ , and where a2|m| are three parameters, here
assumed real for simplicity. In this example, we ignore
the difference between the actual angular eigenfunctions
of the Kerr-background wave equations (spin-weighted
spheroidal harmonics) and the corresponding eigenfunc-

tions for flat space, Y
(−2)
l,m . In the trivial case where

only a2±2 are nonzero, the preferred orientation remains

along the black hole’s angular momentum axis Ĵ . Al-
lowing a2±1 to be nonzero but keeping a20 = 0 leads to

a preferred orientation V̂ that spirals inward exponen-
tially towards Ĵ , precessing around ẑ with a frequency
ΩV J = Re(ω22 − ω21) and shrinking towards ẑ at a dif-
ferent rate ΓV J = Im(ω22−ω21). Finally, when all mode
amplitudes are nonzero, the preferred orienation can ex-
hibit a wide range of behaviors depending on the relative
mode ratios a21/a22 and a20/a22, including exponential

decay to Ĵ ; modulated precession around Ĵ ; and patho-
logically complicated behavior in the presence of degen-
eracies.

In this interpretation, the angle between V̂ and Ĵ re-
flects the amplitude of the (2,±1) modes. Conversely,

the angle between V̂ and Ĵ is also partially geometric,
being tied to the spin-orbit configuration and how the
binary evolves during merger. However, as is apparent
from Figure 8, the late-time (2, 1) amplitude (i.e., the

angle V̂ · Ĵ) evolves during the strong-field merger event.
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Key rstart/M q S1,x/M
2 S1,y/M

