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We study a class of dark matter models in which the dark matter is a baryon-like composite
particle of a confining gauge group and also a pseudo-Nambu-Goldstone boson associated with the
breaking of an enhanced chiral symmetry group. The approximate symmetry decouples the dark
matter mass from the confinement scale of the new gauge group, leading to correct thermal relic
abundances for dark matter masses far below the unitary bound, avoiding the typical conclusion of
thermally produced composite dark matter. We explore the available parameter space in a minimal
example model based on an SU(2) gauge group, and discuss prospects for experimental detection.
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I. INTRODUCTION

The gravitational footprint of dark matter in the Universe provides irrefutable evidence of the existence of physics
beyond the Standard Model. This new physics comes in the form of a new massive particle with no electromagnetic or
strong force interactions, composing ∼ 25% of the Universe’s matter density. Despite decades of experimental work,
no unambiguous direct evidence of the nature of this new particle has been found.
The leading class of theoretical explanations assumes that the dark matter particle is a thermal relic of the early

Universe, with a present-day abundance set by the pair annihilation cross section into Standard Model particles. The
interest in this solution is largely motivated by an intriguing coincidence: a dark matter candidate with approximately
weak scale masses and couplings (a Weakly Interacting Massive Particle, or WIMP) would naturally freeze out with
the correct relic density.
This “WIMP Miracle” has received even more theoretical and experimental attention due to the presence of such

particles in many of the solutions to the naturalness and hierarchy problems of electroweak symmetry breaking. Of
these, the best known is the neutralino in supersymmetric models. However, it should be noted that any particle with
the appropriate ratio of mass to cross-section can provide a good thermal dark matter candidate. Such models are
sometimes known as WIMPless [1, 2].
Dark matter as a thermal relic is of course not the only possible scenario. It could be a non-thermally produced

axion [3–5]. Or dark matter might, like baryons, possess an inherent asymmetry [6–36]. In this case, the two
asymmetries could be related, either by high-dimension interactions that violate both baryon and dark matter numbers,
or through non-perturbative effects, such as the SU(2)L sphaleron. However, such asymmetric models require an
annihilation cross section in the early Universe at least as large as that of a thermal candidate [25].
In this paper, we introduce a new candidate for thermally produced dark matter, in which the dark matter particle is

a composite stable pseudo-Nambu-Goldstone boson built of fundamental fermions bound together by a confining gauge
force, which we call “ectocolor.”1 We will assume the fundamental fermion mass is much less than the confinement
scale (reversing this inequality leads to a class of models known as “thetons” [37] or “quirks” [21, 38, 39]). The key
feature of our model is the requirement that the fermions are charged under a real or pseudo-real representation of
the ectocolor gauge group. The canonical example is the 2 representation of SU(2), which we will use throughout
this paper as an explicit realization.
We note that the possibility of using stable pseudo-Nambu-Goldstone bosons as a thermal dark matter candidate

has been considered previously in the context of partially-gauged technicolor [44] and little Higgs models [45]. In these
contexts, the direct connection to electroweak symmetry breaking gives additional motivation for the strongly-coupled
sector which gives rise to the dark matter, but it also leads to significant constraints on the possible parameter space.
In particular, thermal production with the correct relic abundance is only found to be possible for a relatively narrow
range of PNGB dark matter masses near the electroweak scale. Here we consider the dark matter sector independent
of electroweak symmetry breaking, leading to a larger viable parameter space.
By restricting ourselves to real or pseudo-real representations, the spectrum of light pseudo-Nambu-Goldstone

bosons can contain both unstable mesons and stable baryons of the ectocolor gauge group with masses much less than
the ectocolor confinement scale ΛE . Identifying the ectobaryons as our dark matter allows us to circumvent a major
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hurdle of thermal production of confined baryonic dark matter in models with fermions in complex representations.
In such models, both the dark matter mass (∼ ΛE) and cross section (∼ Λ−2

E ) are set by the same confinement scale,
and so obtaining the correct abundance forces the dark matter to be extremely heavy, ∼ 20 TeV, at the edge of the
unitarity limit [40].
In our model, the dark matter mass is proportional to the fundamental fermion masses (as is the case with the

pions of SU(3)C), allowing for richer phenomenology in both the early Universe and today. In particular, while many
models of confined dark matter with masses ≪ 20 TeV are forced to rely on asymmetric production mechanisms (see
e.g. technicolor/composite Higgs [6, 14, 26, 41–43] and quirky [21] dark matter), ectocolor dark matter is thermal,
and so is composed of ectobaryons and their antiparticles. This allows for indirect detection signals, without requiring
small ectobaryon-number violating terms [32, 35]. Furthermore, as the ectobaryons are themselves only in thermal
equilibrium with the unstable ectomesons, the freeze-out process in the early Universe is more complicated than the
standard solutions to the Boltzmann equation, potentially resulting in thermal dark matter with present-day cross
sections significantly lower than the naive expectation.
In this paper, we first describe the general formalism of ectocolor dark matter and the freeze-out process in the

early Universe. We then describe the possible direct and indirect detection signals for these models, though these are
small for the minimal model. We conclude with some of the unique collider phenomenology that can be realized in
ectocolor dark matter.

