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Cosmological perturbations are generally described by quantum fields on (curved

but) classical space-times. While this strategy has a large domain of validity, it can

not be justified in the quantum gravity era where curvature and matter densities are

of Planck scale. Using techniques from loop quantum gravity, the standard theory of

cosmological perturbations is extended to overcome this limitation. The new frame-

work sharpens conceptual issues by distinguishing between the true and apparent

trans-Planckian difficulties and provides sufficient conditions under which the true

difficulties can be overcome within a quantum gravity theory. In a companion pa-

per, this framework is applied to the standard inflationary model, with interesting

implications to theory as well as observations.

PACS numbers: 98.80.Qc, 04.60.Pp, 04.60.Kz

I. INTRODUCTION

This is the second in a series of papers whose goal is to investigate whether current sce-

narios of the early universe admit quantum gravity completions and, if they do, to study

the implications of the resulting Planck scale dynamics. The first paper [1] summarized

the underlying framework and its applications to inflation for a broad audience of theo-

retical physicists. This paper is primarily addressed to the quantum gravity community
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and provides a detailed extension of the cosmological perturbation theory to the Planck

regime. Specifically, we will consider gravity coupled to a scalar field and study the dynam-

ics of quantum fields representing scalar and tensor perturbations on quantum cosmological

space-times. In the third paper [2], addressed to cosmologists, this framework is used to

show that the inflationary scenario admits a quantum gravity extension and to analyze the

physical implications of pre-inflationary dynamics, i.e. the quantum evolution from the big

bounce of loop quantum cosmology (LQC) to the onset of the standard slow roll inflation. In

the future, we hope to examine whether alternatives to inflation also admit viable quantum

gravity completions and, if so, explore the resulting Planck scale physics.

In the theoretical explorations of the early universe, one generally uses the Friedmann,

Lemâıtre, Robertson, Walker (FLRW) solutions to the Einstein equations (with appropriate

matter sources) as background space-times. The focus is on the dynamics of quantized fields

representing linearized perturbations propagating on these backgrounds. (See, e.g., [3–6].)

The necessary framework of quantum theory of linear fields in curved space-times has been

well developed, thanks to the ongoing research that date back to the mid 1960s. (See, e.g.,

[7–9]). However, the FLRW space-times of interest are invariably incomplete in the past

due to the big bang singularity where matter fields and space-time curvature diverge. It is

widely believed that general relativity is simply not applicable once curvature reaches the

Planck scale, whence there is no justification for using quantum field theory on solutions

to Einstein’s equations in this domain. Quantum gravity must intervene in an important

fashion. Thus, to encompass the Planck regime, one needs a quantum gravity extension of

the standard cosmological perturbation theory.

Loop quantum gravity (LQG) provides a promising avenue to meet this goal because by

now the big bang singularity has been resolved in a variety of models in LQC; the k=0 FLRW

model on which we will focus [10–15], as well as their generalizations that include spatial

curvature [16, 17], a cosmological constant [18–20], anisotropies [21–24] and the simplest

type of inhomogeneities and gravitational waves [25–29]. (See, e.g., [30, 31] for summaries

of these developments.) It is therefore natural to use LQC as the point of departure for

extending the cosmological perturbation theory. However, to do so, we cannot just mimic

the standard procedure used in general relativity because LQG does yet offer the quantum

version of full Einstein’s equations which one can linearize around a quantum FLRW space-

time. Therefore we will use the general strategy that has been repeatedly followed in LQG:



3

First truncate the classical theory in a manner appropriate to the physical problem under

consideration, then carry out quantization using LQG techniques, i.e., paying due attention

to the underlying quantum geometry, and finally work out the physical implications of the

framework. This strategy has led to advances in the cosmological models referred to above,

as well as in the investigation of quantum black holes [32–34] and the spin foam derivation

of the graviton propagator [35–37].

To extend the cosmological perturbation theory, then, we will begin by focusing on the

following sector of the full phase space of general relativity: homogeneous, isotropic con-

figurations together with first order inhomogeneous perturbations. However, to encompass

the Planck regime, we must now use a quantum FLRW geometry as background, and study

the dynamics of quantum fields representing scalar and tensor modes propagating on these

quantum geometries. Since such a quantum geometry provides only probability amplitudes

for various FLRW metrics, we no longer have a sharply defined, proper or conformal time.

How can one then describe the dynamics of inhomogeneous perturbations? In [38], this issue

was resolved for test quantum fields on quantum FLRW space-times by deparameterizing

the Hamiltonian constraint in the background, homogeneous sector. Then one can regard

the background scalar field φ as a relational time variable with respect to which physical

observables evolve. This is a new conceptual element, made necessary by quantum gravity

considerations. We will use the same strategy.

However, to encompass cosmological perturbations, we will need three significant exten-

sions of Ref. [38]. First, while that work discussed a test quantum scalar field, now the

test fields include metric perturbations. Second, to systematically arrive at the evolution

equation of perturbations on quantum geometry, one needs an improved strategy. The third

and most important difference is that, because of its focus on conceptual issues such as the

problem of time, the analysis in [38] was restricted only to a finite number of modes of the

test scalar field, and thus avoided the ultraviolet difficulties from the start. In this paper,

by contrast, we do not truncate the number of modes and much of the difficult analysis is

devoted to these ultra-violet issues.

Indeed, these issues play a central role in testing self-consistency of our procedure. The

key approximation underlying our truncation strategy is that inhomogeneities can be re-

garded as perturbations —i.e., their back-reaction on the space-time geometry can be ig-

nored. In the classical theory, a solution obtained using this approximation is regarded as
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self-consistent if the stress-energy in its inhomogeneities is negligible compared to that in

the homogeneous background for the entire dynamical regime of interest. In our quantum

theory of the truncated phase space, the situation will turn out be the following. Fix a quan-

tum FLRW background geometry, described by a state Ψo, which evolves (with respect to

the deparameterized, internal time) via a Hamiltonian Ĥo. The state undergoes a quantum

bounce at some time φ = φ
B
. There are natural initial conditions for quantum states ψ of

perturbations at φ = φ
B
. We will show that for these states, it suffices to focus just on the

energy density, rather than the full stress-energy. If the inhomogeneities are to be regarded

as perturbations, we have to choose the initial ψ so that the energy density in it is small

at φ = φ
B
. The question is whether it continues to remain small in the entire duration of

evolution of interest. This is not at all guaranteed, especially because of the Planck scale

curvature during and following the superinflation phase immediately after the bounce. But

if it does, then Ψo⊗ψ would be a self-consistent solution to the truncated quantum theory.1

Note that the very formulation and subsequent analysis of this self-consistency criterion

requires a well-controlled definition of the Hamiltonians Ĥo and Ĥ1 (and the corresponding

energy density operators). Existing results on LQC already provide a well-defined, specific

Ĥo. On the other hand, Ĥ1 is a composite operator on the Hilbert space of perturbations; its

formal expression involves products of operator valued distributions. Therefore, an appropri-

ate ultraviolet regularization and renormalization is essential, first to obtain a well-defined

evolution of ψ, and second to check that the energy density in the state ψ continues to

remain small compared to that in the background. To properly handle this issue, we will

carry over the well developed techniques of adiabatic regularization from the quantum field

theory on classical FLRW space-times to that on quantum FLRW space-times.

Because this article is addressed primarily to the quantum gravity audience, we will make

two assumptions that will enable us to have good mathematical control without unduly

simplifying the essential conceptual underpinning. First, we will assume that the spatial

topology is that of a 3-torus T3 rather than R3. (In practice, there would be no obvious

1 Of course, self-consistency by itself does not imply that a truncated solution is necessarily close to an exact

one. This is so even in classical general relativity because, even if the first order perturbation remains very

small, the sum of all higher order terms could be large. Yet, in classical cosmology and investigations of

black hole perturbations, if the back-reaction due to first order perturbations remains negligible —i.e., if

the test field approximation is self consistent— the first order truncation is generally regarded as a good

approximation. We adopt the same viewpoint in this paper.
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conflicts with CMB observations if one lets the physical radius of each of the three S1 in T3 at

the last scattering surface to be greater than the known radius Robs of the observable universe

at that time [39].) This assumption lets us cleanly avoid spurious infinities that would arise

with an R3 topology simply because the background fields are homogeneous. However, our

main results extend to the R3 topology and at various junctures we will indicate how these

issues are handled in that case. Second, we will assume that there is no potential; V (φ) = 0.

To incorporate inflation, one has to remove this assumption and the necessary modifications

are summarized in the Appendix A of Ref. [2] which discusses inflation in detail.

The paper is organized as follows. To put this work in a broader perspective, in section II

we first summarize a few procedures that have been followed in the literature to extend the

cosmological perturbation theory using LQC, point out their merits and limitations, and then

present our strategy. In section III we spell out the desired truncation in the classical theory.

Specifically, we start with the full phase space of general relativity coupled to a scalar field,

truncate the constraints to second order in inhomogeneities, and express the Hamiltonian

H1 governing dynamics of the first order perturbations in terms of those gauge invariant

variables that are most convenient for passage to the quantum theory. In this passage,

certain conceptual subtleties arise that affect subsequent technical results. We discuss them

in some detail because, while they are well known in the discussion of perturbations of black

holes, they are often overlooked in the cosmological context, especially in the LQG literature.

(See Appendix A for a discussion of these issues in a simpler context of the λφ4 theory in

Minkowski space-time.)

In sections IV - VI we discuss the quantum theory. The main steps involved in the

construction are first collected in section IV; the detailed construction of the Hilbert space

of states follows in V; and the necessary regularization and renormalization of composite

operators is then discussed in section VI.

Physical states Ψ(ν, φ;Q, T , ) depend on ν ∼ a3 (the cube of the scale factor), the back-

ground scalar field φ, and on the gauge invariant scalar mode Q and the two tensor modes

T of inhomogeneous perturbations. As is standard in LQC, the form of (the homogeneous

part of the) quantum constraint will enable us to regard φ as a relational time variable so

that, at a fundamental level, dynamics refers to this internal or emergent time. Since the

back-reaction of perturbations is neglected, one can express Ψ(ν, φ;Q, T ) as a tensor product

Ψo(ν, φ)⊗ ψ(Q, T , φ) and study its evolution. Then, a surprising and key simplification oc-
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curs: The evolution of the quantum fields Q̂, T̂ on the quantum geometry defined by Ψo (in

relational time φ) is mathematically equivalent to their evolution on an effective background

metric g̃ab (in its conformal time η̃) where g̃ab is an effective metric, ‘dressed’ with quantum

corrections. Physically, while the evolution of the quantum fields Q̂, T̂ is sensitive to the

quantum nature of geometry defined by Ψo, it does not ‘see’ all the details of this quantum

geometry: It is sensitive only to the expectation value and certain aspects of the fluctuations

of the quantum metric which, it turns out, can be captured by g̃ab. At late times g̃ab can

be well approximated by a FLRW solution to Einstein’s equation. Therefore, this passage

from the relational time φ to η̃ also makes it manifest that, while the quantum constraint

provides an evolution w.r.t. φ starting right from the bounce, away from the Planck regime

this evolution reduces to that used in the familiar treatment [3–6] of quantum perturbations.

The key question, as we have already indicated, is whether our basic assumption that

the back-reaction can be neglected is borne out in the resulting solutions, especially in the

Planck era. The technical discussion of section VI is devoted to this issue and leads to a

sufficient condition for the solution Ψo(ν, φ) ⊗ ψ(Q, T , φ) to be self-consistent within the

truncation approximation. In the next paper [2] we will show that for a large class of initial

conditions, this criterion is met in presence of a quadratic potential V (φ) all the way from

the bounce to the onset of slow roll inflation. In section VII we summarize the main results

and discuss various issues, including the choice of initial conditions.

Our conventions are as follows. The space-time metric will be assumed to have signature

-,+,+,+. we set c = 1 but keep (G and) ~ explicitly in various equations to facilitate

the distinction between classical and quantum effects. Finally, as in the quantum gravity

literature, we will use Planck (rather than the reduced Planck) units. (Thus, our ℓPl =
√
~G

and our Planck mass mPl =
√

~/G is related to the reduced planck mass MPl via mPl =
√
8πMPl.)

II. STRATEGIES INSPIRED BY LQC

The singularity resolution in LQC has motivated a large number of investigations aimed

at incorporating the underlying quantum geometry effects in the standard cosmological

paradigms. In this section we will first briefly summarize the main strategies and then

explain the approach that is followed in the rest of the paper. This concise summary should
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help non-experts to see the inter-relation (or lack thereof) between the rich set of ideas that

are being pursued in the LQG literature. For experts, it should help clarify some subtle

issues that have not been emphasized in the literature and also bring out the continuity and

coherence of the approach used here.

A. A brief summary

Recall first that in the FLRW models the LQC quantum states of interest remain sharply

peaked along the bouncing solution of effective equations that incorporate leading order

quantum corrections. This surprising behavior was first encountered in numerical simula-

tions but subsequent work led to an analytic understanding through a change of represen-

tation [14], use of coherent states [40] and the WKB approximation [41]. Early attempts

sought to exploit this property to incorporate quantum gravity corrections right before the

onset of the slow roll inflation [42], or, for the evolution of perturbations during inflation

(see, e.g., [43]). However, to incorporate these corrections to the evolution, the LQC effec-

tive equations for the FLRW background do not suffice; one also needs the LQG modified

perturbation equations. Since a well established set of quantum Einstein’s equations is not

yet available in full LQG, the strategy was to simply use the first order perturbation equa-

tions from general relativity, the FLRW background space-time being simply replaced by

the effective solution in LQC. Unfortunately, this procedure is conceptually unsatisfactory

because the background LQC space-time is no longer a solution to Einstein’s equations.

Indeed, now there is an ambiguity in what one means by ‘linearized Einstein’s equations’:

Two sets which are equivalent when the background is a solution to the exact Einstein’s

equations are generically no longer equivalent if the background is a solution to a different

set of equations. To our knowledge, a systematic procedure to handle this ambiguity was

not part of the general strategy.

Another set of papers, geared to capture the ‘inverse triad (or inverse volume) corrections’

of LQC, is based on the notion of ‘lattice refinement’ (see, e.g., [44–46]). In the homogeneous,

spatially compact case, these corrections are meaningful and physically interesting. In the

spatially non-compact case, typically the corrections depend on the choice of a fiducial cell

used as an infrared regulator [13] and disappear when the regulator is removed [31]. In more

recent versions, one considers R3 spatial topology but decomposes the spatial manifold in
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elementary cells and approximates the inhomogeneous configurations of physical interest by

configurations which are homogeneous within any one cell but vary from one cell to another.

Physically, this is an attractive strategy. However it requires a fresh input —that of the

cell size (or ‘lattice spacing’)— and the inverse volume effects are now sensitive to this new

scale: The fiducial cell of the homogeneous model is in effect replaced by a physical cell

in which the universe can be taken to be homogeneous. However, so far there is neither

a theoretical principle nor observational guidance on what this scale should be during the

inflationary epoch when perturbations are generated in these schemes. On the other hand,

the more striking predictions of these frameworks —such as enhancement of quantum gravity

signature by several orders of magnitude over the factor H2/m2
Pl ∼ 10−11 one would expect

during inflation— appear to depend on the choice of the new scale one makes. Therefore,

although the underlying idea of lattice refinement is attractive, at present there appears to

be an inherent ambiguity in the size and importance of the inverse volume effects in this

setting. Overcoming these limitations is an interesting prospect for future work.