2 S1,z/M
2 S2,x/M

2 S2,y/M
2 S2,z/M

2 ρ̄L/ρ̄R ΩV JM θV J,final T/M Twave/M M/h

S(1,0.2,0) 6.2 1 0 0 0.05 -0.05 0 0 0.95 - 0.029 392 250 77
S(1,0.2,45) 6.2 1 0.0354 0. 0.0354 -0.05 0. 0. 0.96 unk 0.006 380.7 246.6 77
S(1,0.2,90) 6.2 1 0.05 0. 0. -0.05 0. 0. 1.04 unk - 389.2 217.4 77
S(1,0.2,135) 6.2 1 0.0354 0. -0.0354 -0.05 0. 0. 1.11 0.55 0.01 394.9 206.9 77
S(1,0.2,180) 6.2 1 0. 0. -0.05 -0.05 0. 0. 1 0.07 0.036 394.9 210.8 77
S(1,0.2,225) 6.2 1 -0.0354 0. -0.0354 -0.05 0. 0. 1.03 0.07 0.055 389.2 207.9 77
S(1,0.2,270) 6.2 1 -0.05 0. 0. -0.05 0. 0. 1 0.08 0.079 383.2 221.8 77
S(1,0.2,315) 6.2 1 -0.0354 0. 0.0354 -0.05 0. 0. 0.98 0.08 0.062 384. 247.6 77
S(1,0.4,0) 6.2 1 0. 0. 0.1 -0.1 0. 0. 0.86 0.09 0.03 398.9 277.3 77
S(1,0.4,45) 6.2 1 0.0707 0. 0.0707 -0.1 0. 0. 0.8 - 398.9 264.5 77
S(1,0.4,90) 6.2 1 0.1 0. 0. -0.1 0. 0. 1.09 - 398.9 227.1 77
S(1,0.4,135) 6.2 1 0.0707 0. -0.0707 -0.1 0. 0. 1.29 0.055 0.017 398.9 209.8 77
S(1,0.4,180) 6.2 1 0. 0. -0.1 -0.1 0. 0. 1.15 0.07 0.065 398.9 208.7 77
S(1,0.4,225) 6.2 1 -0.0707 0. -0.0707 -0.1 0. 0. 1.06 0.07 0.11 398.9 209.6 77
S(1,0.4,270) 6.2 1 -0.1 0. 0. -0.1 0. 0. 1 0.08 0.16 398.9 240.8 77
S(1,0.4,315) 6.2 1 -0.0707 0. 0.0707 -0.1 0. 0. 0.94 0.09 0.08 398.9 274.2 77
S(1,0.6,0) 6.2 1 0. 0. 0.15 -0.15 0. 0. 1.07 0.1 0.068 398.9 289.7 77
S(1,0.6,15) 6.2 1 0.0388 0. 0.1449 -0.15 0. 0. 0.95 0.1 0.05 498.9 288.7 77
S(1,0.6,30) 6.2 1 0.075 0. 0.1299 -0.15 0. 0. 0.80 0.1 0.10 498.9 276.7 77
S(1,0.6,45) 6.2 1 0.1061 0. 0.1061 -0.15 0. 0. 0.69 0.1 0.047 498.9 270.5 77
S(1,0.6,60) 6.2 1 0.1299 0. 0.075 -0.15 0. 0. 0.69 0.003 0.023 498.9 263.3 77
S(1,0.6,75) 6.2 1 0.1449 0. 0.0388 -0.15 0. 0. 0.84 0.08 0.012 498.9 248.2 77
S(1,0.6,90) 6.2 1 0.15 0. 0. -0.15 0. 0. 1.15 - - 398.9 229.8 77
S(1,0.6,105) 6.2 1 0.1449 0. -0.0388 -0.15 0. 0. 1.44 0.07 0.002 498.9 200.5 77
S(1,0.6,120) 6.2 1 0.1299 0. -0.075 -0.15 0. 0. 1.51 0.05 0.011 498.9 211. 77
S(1,0.6,135) 6.2 1 0.1061 0. -0.1061 -0.15 0. 0. 1.41 0.06 0.039 498.9 206.9 77
S(1,0.6,150) 6.2 1 0.075 0. -0.1299 -0.15 0. 0. 1.27 0.06 0.049 498.9 202.1 77
S(1,0.6,165) 6.2 1 0.0388 0. -0.1449 -0.15 0. 0. 1.15 0.06 0.10 498.9 198.6 77
S(1,0.6,180) 6.2 1 0. 0. -0.15 -0.15 0. 0. 1.09 0.06 0.13 498.9 198.4 77
S(1,0.6,195) 6.2 1 -0.0388 0. -0.1449 -0.15 0. 0. 1.07 0.06 0.13 498.9 199.8 77
S(1,0.6,210) 6.2 1 -0.075 0. -0.1299 -0.15 0. 0. 1.07 0.06-0.07 0.14 498.9 204.6 77
S(1,0.6,225) 6.2 1 -0.1061 0. -0.1061 -0.15 0. 0 1.08 0.07 0.14 498.9 206.5 77
S(1,0.6,240) 6.2 1 -0.1299 0. -0.075 -0.15 0. 0. 1.07 0.07 0.18 498.9 204. 77
S(1,0.6,255) 6.2 1 -0.1449 0. -0.0388 -0.15 0. 0. 1.04 0.08 0.24 495.6 233.1 77
S(1,0.6,260) 6.2 1 -0.1477 0. -0.026 -0.15 0. 0. 1.03 0.08 0.26 498.9 248. 77
S(1,0.6,265) 6.2 1 -0.1494 0. -0.0131 -0.15 0. 0. 1.02 0.085 0.21 498.9 251.3 77
S(1,0.6,270) 6.2 1 -0.15 0. 0. -0.15 0. 0. 1 0.09 0.15 436.7 254.4 77
S(1,0.6,285) 6.2 1 -0.1449 0. 0.0388 -0.15 0. 0. 0.97 0.09 0.11 488.4 274.2 77
S(1,0.6,300) 6.2 1 -0.1299 0. 0.075 -0.15 0. 0. 0.99 0.11 0.12 498.9 279.2 77
S(1,0.6,315) 6.2 1 -0.1061 0. 0.1061 -0.15 0. 0. 1.03 0.12 498.9 287.7 77
S(1,0.6,330) 6.2 1 -0.075 0. 0.1299 -0.15 0. 0. 1.08 0.1 0.11 498.9 289.5 77
S(1,0.6,345) 6.2 1 -0.0388 0. 0.1449 -0.15 0. 0. 1.1 0.1 0.09 498.9 290.2 77
S(1,0.8,0) 6.2 1 0. 0. 0.2 -0.2 0. 0. 1.5 0.12 0.18 498.9 306.1 77
S(1,0.8,30) 6.2 1 0.1 0. 0.1732 -0.2 0. 0. 1.24 0.11 0.05 498.9 292.8 77
S(1,0.8,60) 6.2 1 0.1732 0. 0.1 -0.2 0. 0. 0.59 0.097 0.30 498.9 269.1 77
S(1,0.8,90) 6.2 1 0.2 0. 0. -0.2 0. 0. 1.09 - - 498.9 232.7 77
S(1,0.8,120) 6.2 1 0.1732 0. -0.1 -0.2 0. 0. 1.70 0.062 0.02 498.9 210.6 77
S(1,0.8,150) 6.2 1 0.1 0. -0.1732 -0.2 0. 0. 1.17 0.061 0.097 498.9 195.3 77
S(1,0.8,180) 6.2 1 0. 0. -0.2 -0.2 0. 0. 0.96 0.061 0.16 498.3 191.6 77
S(1,0.8,210) 6.2 1 -0.1 0. -0.1732 -0.2 0. 0. 1.04 0.069 0.19 498.9 202.1 77
S(1,0.8,240) 6.2 1 -0.1732 0. -0.1 -0.2 0. 0. 1.14 0.081 0.25 498.9 230.4 77
S(1,0.8,255) 6.2 1 -0.1932 0. -0.0518 -0.2 0. 0. 1.07 0.094 0.23 498.9 255.4 77
S(1,0.8,270) 6.2 1 -0.2 0. 0. -0.2 0. 0. 1 0.098 0.12 498.9 277.1 77