II. ECTOCOLOR DARK MATTER

The goal of this paper is to introduce a viable thermal dark matter candidate which is composed of fundamental
fermions bound into a composite object by a confining gauge force, with a mass much less than the unitary limit of dark
matter (∼ 20 TeV). In particular, we will be interested in models in which the fundamental fermions carry electroweak
charge, but form a stable composite state which is neutral, leading to interesting and viable phenomenology. An
obvious starting point would be a QCD-like theory, with the equivalent of the neutron as the dark matter candidate;
stability of the neutron equivalent can be easily arranged by assignment of the “quark” masses, md ≪ mu.
A strong constraint in building a QCD-like model of dark matter is that the stable baryons have a mass set by

the same scale that sets their interaction cross section. As a non-perturbative force, we cannot derive precise results
without the lattice, but for our purposes, an estimate is sufficient. Roughly, the lightest baryon mass is set by the
confinement scale Λ, at which the gauge coupling is driven non-perturbative by renormalization group evolution (for
QCD, Λ ∼ 1 GeV). The resulting baryon has a self-scattering cross section essentially given in the low-momentum
transfer limit by a black disk approximation, with a physical size set by the same scale, σ ∼ Λ−2. While low
velocity effects might greatly increase this cross section, it is difficult to see how it could be reduced. In QCD this
naive estimate would give a cross section for low-energy nucleon-nucleon annihliation of σNN̄ ∼ 0.4 mb, whereas
experimentally-measured cross sections are O(100 mb) [46].
In order to determine the relic abundance of a particle in thermal equilibrium with the bath of Standard Model

particles in the early Universe, we must solve the complete Boltzmann equation. Later in this section, we will go
into more detail, but for the moment, it suffices to note that, for a standard freeze-out calculation, the observed
dark matter abundance is obtained when the velocity-independent (s-wave) cross section is σ ∼ 1 pb. Using the
simple black disk approximation, this translates into a confinement scale, and thus a dark matter particle mass, of
Λ ∼ 20 TeV. This is approximately the same as the maximum dark matter mass allowed by unitarity arguments [40],
which is in retrospect not surprising.
Therefore, if we are to obtain a dark matter candidate out of strongly coupled physics with the mass as a free

parameter, we must either turn to non-thermal production mechanisms [6–8, 14, 21, 26], or find some way to divorce
the annihilation cross section from the mass. In pursuing the latter, we again build our intuition from QCD. While
baryons have mass ∼ Λ, the pions are significantly lighter. This is because they are pseudo-Nambu-Goldstone bosons
(PNGBs) of an approximate flavor symmetry. In the absence of quark masses, they would themselves be massless.
The interactions between the pions and the other strongly interacting bound states is set by a parameter Fπ , which
is itself set by the confinement scale 4πFπ ∼ Λ through non-perturbative physics.
However, while the pions of QCD have the desired relation between interaction strength and mass, it is non-trivial to

create a model in which they are stable on cosmological timescales. This is because pions are fundamentally composed
of a fermion and anti-fermion pair, leading to many possibilities for self-annihilation and thus pion decay. (It is possible
to construct a dark matter model with stable pions, by use of a discrete symmetry similar to G-parity [47], although a
Peccei-Quinn symmetry in the new sector must be invoked in order to forbid higher-dimension operators which would
violate the discrete symmetry.) Stated in this way, the solution to our model-building problem is clear: we want our
dark matter candidate to be a PNGB of an approximate flavor symmetry and also a gauge singlet combination of
fundamental fermions, rather than fermion-antifermion pairs.
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This cannot be achieved in models where the fermions are charged under complex representations of the strong
gauge group; again using QCD as our example, since quarks are in 3 and anti-quarks in 3̄, we cannot build singlets
out of quark pairs only. However, if the gauge group has fermions in real or pseudo-real representations, then new
composite operators are possible. The most familiar example (and the one we will use for explicit calculation in this
paper) is SU(2), the fundamental representation 2 of which has the property that 2̄ = 2 (up to a symmetry rotation).
In such models, the spontaneous breaking of chiral symmetry will yield two types of PNGBs: mesons composed of
quark-antiquark pairs, which decay; and baryons of quark-quark pairs, which can be stabilized by an analogue of
baryon number.
For the remainder of this paper, we specialize the dark matter confining gauge group to SU(2)E (E for ectocolor).

Other choices are possible, such as SO(N) or Sp(N) gauge groups or fermions in adjoint representations of SU(N),
and may add additional complications to the cosmology and collider phenomenology. However, our simple model
captures the salient features. The confinement scale of SU(2)E is ΛE; as we will show, to have dark matter with
masses of O(100 GeV), ΛE will generally be on the order of a few TeV.
The particle content of our benchmark model is shown in Table I. The light fundamental fermions consists of two

ectoquarks, Qu and Qd (up- and down-type), with opposite electric charges. Unlike in technicolor models, we assign
only vector-like charges to the ectoquarks, and in our minimal scenario do not give SU(2)L charges. We impose a
global U(1)X symmetry on the ectoquarks, which results in a conserved “ectobaryon number” (equivalently, dark
matter number). As a result, the Lagrangian is

L ⊇ iQ̄u /DQu + iQ̄d /DQd +muQ̄uQu +mdQ̄dQd, (1)

with mu and md free parameters. By assumption ΛE ≫ mu,md > 0, with mu ∼ md ≡ mq, leading to an approximate
global symmetry in which the Qu, Qd, Q̄u and Q̄d fields can be rotated into each other. Additional ectoquarks could
be present in the full theory, but we assume that they are heavy enough that there is no approximate flavor symmetry
(again, this constraint can be relaxed, and leads to a more complicated PNGB sector).

SU(2)E SU(3)C SU(2)L U(1)Y U(1)X

Qu 2 1 1 +1/2 +1/2
Qd 2 1 1 −1/2 +1/2

TABLE I: Particle content and charges of the ectoquarks in our minimal model.