In these investigations the focus was on quantum gravity effects during inflation. Some

of the more recent investigations have recognized that, because the energy density is ∼
10−11ρPl during this era, quantum gravity corrections during inflation would be too small

to be observable in the foreseeable future and shifted the emphasis to studying quantum

gravity corrections from the bounce to the onset of the slow roll. Many of them employ

a new strategy that goes under the broad theme of ‘anomaly cancelation’ [47–53]. This

analysis is based on the Hamiltonian framework and focuses on the constraint algebra. The

idea is to arrive at the desired LQG theory of cosmological perturbations by studying the

permissible modifications of the constraints of general relativity that are to encode quantum

corrections. Recall that two key features of general relativity are: i) the Poisson algebra of

constraints closes; and, ii) the evolution is generated by these constraints. Keeping these

features in mind, one proceeds in the following steps: i) One assumes that the ‘effective

theory’ that incorporates the LQG corrections would have the same phase space for the

homogeneous isotropic background and first order perturbations; ii) allows for a modified

set of constraints on this phase space by making an ansatz for possible modifications; iii)

calculates the undetermined functions of the background geometry in the ansatz by requiring

that the constraint algebra should again close; and, finally, iv) defines the desired effective

dynamics as the Hamiltonian flow of the new, modified constraints. In the quantum theory, if
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the commutator algebra of constraints did not close, there would be an anomaly. Therefore,

the method is called ‘anomaly cancelation’ even though one is dealing only with Poisson

brackets.

Until recently, the modifications that were arrived at did not change the structure func-

tions in the constraint algebra of general relativity. In a recent work on scalar perturbations

[53], on the other hand, the structure function in the Poisson bracket between two Hamilto-

nian constraint is modified by a function of the ratio ρ/2ρmax where ρ is the matter density

in the background and ρmax the maximum density in FLRW LQC. This has been interpreted

to mean that there is a change in the space-time signature at the end of the superinflation

phase of the background, so that the signature is Euclidean to the past of this event [54].

The central idea in this ‘anomaly cancelation’ strategy is potentially powerful in con-

straining the type of quantum corrections cosmological perturbation theory can inherit from

any consistent quantum gravity theory. However, its implementation has some puzzling

aspects.

First, the form of permissible modifications of the constraint functionals is chosen pri-

marily for mathematical convenience and not derived systematically from general physical

principles. Second, the phase space of the quantum corrected theory is assumed to be the

same as that in classical general relativity while typically, quantum corrections add higher

derivative terms to the action which significantly enlarge the phase space. Third, since the

phase space is kept unchanged, the general analysis due to Hojman, Kuchar and Teitelboim

[55] is applicable and their results bring out a puzzling feature of this framework. Hojman

et al began with 4-dimensional, globally hyperbolic space-times (M, gab) with non-spinorial

matter and, using embeddings of a 3-manifold M as a Cauchy surface in M , constructed a

‘hypersurface deformation’ algebra D on the space E of embeddings which encodes space-

time covariance. This is a purely geometric construction without any reference to field

equations. Then they showed that, on the standard phase space of general relativity (cou-

pled to the matter under consideration) based on M, there is only one way to represent

the algebra D by canonical transformations in a time reversible manner: the representa-

tion given by the Poisson algebra of the standard Einstein constraint functionals. For the

anomaly cancelation program, this implies that if the modification of constraint functionals

is genuine (i.e., not just a field re-definition), then the modified Hamiltonian theory will not

have a consistent space-time interpretation. Therefore would not be possible to associate
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a well-defined space-time metric to (portions of) dynamical trajectories in this modified

Hamiltonian theory, let alone examine its signature. Fourth, even if one were to ignore this

point, signature change is such a drastic effect that it seems difficult to justify the validity

of the first order cosmological perturbation theory in the subsequent treatment. The fifth

and a more ‘global’ limitation arises from the fact that the conceptual underpinning of the

overall strategy is rather unclear in some of the recent applications. Effective equations are

meant to incorporate all quantum corrections. Therefore, one would have thought that the

dynamical equations derived from them would already contain quantum effects. Yet, in some

works, these fields are quantized again to obtain the power spectrum for scalar, vector and

tensor modes, as in the standard treatment of cosmological perturbations on classical FLRW

backgrounds in general relativity. The overall logic underlying this scheme is thus rather

puzzling. Indeed, already in the homogeneous sector the logical procedure is the opposite:

one first obtains the quantum evolution equations and then derives effective equations from

them using dynamics of appropriate, sharply peaked coherent states.

To summarize, investigations to date have provided useful mathematical infrastructure

(see, e.g., [47]) and in some cases also the much needed qualitative insights into mechanisms

through which quantum gravity effects could provide corrections to the standard inflationary

scenario (see, e.g., [51–53, 56]). The viewpoint that appears to have emerged from the

‘anomaly cancelation’ strategy —namely, quantum effects could be neatly encoded in the

Hamiltonian framework but would lead to a fuzziness if the phase space trajectories are

interpreted as 4-dimensional space-time geometries— could well be an imprint of some deep

result on the nature of space-time in LQG. However, it seems fair to say that, at the current

level of understanding, this and other strategies used so far also have a number of puzzling

features and face conceptual limitations in their treatment of inhomogeneous perturbations.

B. Strategy used in this paper

In this sub-section we will outline the avenue used in this paper to extend the standard

theory of cosmological perturbations all the way to the Planck regime. As explained in

section I, the main idea is simply to use the strategy that has driven LQG so far: Construct

the Hamiltonian framework of the sector of general relativity of interest and then pass to

the quantum theory using quantum geometry that underlies LQG. In order to bring out
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differences from other approaches, and to address questions regarding truncation and gauge

choices that are sometimes raised, we will now spell out this strategy using illustrations

where is has already been successfully used.

The FLRW models provide the simplest illustration. Here, one starts out with the full

phase space Γ of general relativity (coupled to matter) in the connection dynamics framework

[57, 58] and truncates it to its homogeneous, isotropic sector ΓHI. By fixing gauge, one

coordinatizes the gravitational part of ΓHI simply with a pair (ν, b) of real numbers, where (in

appropriate units) ν denotes the physical volume of the universe (or, if the spatial topology

is non-compact, of a fiducial cell) and b is its conjugate momentum. This gauge fixing leads

us to the classically reduced phase space with respect to the Gauss and the diffeomorphism

constraints. Therefore the reduced phase space carries only the Hamiltonian constraint,

expressed in terms of just ν, b and matter variables. This provides the starting point for

quantization a la LQG. In the first step, a specific kinetic framework [59] can be selected

by a uniqueness theorem [60] along the lines of those in full LQG [61, 62]. By representing

curvature in the Hamiltonian constraint by holonomies around plaquettes selected by the

underlying quantum geometry, one constructs the quantum Hamiltonian constraint operator

[13, 31]. In this construction there are, as is usual in any quantization procedure, some factor

ordering ambiguities. (Compare, e.g., the Hamiltonian constraint in [13] (which is geared

to proper time) with that in [14] (geared to harmonic time). See also [63].) However,

these affect only details of the quantum evolution; general features are robust. Finally, the

effective equations that encode leading quantum effects are systematically derived starting

from the quantum theory [40].

In the generalization to the homogeneous but anisotropic (i.e., Bianchi) models, one again

follows the same conceptual procedure: appropriate truncation of the phase space Γ to Γhom,

eliminating the Gauss and diffeomorphism constraints by passing to the classically reduced

phase space, and passing to quantum theory via LQG techniques [21, 23, 24]. The singularity

resolution persists. Furthermore, there is a detailed consistency check: by tracing over the

anisotropy degrees of freedom of the Bianchi I model one recovers the quantum Hamiltonian

constraint of the FLRW model [21]. As one would expect, in presence of anisotropies,

the quantum dynamics is significantly richer [64–66]. Note that the starting point in this

analysis is again a truncated phase space Γhom of general relativity, but the truncation is

now enlarged to incorporate physics of interest, namely anisotropies.
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The last example, Gowdy models, [25–29] illustrate our strategy most closely because

now the truncated phase space ΓGowdy is an infinite dimensional subspace of Γ: the model

allows for inhomogeneities induced by a class of (fully non-linear) gravitational waves, in

addition to those in the matter fields. The constraints are now rewritten in terms of an

infinite number of conveniently chosen ‘modes’ of canonical variables coordinatizing ΓGowdy,

obtained by appropriate gauge fixing. Thanks to this choice, we are led to a classical

reduction of the phase space with respect to the Gauss and the purely inhomogeneous parts

of the diffeomorphism and Hamiltonian constraints. Thus, one is left with only ‘global’

Hamiltonian and diffeomorphism constraints (corresponding to a homogeneous lapse and

shift). One then passes to quantum theory using a ‘hybrid’ scheme where one employs

LQC quantum kinematics for homogeneous modes and a Fock-type quantum kinematics for

the inhomogeneous modes representing gravitational waves. This is an internally consistent

quantization. One finds that, thanks to the quantum geometry effects, the singularity of

general relativity is resolved. This is in striking contrast to the early attempts predating

LQC, where singularity could not be resolved (see, e.g. [67–70]). It is interesting to note

that, if one ‘switches off’ inhomogeneities, Gowdy models reduce to Bianchi I models. Using

effective equations, it has been shown that the general dynamical behavior of the Bianchi I

models —including the bounces— carries over to the Gowdy models [26, 29]. This analysis

has also provided valuable information on the changes in the amplitudes of gravitational

waves resulting from the bounce. Finally note that, although one obtains the Bianchi I

model by switching off inhomogeneities, in contrast to some of the strategies summarized in

section IIA, one does not begin with the inhomogeneous modes propagating on an effective,

quantum corrected Bianchi I background and then quantize them. Rather, one truncates

the full phase space Γ to ΓGowdy and quantizes the full Gowdy model, which includes both

homogeneous and inhomogeneous modes.

To develop a quantum gravity theory of cosmological perturbations, then, we will continue

along the same path that has been successfully used so far. Our first task is to identify

the appropriate truncation of the classical phase space Γ. By introducing a fiducial flat

triad for mathematical convenience, we can decompose fields into Fourier modes. With

this convenient coordinatization, constraints of the full theory can be expressed in terms of

modes. We will start with a homogeneous background and expand out the deviations from

it as a sum of first, second, ... nth, ... order terms in inhomogeneities. The truncation will
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now consist of keeping terms which depend on the background and are at most quadratic

in the first order perturbations. In general relativity, this truncation enables one to study

dynamics of the background homogeneous space-time and that of linearized perturbations

propagating on these backgrounds. Back-reaction of these first order perturbations on the

background (which is encoded in the second order perturbations) is neglected.2

The idea again is to use LQG techniques to pass to the quantum theory, using a hybrid

scheme that broadly mimics the one used in the Gowdy models. (As we will see in subsequent

sections, some differences arise because, unlike in the Gowdy model, we are now dealing

with linear perturbations.) It will again be possible to interpret the homogeneous quantum

Hamiltonian constraint as providing ‘evolution’ of the quantum state of the background

geometry in the relational time variable —the scalar field. Solutions to this equation provide

background quantum geometries on which quantum perturbations evolve. In this conceptual

setting, one does not start out with classical perturbations on an effective, smooth FLRW

space-time and then quantize them. The passage to quantum theory is carried out in one

go for the full truncated phase space that includes both the background and perturbations.

Finally, as emphasized in section I, much of the technical discussion will be devoted to finding

a criterion to test whether the final theory admits self-consistent solutions that justify the

viability of the underlying truncation scheme.

This overall strategy was briefly reported in [71, 72]. At the same time the ‘hybrid

approach’ was used in [73] to study cosmological perturbations in the k=1 FLRW context.

The main conceptual difference between that approach and ours is that we are able to go

beyond formal considerations in the quantum theory by exploiting the relation between

quantum fields on quantum geometry and those on a dressed effective geometry discussed

in section IVB.

III. TRUNCATED HAMILTONIAN FRAMEWORK

In cosmology of the very early universe, one generally restricts oneself to the sector of

general relativity consisting of homogeneous FLRW space-times together with linear pertur-

bations thereon. In much of the cosmology literature one works with the solution space of

2 There are some subtleties in this procedure that are sometimes overlooked. For a discussion in a simpler

example, see Appendix A.
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this truncated theory. However, as pointed out in Ref. [74], the task of finding gauge invari-

ant variables is more stream-lined in the Hamiltonian framework. More importantly, since

we are now interested in treating the background geometry quantum mechanically, a natural

avenue is to follow the Dirac quantization procedure based on phase space. Therefore, in this

section we will first construct the truncated phase space and then discuss dynamics thereon.

This will provide a natural starting point to apply the well established LQG techniques in

the next section.

A. The Phase space

Let us begin with general relativity coupled to a scalar field on a space-time manifold

M = M×R, where M is topologically T3. For completeness and continuity with the LQC lit-

erature, we will begin with the connection variables [57] and then pass to the Arnowitt Deser

Misner (ADM) variables for perturbations that are more commonly used in the cosmological

literature.

Let us first focus on geometry. Let qab denote positive definite metrics on M, eai and

ωi
a, orthonormal frames and co-frames with respect to qab, and let Kab denote the extrinsic

curvature on M. In connection dynamics, the canonically conjugate pair consists of real

SU(2) connections Ai
a and su(2) valued vector densities Ea

i of weight 1, both defined on

M. (Here indices a, b, c, . . . refer to the tangent space of M and i, j, k, . . . to the Lie algebra

su(2)). They are related to the ADM variables via:

Ea
i =

√
q eai and Ai

a = Γi
a + γKi

a (3.1)

where q denotes the determinant of qab, Γi
a, the spin connection determined by eai , K

i
a =

Kabe
bi and γ, the Barbero-Immirzi parameter of LQG. Since we are interested in the spatially

flat FLRW background geometries, as usual it is convenient to introduce some fiducial

structures. Fix a flat metric q̊ab, an orthonormal frame e̊ai , and the corresponding co-frame

ω̊i
a on M. We will denote by q̊ the determinant of q̊ab and assume that each of the circles in

M has length ℓ with respect to q̊ab so that the fiducial volume of M is V̊ = ℓ3. The natural

‘Cartesian’ coordinates defined on M by q̊ab will be denote by ~x ≡ (x1, x2, x3).