S(1,0.8,300) 6.2 1 -0.1732 0. 0.1 -0.2 0. 0. 1.15 0.12 0.17 498.9 292. 77
S(1,0.8,330) 6.2 1 -0.1 0. 0.1732 -0.2 0. 0. 1.34 0.12 0.15 498.9 306.9 77
Sq(2,0.6, 0,6.2) 6.2 2 0. 0. 0.2666 -0.0666 0. 0. 1.11 0.12 0.034 599. 342.5 140
Sq(2,0.6,30,6.2) 6.2 2 0.1333 0. 0.2309 -0.0666 0. 0. 1.29 0.11 0.124 548. 326.3 140
Sq(2,0.6,90,6.2) 6.2 2 0.2666 0. 0. -0.0666 0. 0. 0.96 0.07 0.12 411. 255.1 140
Sq(2,0.6,150,6.2) 6.2 2 0.1333 0. -0.2309 -0.0666 0. 0. 0.99 0.04 0.093 415.2 195.4 140
Sq(2,0.6,180,6.2) 6.2 2 0. 0. -0.2666 -0.0666 0. 0. 0.86 0.37 0.087 396.6 187.8 140
Sq(2,0.6,270,6.2) 6.2 2 -0.2666 0. 0. -0.0666 0. 0. 1.31 0.08 - 497.9 267.5 140
Sq(4,0.6, 0,6.2) 6.2 4 0. 0. 0.384 -0.024 0. 0. 0.99 0.10 0.035 583.2 434.5 140
Sq(4,0.6,30,6.2) 6.2 4 0.192 0. 0.3325 -0.024 0. 0. 1.13 0.095 0.11 599. 427.1 140
Sq(4,0.6,90,6.2) 6.2 4 0.384 0. 0. -0.024 0. 0. 0.96 0.058 0.38 549.9 264.6 140
Sq(4,0.6,150,6.2) 6.2 4 0.192 0. -0.3325 -0.024 0. 0. 1.06 0.01 0.55 408.1 165.6 140
Sq(4,0.6,180,6.2) 6.2 4 0. 0. -0.384 -0.024 0. 0. 0.91 - 0.10 415.5 165.6 140
Sq(4,0.6,270,6.2) 6.2 4 -0.384 0. 0. -0.024 0. 0. 0.77 0.07 0.27 549.9 280.6 140
Sq(4,0.6,0,9) 9. 4 0. 0. 0.384 -0.024 0. 0. 1.06 0.05-0.1 0.022 1599. 1273.1 140
Sq(4,0.6,90,9) 9. 4 0.384 0. 0. -0.024 0. 0. 0.76 0.058 0.33 1194.4 867. 140
Sq(4,0.6,150,9) 9. 4 -0.192 0. -0.3325 -0.024 0. 0. 1.20 0.01 0.50 799. 487.5 140
Sq(4,0.6,180,9) 9. 4 0. 0. -0.384 -0.024 0. 0. 1.1 - 0.09 799. 426.1 140
Sq(4,0.6,210,9) 9. 4 0.192 0. -0.3325 -0.024 0. 0. 0.77 0.014 0.51 797.5 464. 140
Sq(4,0.6,270,9) 9. 4 -0.384 0. 0. -0.024 0. 0. 1.37 0.06 0.26 1138.7 883.2 140
T(1,0.2,45) 10 1 0. 0. 0.05 0.0354 0. 0.0354 1.05 0.087 0.029 1298.9 849. 77
T(1,0.2,60) 10 1 0. 0. 0.05 0.0433 0. 0.025 1.07 0.08 0.039 1298.9 837. 77
T(1,0.2,90) 10 1 0. 0. 0.05 0.05 0. 0. 1.03 0.07-0.1 0.033 1298.9 838.2 77
T(1,0.4,45) 10 1 0. 0. 0.1 0.0707 0. 0.0707 0.96 0.1 0.031 1499. 986.6 77
T(1,0.4,60) 10 1 0. 0. 0.1 0.0866 0. 0.05 0.86 0.1 - 1499. 965.8 77
T(1,0.4,90) 10 1 0. 0. 0.1 0.1 0. 0. 1.07 0.1 0.04 1499. 908.3 77
T(1,0.6,45) 10 1 0. 0. 0.15 0.1061 0. 0.1061 0.92 0.11 0.18 1499. 1052.1 77
T(1,0.6,60) 10 1 0. 0. 0.15 0.1299 0. 0.075 1.2 0.12 - 1499. 993.7 77
T(1,0.6,90) 10 1 0. 0. 0.15 0.15 0. 0. 0.73 0.1 - 1499. 915.7 77
T(1,0,0) 10 1 0. 0. 0. 0. 0. 0. 1 - - 1099. 885.5 77
T(1,0.2,0) 10 1 0. 0. 0.05 0. 0. 0.05 1 - - 1298.9 906.4 77
T(1,0.4,0) 11 1 0. 0. 0.1 0. 0. 0.1 1 - - 1398.9 997.5 90
T(1,0.6,0) 10 1 0. 0. 0.15 0. 0. 0.15 1 - - 1499. 1086. 77
T(1,0.8,0) 10 1 0. 0. 0.2 0. 0. 0.2 1 - - 1699. 1217.7 90
Tq(1.5,0.4,60) 10 1.5 0.1247 0. 0.072 0. 0. 0.064 0.95 0.085 0.055 1498.9 1157.7 120
Tq(1.5,0.6,45) 10 1.5 0.1527 0. 0.1527 0. 0. 0.096 1.17 0.11 0.027 1598.9 1298.8 120
Tq(1.5,0.6,60) 10 1.5 0.187 0. 0.108 0. 0. 0.096 1.2 0.10 0.055 1598.9 1251.9 120
Tq(1.5,0.6,90) 10 1.5 0.216 0. 0. 0. 0. 0.096 1.34 0.07 - 1598.8 1134.1 120
Tq(2,0.4,60) 10 2 0.1539 0. 0.0889 0. 0. 0.0444 0.91 0.08 0.084 1598.9 1216.1 120
Tq(2,0.6,45) 10 2 0.1885 0. 0.1885 0. 0. 0.0666 0.90 0.106 0.068 1698.9 1390.9 120
Tq(2,0.6,60) 10 2 0.2309 0. 0.1333 0. 0. 0.0666 0.88 0.095 0.080 1698.9 1328.4 120
Tq(2,0.6,90) 10 2 0.2666 0. 0. 0. 0. 0.0666 0.72 0.075 0.11 1598.9 1176.4 120
Tq(2.5,0.4,45) 10 2.5 0.1443 0. 0.1443 0. 0. 0.0326 0.85 0.06 0.072 1698.9 1351.6 120
Tq(2.5,0.4,60) 10 2.5 0.1767 0. 0.102 0. 0. 0.0326 1.03 0.06 0.12 1598.9 1297.6 120
Tq(2.5,0.4,90) 10 2.5 0.2041 0. 0. 0. 0. 0.0326 0.79 0.04 0.12 1498.9 1180.4 120
Tq(2.5,0.6,45) 10 2.5 0.2164 0. 0.2165 0. 0. 0.049 0.94 0.095 0.073 1798.9 1488.4 120
Tq(2.5,0.6,60) 10 2.5 0.2651 0. 0.1531 0. 0. 0.049 1.24 0.076 0.11 1798.9 1409.6 120
Tq(2.5,0.6,90) 10 2.5 0.3061 0. 0. 0. 0. 0.049 1.14 0.066 0.20 1598.9 1226.4 120
Tq(4, 0.0,0) 11 4 0 0 0 0 0 0 1 - - 2499 1989 200
Tq(4, 0.6, 45) 10 4 0.2715 0. 0.2715 0. 0 0.024 0.88 0.078 0.14 2198.9 1805.7 120
Tq(4, 0.6, 60) 10 4 0.3325 0. 0.192 0. 0. 0.024 0.90 0.058 0.23 1998.9 1698.1 120
Tq(4, 0.6, 90) 10 4 0.384 0. 0 0. 0. 0.024 1.4 0.038 0.29 1798.9 1420. 120