In QCD, the light quark sector of Nf flavors contains a SU(Nf)L×SU(Nf )R approximate global symmetry. When
the SU(3)C gauge coupling becomes non-perturbative, the quark-anti-quark vacuum expectation value becomes non-
zero: for small Nf , 〈q̄q〉 ∼ Λ3

QCD. For QCD, with the quarks in complex (triplet) representations of SU(3)C , this

vev leads to the breaking SU(Nf)L × SU(Nf)R → SU(Nf)V . For the two light quarks, the resulting three broken
generators become the pion PNGBs.
In a ectocolor model with ectoquarks in real or pseudoreal representations, the fields Q and Q̄ exist in the same

representation, and additional global rotations are preserved. As a result, the chiral symmetry group is enhanced
from SU(Nf )× SU(Nf ) to SU(2Nf). For SU(2)E, the field redefinition

ψi,L ≡ −iQ̄i,Lσ2τ2, (2)

ψ̄i,L ≡ iσ2τ2Qi,R,

makes the enhanced symmetry manifest in the Lagrangian. Here σ2 and τ2 are the second Pauli matrix acting in spin
and ectocolor space, respectively, and i = u, d are the flavor indices.
For the pseudoreal representations which we focus on, the resulting breaking induced by the non-perturbative

physics at ΛE is

SU(2Nf) → Sp(2Nf). (3)

As SU(2Nf) has 4N
2
f −1 generators and Sp(2Nf) has 2N

2
f +Nf , for our minimal model (Nf = 2) there are 15−10 = 5

broken generators, and so five PNGB fields. These fields can be broken down to three mesons without U(1)X number
and two neutral baryons with U(1)X = ±1:

Π+ = QuQ̄d, Π
− = QdQ̄u, Π

0 = 1√
2

(

QuQ̄u − Q̄dQ̄d

)

(4)

N = QuQd, N̄ = Q̄uQ̄d. (5)

The fields N and N̄ will be our dark matter.
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If the ectoquark masses were zero, then the Π and N fields would be exact Nambu-Goldstone bosons and hence
massless. Assuming a common mass term mu = md ≡ mq ≪ ΛE , all three fields would have a common mass M at
tree level, related to the confinement scale by

F 2
ΠM

2 = mq〈Q̄Q〉 ≃ mqΛ
3
E. (6)

Here, FΠ is the ectocolor pion decay constant. Its value must be extracted from the non-perturbative physics, either
from measurement or by lattice calcuation, but we can make the approximation (true in QCD) that

4πFΠ ∼ ΛE . (7)

Therefore, if M is to be on the order of, say 200 GeV, then

mq ∼ 30 MeV×
(

M

200 GeV

)2(
700 GeV

FΠ

)

. (8)

The charged meson Π± will gain an electromagnetic loop correction, raising its mass above that of the N and Π0.
We may estimate this mass splitting as ∆M2 ∼ αM2/4π, lifting the charged meson’s mass by ∼ 2% above the neutral
states. Introduction of an “isospin” splitting δm = (mu −md) 6= 0 does not shift any of the PNGB masses at leading
order [48], so we will assume δm = 0 for this work. Due to the small splittings between the charged and neutral
states, the LEP-II bounds on new charged particles limits M & 90 GeV [49], as we will discuss in more detail in
Section III C.

A. Early-Universe Interactions and Decays

To determine the phenomenology of these ectocolor singlets, in particular the relic abundance after thermal freeze-
out, we must calculate their self-interactions and interactions with the Standard Model at energies much below ΛE ,
where sensitivity to the internal ectoquark structure is suppressed by FΠ. Since we are working with pseudo-NGB
states which are light relative to the strong-coupling scale, we can work in the effective framework of chiral perturbation
theory (χPT), expanding in the interaction momentum p2/Λ2

E = p2/(4πFΠ)
2. This expansion will work well both in

the early Universe at temperatures T ≪ 4πFΠ, and for decays and self-interactions of cold dark matter in the present
Universe. We also assume M ≪ 4πFΠ, since the convergence of χPT requires the violations of chiral symmetry
induced by the ectoquark masses to be relatively small.
Chiral perturbation theory is an effective field theory, whose parameters are determined by the dynamics of the

underlying strongly-coupled gauge theory. In general, these parameters are very poorly known for theories other than
QCD. With the enhanced symmetry arising from real or pseudo-real fermions, the form of the chiral Lagrangian is
changed somewhat [50], but it is still qualitatively similar to the familiar structure arising from QCD.
We begin with the PNGB self-scattering. As the N and Π0 fields are electrically (and color) neutral, this is the

only interaction which can keep them in equilibrium with other fields (in particular, the Π±) when the temperature is
≪ ΛE . At leading order in the chiral expansion, the scattering cross section of any two PNGBs P = {Π±,Π0, N, N̄}
with center of mass energy

√
s is [48, 51, 52]

σ(P1P2 → P3P4) =
M2

16πF 4
Π

(s/M2 − 1)2

s/M2
. (9)

Because of the residual chiral symmetry making all of the PNGB masses degenerate, this is a process occurring at
kinematic threshold, which is unusual for an inelastic process relevant for studying the thermal history of the Universe.
In particular, since the cross section at low energies is independent of the incoming particle velocity, we have that
(σv) ∝ v, which complicates the derivation of the thermal average. We make use of a general result for the calculation
of 〈σv〉 from the cross section in an inelastic 2 → 2 process [53]:

〈σv〉 = 1

8M4TK2(M/T )2

∫ ∞

4M2

σ
√
sK1(

√
s/T )(s− 4M2)ds, (10)

whereKn are Bessel functions of the second kind, v is the Møller velocity as defined in Ref. [53], and the thermal average
is taken over Maxwell-Boltzmann thermal distributions at temperature T . The analytic result of this integration for
the cross section Eq. (9) cannot be expressed in simple terms, so we carry out the integration numerically for our
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study of the thermal abundance to follow. However, the result can be expanded in the limit of large x ≡ M/T ,
yielding

〈σv〉(P1P2 → P3P4)|T≪M =
M2

π3/2F 4
Π

(

9

16x1/2
+

255

256x3/2
+O(x−5/2)

)

. (11)