Even though we are still considering full general relativity, it is convenient to decompose

the basic canonically conjugate fields into purely homogeneous and purely inhomogeneous
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parts:

Ai
a(~x) = cℓ−1ω̊i

a + aia(~x) and Ea
i (~x) =

√

q̊ (pℓ−2e̊ai + eai (~x)) (3.2)

where
∫

(Ai
ae̊

a
j )d̊v =: cℓ2δji and

∫

(Ea
i ω̊

j
a)d

3~x =: pℓδji so that aia and eai are purely inhomoge-

neous :
∫

aiae̊
a
j d̊v = 0, and

∫

eai ω̊
j
a d̊v = 0 . (3.3)

(Here and in what follows, unless otherwise specified, the integrals are over M and d̊v denotes

the volume element on it with respect to q̊ab.) Thus, the geometrical part of the phase space

is naturally coordinatized by quadruples (c, p; aia(~x), e
a
i (~x)) where c, p are real numbers and

aia, e
a
i are purely inhomogeneous fields. The matter field can also be decomposed into purely

homogeneous and purely inhomogeneous parts:

Φ(~x) = φ+ ϕ(~x) and Π(~x) =
√

q̊ (ℓ−3p(φ) + π(~x)) (3.4)

The symplectic structure on the total phase space Γ is given by

Ω(δ1, δ2) =
3

κγ
[δ1cδ2p− δ2cδ1p] +

∫

(δ1a
i
aδ2e

a
i − δ2a

i
aδ1e

a
i ) d̊v

+ δ1φδ2p(φ) − δ2φδ1p(φ) +
∫

(δ1ϕδ2π − δ2πδ1π) d̊v (3.5)

where δ ≡ (δc, δp, δaia, δe
a
i ; δφ, δp(φ), δϕ, δπ) denote tangent vectors to Γ and κ = 8πG. Thus,

the only non-zero Poisson brackets between the basic variables are:

{c, p} =
κγ

3
, {aia(~x1), ebj(~x2)} = δij δ

b
a δ̄(~x1, ~x2),

{φ, p(φ)} = 1, {ϕ(~x1), π(~x2)} = δ̄(~x1, ~x2), (3.6)

where δ̄(~x1, ~x2) = ((1/
√
q̊)δ(~x1, ~x2) − (1/ℓ3)) is the Dirac delta distribution on the space of

purely inhomogeneous fields.3 Thus, the total phase space (Γ,Ω) has a product structure:

Γ = Γhom × Γinh, Ω = Ωhom + Ωinh.

There are three sets of first class constraints:

G[Λ] =
∫

Λi(~x)Gi(~x) d
3~x =

∫

Λi(~x)DaE
a
i (~x) d

3~x

V[ ~N ] =
∫

Na(~x)Va(~x) d
3~x, S[N ] =

∫

N(~x)S(~x) d3~x . (3.7)

3 The 1/ℓ3 factor ensures that the Poisson brackets are compatible with the fact that the perturbations are

purely inhomogeneous, i.e., satisfy (3.3).
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Here, the vector and the scalar constraints are smeared by a shift ~N and a lapse N and

the Gauss constraint —which we have explicitly written out because it does not feature in

the ADM framework— by a generator Λi of su(2). The Gauss and the vector constraints

generate, respectively, internal SU(2) rotations and spatial diffeomorphism, both of which

are generally regarded as ‘kinematic motions.’ Dynamics is generated by the Hamiltonian

constraint.

Remark: If the spatial topology is R
3 rather than T

3, the symplectic structure on the

homogeneous subspace induced by that of full general relativity diverges. Therefore, to

obtain a consistent phase space description, one has to introduce a cubical fiducial cell C
aligned with these axes and with edge-length ℓ and restrict integrations of homogeneous

fields to it. This is an infrared cut-off, to be removed, as usual, in the final results (see e.g.

[31]).

B. Expansions around the FLRW subspace

In physical cosmology one is primarily interested in a neighborhood of the 4-dimensional,

homogeneous sub-space Γhom of the full phase space Γ. To fix notation for the rest of the

paper, we begin with certain expansions of fields near homogeneity. While this technique is

well known in the perturbation theory around black holes, it appears not to be as familiar

in the cosmology literature.

Consider curves γ[ǫ] in Γ parameterized by ǫ, with ǫ ∈] − 1, 1[, say, which pass through

Γhom at ǫ = 0:

Ai
a[ǫ](~x) = cℓ−1ω̊i

a + ǫ a(1)ia(~x) + . . .+
ǫn

n!
a(n)ia(~x) + . . .

Ea
i [ǫ](~x) =

√

q̊ [pℓ−2e̊ai + ǫ e(1)ai (~x) + . . .+
ǫn

n!
e(n)ai (~x) + . . .]

Φ[ǫ](~x) = φ+ ǫ ϕ(1)(~x) + . . .+
ǫn

n!
ϕ(n)(~x) + . . .

Π[ǫ](~x) =
√

q̊ [ℓ−3p(φ) + ǫ π(1)(~x) + . . .+
ǫn

n!
π(n)(~x) + . . .] (3.8)

where a(1)ia, e
(1)a

i , ϕ
(1), π(1) are purely inhomogeneous tangent vectors to the curves γ[ǫ] point-

ing away from Γhom. Here ǫ is a mathematical parameter that keeps track of the ‘order’ of

the perturbation (it could be taken to be
√
κ but for simplicity we will assume it to be
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dimensionless here). Geometrically, keeping only the first order perturbations corresponds

to considering the normal bundle over the homogeneous subspace Γhom of Γ (since purely

inhomogeneous tangent vectors are ‘orthogonal to’ Γhom in the L2-norm). Retaining terms

only up to the nth order corresponds to considering the nth order, inhomogeneous jet bun-

dle on Γhom. (Appendix A summarizes the meaning and utility of this expansion procedure

using the simpler example of the λΦ4 theory.)

Of special interest are the curves γ[ǫ] that lie in the constraint hypersurface of Γ. We will

use a collective label C(A,E,Φ,Π) for the smeared constraint functions (suppressing the

smearing fields for simplicity). Then along each curve γ[ǫ] the constraints become C[ǫ] = 0.

By Taylor expanding in ǫ we obtain a hierarchy of equations:

C|ǫ=0 = 0,
dC

dǫ
|ǫ=0 = 0, . . .

dnC

dǫn
|ǫ=0 = 0, . . . (3.9)

The zeroth-order equation in the hierarchy, C|ǫ=0 = 0 is just the restriction of the full

constraint to the homogeneous subspace Γhom. As noted above, because of gauge fixing, the

Gauss and the vector constraints vanish identically and we are left with only one non-trivial

constraint smeared with a homogeneous lapse [31]:

So[Nhom] := Nhom [− 3

κγ2
c2|p| 12 +

p2(φ)

2|p| 32
] = 0 . (3.10)

(As noted in section I, in this paper we have set the potential V (Φ) of the scalar field

to zero. See the Appendix in [2] for inclusion of the potential). As usual, although the

lapse is homogeneous, it can depend on dynamical variables; see section IIID for a further

discussion. Eq (3.10) is a non-linear but algebraic equation constraining the homogeneous

fields.

The first order equation, [dC/dǫ]|ǫ=0 = 0, is a linear partial differential equation (PDE)

for a(1)ia(~x), e
(1)a

i (~x), ϕ
(1)(~x), π(1)(~x). For example, the Gauss constraint yields:

∫

Λb
inh [ℓ∂

ae(1)ab + c ǫ̊b
mn e(1)mn − p ℓ−1 ǫ̊b

mna(1)mn] d̊v = 0 (3.11)

where we have converted the internal indices i, j, . . . into tangent space indices a, b . . . using

the fiducial frame e̊ai and co-frame ω̊i
a and indices are raised and lowered with the fiducial

metric q̊ab. Only purely inhomogeneous smearing fields Λb
inh contribute because the first order

perturbations are all purely inhomogeneous. This equation involves a(1)ab, e
(1)

ab linearly but

also contains the background variables c, p which solve the zeroth order constraint (3.10).
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In this equation (c, p) happen to enter linearly. But in general the coefficients can be

complicated non-linear functions of the background fields. Thus, for example, quadratic

combinations appear in the first order vector constraint,

∫

Na
inh [ℓ p(∂

ba(1)ab − ∂aa
(1))− cp̊ǫb

mna(1)mn − c2ℓ̊ǫa
mne(1)mn − κγp(φ)∂aϕ

(1)] d̊v = 0 , (3.12)

where a = aabq̊
ab is the trace of aab. Note that the first order constraints are linear ‘homo-

geneous’ PDEs in the sense that there are no (zeroth order) source terms on the right hand

side. The structure of the first order scalar constraint is the same.

In the second order equations on the other hand are ‘inhomogeneous’ as PDEs since the

zeroth and first order fields now act as ‘sources’. These equations determine the ‘Coulombic’

parts of the second order fields in terms of the zeroth and first order ones. For example, the

second order Gauss constraint is given by

∫

Λb [ℓ∂ae(2)ab + c e̊b
mn e(2)mn − p ℓ−1ǫ̊b

mna(2)mn] d̊v = −
∫

Λa [ℓ̊ǫa
bca(1)db e

(1)d
c] d̊v . (3.13)

While this is again a linear PDE —in fact the operator on the left side is the same as that

in (3.11), but now acts on the second order fields, (a(2)ia, e
(2)a

i )— there is now a source term

which is quadratic in the first order fields which are already known as solutions to (3.11).4

The structure of the second order vector and the scalar constraints is the same. Finally,

note that the nth order equations in this hierarchy constrain only the nth order fields ; they

do not impose further conditions on lower order fields. This pattern continues to all orders.

In particular, to obtain the full set of constraints on the zeroth and the first order fields, we

need to solve only C|ǫ=0 = 0 and [dC/dϕ]|ǫ=0 = 0. This property will be important in what

follows.

The key point about the hierarchy is that it greatly simplifies the problem of solving the

complicated, non-linear PDEs C(A,E; Φ,Π) = 0. For n = 0 we obtain a non-linear but

algebraic equation. For n > 0, each equation in the hierarchy is a linear PDE for the nth

order fields, with the same linear differential operator on the left side but order dependent

source terms which are already determined by solutions to the lower order equations in the

4 Because the source terms on the right side of (3.13) are quadratic in first order perturbations, it follows that

the integral on the right side does not necessarily vanish if the smearing field Λa is purely homogeneous.

The left side of (3.13) now implies that the second (and higher order terms) in our ǫ-expansion (3.8)

cannot be assumed to be purely inhomogeneous.



19

hierarchy. The value of the system lies in the hope that by truncating it to a low order, one

would obtain a good approximate solution to the full system with small inhomogeneities.

(For further discussion, see Appendix A.) Although it is not easy to rigorously control the

approximation, this truncation scheme has proved to be a valuable and indispensable tool

in cosmological and black hole sectors of classical general relativity. In practice, the domain

of validity of the chosen truncation is checked by self-consistency : one only verifies that, if

the truncation is of order n, then the source terms in equations governing (n + 1)st order

fields are negligibly small compared to the fields that are kept.

What is the relation between this hierarchy of constraints and dynamics? On the full

phase space (Γ,Ω), dynamics is generated by constraints. In particular, in the homogeneous

sector, the scalar constraint smeared with a homogeneous lapse can be thought of as gener-

ating ‘pure time evolution’. What happens if we truncate the theory at first order? Then,

the truncated phase space ΓTrun will be the normal bundle over Γhom. The Hamiltonian

flow generated by S[Nhom] on Γ is tangential to its homogeneous subspace Γhom. It suffices

to consider this flow in an arbitrarily small neighborhood of Γhom. Under this flow, tangent

vectors v ≡ (a(1)ia, e
(1)a

i , ϕ
(1), π(1)) at any point on Γhom also have an unambiguous evolution.

Thus, given a specific vo at a point, say γ(to), of any dynamical trajectory γ(t) on Γhom,

the trajectory γ(t) can be unambiguously lifted to a trajectory in ΓTrun, passing through

(γ(to), vo). We will see in section IIID that this lift has a simple geometrical interpretation

in the phase space.

Remark: In the LQC literature, in place of the ǫ expansion (3.8) one often uses a de-

composition of the type Ai
a = cℓ−1ωi

a + δAi
a, etc. Then the ‘perturbations’ δAi

a, . . . include

terms of all orders n ≥ 1 in our ǫ expansion. Therefore, in light of footnote 4, it is not con-

sistent to assume that these perturbations δAi
a, . . . are purely inhomogeneous. On the other

hand, if one allows them to have homogeneous parts, then the Poisson brackets between the

unperturbed and perturbed fields do not all vanish and so the symplectic structure is more

complicated. This complication is often overlooked. In constraint equations, keeping terms

linear in these fields is interpreted as the first order truncation, keeping terms quadratic as

second order truncation, etc. In this scheme, the second and higher order truncation would

lead to non-linear PDEs on perturbations δAi
a, . . .; the simplification that was achieved in

the ǫ-expansion (3.8) would be lost. Truncations in the two schemes are equivalent only
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to the linear order. These considerations apply also to the Hamiltonian treatment of cos-

mological perturbations in terms of metric variables, used outside the LQC literature as

well.

C. First order truncation

Since the temperature fluctuations in the cosmic microwave background are only one

part in 105, much of the literature on the early universe has focused on FLRW backgrounds

with first order linear perturbations thereon. We will now analyze this truncation in some

detail. The relevant phase space is the normal bundle ΓTrun = Γo × Γ1 where Γo = Γhom

is the 4-dimensional homogeneous subspace of the full phase space Γ and Γ1 is spanned by

the first order fields in the expansion (3.8). It turns out that the description of the FLRW

quantum geometries is easier in terms of variables (b, ν), rather than the original (c, p):

b =
c

|p|1/2 , ν =
4|p|3/2
κγ~

sgn p, so that {b, ν} =
2

~
. (3.14)

The geometrical meaning of these variables is as follows5: The physical volume of the universe

is given by a3ℓ3 = 2πγ |ν| ℓ2Pl, where a is the scale factor, and on any solution b equals

the Hubble parameter modulo a multiplicative constant, b = γ(ȧ/a). Thus, we will now

coordinatize Γo by (ν, b;φ, p(φ)). For simplicity of notation, from now on we will drop the

suffix (1) on the first order perturbations. Thus,

(ν, b, φ, p(φ); aab, eab, ϕ, π) ∈ ΓTrun . (3.15)

The perturbations Poisson commute with the background fields and the Poisson brackets

among themselves are given by (3.6) so that ΩTrun = Ωo + Ω1. Thus, mathematically,

(ΓTrun,ΩTrun) = (Γ,Ω). But the physical interpretation of aia, e
i
a, ϕ, π is different : in ΓTrun

they represent only the first order perturbations, i.e, just the coefficients of ǫ in the expansion

(3.8). As a result, the constraints and dynamical equations they satisfy are very different

from those of the full theory.