TABLE I: Simulations used: The first column is a key, encoding the family, mass ratio, black hole spin magnitude |S1|/M
2
1 = |S2|/M

2
2 and alignment.

The next 8 columns provide specific initial conditions: the initial separation (rstart), mass ratio q = M1/M2, and two component spins S2
k/M

2 relative to the total

initial mass. The next column provides ρ̄L/ρ̄R, a measure of whether the merger event preferentially radiates R or L-handed emission. [This quantity is evaluated for

M = 200M� and the initial LIGO design noise curve.] The next column provides ΩV J , the post-merger “precession frequency” of V̂ around Ĵ, estimated using ' 50M

after peak (2, 2) emission; “unk” indicates entries where we cannot reliably determine it. The last three columns provide the simulation duration, the length of the reliable

waveform, and the highest resolution h used.
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FIG. 9: Post-merger precession frequency: For each of
the simulations listed in Table I, a scatterplot of their “post-
merger precession frequency” MfΩVW [Eq. (19)] against the
final black hole’s spin magnitude Jf/M

2
f . Colors indicate four

different classes of simulation: Tq (blue), T (red), Sq (green)
and S (yellow). For comparison, the solid lines show the
quasinormal mode frequency differences ω122 − ω121 (blue),
ω222−ω121 (red), and ω322−ω121 (yellow), where ωnlm is the
real part of the quasinormal eigenfrequency [50]. The bars
indicate differences between two methods for estimating Ω;
see Section III C.

We anticipate that the opening angle will provides insight
into the strong-field merger process.

E. Post-merger precession 2: Broader context

Our results suggest that the nonlinear merger event
coherently seeds multiple quasinormal modes. After
merger, all quasinormal modes appear to precess almost
coherently, in a frame aligned with the final black hole’s
spin. For example, each constant-l subspace seems to
precess at a similar rate. We defer a detailed discussion
of each constant-l subspace to subsequent publications.

Our results agree with a recently-developed geomet-
ric interpretation of Kerr quasinormal modes. Using a
short-wavelength limit, Yang et al. [28] recently showed
that these kinds of quasinormal mode frequency differ-
ences are intimately connected to precession of spheri-
cal photon orbits. Our calculations suggest this kind of
geometric interpretation holds even in the strong field,
during merger.

Because rapid polarization changes occur during the
merger epoch, we anticipate that these polarization
changes encode linear and potentially nonlinear features
of strong-field gravity. At a minimum, the precession
cycle of V̂ persists during and after the merger, with a
precession rate tied to the quasinormal mode frequency
distribution of the final hole. Modulations in the line
of sight polarization content provide a natural way to
identify this characteristic frequency, potentially allow-
ing new experimental tests of general relativity. Second,

the long-term, multimodal coherence we observe suggests
that a short, nonlinear, and nontrivial process seeds a co-
herent multimodal perturbation of the final black hole.
In part, of course, the perturbed black hole simply inher-
its features from the just-prior-to-merger binary. In the
geometric point of view, V̂ · Ĵ 6= 0 prior to merger; in
the quasinormal mode view, the (2, 1) mode just prior to
plunge partially limits the (2, 1) quasinormal mode am-
plitude during and after merger. However, the merger
process partially but incompletely sheds this quantity.
We anticipate that the amplitude of this effect, measured
either by V̂ · Ĵ or the peak (2, 1) amplitude in a frame

aligned with Ĵ , will provide a useful probe of the strong-
field merger process.

F. Recovering the direction using polarization

For precessing binaries, we have argued that the line-
of-sight polarization, as a function of time, determines
both the line of sight and the path of V̂ , a preferred di-
rection. We have argued that this process works for all
time, both prior to and after merger. In the theorists’
paradise – access to a noise-free line-of-sight signal ψ4(t)
– we have already arrived at this paper’s key result: by
tracking polarization, we can partially reconstruct prop-
erties of the source binary, even when limited to the short
merger epoch.

In practice, however, gravitational wave detectors have
limited sensitivity, with access to only a small time and
frequency interval of the full signal. Nontheless, as we
argue below, both the polarization bias, ρ̄L/ρ̄R, and pre-

ferred orientation, V̂ , can be measured by tracking the
time-dependent polarization along a single line of sight.

IV. POLARIZATION IS MEASURABLE

In the previous section we described how to charac-
terize the polarization content of a gravitational wave
signal. In this section we demonstrate that this con-
tent is experimentally accessible, both on average and
to a lesser extent as a function of time. We quantify the
amount of polarization difference that experiments can
distinguish. In particular, we show how fairly small po-
larization fluctuations can lead to substantial differences
between nonprecessing and precessing waveforms.

A. Nonprecessing binaries

As shown above [Eq. (10)], for nonprecessing binaries
measurements of the polarization content z are equiva-
lent to constraints on the emission inclination (θ). While
phrased in different coordinates and applied to an en-
tirely different mass regime where semianalytic waveform
models exist, several extensive discussions of parameter
estimation including inclination exist in the literature
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[17, 51–57]. For a signal of amplitude ρ, the inclination
can be measured to order

∆(cos θ) ' 1/ρ

Detailed Fisher matrix and Markov-chain Monte Carlo
calculations corroborate this simple estimate [17, 51–57].

For nonprecessing binaries dominated by l = |m| = 2
emission, the polarization content is equally a measure
of the relative amplitude (and phase) of the (2, 2) ver-
sus (2,−2) modes; see Eq. (10). Because the (2, 2) and
(2,−2) modes have definite (and opposite) helicity, we
can equally interpret inclination measurements and po-
larization content constraints as information about the
relative importance of left- and right-handed emission,
averaged over the whole signal.