Unusually, the leading scaling of the thermally-averaged cross section is T 1/2, rather than T 0. This will lead to a
suppression of the annihilation rate in the current Universe, when compared to the early-Universe rate. Essentially,
the velocity-averaged cross section is “half-way” between s-wave (∝ v0) and p-wave (∝ v2) processes. We will return
to this point when we consider indirect detection signals in Section III B.
As a neutral particle under the Standard Model gauge groups, the N field cannot be directly in thermal equilibrium

with the bath of Standard Model fields (barring operators suppressed by powers of ΛE which are not relevant when
temperatures are at or belowM . See Section IIIA). Instead, the interaction of Eq. (9) keeps the baryons in equilibrium
with Π0 and Π±, and the electromagnetic interaction of the Π± keeps that field in equilibrium with the bath. In the
kinematic regime of interest, the velocity averaged thermal cross section of this interaction is

〈σv〉e.m. ≡ 〈σv〉(Π+Π− ↔ γγ) + 〈σv〉(Π+Π− ↔ f f̄) ≈ 12πα2

M2
+O(v2) (12)

Here, f are Standard Model fermions with mass mf and Nc colors, and we have assumed that mF ≪M . Again using
the M = 200 GeV benchmark, the s-wave component of the cross section into photons is ∼ 20 pb. While this is much
greater than the canonical cross section for dark matter, it still implies that the Π± must decay, otherwise they would
constitute a significant fraction of the Universe’s matter density after thermal freezeout. We ignore velocity-dependent
corrections, which will not matter in the thermal history of our model.
The decay of the charged mesons must proceed through additional high scale physics, as no particle in Table I

couples to the W±. One possibility is to add new heavy ectoquarks that are doublets of SU(2)L (either in vector
or chiral representations). As long as their masses mQ are ≫ mq, they will not be part of the approximate flavor
symmetry which leads to the light PNGB quintuplet. Therefore, after SU(2)E becomes non-perturbative the minimum
mass for the bound states containing these heavy quarks is the confinement scale ΛE (though they can be heavier, if
mQ & ΛE).
In this scenario, the decay of the light Π± → (W±)∗ → f f̄ ′ proceeds through a loop of strongly coupled bound

states containing these SU(2)L-charged ectoquarks. This loop factor leads to a suppression of the coupling to the
W boson by a factor of (M/4πFΠ)

2. Interestingly, because the Π± is a scalar decaying through the chirally coupled
weak force, there must be a spin-flip in order to conserve angular momentum. This results in a preference to decay
into the heaviest Standard Model weak doublet that is kinematically available, with a width of

Γ(Π± →W ∗ → f f̄ ′) = Nc

G2
Fm

2
fM(M2 −m2

f )
2

210π5F 2
Π

(

m2
W

M2 −m2
W

)2

, (13)

here Nc is the color factor of the Standard Model particles (3 for quarks, 1 for leptons). Again using our benchmark
numbers, this leads to a decay of a 200 GeV Π± into top-bottom quark pairs with a width of 3.8 × 10−8 GeV.
For M < mtop, the decay prefers τ/ντ and charm-strange pairs, with approximate branching ratios of 0.6 and 0.4
respectively.
An alternative possibility that can lead to Π± decay is that both the ectoquarks and (some) Standard Model fields

are charged under a new gauge group with a W ′, allowing direct coupling between the ectoquarks and the Standard
Model. The most obvious possibilities for such a new gauge group are another SU(2)L coupling to the Standard
Model left-handed quark and lepton doublets, or a SU(2)R group coupling with the right-handed quark and lepton
doublets (including a right-handed neutrino) [54, 55].
While other gauge groups might be found, both these options share the preferential decay into the heaviest kine-

matically allowed fermion pair that was found in the ectohadron-mediated decay Eq. (13). If the new gauge group

has the same coupling strength g as SU(2)L, we can parametrize the coupling strength by G′
F = GF (mW /mW ′)

2
.

Depending on the assumptions placed on the flavor structure of the W ′ model, the current collider bounds limit the
W ′ mass to be above a few TeV. The most stringent bounds come from the W ′ → ℓν channels; here mW ′ > 2.5 TeV,
assuming a Standard Model gauge coupling [56, 57]. Similar bounds can be set by low energy observables, see Ref. [49]
for a review. From this, we can estimate the Π± width when mediated by a W ′ (assuming mW ′ ≫M):

Γ(Π± →W ′∗ → f f̄ ′) = Nc

G′2
Fm

2
fF

2
Π(M

2 −m2
f )

2

4πM3
, (14)

which, for mW ′ = 3 TeV, M = 200, FΠ = 700 GeV, gives a width of 2× 10−6 GeV into top-bottom pairs.
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Finally, we must consider the decay of the neutral meson, Π0. Unlike the charged meson, no additional physics is
needed to allow this particle to decay. Just as with the neutral pion of QCD, the two charged constituents inside the
Π0 will allow annihilation directly into gauge bosons. However, unlike the π0 in QCD, decays to two gauge bosons
does not necessarily dominate; for a wide range of parameter space, nearly 100% of decays will go to SM fermion
pairs.
We start with the decay to two gauge bosons. Since in our minimal model the Qu and Qd only have U(1)Y

hypercharge, the annihilation will proceed into photons and Z bosons. Critically, with only two ectoquarks with
equal and opposite charges, there is no contribution from the axial anomaly, and so the decay is suppressed by an
additional factor of (M/4πFΠ)

2 compared to the equivalent rate for QCD pions. Therefore,

Γ(Π0 → γγ) =

(

α

πFΠ

M2

16π2F 2
Π

)2
M3

64π
=

α2M7

214π7F 6
Π

(15)

Γ(Π0 → γZ) =
α2 tan2 θWM7

213π7F 6
Π

(

1− m2
Z

M

)

, (16)

Γ(Π0 → ZZ) =
α2 tan4 θWM7

214π7F 6
Π

(

1− 4m2
Z

M

)1/2

. (17)