As noted in section IIB, to zeroth order we only have the scalar constraint, smeared with

5 Like p, the variable ν takes values in the entire real line, positive values corresponding to triads eai with the

same orientation as the fiducial e̊a
i
, and negative values corresponding to triads with opposite orientation.
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a homogeneous lapse. In terms of ν, b variables it becomes:

So[Nhom] = Nhom [−3~

4γ
b2ν +

2p2(φ)
κγ~ν

] = 0. (3.16)

To first order in ǫ, we obtain linear equations on first order fields with functions of b, ν, p(φ), φ

as coefficients. Let us first focus on the Gauss constraint (3.11):

∫

Λb
inh [ℓ∂

ae(1)ab + c ǫ̊b
mn e(1)mn − p ℓ−1 ǫ̊b

mna(1)mn]d̊v = 0 . (3.17)

It generates the following infinitesimal gauge transformations:

aab → aab − ∂aΛb + c ℓ−1ǫ̊abmΛ
m, eab → eab + p ℓ−2ǫ̊abmΛ

m . (3.18)

Thus, the symmetric part of eab is gauge invariant and furthermore it has a simple interpre-

tation. Since Ea
i E

bi = qqab in the full theory, where qab is the physical 3-metric on M and

q its determinant, it follows that

e(ab) = − ℓ2

2p
(qab − q q

(o)
ab ), where qab = q

(o)
ab + ǫqab +O(ǫ2) . (3.19)

(Note that q
(o)
ab = (a2) q̊ab is the zeroth order physical metric. It is purely homogeneous

while qab is purely inhomogeneous. q := qabq̊
ab.) Next, recall from (3.1) that Ai

a(ǫ) =

Γi
a(ǫ) − γKi

a(ǫ). Linearizing this equation one finds that the first order Gauss constraint

serves only to determine the skew symmetric part of

Kab := ω̊bi
d

dǫ
Ki

a(ǫ)|ǫ=0 (3.20)

in terms of eab and the zeroth order fields. Thus imposition of this constraint implies that

K(ab) is the free part of Kab. Furthermore it is gauge invariant. Hence the reduced phase

space with respect to the first order Gauss constraint (3.11) is coordinatized simply by the

linearized metric qab and the linearized extrinsic curvature Kab, both of which are symmetric

tensors. The three Gauss constraint have removed three degrees of freedom from each of

the two first order fields (aia, e
a
i ), taking us from the linearized connection variables to the

linearized ADM ones, (qab,Kab). This is precisely the structure one expects from the Gauss

reduction of the full theory [57].

It now remains to impose the first order vector and scalar constraints on the linearized

pairs (qab,Kab). For this we can draw on the huge body of existing literature. Let us begin
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by fixing the notation. The ADM variables are (qab, p
ab =

√
q (Kab −Kqab)). To first order,

they can be expanded as

qab(ǫ) = q
(o)
ab + ǫqab + . . . and pab(ǫ) =

√

q̊ (p(o) ab + ǫpab + . . .) (3.21)

where the zeroth order fields are given by q
(o)
ab = a2q̊ab and p

(o) ab = −(ab/κγ) q̊ab. As in the

cosmology literature, we can expand out the first order fields using Fourier transforms:

qab(~x) =
1

V̊

∑

~k∈L

q̃ab(~k) e
i~k·~x ϕ(~x) =

1

V̊

∑

~k∈L

ϕ~k e
i~k·~x

pab(~x) =
1

V̊

∑

~k∈L

p̃ab(~k) e
i~k·~x π(~x) =

1

V̊

∑

~k∈L

π~k e
i~k·~x (3.22)

where L is the lattice defined by ~k ∈ ((2π/ℓ)Z)3, ~k 6= ~0, Z being the set of integers.

(The zero ~k is excluded because, by construction, the fields are all purely inhomogeneous.)

Since all four fields in the ~x space are real, their Fourier transforms satisfy the relations

q̃ab(~k) = q̃⋆ab(−~k), etc. It is convenient to expand out the metric perturbations into scalar,

vector and tensor modes [75]:

q̃ab(~k) = S
(1)
~k
q̊ab + S

(2)
~k

(k̂ak̂b −
1

3
q̊ab) +

√
2V

(1)
~k

k̂(ax̂b)

+
√
2V

(2)
~k

k̂(aŷb) +
1√
2
T

(1)
~k

(x̂ax̂b − ŷaŷb) +
√
2T

(2)
~k

(x̂(aŷb)) (3.23)

and,

p̃ab(~k) =
1

3
p
(S1)
~k

q̊ab +
1

2
p
(S2)
~k

(3k̂ak̂b − q̊ab) +
√
2p

(V1)
~k

k̂(ax̂b)

+
√
2p

(V2)
~k

k̂(aŷb) +
1√
2
p
(T1)
~k

(x̂ax̂b − ŷaŷb) +
√
2p

(T2)
~k

(x̂(aŷb)) . (3.24)

(Here k̂ is a unit vector in the ~k direction and k̂, x̂, ŷ constitutes a field of orthonor-

mal triads with respect to q̊ab in the momentum space. Throughout, indices are low-

ered, raised and contracted using q̊ab.) Then, the canonically conjugate pairs are

(S
(1)
~k
, pS1

−~k
), (S

(2)
~k
, pS2

−~k
), . . . (ϕ~k, π−~k), with Poisson brackets {S(1)

~k
, pS1

−~k′
} = ℓ3δ~k,~k′ , . . . .

These fields are subject to three vector constraints and a scalar constraint, each of which

is linear in these fields but also contains background fields. As is well known, one can pass

to the reduced, truncated phase space Γ̃
(1)
Trun by solving them and finding gauge invariant

variables [74, 76]:

Γ̃
(1)
Trun = {(Q~k, T

(1)
~k
, T

(2)
~k

; p
(Q)
~k
, p

(T1)
~k

, p
(T2)
~k

)} . (3.25)



23

Here T
(1)
~k

and T
(2)
~k

are the two tensor modes (which are automatically gauge invariant) and

Q~k, the gauge invariant Mukhanov-Sasaki variable, is given by

Q~k = ϕ~k −
p(φ)γ

2a5ℓ3b

(

S
(1)
~k

− 1

3
S
(2)
~k

)

. (3.26)

Its conjugate momentum is given by

pQ~k
= π~k +

κγp2(φ)
2ℓ6a3b

ϕ~k −
κγ2p3(φ)
4ℓ9a8b2

S
(1)
~k

−
(

p(φ)
2a2ℓ3

−
κγ2p3(φ)
12ℓ9a8b2

)

S
(2)
~k
. (3.27)

The initial configuration variable qab had six degrees of freedom and the scalar field ϕ, one.

Each of the four linearized constraints reduces the configuration degrees of freedom by one,

leaving us with 3 degrees of freedom (Q, T (1), T (2)) in the reduced configuration space.

Let us summarize. Note first that in the passage to the reduced phase space Γ̃Trun, we

used only the kinematical structure on ΓTrun; dynamical equations were not used. Thus,

the procedure is completely analogous to that followed in other LQC models to extract the

physical degrees of freedom (see IIB). Γ̃Trun has the form

Γ̃Trun = Γo × Γ̃(1), with (ν, b;φ, p(φ)) ∈ Γo, (Q~k, T
(1)
~k
, T

(2)
~k

; pQ~k , p
T1

~k
, pT2

~k
) ∈ Γ̃(1) (3.28)

These variables are subject to only the zeroth order scalar constraint:

So[Nhom] = Nhom [−3~

4γ
b2ν +

2p2(φ)
κγ~ν

] = 0 . (3.29)

We have already taken care of the first order constraints. As noted above, the second and

higher order constraints do not restrict the first order variables.

Remarks:

1. In the CMB, we can only observe modes up to a (finite) maximum wave length λo which

equals the radius of the observable universe at the surface of last scattering. Therefore, it

is physically appropriate to absorb modes with wave-lengths λ & 10λo in the homogeneous

background. This amounts to putting a physical infrared cut-off on perturbative modes,

making the arbitrariness in the choice of the radius of the 3-torus T3 irrelevant. In phe-

nomenological applications, these considerations have to be folded into the calculation of

the renormalized energy density and checking self-consistency.

2. We use the Mukhanov-Sasaki variable Q~k —rather than the curvature perturbation

R~k— to coordinatize the reduced phase space because it is better suited for our discussion of
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inflation in [2]. There, we find that R~k is not well-defined along effective trajectories because

it carries p(φ) in the denominator and p(φ) vanishes at ‘turning points’ of the inflaton. Q~k on

the other hand is well defined all along these trajectories. In absence of a potential V (φ),

as in this paper, they are related just by a constant: R~k =
√

κ/6Q~k.

D. Truncated Dynamics

As mentioned in section IIIA, to obtain dynamical trajectories on Γ̃Trun one has to proceed

in two steps: First obtain a dynamical trajectory on Γo and then lift it to Γ̃Trun. On Γo,

dynamics is generated by the scalar constraint S[Nhom], i.e., the Hamiltonian vector field is

just the restriction to Γo of the full Hamiltonian vector field6 Xα = Ωαβ∂βS[Nhom] on Γ:

Xα|Γo = Ωαβ
o ∂βSo[Nhom]. Full dynamics on Γ unambiguously induces a flow on Γ̃Trun. The

general procedure for non-linear systems, summarized in Appendix A, now implies that the

time evolution on the truncated phase space ΓTrun is given by the dynamical vector field

Xα
Dyn,

Xα
Dyn = Ωαβ

o ∂βSo[Nhom] + Ωαβ
1 ∂βS

′
2[Nhom] , (3.30)

where S′
2 is obtained from the coefficient S2[Nhom] of ǫ

2 in the expansion of the full scalar

constraint S[Nhom] on Γ, by keeping just those terms which are quadratic in the first order

quantities (a
(1)
a

i, e(1)ai, ϕ
(1), π1) and discarding terms linear in the second order quantities

(a
(2)
a

i, e(2)ai, ϕ
(2), π(2)). It is important to note that it is only S2[Nhom] that is constrained to

vanish; there is no constraint on S
′
2[Nhom]. Finally, because S

′
2 depends on the background

fields, Xα
Dyn is not generated by So+S′

2; i.e., X
α
Dyn 6= Ωαβ ∂β(So+S′

2). But one might wonder

if one can find another ‘effective Hamiltonian’ that generates this dynamical flow. The

answer is in the negative: One can check that Xα
Dyn does not Lie drag the total symplectic

structure Ω = Ωo + Ω1 on the truncated phase space, whence it is impossible to find an

effective Hamiltonian.

Remark: We have spelled out these results because there has been some confusion

in the recent LQC literature. Quantum dynamics is often assumed to be captured by a

6 Here the Greek indices refer to the (infinite dimensional) tangent space to the full or truncated phase

space. They are to be regarded as abstract indices a la Penrose. This index notation can be avoided; it

is used only as a pedagogical aid.
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quantum constraint ĈHΨ = 0. Our detailed discussion of truncation and dynamics of the

truncated system implies that this assumption cannot be justified. First, as Eq. (3.30)

shows, the dynamical vector field Xα
Dyn on ΓTrun is not generated by a constraint (or indeed

by any Hamiltonian). Therefore there is no reason to expect that the correct quantum

dynamics could be recovered by imposing any quantum constraint. Second, even the part

Ωαβ
1 ∂βS

′
2[Nhom] of X

α
Dyn describing the evolution of perturbations is not generated by the

second order constraint S2[Nhom] but by S′
2[Nhom], which is unconstrained.

Finally, we are interested only in the dynamics of gauge invariant variables, i.e., only in

dynamics on Γ̃Trun. As one would expect, the functions So and S′
2 that determine Xα are

gauge invariant and therefore projects down to Γ̃Trun. In particular, S′
2 = S′

2
(Q)+S′

2
(T1)+S′

2
(T2)

and the form of the last two terms is exactly the same. Therefore, from now on, we will

denote the two tensor modes collectively by T . Then [74],

S
′
2
(Q) [Nhom] =

Nhom

2V̊

∑

~k

1

a3
|p(Q)

~k
|2 + ak2 |Q~k|2

S
′
2
(T ) [Nhom] =

Nhom

2V̊

∑

~k

4κ

a3
|p(T )

~k
|2 + ak2

4κ
|T~k|2 . (3.31)

Note that if we were to replace 2
√
κQk by Tk (and the corresponding momenta by a reciprocal

factor to maintain the Poisson brackets), S′
2
(Q) [Nhom] reduces to S′

2
(T ) [Nhom]. Therefore, it

suffices to focus just on (one of the two tensor modes) T~k and its conjugate momentum which

we will denote simply by p~k.

The resulting dynamical evolution can be best understood in geometric terms as follows.

Note first that Γ̃Trun is naturally a bundle over the homogeneous phase space Γo. Fix an

integral curve of Xα on the ‘base space’ Γo, i.e. a homogeneous solution. Fix a point

γo ≡ (νo, bo; φo, po(φ)) on this trajectory and a tangent vector T o
~k
, po~k at that point. To

describe the evolution of this perturbation on the chosen background trajectory, we need

to lift the trajectory from Γo to Γ̃Trun. This can be done simply by considering the integral

curve of Xα
Dyn passing through the point (νo, bo; φo, po(φ); T o

~k
, po~k) of Γ̃Trun.

Next, let us list the commonly used lapse functions Nhom and the corresponding time

variables:

• Nhom = 1 corresponds to proper time t so that the physical space-time metric has the
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form ds2 = −dt2 + a2d~x2.

• Nhom = a corresponds to conformal time η so that the physical space-time metric has

the form ds2 = a2(−dη2 + d~x2). This is the most common choice in the cosmology

literature.

• Nhom = a3 corresponds to harmonic time τ which satisfies the wave equation, �τ =

0. The physical space-time metric now assumes the form ds2 = −a6dτ 2 + a2d~x2.

The zeroth order scalar constraint So[Nhom] takes the simplest form with this choice.

Therefore, harmonic time is commonly used in LQC not only for the k=0, Λ=0 FLRW

cosmology but also for models that admit spatial curvature, a non-zero cosmological

constant and anisotropies [14, 21, 23, 24, 31].

• N = (V̊ /p(φ))a
3 corresponds to choosing the scalar field φ itself as time. It turns

out that irrespective of the initial choice of lapse in the classical theory, the quantum

scalar constraint has a form that naturally leads one to use φ as a relational or internal

time variable [13, 14]. In the case now under consideration, where the scalar field φ

also satisfies the wave equation �φ = 0, the internal time defined by φ and the

harmonic time τ are related just by a constant in any classical solution: φ = (p(φ)/V̊ )τ .

However, since the constant varies from one solution to another, in the quantum theory,

conceptually, the two choices are quite different. In LQC it is simplest to begin with

the harmonic time in the classical theory and reinterpret the quantum scalar constraint

as providing time evolution in the relational time φ.

Since one generally uses the conformal time η in the cosmology literature, we will conclude

by writing down the equation of motion that follows from (3.31) with the choice Nhom = a:

T ′′
~k
+ 2

a′

a
T ′
~k
+ k2T~k = 0 (3.32)

where a ‘prime’ denotes derivative with respect to the conformal time η. One often rescales

T~k to obtain a field χ~k with physical dimensions of a scalar field,

χ~k :=
a

2
√
κ
T~k , (3.33)

for which, furthermore, the equation of motion resembles that of a harmonic oscillator (with

time dependent frequency):

χ′′
~k
+ (−a

′′

a
+ k2)χ~k ≡ χ′′

~k
+ a2(−R

6
+
k2

a2
)χ~k = 0 , (3.34)
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where R denotes the scalar curvature of the background homogeneous space-time.7 This

form of the perturbation equations has also been exploited in [77–79] in singling out a

physically motivated quantization.

Remark: In our presentation we began with the connection variables employed in the

LQG literature because conceptually they are essential for the new quantum kinematics

used in LQG, and the subsequent treatment of the singularity-free quantum dynamics of

our background FLRW space-times. But we passed to the ADM variables for first order

perturbations by solving the Gauss constraint because much of the cosmological perturba-

tion analysis is carried out in terms of these variables. For a treatment of cosmological

perturbations in connection variables, see in particular [76, 80–84].