B. Static and dynamic polarization content
accessible

As demonstrated extensively for nonprecessing signals,
gravitational wave observations can constrain the polar-
ization content of a signal with constant polarization, a
“static” signal. By implication, observations can equally
well constrain the “static part” of a signal with weakly-
time-varying polarization content. Generalizing, obser-
vations should also be able to constrain some “average
polarization” from an arbitrary gravitational wave sig-
nal. How? Conceptually, gravitational wave detector
networks can be arranged to be sensitive to only one
(circular or linear) polarization at a time. By measuring
the total power incident in each polarization, we directly
constrain the “average polarization.”

A detailed analysis of the response of real gravitational
wave detector networks to each circular polarization is
beyond the scope of this paper. Instead, for simplicity
and following the philosophy outlined in [27] and near
Eq. (3), we will idealize gravitational wave networks as
equally sensitive to both linear polarizations. By con-
struction, the left- and right-handed components of ψ4

are orthogonal. The net signal amplitude ρ2(n̂) can be
expressed as a sum of left- and right-handed components:

ρ2
R(n̂) ≡ 2

∫ ∞
0

df

Sh

|ψ4(f, n̂)|2

(2πf)4
(21)

ρ2
L(n̂) ≡ 2

∫ 0

−∞

df

Sh

|ψ4(f, n̂)|2

(2πf)4
(22)

Observations determine the integrated contributions
from both polarizations (ρR,L) independently. In this
averaged sense, observations can unambiguously deter-
mine the polarization content: we can simply measure
the (source mass and detector-dependent) ratio

z̄(M) ≡ ρL/ρR . (23)

For nonprecessing binaries, this average polarization am-
plitude z̄ corresponds precisely to the instantaneous po-
larization amplitude given in Eq. (10). Motivated by the

accuracy of inclination measurements and fluctuations in
each (independent) polarization, we anticipate this quan-
tity can be measured to order ∆ ln z̄ ' 1/min(ρR, ρL).

For sufficiently strong signals, the Weyl scalar can be
reconstructed in the time domain, allowing us to esti-
mate ψ4R,L and therefore the polarization content at each
time. Nonparametric signal reconstruction algorithms
like coherent waveburst are already employed in at-
tempts to identify and reconstruct signals from unmod-
eled sources [58, 59]. At the signal amplitudes expected
from the first merger detections, however, fully non-
parametric models generally have too much freedom to
tightly constrain the polarization evolution seen in merg-
ing black hole binaries. Nonetheless, tighter constraints
should be achievable, to the extent that precession-
related timescales remain long compared to other scales
in the signal.

In fact, several post-Newtonian parameter estima-
tion studies have demonstrated how well these longer
timescales can be constrained and differentiated, using
both ground- and space-based interferometers [54, 56,
57]. Implicitly, the initial conditions of an inspiralling,
precessing binary encode its precession trajectory, al-
beit in suboptimal coordinates.10 To the extent that
post-Newtonian studies of binary parameter estimation
confirm that both spins and directions of merging bina-
ries can be measured, they also imply that the (time-
dependent) precession trajectory can be distinguished.
Furthermore, post-Newtonian simulations suggest that
even marginal precession (i.e., even less than one preces-
sion cycle) has a dramatic impact: if precession is in-
cluded, then precessing signals can appear dramatically
different than their similar nonprecessing counterparts.

C. Polarization-induced mismatch: Loss of
amplitude relative to nonprecessing

To demonstrate the critical impact even weak but time-
dependent precession has on a merger signal, we remove
it. Specifically, we start with our standard precessing bi-
nary [Sq(4,0.6,90,9)], examine all possible emission direc-
tions, and determine how well a comparable nonprecess-
ing analog could fit them. To reduce ambiguity, for
our “nonprecessing” analog we use the corotating-frame
(2,±2) modes from that same simulation.11 The proce-

10 The traditional coordinate system for binary parameters adopts
the initial conditions and spin vectors, rather than the geometry
of the precessing binary as it passes through the sensitive band.
Recent calculations suggest coordinates adapted to the center of
the band and which phenomenologically encode precession will
more transparently represent the available information; see, for
example, Brown et al. [45].

11 Alternatively, one can estimate how much precession matters by
comparing a precessing NR signal with a nonprecessing template
family, including a full search over all possible component masses
and emission directions. This challenge will be addressed in a
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dure for constructing these waveforms is described in a
companion publication [49]. As noted above, these two
corotating modes are orthogonal, with support only for
f > 0 or f < 0 respectively. Specifically, a nonprecessing
analog of our binary would be well-approximated by any
linear combination of the (2, 2) and (2,−2) modes.

As in our prior work [26, 27], for simplicity we com-
pare two complex waveforms using an inner product that
accounts for both polarizations simultaneously:

(A,B) ≡
∫ ∞
−∞

2
Ã(f)∗B̃(f)

(2πf)4Sh
df (24)

In this expression we are not maximizing over time or
phase. Using this inner product, we can define two nor-
malized L and R-handed basis states from the corotating-
frame modes:

|R〉 = ψ422(t)/
√

(ψ422, ψ422) (25)

|L〉 = ψ42−2(t)/
√

(ψ42−2, ψ42−2) (26)

Using these orthonormal basis states, we can construct
the “nonprecessing signal” ψest that best resembles
ψ(t, n̂):

|ψest〉 = (R,ψ) |R〉+ (L,ψ) |L〉 ≡ Pψ (27)

where P is a projection operator to the subspace spanned
by R,L. From the difference between this state and the
original state, we can determine how much information is
lost by a nonprecessing approximation for each candidate
line of sight:

ρ2
rem ≡ (ψ, (1− P)ψ) = ρ2 − (|(R,ψ)|2 + |(L,ψ)|2)(28)