In Eqs. (16) and (17), we have assumed that M is greater than the mass of mZ and 2mZ , respectively. For our
benchmark this leads to a width of 3× 10−13 GeV. The decay amplitude into pairs of W bosons vanishes at tree level.
In addition, there is a decay through a virtual Z to Standard Model fermion pairs (decay through an off-shell

photon is forbidden since the initial state is spin-0.) In the Standard Model π0, this mode is highly suppressed (BR
∼ 10−8 to e−e+ pairs). However, due to the wide range of M and FΠ available, and the additional loop suppression
inherent in Eqs. (15)-(17), generically we expect this decay channel to completely dominate the Π0 decay. As with
the W - or W ′-mediated decay of the Π±, this decay mode of the Π0 requires a spin-flip of the SM fermion, and so
will couple to the heaviest state kinematically available (bottom quarks for M < 2mtop, tops otherwise). The width
is given by

Γ(Π0 → Z∗ → f f̄) = Nc

G2
F sin4 θWQ2

ZF
2
Πm

2
f (M

2 −m2
f )

8πM

(

m2
Z

M2 −m2
Z

)2

, (18)

where QZ = T f
3 −Qf sin

2 θW is the Z-coupling of the SM fermion f . For our benchmark mass point, the decay into
bottom quarks has a width of 1 × 10−5 GeV, and so is completely dominant over the two-gauge boson decays. In
Fig. 1, we show the two widths as a function of FΠ for a fixed M = 200 GeV. As can be seen, only at very small FΠ

does the two-gauge boson mode dominate. However, this is precisely the region of parameter space where our χPT
expansion is untrustworthy.

FIG. 1: Width Γ of Π0 decaying into gauge boson pairs AA = γγ, γZ, ZZ (Eqs. (15)-(17)) and into bb̄ pairs (Eqs. (18)), as a
function of FΠ. Π

0 mass M is kept fixed at M = 200 GeV.
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B. Thermal History

We now have all the requisite pieces to calculate the early Universe history of ectocolor dark matter. In principle, the
story is relatively straightforward: above ΛE, the ectoplasma is kept in thermal equilibrium through the hypercharge
interactions of the ectoquarks. After confinement, the N/N̄ pairs are kept in thermal equilibrium with both the Π0

and Π± fields by the hadronic scattering of Eqs. (9) and (10) (〈σv〉N ). The Π± fields are in turn in equilibrium
with the Standard Model bath, due to the electromagnetic interactions of Eq. (12) (〈σv〉e.m.). At the same time,
Π0 and Π± particles are decaying away, but this cannot deplete the overall number density as long as the particles
are strongly coupled to their respective baths. The differential equations controlling this behavior are a set of three
coupled Boltzmann equations:

Y ′
DM (x) =

s(x)x

H

[

−〈σv〉N
2

(Y 2
DM (x) − YΠ±(x)2)− 〈σv〉N

2
(Y 2

DM (x)− 4YΠ0(x)2)

]

(19)

Y ′
Π0(x) =

s(x)x

H

[

−〈σv〉N (Y 2
Π0(x)− 1

4
YDM (x)2)− 〈σv〉N (Y 2

Π0(x) − 1

4
YΠ±(x)2)

]

− xΓΠ0

H
[YΠ0(x)− Yeq(x)] (20)

Y ′
Π±(x) =

s(x)x

H

[

−〈σv〉N
2

(Y 2
Π±(x)− YDM (x)2)− 〈σv〉N

2
(Y 2

Π±(x)− 4YΠ0(x)2) (21)

−〈σv〉e.m.

2
(Y 2

Π±(x) − Yeq(x)
2)

]

− xΓΠ±

H
[YΠ±(x) − Yeq(x)]

Here, prime refers to differentiation with respect to x ≡ m/T , H is the Hubble parameter, s(x) is the entropy density,
and the Y functions are the particle number densities normalized by the entropy density. Yeq is the equilibrium
number density of the background bath. In reality there are five such Boltzmann equations, but the conditions
YN = YN̄ ≡ YDM/2 and YΠ+ = YΠ− ≡ YΠ±/2 allow us to reduce to these three.
The presence of the decay terms ΓΠ0 and ΓΠ± modifies the standard freeze-out cosmology somewhat. Without

those terms, the charged ectomeson would freeze-out from the thermal bath at some xf.o., when the rate of interactions
mediated by 〈σv〉e.m. falls below the expansion rate of the Universe H . If 〈σv〉N > 〈σv〉e.m., then the Π0 and N fields
would still be bound to YΠ± , and depart from thermal equilibrium as their charged partner does. Since, at this point,
all three annihilation channels (NN̄ , Π+Π−, and Π0Π0) are in equilibrium with each other, but only one combination
(Π+Π−) can annihilate into the bath, the extra degrees of freedom pull the charged particles out of equilibrium earlier
than one might expect, resulting in a larger relic abundance (by a factor of 3) than a single particle would possess.
If the cross-section inequality were reversed, 〈σv〉e.m. > 〈σv〉N , then the Π0 and N particles would have already

decoupled from the Π± when the latter decoupled from the bath. Therefore, if decays were negligible, the present-day
relic abundance of N would be set by the ectohadron interaction cross section, as this defines the time that the link
connecting N to the thermal bath is severed.
However, in our model, the charged and neutral ectomesons will decay. If that decay occurs quickly enough, the

particles will be unable to freeze-out from thermal equilibrium. Instead, the decay and reverse decay processes will
cause the decaying species to track Yeq past the point at which they would naively have departed from equilibrium.
Roughly, this occurs when Γ is large enough so that the time when decays are relevant (xdecay) satisfies

xdecay =

√

H

Γ
< xf.o. (22)

where xf.o. ∼ 25 is the time at which freeze-out would occur if the particles were stable. For all reasonable values
of M and FΠ, this inequality is satisfied. Indeed, in order for decay to occur sufficiently late that freeze-out would
occur, Γ must be less than ∼ 10−17 GeV, corresponding to a particle lifetime cτ ∼ 20 m. At least for the charged
Π± with masses . 1 TeV, such long lifetimes are experimentally ruled out by collider constraints (see Section III C),
even if the lifetime were unexpectedly large – for example by a very high W ′ scale in Eq. (14). For the neutral Π0,
Eq. (18) indicates that Eq. (22) is satisfied for all M and FΠ of O(100− 1000 GeV).
Therefore, the Π± and Π0 particles will remain in thermal equilibrium, and the N/N̄ system will decouple at