IV. QUANTUM THEORY: MAIN STEPS

We will now use the phase space Γ̃Trun as the point of departure for quantization. Since the

truncated second order constraints for the scalar and two tensor modes are identical (except

for unimportant numerical factors), as in section IIID we will focus just on one tensor mode

T~k. Thus, from now on, Γ̃Trun will be taken to be spanned by three canonically conjugate pairs

(ν, b; φ, p(φ); T~k, p~k), the first two representing the background, and the third representing

the first order perturbation. They are subject to the single constraint So[Nhom] = 0 (see Eq

(3.29)). Dynamics is governed by the vector field Xα
Dyn = Ωαβ

o ∂βSo + Ωαβ
1 ∂βS

′
2 where S′

2 is

given by (3.31).

In this section we present the general program without entering into details of how the

states and operators related to first order perturbations are defined. In particular, the

expression of the Hamiltonian operator dictating the dynamics of first order perturbations

is formal. The precise definitions of these states, operators and the necessary regularization

procedure are provided in the next two sections

7 For the scalar perturbation, ψ~k
= aQ~k

has the same properties as χ~k: ψ~k
also has the physical dimensions

of a scalar field and satisfies the same equation of motion as (3.34).
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A. Background quantum geometry

Let us begin by recalling the quantum theory of the homogeneous sector (for details, see

e.g. [13, 14, 31]). As mentioned in section II, LQC provides a kinematical Hilbert space Hkin

which, as in full LQG [61, 62] is uniquely determined by the physical requirement indepen-

dence w.r.t. background (and fiducial) structures [60]. In the configuration representation,

kinematical quantum states are given by wave functions Ψ(ν, φ). As noted in section IIID,

dynamics is simplest if one uses harmonic time by setting N = a3. Then, the scalar con-

straint becomes a well-defined operator on Hkin. Physical states Ψo(ν, φ) are annihilated by

this constraint, i.e., they satisfy

ŜoΨo(ν, φ) ≡ − ~
2

2ℓ3
(∂2φ +Θ)Ψo(ν, φ) = 0 , (4.1)

where the action of Θ is given by

ΘΨo(ν, φ) =
3πG

λ2
ν
[

(ν + 2λ)Ψo(ν + 4λ, φ)− 2νΨo(ν, φ) + (ν − 2λ)Ψo(ν − 4λ, φ)
]

. (4.2)

Thus, Θ is a second order difference operator that acts only on the argument ν of Ψo, with

step size 4λ where λ2 = 4
√
3πγℓ2Pl is the ‘area gap’ of LQG. Θ is self-adjoint and positive

definite onHkin [85]. As is common in the Dirac quantization procedure, none of the solutions

to (4.1) are normalizable in the kinematic inner product. But there is a standard ‘group

averaging’ method to endow the space of solutions with a physical inner product [86–88].

The resulting physical states Ψo ∈ Ho
phy turn out to be solutions to

−i~ ∂φΨ(ν, φ) = ĤoΨo(ν, φ) where Ĥo = ~
√
Θ , (4.3)

which are symmetric under ν → −ν and have finite norm

||Ψo||2 =
λ

π

∑

ν∈4Nλ; N∈Z

|ν|−1 |Ψo(ν, φo)|2 , (4.4)

where φo is any fixed instant of the internal time φ. (The scalar product defined by (4.4)

is insensitive to the choice of φo.) Heuristically (4.3) can be thought of as the positive

frequency square-root of (4.1) in the internal time φ.

The most noteworthy feature of this outcome is that the quantum Hamiltonian constraint

is naturally de-parameterized: its form suggests that the scalar field φ can be interpreted

as a ‘relational or internal time’ with respect to which physical states Ψo evolve. Thus, as
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one would hope, the imposition of the quantum constraint a la Dirac has naturally led us

to dynamics. Interestingly, while our use of a lapse function corresponding to the harmonic

time τ simplified the form of Ĥo, it was not essential to arrive at this interpretation of φ.

Indeed this interpretation was initially arrived at with lapse set to 1 corresponding to proper

time [13] (but a more complicated form of Ĥo.)

Thus, as is usual, the Dirac quantization procedure has naturally led to a Schrödinger

picture in which the scalar field φ is simply a time parameter and the sole dynamical variable

is ν that determines the volume of the universe via

V̂Ψo(ν) = 2πγℓ2Pl|ν|Ψo(ν) . (4.5)

In the Heisenberg picture, the volume evolves in time from the bounce via

V̂ (φ) = e(i/~)Ĥo(φ−φB) (2πγℓ2Pl|ν|) e−(i/~)Ĥo(φ−φ
B
) . (4.6)

Every element Ψo of Ho
phy represents a 4-dimensional quantum geometry. However, for

our purposes, only a subset of these states is relevant. Choose a classical, expanding FLRW

space-time in which p(φ) ≫ ~ (in the classical units G=c=1) and a homogeneous slice at a

late time φ = φo, when the matter density and curvature are negligibly small compared to

the Planck scale. This defines a point γo in Γo. Then, in the Schrödinger representation, one

can introduce ‘coherent states’ Ψo(ν, φo) in Ho
phy which are sharply peaked at γo [12]. By a

quantum background geometry, we will mean a physical state Ψo(ν, φ) obtained by evolving

these initial states using (4.3). There is a large class of such states and our considerations

will apply to all of them. One can show that these states remain sharply peaked on the

classical trajectory passing through γo for all φ > φo. In the backward time-evolution,

they do so only till the density reaches a few hundredths of the Planck density. Even

in the deep Planck regime the wave function remains sharply peaked but now the peak

follows an effective trajectory which undergoes a quantum bounce. At the bounce point the

matter density attains a maximum, ρmax ≈ 0.41ρPl. While there is good agreement with

general relativity once the matter density falls below a few hundredths of the Planck density,

Einstein’s equations break down completely in the Planck regime. But the quantum state

(and even the effective trajectory) remains well-defined throughout the entire evolution,

including the Planck scale neighborhood of the bounce [13, 14, 31].

Finally, in the Heisenberg picture, we can define the space-time metric operator. Recall

first that in the classical theory the lapse function corresponding to the scalar field time
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is given by N = a3(φ) ℓ3 p−1
(φ). Since p̂(φ)Ψo = ĤoΨo for any Ψo ∈ Ho

phy, in the Heisenberg

representation, the metric operator is given by

ĝabdx
adxb ≡ dŝ2 = Ĥ−1

o ℓ6 â6(φ) Ĥ−1
o dφ2 + â2(φ) d~x2 (4.7)

where we have used a symmetric factor ordering in the first term and defined the (positive

definite, self-adjoint) scale factor operator in the Heisenberg picture via:

ℓâ(φ) = [V̂ (φ)]
1
3 . (4.8)

In the Heisenberg picture, the geometry is quantum because the metric coefficients are now

quantum operators on Ho
phy.

B. Perturbations on the quantum geometry Ψo

Because we were able to reinterpret the quantum constraint equation ŜoΨo = 0 as provid-

ing an evolution of physical states in the internal time variable φ, we were naturally led to

work in the Schrödinger picture for the homogeneous background geometry. Furthermore,

because Ψo represents a quantum state of the background geometry and ψ of perturbations,

it is natural to assume that the total state has a simple tensor product structure

Ψ(ν, T~k, φ0) = Ψo(ν, φ0)⊗ ψ(T~k, φ0) (4.9)

at some initial time φ0. Then, because the back-reaction is neglected, the evolution of Ψo

is dictated just by (4.3); it is insensitive to the form of ψ. (This is entirely analogous the

situation in the classical theory.) Therefore the tensor product structure is preserved under

evolution. As in the classical theory, our task is to evolve ψ on the specified background

quantum geometry Ψo, i.e., to lift the given homogeneous ‘quantum trajectory’ Ψo(ν, φ) to

a ‘trajectory’ Ψo(ν, φ) ⊗ ψ(T~k, φ) of the truncated quantum theory, where the background

state is the given one. To carry out this task we need to first complete two preliminary

steps.

On the classical phase space Γ̃Trun = Γo × Γ̃(1), the part Ωαβ
1 ∂βS

′
2 of the dynamical vector

field Xα
Dyn dictates how perturbations propagate on a homogeneous background solution

ν(φ). Now, S′
2 depends not only on the perturbations (T~k, p~k) but also on the time dependent

scale factor of the background solution. Therefore, to construct the operator Ŝ′
2, it is simplest
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to work in the ‘interaction picture’ where the background scale factor operators evolve in

the relational time φ and the background state Ψo is frozen at a time, which we will take

to be the bounce time φ = φ
B
. The first preliminary step is to carry out this passage to the

interaction picture via

ΨInt(ν, T~k, φ) = e−(i/~) Ĥo(φ−φ
B
)
(

Ψo(ν, φ)⊗ ψ(T~k, φ)
)

. (4.10)

A second step is needed because now the evolution is with respect to the relational time φ.

Therefore, we have to choose a specific lapse function, Nhom = a3ℓ3/p(φ), in the expression

(3.31) of S′
2 and then use an appropriate factor ordering to convert it to an operator. In this

step, we will use the same factor ordering as in the expression (4.7) of the quantum metric

operator and make a simplification using the evolution equation p̂(φ)Ψo ≡ −i~∂φΨ0 = Ĥ0Ψ0.

These two steps, and the form (3.31) of S′
2 lead us to the following evolution equation for

the total state in the interaction picture:

i~∂φΨInt(ν, T~k, φ) = Ψo(ν, φB
)⊗ i~∂φψ(T~k, φ)

=
1

2

∑

~k

4κ[Ĥ−1
o Ψo(ν, φB

)]⊗ [|p̂~k|2ψ(T~k, φ)]

+
k2

4κ
[(Ĥ

− 1
2

o â4(φ) Ĥ
− 1

2
o )Ψo(ν, φB

)]⊗ [|T̂~k|2ψ(T~k, φ)] . (4.11)

Let us take the scalar product of this equation with Ψo (which we assume to be normal-

ized). the result is the required evolution equation for the quantum state ψ(T~k, φ) of the

perturbation propagating on the quantum background geometry Ψo:

i~∂φψ(T~k, φ) = Ĥ1ψ(T~k, φ) :=
1

2

∑

~k

4κ〈Ĥ−1
o 〉 |p̂~k|2ψ(T~k, φ)

+
k2

4κ
〈Ĥ− 1

2
o â4(φ) Ĥ

− 1
2

o 〉 |T̂~k|2ψ(T~k, φ) , (4.12)

where, by construction, the expectation values of the background geometry operators are

taken in the given state Ψo of the background quantum geometry.

Note that, at a fundamental level, ψ now evolves in a probability amplitude Ψo of back-

ground geometries gab, rather than a fixed gab. But (4.12) implies that its evolution is not

sensitive to all the details of the fluctuations of this quantum geometry; it is sensitive to

only two ‘moments’ 〈Ĥ−1
o 〉 and 〈Ĥ− 1

2
o â4(φ) Ĥ

− 1
2

o 〉. This is so even though (4.12) is an exact

consequence of (4.11) with no further approximations. Furthermore, since the back-reaction
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of the perturbation on Ψo is neglected within the test field approximation inherent to our

truncation scheme, nothing is lost by projecting (4.11) along Ψo in arriving at (4.12). That is,

within the test field approximation, (4.12) captures the full information about the evolution

of ψ that is contained in the original equation (4.11).

Next, recall that in the standard cosmology literature one regards the quantum state

ψ(T~k, φ) of perturbations as propagating on a classical FLRW metric, specified by the scale

factor acl(φ). In the Schrödinger picture now under consideration, the evolution is given by

i~∂φψ(T~k, φ) =
1

2

∑

~k

4κ(p−1
(φ)) |p̂~k|2ψ(T~k, φ) +

k2

4κ
[p−1

(φ)a
4
cl(φ)] |T̂~k|2ψ(T~k, φ) (4.13)

where p(φ) can also be expressed using geometric variables using the constraint equation

satisfied by the background. Comparing (4.13) with (4.12), we find that the evolution of

the test perturbation T̂~k on the quantum background geometry given by Ψo(ν, φ) is indis-

tinguishable from that of a test perturbation propagating on a smooth FLRW background

g̃abdx
adxb ≡ ds̃2 = −(p̃(φ))

−2 ℓ6 ã6(φ) dφ2 + ã(φ)2 d~x2 (4.14)

where

(p̃(φ))
−1 = 〈Ĥ−1

o 〉 and ã4 =
〈Ĥ− 1

2
o â4(φ) Ĥ

− 1
2

o 〉
〈Ĥ−1

o 〉
. (4.15)

Again, this is an exact equivalence between our truncated LQG and the theory of quantum

fields on a smooth FLRW geometry determined by ã and p̃(φ).

At a technical level, the existence of such a simple relation is quite surprising at first.

But this result should not be interpreted to mean that the standard quantum theory of

perturbations on a classical FLRW solution to Einstein’s equations holds in the Planck

regime. It does not! For, the ã(φ) seen by T̂~k is very different from the acl(φ) of a classical

solution; in particular, (ã(φ), p̃(φ)) do not satisfy Einstein’s equations. Indeed, their

expressions involve ~; although g̃ab is smooth, it incorporates quantum corrections which

are so large in the Planck regime that they tame the big bang singularity. Furthermore, the

pair does not even satisfy the effective equations of LQC which track the peak of the wave

function Ψo(ν, φ) of the background geometry. Certain aspects of quantum fluctuations

inherent in Ψo(ν, φ) are absorbed in these tilde fields. Thus, g̃ab may be thought of as a

dressed effective geometry that is relevant for propagation of linear perturbations on the

full quantum (background) geometry determined by Ψo(ν, φ). In retrospect, from what we
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know in other areas of physics, such a result is not entirely unexpected. For example, light

propagating in a medium interacts with its atoms but the net effect of these interactions

can be encoded just in a few parameters such as the refractive index of the medium. In

our case, the ‘medium’ is the quantum geometry and the tilde variables ã, p̃(φ) encode the

interaction between this ‘medium’ and the perturbations. Only two parameters suffice

simply because the background quantum geometry is homogeneous and isotropic. Already

in the anisotropic Bianchi models, (an extension of the discussion of [89] implies that) one

would need additional parameters characterizing the dressed, effective anisotropies. Finally,

the encoding is rather sophisticated: prior to the calculation, it would have been impossible

to guess the precise ‘moments’ of the fluctuations of geometry that are to capture this

interaction.

Remark: Several equations in this sub-section closely resemble those in [38]. However

the conceptual under-pinning is quite different. The discussion in [38] began by assum-

ing that quantum dynamics can be obtained by imposing the constraint analogous to

[Ŝo + Ŝ′
2] Ψo ⊗ ψ = 0. This ‘quantum constraint’ was then expanded and sub-leading terms

were discarded to arrive at an equation analogous to (4.11). Consequently it was not

appreciated that, within the truncation scheme, (4.12) carries the full information about

the quantum evolution of ψ. As discussed in section IIID (see also Appendix A), a more

careful examination has revealed that the strategy of imposing a quantum constraint cannot

be justified. Therefore, we adopted a different route here. We mimicked the strategy from

the classical theory: Just as Xα
Dyn provides a lift of the dynamical trajectories on Γo to

Γo×Γ1, we lifted the ‘quantum dynamical trajectories’ Ψo on Ho
phy to Ψo⊗ψ on Ho

phy ⊗H1.

This route is also more direct in that we did not have to discard any terms to arrive at (4.11).