This expression can be further simplified by expanding
ψ in left- and right-handed functions of time along that
line of sight:

|ψ〉 ≡ ρL

∣∣∣ψ̂L〉+ ρR

∣∣∣ψ̂R〉 = ρ
∣∣∣ψ̂〉 (29)

where for clarity we adopt hats to denote normalized sig-

nals (e.g.,
∣∣∣ψ̂〉 = |ψ〉 /ρ). Substituting this expression

then using orthogonality of L and R handed signals gives
an expression for the SNR lost in terms of the intrinsic L

and R handed amplitudes ρR,L and the overlaps (R, ψ̂R)

and (L, ψ̂L) between the two (normalized) line of sight
R and L basis signals and our two R- and and L-handed
basis functions:

ρ2
rem

ρ2
= 1− 1

ρ2
R + ρ2

L

[ρ2
R|(R, ψ̂R)|2 + ρ2

L|(L, ψ̂L)|2]

(30a)

subsequent publication, using existing and recently developed
numerical and theoretical signal models.

In the above discussion we pessimistically perform a
point-to-point comparison: we do not allow the R,L
waveforms to vary in phase or time, neither relative to the
signal ψ nor relative to one another. In practice, however,
we want to mimic the response of a template manifold,
including all physical signals that include our synthetic
nonprecessing binary. Allowing for similar events at dif-
ferent times, a better diagnostic for lost signal power due
to precession is

ρ2
rem,min

ρ2
= mint

ρ2
rem(t)

ρ2
(30b)

where the minimum is over all candidate times t for the
merger event specified by |R〉 , |L〉.

This “missing power” diagnostic behaves qualitatively
differently for nonprecessing and precessing binaries. For
simplicity, consider a scenario where just the leading-
order (l,m) = (2,±2) emission dominates, so higher har-
monics can be omitted to a first approximation, such
as M = 100M� and the initial LIGO noise curve.
For a nonprecessing binary and for masses dominated

by quadrupole emission, the two overlaps |(R, ψ̂R)| and

|(L, ψ̂L)| are nearly unity. Hence, almost no signal power
is lost. By contrast, precession introduces distinctive
phase modulations that cannot be produced by non-
precessing sources [44, 45]. Since precession occurs dur-
ing merger, we expect loss of signal amplitude in direct
proportion to the phase and amplitude modulations that
precession introduced. In the language of the above
diagnostic, we expect that for precessing binaries the

two overlaps |(R, ψ̂R)| and |(L, ψ̂L)| are substantially less
than unity.

As an example, Figure 10 shows contour plots of these
two overlaps (top panel) and of the total signal ampli-
tude lost (bottom two panels) for a fiducial precessing
binary. In this figure, we adopt a low reference mass
(M = 100M�) to ensure both that l = 2 emission dom-
inates, and that it occurs along a relatively stationary
instantaneous direction; see, e.g., Figure 2 in [27]. Even
in this limit, the bottom left panel of Figure 10 shows
that most orientations are poorly fit with an optimal
nonprecessing approximation generated from the coro-
tating frame. Further, these poorly-fit orientations lie
nearly perpendicular to some instantaneous V̂ direction.
Finally, in each of these poorly-fit orientations, the rela-
tive phase of L and R changes significantly. As seen in
the bottom right panel, while the phase of ψ4R,L individ-
ually resemble a nonprecessing waveform, together their
relative phase evolves in a way we expect that no single
nonprecessing system could reproduce. Similar behavior
occurs for all the precessing binaries we have explored.

Though we adopt a particularly well-chosen reference
signal, this calculation only concretely demonstrates a
this particular precessing binary has many lines of sight
where its signal cannot be fit by this particular pair of
nonprecessing basis signals. Real nonprecessing searches
compare each individual signal with a template bank of
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many candidate nonprecessing signals. We will address
this “fitting factor” problem in a subsequent publication
that compares our precessing signals to a family of non-
precessing sources. However, motivated by other stud-
ies of precession-induced modulations [45], we anticipate
that any nonprecessing signal cannot mimic sufficiently
strong geometric precession-induced phase and ampli-
tude modulations.

D. Estimating the mismatch

Motivated by studies of BH-NS binaries [45], our calcu-
lations suggest a familiar conclusion: when viewed near
its instantaneous orbital plane, a precessing binary can
produce complicated emission, delicately balancing left
and right handed power. No nonprecessing signal model
can reproduce it. Of course, our signal model also ne-
glects higher harmonics. Some of the mismatch seen
in Figure 10 reflects our inability to recover these other
modes. For the mass region considered, however, the
modes not included produce only a few percent of the
(corotating-frame) signal power; see Table 1 in [27]. The
lack of higher harmonics cannot explain the extremely
low matches seen here.

Studies of BH-NS binaries suggest precession intro-
duces coherent phase and amplitude modulations, su-
perimposed on top of secular (corotating-frame) evolu-
tion [45]. A sufficiently generic nonprecessing model
can fit any secular phase, but not the modulations. To
show this, we will rewrite the line-of-sight left- and right-
handed signal ψ4R,L(t) as a modulation factor times a
corotating-frame signal. Doing so will let us calculate the
overlap between corotating-frame modes and any line of
sight as a simple integral, whose integrand has two fac-
tors: (a) secular terms, reflecting the corotating modes’
slow change in amplitude with time; and (b) a geometri-
cal, precession term X , reflecting the change in amplitude
and phase along the line of sight. These expressions prove
that the signal power “lost” in comparing a nonprecess-
ing to precessing model can be uniquely associated to
the modulations that precession introduces in the signal
model – modulations that no nonprecessing signal can re-
produce. For brevity and for practical reasons – almost
all search strategies use the (2,±2) modes alone – we em-
phasize a sufficiently low reference mass that the signal
is dominated by the (l,m) = (2, 2) and (2,−2) modes in
its corotating frame. As noted above, higher order har-
monics l > 2 are still significant at these masses [Table 1
in [27]]. Nonetheless, we explicitly neglect contributions
from l > 2, both to demonstrate our analytic control over
the problem and to connect to nonprecessing searches.