xf.o., determined by the standard Boltzmann evolution of a particle in contact with a thermal bath with interaction
cross section 2〈σv〉N (the factor of 2 accounts for the NN̄ ↔ Π+Π− and NN̄ ↔ Π0Π0 channels); effectively this is
co-annihilation [58] when all particles concerned have identical mass. It is interesting to note that the ectobaryon
dark matter provides a natural way to allow the present-day annihilation cross section of the dark matter N to differ
by an integer factor from the cross section that controls freeze-out. The ratio between the two cross sections could
presumably be increased in models with more light PNGBs, either by increasing the number of light fermion species
charged under SU(2)E or by placing the ectoquarks real or pseudoreal representations of larger Lie groups.
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Fig. 2 shows the relic abundance of the N/N̄ particles resulting from this set of assumptions. In Fig. 3, we show
a sample relic abundance calculation for M = 200 GeV and FΠ = 700 GeV; at large x, the decaying particles
depart from the thermal distribution due to the slow pair annihilation of NN̄ → Π Π. For this benchmark point,
the relic abundance of the dark matter N + N̄ is Ωh2 = 0.105, very close to the experimentally measured value of
0.112± 0.006 [49]. As can be seen from Fig. 2, this choice of parameters is not particularly fine-tuned. Though only
a small region of (M,FΠ) space gives the correct relic abundance, this is due to the precision of the experimental
result, not to any required cancellation in the theory. Thus, we can say that ectocolor dark matter can provide a
viable thermal candidate for dark matter over a wide range of parameter space.

FIG. 2: Relic abundance Ωh2 of theN/N̄ particles as a function ofM and FΠ, assuming Π± and Π0 are prevented from going out
of thermal equilibrium due to decays. The parameters providing the observed dark matter abundance ΩDMh2 = 0.112±0.006 [49]
are shown in red.

III. EXPERIMENTAL SIGNATURES

A. Direct Detection

Although our dark matter particle is an electroweak-neutral bound state, we expect it to interact with ordinary
matter through photon and Z-boson exchanges with the bound ectoquarks. In the present Universe, such interactions
will occur only at very low energy, so they must be described in terms of electromagnetic form factors of the ectobaryons
(we ignore weak exchanges, which will be further suppressed by mZ and sin2 θw in the context of direct detection.)
The interactions between composite dark matter particles and electromagnetic fields can be treated in an effective

theory, expanding in the velocity vµ of the dark matter. The spin of the dark matter, in particular whether it is
fermionic or bosonic, determines which operators will appear [59]. For the model which we are considering in detail,
the ectobaryon is a spin-0 boson. The leading interactions will then proceed through the charge radius operator,

LCR ⊃ 1

Λ2
N̄Nvν∂µF

µν , (23)

and the EM polarizability,

Lpol. ⊃
1

Λ3
N̄NFµνF

µν , Lv−pol. ⊃
1

Λ3
N̄NvµvνF

µσF ν
σ. (24)
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FIG. 3: Relic abundance evolution for N/N̄ (blue), Π± (red), and Π0 (green) assuming M = 200 GeV, FΠ = 700 GeV, and
decay with widths given by Eq. (18) for Π0 and Eq. (13) for Π±.

In terms of the non-relativistic fields, the corresponding Hamiltonian for interaction of the ectonucleon with the EM
field of an ordinary nucleus is given by [60]

H = −e
6
r2D

∂

∂xi
Ei −

1

2
(χEE

2 + χBB
2), (25)

with resulting scattering cross-sections

σR =
4π

9
µ2
NDZ

2α2r4D, (26)

σχ h

144π

25
µ2
NDZ

4α2χ
2
E

r20
, (27)

with µND the reduced mass of the nucleus-dark matter system, and r0 the charge radius of the target nucleus. We
will follow the choice of Ref. [60] by taking r0 ∼ (1.2 fm) 3

√
A, with A the mass number and Z the atomic number of

the target. We neglect the interaction with the magnetic polarizability, which is generally sub-leading.
The coefficients rD and χE are given by low-momentum dynamics of the strongly-coupled dark sector, and non-

perturbative techniques (such as lattice simulation) should be used in order to accurately determine them. However, for
M ≪ 4πFΠ we can reliably compute these quantities in the framework of chiral perturbation theory (χPT), although
at higher orders these expressions will depend on unknown low-energy constants. Many quantities have been computed
to high order in χPT for QCD, but we cannot in general use these results directly, since the chiral Lagrangian for
symmetry breaking with pseudo-real fermions must be modified to accommodate the enhanced symmetry group
[50, 52]. A one-loop computation of rD and χE within this modified framework would be quite interesting, but is
beyond the scope of this work; here we will use symmetry arguments and the known QCD expressions in order to
make order-of-magnitude estimates.
Because Qu and Qd carry equal and opposite electromagnetic charge in our model, in the limit mu → md we find

a Z2 symmetry of the theory with respect to the field redefinition Qu ↔ Qd and Aµ → −Aµ [21]. Since the electric
field is odd under this symmetry, it is clear that the charge radius must vanish identically, r2D = 0. In the presence
of a mass splitting δm = mu −md, the Z2 symmetry is broken, and we expect to generate a charge radius in some
way parameterically small in δm. For example, the charge radius of the K0 in standard QCD χPT and at one loop
is equal to [61]

〈r2D〉K0 =
1

16π2F 2
log(M2

K/M
2
π). (28)

As expected, this expression vanishes in the limitms → md. Although theK0 is similar to the ectonucleon with δm 6= 0
in that both are composite states of two equal-charge fermions with different masses, it is clear that the expression
for the ectonucleon charge radius must be qualitatively different, since as we have noted, all of our Goldstone bosons
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have masses proportional to (mu +md). At best the expression for r2D for the ectonucleon will arise at one loop and
be suppressed by δm in some way, so we claim that as a conservative upper limit for small δm,