Finally, let us translate this result using conformal time η commonly used in the literature

on cosmological perturbations. The dressed, effective metric can be written as:

g̃abdx
adxb ≡ ds̃2 = ã2(φ) (−dη̃2 + d~x2) (4.16)

where

dη̃ = [ℓ3ã2(φ)] p̃−1
(φ) dφ . (4.17)

Therefore, in the truncated theory, the exact evolution equation for the quantum perturba-
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tion T̂~k on the background quantum geometry is given by

T̂ ′′
~k
+ 2

ã′

ã
T̂ ′
~k
+ k2T̂~k = 0 (4.18)

where the prime now denotes a derivative with respect to η̃. This mathematical equivalence

simplifies both conceptual and technical aspects of our analysis considerably because the

well-developed techniques from quantum field theory in curved space-times can now be

readily imported into the quantum field theory of perturbations ψ on quantum geometries

Ψo. In section VI, we will use this strategy to define in detail the quantum states for

perturbations and composite operators that are needed to complete the quantum theory.

Remarks:

1. We can make a further simplification through a ‘mean field’ approximation in which the

fluctuations are ignored. More precisely, let us first recall [13, 14, 31] that even in the Planck

regime the state Ψo(ν, φ) is sharply peaked on an effective geometry

ḡabdx
adxb ≡ ds̄2 = ā6

ℓ6

p2(φ)
dφ2 + ā2(φ) d~x2 (4.19)

which agrees with the general relativity solution (for the same value of p(φ)) for large a(φ)

but has a in-built bounce at ā(φ)6 = p2(φ)/(2ℓ
6ρmax), with ρmax = 3/(8πGγ2λ2) ≈ 0.41ρPl. In

terms of our quantum geometry state Ψo, the scale factor is given just by the expectation

value ā(φ) = 〈â(φ)〉 in this state. Suppose we ignore quantum fluctuations, i.e., use a mean

field approximation in which the expectation values of powers of â and Ĥo are replaced by the

same powers of their expectation values. In this approximation, the quantum perturbation

T̂~k would seem to propagate on the effective geometry determined by the pair (ā(φ), p(φ)).

Now, one knows that there exist background quantum geometries Ψo which are very sharply

peaked on this effective geometry even in the Planck regime. If one uses such a Ψo, the mean

field approximation is excellent for studying the propagation of perturbations on quantum

geometries under consideration.8 The exact evolution of T̂~k, on the other hand, sees the

more sophisticated, ‘dressed’ effective geometry determined by (ã, p̃(φ)).

8 In numerical simulations of the evolution of the quantum state ψ of perturbations, for example, if Ψo is

chosen appropriately, the numerical errors would be much higher than those introduced by the mean field

approximation.
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2. If one were to use the mean field approximation, the quantum perturbations would

satisfy (4.18) with the tilde quantities replaced by the barred quantities that refer to the

effective LQC solutions. At first sight, it may therefore seem one could have arrived at

these equations simply by perturbing the effective equations of LQC. This could have been

a viable interpretation had there been a clear set of effective equations in full LQG to

perturb around backgrounds satisfying the LQC solutions. But as emphasized in sections

I and II: i) we do not yet have effective equations in full LQG, and, ii) if one were to

adopt the naive strategy of considering a set of linearized equations in general relativity

and simply replacing the background solution to Einstein’s equations by a solution to the

effective equations, one faces a very large ambiguity in the choice of equations with which to

begin and, furthermore, the set of final equations need not be internally consistent when the

background does not satisfy Einstein’s equations. Our procedure is free of these drawbacks

because we first constructed the quantum theory and arrived at Eq. (4.18) by showing

an exact equivalence of fields Q̂, T̂ propagating on the quantum geometry Ψo and those

propagating on the geometry determined by g̃ab. Nowhere did this procedure use effective

equations of LQC.

V. HILBERT SPACES OF STATES OF T̂~k

In this section we will construct the Hilbert space of quantum states of gauge invariant

perturbations following two different but complementary avenues. The first is geared to

mathematical physicists and well adapted to the Hamiltonian framework used in our clas-

sical considerations. The second follows the route that is more often taken in analyzing

cosmological perturbations. We show that the two are equivalent. Therefore, to ensure

conceptual continuity and coherence, one can start with quantization given in section VA

and then use the framework presented in VB which is better adapted to regularization,

renormalization and numerical simulations. We also provide the explicit expression of the

2-point function which makes it manifest that the group of space-translations continues to

be a symmetry in the quantum theory.
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A. The Weyl algebra and its representations

The classical phase space ΓT for the tensor modes is spanned by canonically conjugate

pairs (T~k, p~k). The corresponding operators T̂~k, p̂~k satisfy the canonical commutation rela-

tions and generate the Heisenberg algebra in the quantum theory. For technical simplicity,

it is convenient to exponentiate them to obtain the Weyl algebra W whose representations

provide the required Hilbert spaces of quantum states.

One begins with the observation that, with each vector (λ, µ) ∈ ΓT , one can associate a

natural linear combination of smeared configuration and momentum operators:

F̂ (λ, µ) := Ω((T̂ , p̂), (λ, µ)) =
1

V̊

∑

~k

µ⋆
~k
T̂~k − λ⋆~kp̂~k

=

∫

M

d3~x (µ(~x)T̂ (~x)− λ(~x)p̂(~x)) . (5.1)

The Weyl operators Ŵ (λ, µ) are their exponentials:

Ŵ (λ, µ) := e
i
~
F̂ (λ,µ) . (5.2)

It is more convenient to work with these exponentials for two reasons. First, while the

field operators F̂ are unbounded, the Ŵ are unitary and hence bounded operators in any

representation. Therefore one avoids the awkward issues of specifying operator domains.

Second, the vector space generated by finite linear combinations of the Weyl operators is

automatically closed under the Hermitian-conjugation operation Ŵ †(λ, µ) = Ŵ (−λ, −µ),
and, more importantly, under the product:

Ŵ (λ1, µ1) Ŵ (λ2, µ2) = e
1
i~

∫
d3~x (λ1µ2−µ1λ2) Ŵ (λ1 + λ2, µ1 + µ2) . (5.3)

Thus, the vector space has the structure of a ⋆-algebra. This is the Weyl algebra W. (It

can be easily endowed the structure of a C⋆ algebra but this will not be necessary for our

purposes.)

To find the representations of W, it is simplest to use the standard Gel’fand, Naimark,

Segal (GNS) construction [90]: Given a positive linear function (PLF) onW, the construction

provides an explicit Hilbert space H1 and a representation of elements of W by concrete

operators on that H1. This representation is cyclic: every state in H1 arises from the action

of operators representing elements of W on a ‘vacuum’. In this representation, the PLF
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turns out to be just the vacuum expectation value functional. A natural strategy for linear

fields is to first find a complex structure on the phase space that is compatible with the

symplectic structure thereon and then use the Hermitian inner product provided by the

resulting Kähler structure to define the required PLF on W [91, 92]. We will follow this

conceptual strategy but in a manner that retains close contact with the cosmology literature.

Therefore, prior knowledge of the complex and Kähler structures will not be necessary to

follow the construction.

In linear field theories in Minkowski space, one narrows the selection of the positive linear

functional by requiring that it (and hence the vacuum state) be Poincaré invariant. In the

present case, it is natural to require that the PLF be invariant under the 3-dimensional

translational symmetry of the background geometry. Such PLFs can be constructed as

follows. Choose a set of complex coefficients (ek, fk) (with k ≥ 0) such that

ekf
⋆
k − e⋆kfk ≡ 2i Im (ekf

⋆
k ) = i for all k (5.4)

(For a massless scalar field in Minkowski space, ek = e−iωto/
√
2ω and fk = (−iω e−iωto)/

√
2ω

with ω = |~k|.) Then, one can extract the ‘positive frequency’ part a~k of any vector (λ, µ) ∈
ΓT as follows:

a~k := −i (f ⋆
kλ~k − e⋆kµ~k) (5.5)

so that

λ~k = eka~k + e⋆ka
⋆
~k
, and µ~k = fka~k + f ⋆

ka
⋆
~k
. (5.6)

(Note that while λ, µ satisfy the ‘reality condition’ λ⋆~k = λ−~k, µ
⋆
~k
= µ−~k, the ‘positive

frequency parts’ don’t: a⋆~k 6= a−~k.) The required PLF is then simply

〈Ŵ (λ, µ)〉 = e−
1
2~

1
V̊

∑
|a~k|

2

(5.7)

Under the action of a translation ~x → ~x + ~v on M, we have: T̂ (~x) → T̂ (~x + ~v), and

p̂(~x) → p̂(~x + ~v), whence Ŵ (λ(~x), µ(~x)) → Ŵ (λ(~x − ~v), µ(~x − ~v)), or, in the momentum

space, λ~k → e−i~k·~vλ~k, µ~k → e−i~k·~vµ~k. This trivially implies a~k → e−i~k·~va~k. Hence the PLF

(5.7) is left invariant and the translation is represented by a unitary transformation on the

GNS Hilbert space H1 under which the GNS vacuum is invariant. Thus, each choice of

coefficients (ek, fk) satisfying (5.4) leads to a representation of the Weyl algebra in which

the (GNS) vacuum is invariant under translations.
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B. Space-time description

At this stage it is convenient to make the construction more explicit using the familiar

expansions in terms of the creation and annihilation operators. This entails going to the

Heisenberg picture. In terms of the conformal time η̃ of the dressed effective metric of section

IVA, the space-time operator is represented as T̂ (~x, η̃). It satisfies the field equation and

the canonical commutation relations, and is self-adjoint. These properties can be neatly

captured by an expansion of the form

T̂ (~x, η̃) =
1

V̊

∑

~k

(

ek(η̃)Â~k + e⋆k(η̃)Â
†

−~k

)

ei
~k·~x . (5.8)

We require that ek(η̃) should satisfy (4.18):

e′′k(η̃) + 2
ã′

ã
e′k(η̃) + k2ek(η̃) = 0 , (5.9)

so that T̂ (~x, η̃) satisfies the desired equation of motion. (In relation to the more familiar

expansion in Minkowski space-time, ek(η̃) now plays the role of the positive frequency basis

functions e−iωt/
√
2ω.) Next, for each ~k, the space of solutions to (5.9) is two dimensional

and one chooses a complex solution ek(η̃) satisfying the normalization condition:

ã2

4κ

(

ek(η̃) e
′⋆
k (η̃) − e⋆k(η) e

′
k(η)

)

= i . (5.10)

This condition needs to be imposed only at some initial instant of time η̃o; Eq (5.9) then

guarantees that it is then automatically satisfied for all η̃. With this normalization, if the

time independent operators Â~k and Â†
~k
satisfy the commutation relations

[Â~k, Â
†
~k′
] = ~ ℓ3 δ~k,~k′ , (5.11)

then

T̂ (~x, η̃) and p̂(~x, η̃) =
ã2

4κ

1

V̊

∑

~k

(

e′k(η̃)Â~k + e⋆′k (η̃)Â
†

−~k

)

ei
~k·~x . (5.12)

satisfy the required canonical commutation relations at any fixed value of η̃. In view of their

properties, one can interpret Â~k as annihilation operators, define the vacuum |0〉 as the state
annihilated by all Â~k, and generate the Fock space H1 by repeatedly acting on the vacuum

by creation operators Â†
~k
. It is straightforward to calculate the vacuum expectation value of

the Weyl operator

Ŵ (λ, µ)|η̃o = e
i

~V̊

∑
~k
µ⋆
~k
T̂~k −λ⋆

~k
p̂~k (5.13)
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at any conformal time η̃o. It is given by (5.7) where ek = ek(η̃o) and fk = (a2/4κ) e′k(η̃o).

Thus, our second description of the Hilbert space H1 adapted to the covariant space-time

picture, is completely equivalent to the first description, adapted to the Weyl algebra that

was constructed starting from the phase space. The first description serves to bring out the

conceptual structure of the quantum theory that emerges from the phase space description

of section III while the second is better adapted to calculations, e.g. regularization of the

stress-energy tensor discussed in section VI.

To summarize, for each choice of solutions ek(η̃) satisfying the normalization condition

(5.10) we obtain a vacuum state and hence a Fock representation of the canonical com-

mutation relations (or, of the Weyl algebra). Since these representations are completely

characterized by their 2-point functions, it is instructive to write them out explicitly. Using

the expansion (5.8) of T̂ (~x, η̃), we obtain:

〈0 | T̂ (~x1, η̃1) T̂ (~x2, η̃2) | 0〉 =
~

V̊

∑

~k

ei
~k·(~x1−~x2) ek(η̃1)e

⋆
k(η̃2) . (5.14)

By inspection the 2-point function is invariant under the action of space-translations. This

is an independent proof of the translational invariance of the vacuum state, now geared to

the cosmology literature.

Remark : While each choice of the family of solutions ek(η̃) to (5.9) satisfying the

normalization condition (5.10) determines a vacuum state (and the associated Hilbert space

H1 of states), this is a many to one map: The families ek(η̃) and e
iθk ek(η̃) that differ just

by a k-dependent phase factor determine the same vacuum. There is a 1-1 correspondence

between the equivalence classes {ek(η̃)} of families that differ by such phase factors and

complex structures J on the phase space ΓT which are compatible with the symplectic

structure and are invariant under the action of space-translations. Thus there is a 1-1

correspondence between the vacua |0〉 we have constructed and complex structures on ΓT

satisfying the two properties listed above.

A natural question about these representations of the Weyl or the Heisenberg algebra is

now the following: Does a change of the complex structure J —i.e., the choice of ‘generalized

positive frequency solutions’ {ek(η̃)}— always result in unitarily equivalent representations?

As is well-known, in general the answer is in the negative. In the terminology used in the
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cosmology literature, in general the vacuum state selected by any one complex structure may

contain an infinite number of particles corresponding to another complex structure. A priori

this would be a key obstacle to extracting physics because different choices would in general

lead to very different predictions. Furthermore, in a general representation so constructed,

there is no natural prescription to regulate products of operator-valued distributions, e.g.

T̂ 2(x, η̃), and hence to define basic physical operators such as the Hamiltonian of (4.12).

Fortunately, as we will see in section VI, both these problems can be resolved in one

stroke by imposing certain regularity requirements on the basis functions {ek(η̃)}. Then,

the representations of the Weyl algebra that result from equivalence classes {ek(η̃)} of any of

the regular basis functions —or ‘regular’ complex structures J— will turn out to be unitarily

equivalent. In this sense there is a unique class of unitarily equivalent representations and one

can work with a unique Hilbert space H1. Therefore the more general framework of algebraic

quantum field theory is not essential in the cosmological context under consideration.9

All the regular translationally invariant vacua and states containing a finite number of

excitations over any of them belong to the Hilbert space H1. However, the translationally

invariant vacua span an infinite dimensional subspace of H1 and none of them is preferred

from a full space-time perspective. Thus, H1 will not admit a ‘canonical’ vacuum we are

used to in Minkowski or (strictly) stationary space-times.

VI. REGULARITY CONDITIONS ON STATES AND OPERATORS

In this section we will first summarize the notion of regularity conditions on states ψ of

quantum perturbations and then use it to regulate products of operator-valued distributions,

such as the ones that appear in the quantum stress-energy tensor or Hamiltonian. There

exist several methods of regularization. We will work with the adiabatic scheme because it is

particularly suitable to perform explicit computations, including numerical implementations,

and can be directly extended to our quantum field theory on quantum FLRW geometries.