The line-of-sight gravitational wave signal ψ4(n̂, t) can
be expressed in terms of corotating-frame harmonics
ψ4

corot
lm and a rotation operation:

rψ4(n̂, t) =
∑
m,m′

D2
mm′(R(t))ψ4

corot
m′ Y

(−2)
2,m (n̂) (31)

where R(t) is a suitable rotation (e.g., the forward trans-

formation ẑ → V̂ (t)) and Dl
mm′ is a Wigner D matrix

describing the action of SU(2) rotations on angular eigen-
states. If the corotating-frame (2,±2) modes dominate,
the line-of-sight signal can be approximated by just two
terms:

rψ4
est(n̂, t) ' ψ4

corot
22 XR + ψ4

corot
2−2 XL (32)

XR ≡
∑
m

D2
m2(R(t))Y

(−2)
2,m (n̂) (33)

XL ≡
∑
m

D2
m−2(R(t))Y

(−2)
2,m (n̂) (34)

The two slowly-varying but not constant functions XR,L
depend only on geometric factors: our line of sight n̂ and
the rotation operator R (i.e., on V̂ ).

The variation of XR,L with time is completely responsi-
ble for the structure seen in Figure 10. In Sec. IV C, we
described a nonprecessing-signal search strategy, where
each line of sight was projected into the span of two
corotating-frame basis signals ∝ ψ4

corot
2±2 . If the two

modulation factors XR,L were constant, these projections
would be trivial; the search would recover the line-of-
sight signal. To estimate the fraction of signal power lost
due to precession, we further approximate the right- and
left-handed parts of ψ4

est(n̂, t) [Eq. (4)] by

ψ4
est
R ' ψ4

corot
22 XR (35)

ψ4
est
L ' ψ4

corot
2−2 XL (36)

which is an excellent approximation to the extent that
XR,L are slowly-varying. Given this ansatz, the formulae
described in Sec. IV C let us calculate the fraction of
signal-to-noise ρrem/ρ that a nonprecessing search should
miss when applied to this particular line of sight. For

example, the overlap (R, ψ̂R) can be approximated by

(R, ψ̂estR ), which can in turn be approximated as

(R, ψ̂estR ) ' 〈R |XR|R〉
〈R ||XR|2|R〉1/2

(37)

=

〈
ψ̂R

∣∣∣X−1,∗
R

∣∣∣ ψ̂R〉〈
ψ̂R ||XR|−2| ψ̂R

〉1/2
(38)

=

∫∞
0
df
XR|ψ4

rot
22 |

2

(2πf)4Sh√∫∞
0
df
|XRψ4

rot
22 |2

(2πf)4Sh

(39)

where we have simplified the integral limits using chiral-
ity. A similar expression applies to the other chirality:

(L, ψ̂estL ) ' 〈L |XL|L〉
〈L ||XL|2|L〉1/2

(40)

=

∫ 0

−∞ df
XL|ψ4

rot
2−2|

2

(2πf)4Sh√∫ 0

−∞ df
|XLψ4

rot
22 |2

(2πf)4Sh

(41)
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FIG. 10: Nonprecessing approximation omits signal power: Comparison of corotating (2,±2) subspace with the sum
of all l = 2 modes along each line of sight, for the Sq(4,0.6,90,9) simulation and M = 100M�. This binary preferentially
emits R-handed signal into our detector’s sensitive band [ρ̄L/ρ̄R = 0.76 from Table I]. Top left panel :Contours of normalized

matches |(R, ψ̂R)| (white) and |(L, ψ̂L)| (black) for the initial LIGO noise curve at 100Mpc. For comparison, the colors indicate

proximity to a single direction (n̂(θ, φ) · V̂ ∗ for V̂ ∗ ≡ n̂(1.01, 2.98)), the estimated preferred emission direction at 100M�. The
R basis signal is a good match when it dominates emission and vice-versa. Top right panel : Contour plot of ρ2rem,min/ρ

2, the
fraction of signal power lost in a nonprecessing approximation [Eq. (30)]. [This calculation allows independent timeshifts in L
and R and therefore underestimates the true fraction of power lost.] In directions nearly perpendicular to the preferred direction

V̂ ∗ defined above, a nonprecessing approximation fails to capture all available signal information. Bottom left panel : Fraction
P (<) of orientations with ρ2rem,min/ρ

2 less than a specific threshold (i.e., which lose less than a specified fraction of the signal
amplitude with a natural nonprecessing approximation). A significant fraction of all orientations are significantly impacted
by precession. Bottom right panel : For the line of sight (θ, φ) = (0.94, 0.94), the phase of ψ4R (magenta) and ψ4L (blue) are
shown. The two differ by a significant, time-varying phase (arg(z)). While each polarization still resembles a nonprecessing
signal, no single nonprecessing signal model can fit both R and L polarizations simultaneously. For this reason, along this line
of sight a large fraction of the signal power is lost when fitting with a nonprecessing approximation (top right panel).