〈r2D〉N
∣

∣

δm 6=0
≪ 1

16π2F 2
Π

. (29)

We can convert this to an upper bound on the direct-detection cross section, using eq. 26 and adjusting by the factor
µ2
nD/(A

2µ2
ND) to convert to the standard “WIMP-nucleon” cross-section. We thus find

σrD
SI ≪ (7.2× 10−49 cm2)

(

Z

50

)2(
130

A

)2(
700 GeV

FΠ

)4

. (30)

The electromagnetic polarizabilities can be obtained in χPT by examining the Compton scattering process γπ → γπ.
For QCD, the leading contribution to polarizability of the π0 occurs at O(p4) and involves only the leading-order
low-energy constants, since vertices of the form π0π0γ and π0π0γγ are forbidden in the χPT Lagrangian through
next-to-leading order [62]. The argument given in the reference does not apply trivially to the pseudoreal case, but
it can be verified explicitly that the generators corresponding to the N/N̄ states commute with the charge matrix Q,
leading to the same result.
Again explicitly for QCD, the electric susceptibility of the π0 is given at leading order by the expression [63]

χ
(π0)
E =

1

96π2F 2mπ
. (31)

Based on the arguments above, we expect the N/N̄ polarizability to be the same at this order, up to O(1) factors.
We therefore use this formula to obtain a rough estimate for the direct-detection constraints on ectocolor dark matter
through this operator. Taking Eq. (27) and again adjusting by the factor µ2

nD/(A
2µ2

ND) to convert to the standard
“WIMP-nucleon” cross-section, we find

σχE

SI ≈ (4.3× 10−52 cm2)

(

Z

50

)4(
130

A

)8/3(
200 GeV

M

)2(
700 GeV

FΠ

)4

. (32)

These cross-section estimates are relatively crude, and a more rigorous calculation in the framework of χPT, as well
as lattice studies to fix the values of the low-energy constants in the chiral Lagrangian, will be needed for a precise
understanding of direct detection in this model. However, these estimates are quite far below existing experimental
bounds, so we can at least be confident that our minimal construction is not constrained by direct detection currently.

B. Indirect Detection

As the dark matter is composed of both ectobaryons N and their antiparticles N̄ , self-annihilation can occur in
the current Universe. However, the N − Π scattering Eq. (9) provides the primary annihilation cross-section in the
minimal model, with the resulting unstable ectomesons decaying into visible Standard Model particles. Since this
cross section is proportional to velocity v, indirect signals are highly suppressed in the present day.
Dark matter in the Galaxy has v ∼ 10−3c. As the mass splitting between the charged and neutral states MΠ± −

M ∼ 100 MeV is much larger than the available kinetic energy Mv2, annihilation will primarily proceed through
NN̄ → Π0Π0. As discussed in Section IIA, the Π0 will quickly decay into the heaviest kinematically available fermion
pairs (bb̄ for M < 2mtop, tops otherwise).
Currently, the best bounds on dark matter annihilating into bb̄ are obtained in the data set collected by the Fermi

Gamma-Ray Space Telescope (FGST). In particular, bounds from the Galactic Center [64] are the strongest, even for
conservative assumptions on the dark matter profile in the Galaxy’s inner region. We also include the somewhat weaker
stacked dwarf galaxy limits [65–67]. Note that, when applying indirect detection bounds, the 2 → 4 annihilation in
our model contributes an overall factor of two which cancels with a factor of 1/2, as our dark matter is not Majorana.
The bounds from the Galactic Center and dwarfs have not been calculated in the tt̄ channel. However, the resulting

spectrum is not significantly different from the bounds on the bb̄ channel [68], and so we are justified in extrapolating
the bottom quark limits for the full range of mass M . In Fig. 4, we show the upper limits on 〈σv〉N followed by Π0

decay into bb̄ from both dwarf stacking and Galactic Center bounds, as well as the prediction for the values of M
and FΠ which give the correct relic abundance. As can be seen, this places essentially no constraint on the (M,FΠ)
parameter space required for thermal dark matter in this minimal scenario.
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FIG. 4: Cross section for N/N̄ annihilation in the Universe today as a function of M for fixed FΠ (red lines) as well as the
(M,FΠ) combinations that provide the correct relic abundance after thermal freeze-out assuming 〈v〉 = 10−3c in the Galactic
Center (blue line) or the unphysically large 10−2c (dotted blue line). Also shown are the upper limits for annihilation in bb̄ from
the FGST dwarf stacking analysis [65–67] and the Galactic Center assuming a NFW profile [64]. Note that for M > 2mtop, we
expect annihilation to proceed into top pairs, but we can safely extrapolate bb̄ bounds to this region.

C. Collider Searches

The charged ectomesons Π± will be produced in pairs at colliders through Drell-Yan processes. For large FΠ,
the internal structure of the ectohadrons is not relevant, and production will proceed as if the Π± were elementary
particles. Though the small FΠ regime can provide interesting and unique collider signatures (becoming ‘quirks’
[21, 38, 39] as FΠ → 0) we will leave such considerations to a later work, and assume that FΠ is large enough so that
the internal structure can be ignored.
The lack of observation of new charged particles in the stau channel at LEP-II allows us to extrapolate a fairly

robust limit ofM & 86.6 GeV [69], as Π± decays predominantly into τ±ν in this mass range, and so mimics the signal
of τ̃ pairs decaying into taus and massless neutralinos.
At the LHC, the Π+Π− production cross section depends only on the mass M , and is shown in Fig. 5. For

M < mtop +mb = 176 GeV, decays proceed through taus and neutrinos. Assuming this decay is prompt, the bounds
from stau pair production followed by decays to taus and massless neutralinos are applicable. However, the current
limits on such cross sections are O(3 pb) [70], which does not place significant bounds on the ectomeson production.