9 See also [77–79] where one arrives at a rigorous uniqueness result using the form (3.34) of equations of

motion. However, the ‘vacua’ they are led to consider are not necessarily of 4th adiabatic order whence

it would be difficult to regularize and renormalize physically interesting composite operators, such as the

energy density, in that framework. It would be interesting to see in detail the precise relation between

that approach and the adiabatic treatment pursued here and in much of the cosmological literature.
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In this paper of course we will focus on the k = 0, Λ = 0 case but our considerations will

extend to other contexts such as the k=1 FLRW case where the underlying isometries make

a mode decomposition naturally available.

Much of the discussion in the first two sub-sections is taken from the rich literature

on adiabatic regularization in cosmology (see, e.g., [8, 9, 95, 99]). But there are two new

elements as well: i) the specific formulation of the adiabatic condition (which is succinct and

yet clarifies some subtleties); and ii) the discussion of the regularized Hamiltonian operator

Ĥ1.

A. The adiabatic condition

As explained in Section VB, a choice of a basis of ‘generalized positive frequency’ solutions

ek(η̃) satisfying the normalization condition (5.10) determines a vacuum state, |0〉, from
which a Fock space H1 can be constructed. Since each of these (complex) basis vectors

ek(η̃) satisfies the second order, linear, ordinary differential equation (5.9), any two bases

ek(η̃) and ek(η̃) are related simply by [93, 94]

ek(η̃) = αk ek(η̃) + βk e
⋆
k(η̃) , (6.1)

where the time-independent Bogoluibov coefficients αk and βk satisfy the relation |αk|2 −
|βk|2 = 1. Substituting this equation in the expression (5.8) of the field operator T̂ (~x, η̃),

we find a linear relation between the creation and annihilation operator associated with the

two families

Â~k = αk Â~k + β⋆
k Â

†

−~k
. (6.2)

This relation shows that, as long as the αk coefficient are not trivial, i.e. αk 6= eiθk for all

k, the associated vacua |0〉 and |0〉 are distinct. The number of ‘under-barred’ quanta with

momentum ~k that the state |0〉 contains is given by

〈0|N̂~k|0〉 := 〈0|(~ℓ3)−1Â~kÂ
†
~k|0〉 = |βk|2 , (6.3)

where we have used (6.2) and the commutation relation (5.11) in the last step. The right

hand side provides the expected number of ‘under-barred exitations/particles’ with momen-

tum ~k in the vacuum |0〉. Therefore, at the power counting level, it follows that if |βk|2
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does not fall-off faster than k−3 when k → ∞, the total number of ‘under-barred quanta’

in the vacuum |0〉 would diverge. In this case, |0〉 would not belong to the under-barred

Fock space; the two representations of the Heisenberg or Weyl algebra would be unitarily

inequivalent.

This inequivalence is related to the large k limit and, as indicated in section VB, can

arise because so far there is no restriction on the ultraviolet behavior of the basis states

ek(η̃). The physical idea behind the appropriate restriction becomes clearer if one works

with the variable χk(η̃) := (ã(η̃)/2
√
κ) ek(η̃), for which (5.9) becomes

χ′′
k(η̃) +

(

k2 − ã′′(η̃)

ã(η̃)

)

χk(η̃) = 0 . (6.4)

Note that (6.4) reduces to the equation satisfied by the standard basis functions in Minkowski

space if ã′′/ã = 0. Now, 6ã′′/ã3 is just the scalar curvature of g̃ab and introduces a physical

length scale L(η̃) into the problem. The form of (6.4) suggests that for modes with large

momentum, i.e., with k/ã ≫ 1/L, curvature would have negligible effect and they would

evolve almost as if they were in Minkowski space. Therefore, it is natural to impose the

following regularity condition on the choice of basis functions in the ultraviolet limit: for

k/ã ≫ 1/L, χk(η̃) should approach the canonical Minkowski space positive frequency solu-

tions eikt/
√
2k at an appropriate rate. (In the terminology of section VB, we would then be

restricted to a preferred family of complex structures all of which have the same ultraviolet

behavior as the canonical complex structure in Minkowski space-time.) This is the crux of

the idea behind adiabatic condition.

To make this idea precise, we have to sharpen the required rate of approach. For this,

one first introduces a set of specific ‘generalized WKB’ solutions to (6.4) that approach the

Minkowski space positive frequency modes as k → ∞ in a controlled fashion. In a second

step, one requires that the permissible basis functions χk(η̃) —which are exact solutions to

(6.4)— should approach the WKB solutions to the desired order.

The generalized WKB solutions χ
(N)
k (η̃) of order N are given by [95]: 10

10 For this prescription to be well-defined, W
(N)
k

(η̃) must be non-negative. For any given smooth ã(η̃), this

can be ensured by going to high enough k. Since it is only the behavior of W
(N)
k

(η̃) in the k → ∞ that

matters for the adiabiticity considerations, if W
(N)
k

were to become negative in some k-range, one can

just suitably modify its form for low k.
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χ
(N)
k (η̃) =

1
√

2W
(N)
k (η̃)

e−i
∫ η̃ W

(N)
k

(τ) dτ (6.5)

where W
(N)
k (η̃) =W0 + W1 + ... + WN , with

W0 = k ; W2 = − 1

2 k

ã′′

ã
; W4 =

2ã′′ã′2 − 2ã′′2ã− 2ãã′ã
′′′

+ ã2ã
′′′′

8k3ã3
; ...

and Wi = 0 if i is odd . (6.6)

Note that, because the lower bound on the integral in the phase factor is not fixed, χ
(N)
k is

well-defined only up to an overall phase (which is time independent but can depend on k).

Each χ
(N)
k (η̃) is an approximate solution to (6.4) in the sense that, when we operate on it

by the operator on the left side of (6.4), the result does not vanish but is given by terms of

the order O(ã/kLN+2)
N+1/2 where the length scale LN is dictated by ã and its η̃-derivatives

to order N . The leading order term of (6.5) corresponds to the positive frequency solution

in Minkowski space and the rest of the terms are higher order contributions that vanish at

different rates when (ã/kLN ) → 0. Finally, this approximate solution can also be regarded

as an expansion in the number of derivatives of the scale factor. This is because, since the

limit refers to (ã/kLN ), one can either keep LN fixed and let ã/k go to zero as we have done

so far, or keep ã/k fixed and let 1/LN go to zero, which corresponds to letting the expansion

rate go to zero, i.e, considering adiabatic expansion. This why, although this method is

primarily concerned with ultraviolet issues, it is referred to as ‘adiabatic regularization’.11

We are now ready to state the ‘adiabatic condition’ that imposes the desired ultra-

violet regularity on the basis functions: In the mode expansion (5.8), choose only those

solutions ek(η̃) = 2
√
κχk(η̃)/ã(η̃) to (5.9) which agree with χ

(N)
k (η̃) up to terms of order

(ã/kLN )
N+1/2. More precisely, we require: |χk| = |χ(N)

k | (1 + O((ã/kLN+2))
N+2), and

the same relation should hold if χk and χ
(N)
k are replaced by their 1st, 2nd, ... (N-1)th

time derivatives. (Note that the absolute value signs make these conditions well-defined in

spite of the phase ambiguity in χ
(N)
k .) These bases ek(η̃) will be referred to as Nth-order

adiabatic solutions, the associated vacuum states will be referred to as the Nth order

vacua, and states obtained by operating on these vacua by (arbitrarily large but finite)

11 Chronologically, the term adiabatic originated from the fact that the first application of this method —

introduced by Parker in [93]— was to the problem of regularizing the number operator in an expanding

universe, and the condition that the particle number be an adiabatic invariant was used as a fundamental

requirement in the construction.
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sums of products of creation operators as Nth-order adiabatic states. From now on,

we will restrict ourselves to Nth-order adiabatic states and, for reasons explained in

section VIB, for most part we will set N = 4. There is a large body of literature on the

notion of adiabatic states and their properties. For further details, see in particular [8, 9, 95].

This framework has two important features.

• The adiabatic condition is only an asymptotic restriction for large kL/ã. Therefore, for

any given N , there are infinitely many families of solutions ek(η̃) which satisfy it. Each

of these bases defines an adiabatic vacuum and, if two bases are non-trivially related

(i.e., if the Bogoluibov coefficients αk are not pure phases for all k), the corresponding

vacua are distinct. Thus, in striking contrast to the free field theory in Minkowski

space, there is no preferred vacuum state, nor a canonical notion of ‘particles’. Any

one vacuum appears as an ‘excited state with many particles’ with respect to another

vacuum.

• However, if N ≥ 2, all adiabatic vacua —and hence all adiabatic states— lie in the

same Hilbert space H1. This is because if N ≥ 2, then
∑ |βk|2 <∞, whence any one

adiabatic vacuum has only a finite number of particles relative to any other.

This completes the specification of the Hilbert H1 of perturbations we began in section

VB. While we used the framework originally developed for quantum field theory in classical

space-times, because we used the dressed effective metric g̃ab for our background, it follows

from section IV that H1 is the Hilbert space of quantum perturbations ψ propagating on

the quantum geometry Ψo.

Remark: Had we chosen to work with spatial manifolds M with R3 topology rather than

T3, Eq (6.3) would be replaced by

〈0|N̂~k|0〉 := 〈0|~−1Â~kÂ
†
~k|0〉 = |βk|2(2π)3δ3(0) . (6.7)

This implies that |βk|2 is now the number density of the ‘under-barred exitations/particles’

—with momentum ~k— in the vacuum |0〉 per unit volume of M and per unit co-moving

volume in the momentum space. The δ3(0) (in the momentum space) in (6.7) arises because

of the infinite spatial volume of M. Thus, in addition to the potential ultraviolet divergence
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that would occur if |βk| does not fall-off appropriately for large k, we now also have an

infrared divergence. Note that this cannot be cured simply by putting an infrared cut-off in

the ~k space: the total number of particles created with momenta ~k within any finite range

∆k also diverges because of the infinite spatial volume of M. In particular, this divergence

persists for massive fields as well; it arises because we now have an infinite volume and a

homogeneous background. This then implies that the Fock representations of the Heisenberg

or Weyl algebra associated with any two bases ek(η̃) and ek(η̃) are unitarily inequivalent

unless αk is a pure phase for all k. But physically this infinity is spurious. Therefore, for

R3 topology, a notion of ‘physical equivalence’ is more appropriate than that of ‘unitary

equivalence’. To introduce it, recall first that if the topology is R3 one has to introduce a

fiducial cell C and restrict all integrations to it already at the classical level. (From a physical

perspective one can choose the cell so that its physical volume is larger than the volume

of the observed universe.) Two Fock representations of perturbations would be regarded as

physically equivalent if the vacuum state associated with one contains a finite number of

‘exitations/particles’ with respect to the other within any region contained in C. Then, if we
restrict ourselves to adiabatic vacua of order N ≥ 2, we are ensured of physical equivalence.

If we require N ≥ 4, the expectation values of the regularized stress-energy tensor would be

well-defined distributions and we can restrict the support of test functions in C.

B. Regularization of composite operators

In this subsection we summarize the necessary regularization procedure to obtain physical

information from the formal expressions of composite operators on the Hilbert space H1.

Adiabatic regularity of the basis modes ek(η̃) will provide the necessary control on the

ultraviolet divergences in the expectation values of composite operators, leading to state

independent criteria to extract the physical, finite results while respecting the underlying

covariance of the theory.

Consider a formal operator Ô(~x, η̃) which is at least quadratic in the field operator and its

conjugate momentum, and is factor ordered to be self-adjoint. Examples of direct interest

are the stress-energy tensor and the Hamiltonian. Consider the expectation value of this

operator with respect to an adiabatic vacuum selected by a basis χk(η̃). Using the mode

decomposition (5.8) and the commutation relation (5.11), the vacuum expectation value of
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Ô(~x, η̃) can be expressed as a formal sum in the momentum space, of the type

〈0|Ô(~x, η̃)|0〉formal =
1

ℓ3

∑

~k

Ok[χk(η̃)] (6.8)

where there is no x-dependence on the right side because |0〉 is translationally invariant.

Generically, the sum would be ultraviolet divergent. In adiabatic regularization the phys-

ically relevant, finite expression is obtained by subtracting, mode by mode, each term in

the adiabatic expansion of Ok[χk(η̃)] that contains at least one ultraviolet divergent piece

[93, 95] (see also [8, 9]). Thus, if O(N) is the Nth adiabatic order term in the expansion of the

summand, if any one part of O(N) is divergent, the entire term O(N) is subtracted (including

parts that have no ultraviolet divergences). On the other hand, following the criterion of

minimal subtraction, this procedure is applied only up to that order in the adiabatic expan-

sion at which the formal expression has divergent pieces. Thus, if the Mth adiabatic order

term has no divergent part, then nothing is subtracted at order M .

The most interesting example for us is the stress-energy tensor of gauge invariant tensor

perturbations since it plays the key role in checking if the truncation scheme is self-consistent,

i.e., whether or not the back-reaction can be neglected. For classical fields T (~x), the expres-

sion is given by

Tab =
1

4κ

[

∇̃aT ∇̃bT − 1

2
g̃ab g̃

cd ∇̃cT ∇̃dT
]

. (6.9)

At the quantum level the stress-energy tensor is a composite operator of dimension four,

and in four space-time dimensions we expect ultraviolet divergences up to fourth order in

the co-moving momentum k. Let us first consider energy density operator ρ̂(~x, η̃). Given a

basis ek(η̃) = 2
√
k χk(η̃)/ã(η̃) of fourth or higher adiabatic order, the formal expression for

the expectation value of ρ̂(~x, η̃) in the associated adiabatic vacuum is

〈0|ρ̂|0〉formal := −〈0|T̂ 0
0 |0〉formal =

~

ℓ3ã4(η̃)

∑

~k

ρk[χk(η̃)]

=
~

2ℓ3ã4(η̃)

∑

~k

|χ′
k|2 +

(

k2 +
ã′2

ã2

)

|χk|2 − 2
ã′

ã
Re(χkχ

′⋆
k ) . (6.10)

By using the adiabatic expansion of each χk in the above summand, it is easy to see that

all the ultraviolet divergences are contained in terms of adiabatic order equal to and smaller

than four. The zeroth adiabatic order term produces a
∑

(1/k3) divergence in co-moving

momentum k; the second order term a
∑

(1/k2) one; and the fourth order term a
∑

(1/k)
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one. Therefore, the subtraction terms Cρ(k, η̃) needed to regularize the energy density are

obtained from the terms of zeroth, second and fourth adiabatic order in the expansion of

the summand:

Cρ(k, η̃) = ρ
(0)
k + ρ

(2)
k + ρ

(4)
k =

k

2
+

ã′2

4ã2k
+

4ã′2ã′′ + ãã′′2 − 2ãã′ ã
′′′

16ã3k3
. (6.11)

Thus, the vacuum expectation value of the renormalized energy density is

〈0|ρ̂|0〉ren =
~

ℓ3ã(η̃)4

∑

~k

(ρk[χk(η̃)]− Cρ(k, η̃)) . (6.12)

Note that the subtraction terms Cρ are local in the background geometry and, even more

importantly, are state independent. The expectation value in any fourth order state in H1

is computed by the same procedure, using the same subtraction terms.