Combined these two approximations allow us to approx-
imate Fig. 10. These approximations suggest that mis-
match results from fluctuations in X around their median
values. To be concrete, the total SNR lost due to apply-

ing a nonprecessing approximation can be expanded as

ρ2
rem = 〈ψ4 |[1− |R〉 〈R| − |L〉 〈L|]|ψ4〉

= ρ2
R

[
1− | 〈R |XR|R〉 |

2

〈R ||XR|2|R〉

]
+ ρ2

L

[
1− | 〈L |XL|L〉 |

2

〈L ||XL|2|L〉

]
(42)

For a nonprecessing binary with a fixed preferred direc-
tion, the geometrical quantities X remain constant. By
contrast, for a precessing binary, X fluctuates, with the
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FIG. 11: The line of sight estimate, Eq. 32, is a good approximation for the full l = 2 waveform: Comparison of
ψ4

est with the sum of all l = 2 modes along each line of sight, for the Sq(4,0.6,90,9) simulation and M = 100M�. As before, the

colors indicate proximity to a single direction (n̂(θ, φ) · V̂ ∗ for V̂ ∗ ≡ n̂(1.01, 2.98)), the estimated preferred emission direction at
100M�. Left panel : Contour of the normalized match, |(ψ4

est, ψ4)|, for the initial LIGO noise curve at 100Mpc. Right panel :

Contours of normalized matches |(R, ψ̂est)| = |(R, ψ̂estR )| (white) and |(L, ψ̂est)| = |(L, ψ̂estL )| (black) for the initial LIGO noise
curve at 100Mpc. For comparison, the thin dashed lines are the same as those in Fig. 10’s top left panel.

fraction of lost power being proportional to rms fluctua-
tions in X .

Though simple, these expressions are surprisingly pow-
erful. In particular, they allow us to estimate the criti-
cal threshold for precession, above which its effect is ob-
servationally accessible, at a given mass and amplitude.
As a simple rule of thumb, a physical process or pa-
rameter can impact a Bayesian posterior if the match
(P (A,B) = (A,B)/|A||B|) changes by of order 1/ρ2 be-
tween P (A,A) = 1 and P (A,A + ∆A). For typical first
detections, the signal amplitude is expected to be small
ρ ' 10; only features or parameters that change the
match by >∼ 1% matter. Using nonprecessing waveforms

ψ2±2 and synthetic precession trajectories V̂ , we can ef-
ficiently explore what lines of sight and what precession
trajectories permit an observationally significant amount
of precession. We will return to this subject in a subse-
quent publication.

As in previous studies of precession [45], our analy-
sis lends itself to geometric interpretation and approxi-
mation. For example, early in the inspiral, the orbital
frequency is both well-defined and shorter than all other
scales. A separation of timescales argument suggests that
the time-domain multiplication XR |R〉 could be imple-
mented as a frequency-domain multiplication XR,L(t(f)).

In this limit, the inner products (R, ψ̂R) and (L, ψ̂L) be-
come (frequency) averages over the signal. This approach
has been used to calculate fitting factors between non-
precessing searches and precessing black hole/neutron
star binaries [45]. Further investigation is needed to
determine whether a separation-of-timescales approxi-
mation remains useful during the merger and ringdown
phase.

V. CONCLUSIONS

Our paper makes two claims: first, that significant
“orientation” or “polarization” changes occur after the
merger of two binary black holes; and, second, that these
changes could be accessible even to present-day detectors,
if a source could be detected.

First and foremost, in this paper we report on and pro-
vide a simple phenomenological interpretation of rapid
changes in the gravitational wave emission of merging,
precessing black hole binaries at and beyond merger.
Phenomenologically, the features we report on corre-
spond to coherent, multimodal oscillations in the merger
and ringdown signal that resemble “precession” of the
remnant black hole. We confirm their existence through
two time-domain methods: first with “polarization”, the
ratio of left- to right-handed emission; and second using a
preferred direction that traces the direction of strongest
emission. We provide a simple rule to explain the ampli-
tude and phase of these oscillations in terms of coherent,
long-lived “precession” of the black hole binary before
and the merger remnant after merger. Our interpreta-
tion agrees with a recently-developed geometric interpre-
tation for high-frequency Kerr quasinormal modes [28].
This correspondence merits further investigation.

Second, using data-analysis-motivated diagnostics, we
demonstrate each line of sight carries information about
its orientation relative to the preferred orientation de-
scribed above. For the simulations we have performed,
we are able to explicitly show that a nonprecessing search
will perform poorly, in extreme but not uncommon cases
losing ' 20% of signal power even at low mass (M '
100M�). For sufficiently loud signals, we furthermore
suggest that the polarization can be measured nonpara-
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metrically. By analogy with BH-NS binaries, we expect
that the most rapid phase evolution characterizes the bi-
nary component masses and spins, while secular modu-
lations encode the orientation and spins. To summarize,
the short signal from merging waveforms carries a sur-
prising amount of information about merger dynamics.
Our analysis suggests that this information can be phe-
nomenologically extracted, even without a complete and
physically-parameterized model for the waveform.

Our study has significant implications for present data
analysis and parameter estimation strategies. First and
foremost, our proof-of-concept study shows how data
analysis strategies can extract easily-understood physics
from complicated, short, multimodal gravitational wave
signals. Second, our analysis suggests that nonprecessing
models (phenomenological; ringdown; et cetera) for high-
mass sources (M > 100M�) can omit significant features
and introduce uncontrolled biases when applied to “typ-
ical” merger events, as typical events can involve signif-
icant post-merger oscillations. For example, our stud-
ies suggest that typical moderate-spin mergers produce
a coherent, multimodal ringdown signal, with significant
polarization changes along a typical line of sight. As an-
other example, by analogy to studies of inspiralling BH-
NS binaries [45], nonprecessing searches will be particu-
larly ineffective for certain lines of sight and spin configu-
rations. We will address the selection bias of nonspinning
searches for precessing binary mergers in a subsequent
publication.

From our preliminary investigations, we believe the
surprisingly rich and rapid behavior of merging, precess-
ing binary black holes may encode nonlinear features of
strong-field gravity. For example, our analysis suggests
that rapid orientation changes occur at merger, encod-
ing a precession frequency. We anticipate that the pre-
to post-merger transition coherently seeds a variety of
quasinormal modes, with surprisingly long-lived coher-
ence in the time domain. We suggest the relationship
between the pre- and post-merger amplitudes of these
coherent post-merger oscillations will provide valuable in-
formation about the strong-field merger process. All of
the features described above can be extracted from sim-
ulations and observations using the techniques described
in this work. We therefore suspect that strong polar-
ization changes are observationally accessible features of
strong-field gravity during binary black hole merger.
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