FIG. 5: Π+Π− Drell-Yan production cross section at the LHC assuming
√
s = 8 TeV as a function of Π± mass M .

Above ∼ 176 GeV, the Π± decay into top/bottom quark pairs. This is a somewhat unusual signature; while searches
exist for single tb resonances [71], we are not aware of any search for (tb̄)(t̄b) final states. As the production cross
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section is small, dedicated searches for t̃→ tχ̃0
1 pair production [70, 72–75] are not sensitive to this production, even

neglecting the difference in event acceptance due to the presence of two extra b-quarks. It is interesting to note that
charged pseudoscalars are generically expected to decay into the heaviest fermion pair available, and so searches for
(tb̄)(t̄b) final states might be relevant beyond this paper’s particular dark matter model.
The previous discussion assumed the Π± decayed quickly on detector timescales. Roughly, this translates into

widths greater than that of the b: Γ & 4 × 10−13 GeV. If stable on detector timescales (i.e. requiring cτ > 1 m,
ΓΠ± . 2 × 10−16 GeV), constraints from the LHC on stable charged particles place a bound of M & 220 GeV [76].
This bound only applies if the charged particles live long enough to pass through the calorimeters of CMS. As can
be seen from Eqs. (13) and (14), this is far longer than the expected lifetime of the charged ectomesons, unless the
decay is mediated by a new W ′ with mass

mW ′ & (250 TeV)

(

FΠ

700 GeV

)2(
M

200 GeV

)

(

1−
m2

top

M2

)2

, (33)

or via additional loops of heavy ectoquarks charged under SU(2)L with FΠ ∼ 108 GeV. However, with a more modest
mW ′ scale, the lifetime of the Π± could be on the scale of µm to cm. Such small displaced vertices would provide a
very unique signature at the LHC, but it is unclear whether any existing analysis would be sensitive to the events.
It should be noted that, as the decay would proceed through top and bottom quarks, the additional displacement of
the b decay makes such a search difficult.

IV. CONCLUSION

In this paper, we have introduced a new thermal dark matter candidate which is composite under a new confin-
ing force, which we dub “ectocolor.” Critically, we require the ectoquarks to be charged under real or pseudoreal
representations of the ectocolor gauge group; the canonical example which we have considered in detail is the fun-
damental representation of SU(2). The extra symmetry that this allows in the Lagrangian results in two types of
pseudo-Nambu-Goldstone bosons of an approximate flavor symmetry: stable ectobaryons with a conserved quantum
number, and unstable ectomesons. As the PNGBs have masses proportional to that of their constituent ectoquarks,
the mass and couplings of the dark matter can be set independently of each other. This allows viable thermal dark
matter from confining gauge groups with masses well below the unitary bound of ∼ 20 TeV.
Ectocolor dark matter has a number of interesting features that distinguish it from a standard thermal candidate.

As one of a number of PNGBs with degenerate masses, all of which are thermal equilibrium in the early Universe,
the dark matter candidate N essentially undergoes coannihilation with a potentially large number of particles. This
allows the present-day self-interaction cross section of dark matter to appear significantly lower than the canonical
value of 1 pb. In the explicit model we demonstrate in this paper, the “coannihilation factor” is 2, but this can easily
be increased in models with a larger flavor symmetry.
Additionally, the dark matter annihilates into unstable ectomesons, which decay preferentially into the heaviest

fermions kinematically available. This has potentially interesting predictions for the LHC, where the charged ec-
tomesons can be pair-produced directly, though the production cross section is low. The resulting (tb̄)(tb̄) final states
for some values of the parameters (possibly with displaced vertices) are an interesting – and so far unexplored –
signature at the LHC. This signature is furthermore a generic feature of charged pseudoscalar composites, which will
generally decay with a mass flip in the final-state fermions.
The bounds from direct detection experiment on the model presented here are quite weak. This is primarily due to

a discrete symmetry of our minimal model under the interchange of the equal- and opposite-charged Qu and Qd fields,
which eliminates the contribution from the charge radius operator. It remains to be determined whether inclusion of
a large mass splitting mu −md, or constructing a more complicated model with additional charged states, can lead
to more significant direct-detection signals.
The predicted rate of indirect detection is too low in the minimal model to provide a visible signal. However, if an

annihilation channel was available that was not at a kinematic threshold, then the cross-section today would not be
suppressed by v. Though loop annihilations into γγ in our minimal model are present, they are suppressed by several
of orders of magnitude even from the v-dependent cross section. It is again perhaps useful to consider non-minimal
models, where this would not be the case.
Interestingly, the minimal model does not provide a significant signal of NN̄ → Π0Π0 → 4γ. This is somewhat

surprising, as the Standard Model pion decays predominantly to photons. However, the combination of larger meson
mass and fermion mass (b instead of e) relative to the Z, as well as the lack of an axial anomaly greatly reduces the
photon channel relative to the fermion final state. This makes it difficult to use this model to provide an explanation
of the suggested 130 GeV line in the Fermi data [77, 78] (see also Ref. [79–81]). Although confining dark models
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have been suggested as a source of the annihilation line [82, 83], a more complicated construction than our minimal
scenario would be needed in order to explain this possible signal of dark matter as the result of a thermal ectocolor
dark matter candidate.
Despite the fact that the dark sector is strongly coupled, the use of PNGB states as the dark matter makes analytic

calculations using the framework of chiral perturbation theory quite tractable. Explorations of the present model
using χPT would be quite interesting, and will be necessary for e.g. calculation of the direct-detection operators,
and for exploration of the effects of mass splittings among the PNGBs. The parameters of the chiral Lagrangian are
determined by the underlying strong dynamics, and for the present example of SU(2) the use of 1/Nc expansion is
particularly unappealing, so lattice calculations of these low-energy constants may be an important input for more
precise study of ectocolor models.
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