The only other independent degree of freedom in the stress-energy tensor in a homogenous

and isotropic background is the trace T (or the pressure p = (ρ+T )/3). The corresponding

vacuum expectation value can be calculated using results given in [99]:

〈0|T̂ |0〉ren =
−~

ℓ3ã4(η̃)

∑

~k

−|χ′
k|2 +

(

k2 − ã′2

ã2

)

|χk|2 + 2
ã′

ã
Re(χkχ

′⋆
k ) − CT (k, η̃) , (6.13)

where the 4th adiabatic order subtraction terms are

CT (k, η̃) =
−ã′2 + ãã′′

2 ã2k
− 6ã′2ã′′ − 3ãã′′2 − 4ãã′ã

′′′

+ ã2ã
′′′′

8ã3k3
. (6.14)

Note that both vacuum expectation values, (6.12) and (6.13), are constant functions on M

as they must be given that the vacuum is translationally invariant.12 If the vacuum were

replaced by a generic 4th order adiabatic state, this constancy will not hold. In that case

the expectation value would be distributions in ~x. Finally, by themselves these expectation

values only provide a quadratic form on the Hilbert space H1. However, recent results show

that they are the expectation values of an operator valued distribution T̂ab on H1 [96].

A natural question now arises: Does the vacuum expectation value of the renormalized

stress-energy tensor satisfy covariant conservation ∇̃a〈T̂ ab〉ren = 0 with respect to the dressed

effective background g̃ab? In any homogenous and isotropic background, the conservation

12 As a consequence, while the summands on the right side of these expressions can be interpreted as the

contribution of the mode ~k to 〈ρ̂(x)〉ren and 〈T̂ (x)〉ren, they are not the Fourier transforms 〈ρ̂k〉ren and

〈T̂k〉ren of these quantities in the x-space.
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equation reduces to 〈ρ̂〉′ren+ ã′

ã
(4〈ρ̂〉ren+〈T̂ 〉ren) = 0. The formal, unrenormalized expressions

for 〈ρ̂〉 and 〈T̂ 〉 satisfy this relation mode by mode as a consequence of the wave equation

satisfied by the χk. The adiabatic subtraction terms also satisfy the conservation equation

mode by mode. Thus, one can directly verify that the expectation value of the renormalized

stress-energy is indeed conserved (see, for instance, [97]).

This adiabatic regularization of T̂ab also has the desired properties enunciated in Wald’s

axioms [92]: it reduces to the standard normal ordering in the flat space-time limit; the

subtractions terms are constructed from local information in the background geometry, and,

as already noted, the renormalized stress energy is conserved; ∇̃a〈T̂ ab〉ren = 0.

Remark: As noted in section III, physically it is appropriate to introduce an infrared

cutoff by absorbing into the background the modes whose physical wave length is larger than

the physical radius of the observable universe. Since physical wave lengths scale linearly

with the scale factor ã, this can be achieved in a time independent fashion by imposing

a cut-off, kIR, in the co-moving wave number k. As is clear from the above discussion

of conservation of stress-energy, the vacuum expectation value of the new renormalized

stress-energy tensor will also be covariantly conserved. Furthermore, by construction, the

renormalized energy density and pressure will again be constant on M.

We will conclude this section with renormalization of the Hamiltonian operator Ĥ1 that

generates the dynamics of perturbations in conformal time η̃. The form (3.31) of the classical

Hamiltonian and the fact that the lapse corresponding to the conformal time is N = a imply

that the Hamiltonian operator has the following formal expression:

Ĥ1,formal =
1

2V̊

∑

~k

4κ

ã2
|p̂~k|2 +

ã2

4κ
k2|T̂~k|2 = ã4

∫

d3x ρ̂formal . (6.15)

Therefore, the renormalized Hamiltonian is given by

Ĥ1,ren =
1

2V̊

∑

~k

4κ

ã2
|p̂~k|2 +

ã2

4κ
k2|T̂~k|2 − ~V̊ Cρ(k, η̃) . (6.16)

Our discussion of energy density immediately implies that the expectation values of Ĥ1,ren

are well defined on any 4th order adiabatic state. Furthermore, by taking its commutators

with T̂~k, p̂~k we recover the Heisenberg equations of motion (4.18) satisfied by T̂~k. However,

we do not have a proof that Ĥ1,ren is a self-adjoint operator (in the precise sense that it
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is densely defined and its domain equals that of its adjoint. In particular, the strategy of

using the Friedrich extension does not work because the operator is not positive definite.)

Although we expect this to be the case, we also note that, quite generally in cosmology,

proving self-adjointness involves non-trivial subtleties and technicalities especially because

the Hamiltonians have a non-trivial time dependence.

Remark: In the case when M is topologically R3, one continues to use the mode by

mode subtraction strategy but one has to replace (1/ℓ3)
∑

~k by 1/(2π)3
∫

d3k. Again, the

renormalized stress-energy is conserved, the subtraction terms are local and the prescription

reduces to the standard normal ordering in Minkowski space-time.13 Again it is physically

appropriate to introduce an infrared cut off in the co-moving k-space and conservation

of stress-energy persists after imposing this cut-off. In addition, as shown in Ref. [98,

99], in FRLW space-times this adiabatic regularization is equivalent to the point-splitting

Hadamard renormalization. Therefore although the procedure is not manifestly covariant

because of the mode by mode subtraction, the result is fully covariant w.r.t. g̃ab. From

a fundamental quantum consideration, g̃ab is only a convenient mathematical construction

and the true quantum geometry is encoded in Ψo. Still, it is desirable that the effective

description have space-time covariance.

C. Narrowing down initial conditions

As discussed in section VIA, our quantum Hilbert space H1 of perturbations does not

admit a preferred vacuum state. In quantum field theories on Minkowski or de Sitter space-

time, underlying isometries serve as powerful tools to single out preferred states. Our quan-

tum FLRW background Ψo is invariant under the 3-dimensional translation group acting on

M = T3. It is then natural to seek preferred states in H1 by demanding that they also be

translationally invariant. As discussed in section V, this condition leads us to the infinite

dimensional space of vacua which, in view of our discussion in VIB, we now require to be of

13 Counter terms now appear under an integral sign. Results of Ref. [98, 99] imply that, one can use

this integral form of counter terms also in the spatially compact cases. This procedure is justified on

the grounds that the ultraviolet regularization should not be sensitive to the global topology and has,

furthermore, some advantages.
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4th adiabatic order. If one requires the state to satisfy these properties initially, i.e. at the

bounce, then they are satisfied for all times. This is the family of ‘preferred’ states selected

by the symmetry and regularity requirements. As we will discuss in detail elsewhere, this

choice is well-suited to formulate a quantum version of Penrose’s Weyl curvature hypothesis

[100]. Furthermore, in the inflationary context, one can motivate this choice using phys-

ical considerations based on properties of the new repulsive force with origin in quantum

geometry that dominates the dynamics at and near the bounce [1, 2].

At a fundamental level, we allow any of these ‘vacua’ as initial conditions at the bounce

provided, of course, the energy density 〈ρ̂〉 in the perturbations at the bounce is negligible

compared to the energy density 〈ρ̂o〉 ∼ 0.41ρPl in the background quantum geometry Ψo.

However, for specific calculations and especially detailed numerical simulations, one has to

work with specific states. Are there then especially convenient vacua to work with? The

adiabatic procedure summarized in section VIA provides a strategy to select an ‘obvious’

candidate, provided one fixes an instant of time η̃0. Recall that to ensure 4th order adia-

baticity we required that, for kL4/a ≫ 1, the basis functions χk must agree with a specific

approximate solution χ
(4)
k defined in (6.5) at least up to terms of adiabatic order four. There-

fore, given an instant η̃0 of time, we can construct a ‘natural’ basis χobv
k by asking that it

has the same initial data at that time as χ
(4)
k . Thus the idea is to ask for solutions χobv

k (η̃)

to the exact evolution equation (6.4) which satisfy

χobv
k (η̃0) = χ

(4)
k (η̃0) ; and ∂η̃χ

obv
k (η̃0) = ∂η̃χ

(4)
k (η̃0) . (6.17)

Since χ
(4)
k are only approximate solutions to (6.4), they will not agree with χobv

k at any other

time η̃ 6= η̃0. Nonetheless, χobv
k (η̃) are automatically of 4th adiabatic order for all times

η̃. We will call the associated vacuum state the obvious 4th-order adiabatic vacuum at the

time η̃0. In LQC, the preferred instant of time required in this strategy is provided by the

bounce.

Note, however, that for this strategy to work, the quantity W 4
k (η̃0) in (6.5) must be

non-negative since it appears under a square-root in the expression of χ
(4)
k (η̃0). Now, as we

pointed out in III, there is a natural physical infrared cut-off kIR provided by the radius of

the observable universe. Typically, for k > kIR, i.e, for the relevant k, W
(4)
k is positive. But

if kIR is too low for this to happen, as explained in section VIA, one has to suitably modify

the form of W 4
k (η̃0) for low k. In this case, even for a fixed value η̃0 of time, there would
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be an ambiguity in the choice of the basis χk for low k, and hence also in the resulting 4th

adiabatic order vacuum |0〉obvη̃0
.

This vacuum state |0〉obvη̃0 is especially convenient to work with in numerical simulations.

Therefore it serves as a technically powerful tool to establish the viability of conjectures —

e.g., that, in the inflationary context, there exist quantum states for which the back-reaction

can be ignored— and to probe qualitative features of quantum dynamics. However, even

when there is a preferred instant of time, such as the bounce time in LQC, and the infrared

cut-off is sufficiently large for the state to be unique, there is no physical principle that

singles out this vacuum over other 4th adiabatic order vacua. A better strategy would be

to narrow down the choice of vacua by adding external inputs suggested by the physics of

the problem. In the present analysis there is a natural avenue along these lines. Since the

test field approximation plays a central role, one could ask: Are there 4th adiabatic order

vacua for which the expectation value of the renormalized energy density is exactly zero at

a given time? The answer to this question is in the affirmative and, although this condition

does not single out a unique state, it reduces the choices considerably. This issue will be

discussed in detail in a separate publication [101].

D. A Criterion for self-consistency of the truncation scheme

Our results in sections V – VIC provide us with a specific quantum theory, corresponding

to the truncated phase space Γ̃Trun. This self contained mathematical framework enables one

to describe quantum dynamics of the truncated system, once the initial state is specified,

say at the bounce. The key question now is whether the truncated theory has an interesting

domain of validity. The basic assumption behind truncation is that the back-reaction due

to the stress-energy tensor Tab of the first order fields can be neglected (compared to the

background stress-energy tensor T o
ab) during the dynamical phase of interest. Already in

the classical theory, it is clear that generic first order perturbations violate this condition.

The interesting question there is rather the following: Is there a sufficiently large subspace

in Γ̃Trun on which this condition is satisfied? More precisely, if we restrict ourselves to an

instant of time and choose perturbations which do meet this condition, does the condition

continue to be satisfied over the period of evolution of interest? We will now formulate the

analogs of these questions in the quantum theory.
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Somewhat surprisingly, in the quantum theory one encounters some novel features. First,

in the classical theory the only ‘preferred’ time to specify the initial conditions would be

the big bang which is singular. In the quantum theory, by contrast, the bounce provides

a natural time η̃
B
for this task. The second feature is equally significant but also more

subtle. Because of the underlying symmetries of the background, it is natural to require

the initial state ψ at time η̃
B
to be translationally invariant. An immediate consequence is

that the expectation value 〈T̂ab〉 of the renormalized stress-energy tensor operator is then

homogeneous for all times.14 This property has the important consequence that the second

order perturbations are again homogeneous and isotropic since their sole source is 〈T̂ab〉.
Thus, thanks to the symmetry of our initial state ψ at the bounce, the back reaction can

change only the zeroth order, homogeneous fields, changing the total state Ψo⊗ψ to a nearby

state of the type (Ψo + δΨo)⊗ ψ. Our initial conditions on ψ at η̃ = η̃
B
guarantee that the

shift δΨo at this initial time is negligible. The key question then is whether it continues to

remain negligible under time evolution.

On general grounds one would say that the answer is dictated by the time dependence

of 〈T̂ab〉. But in the detailed mathematical framework, it is the second order truncation Ŝ2

of the Hamiltonian constraint that determines the change δΨo in the background quantum

geometry and in this equation it is only 〈ρ̂〉 —rather than the full 〈T̂ab〉— that enters as the

source. Let us suppose that the energy density 〈ρ̂〉 is negligible compared to the background

energy density 〈ρ̂o〉 from η̃
B
, until some time η̃0 of interest. Then it follows that δΨo would

continue to be negligible from η̃B to η̃0. It may seem somewhat surprising at first that one

does not have to require explicitly that the other independent component T̂ of T̂ab should

be small. This is because we are requiring that 〈ρ̂〉 be negligible compared to 〈ρ̂o〉 not just
initially but for all times between η̃

B
and η̃0. The difficult part of the calculation is to check

that the evolution of ψ is such that this condition does holds. If it does, then Ψo ⊗ψ would

provide a solution in which the back-reaction is negligible even in the Planck era. This

would then be a self-consistent solution to the quantum truncated theory. Thus, a sufficient

condition for self-consistency of the truncation approximation is that the energy tensity in

the quantum perturbations should remain small compared to that in the background from η̃
B

14 Note that this property holds even though the perturbations operators T̂ (~x, η̃) themselves are purely

inhomogeneous ! In the classical theory, there are no perturbations T (~x, η̃) which are purely inhomogeneous

but their energy density is purely homogeneous.
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to η̃0.

In [2] we will use detailed numerical simulations to show that the inflationary scenario

does admit states Ψo ⊗ ψ in which 〈ρ̂〉 is negligible compared to the background 〈ρ̂o〉 for

all times between the bounce and the onset of the slow roll inflation. Furthermore, given a

state satisfying this condition, we will show that there is an open neighborhood of ψ such

that the condition continues to be satisfied by Ψo ⊗ ψ̃ for all ψ̃ in this neighborhood. Thus,

there is a rich class of states that provide self-consistent solutions to the truncated quantum

theory, demonstrating that the standard inflationary scenario admits a consistent extension

all the way back to the big bounce.

But the general framework constructed in this section is not tied to inflation. It provides

the technical machinery that is needed to check if any given paradigm, based on general

relativity and first order cosmological perturbations, admits a self-consistent extension to

the Planck regime. More precisely, it would enable one to address the following question:

In this paradigm, does the quantum theory admit solutions in which the back reaction can

be neglected throughout the period of interest, including the Planck era?

VII. SUMMARY AND DISCUSSION

In the last four sections, we developed an extension of the standard cosmological per-

turbation theory to include the Planck regime of LQG. The strategy was to first truncate

classical general relativity coupled to a scalar field to the sector commonly used in the cos-

mology of the early universe —FLRW space-times and linear inhomogeneous perturbations

thereon— and then construct the quantum theory of just this sector using LQG techniques.

Already in the truncation of the classical Hamiltonian theory there is a subtlety that

has often been overlooked in the LQC literature: while the dynamics on the homogeneous

sector is generated by a (Hamiltonian) constraint, that on the full truncated phase space

ΓTrun is not. Indeed, because the dynamical vector field Xα on ΓTrun fails to Lie drag the

full symplectic structure ΩTrun = Ωo +Ω1 on ΓTrun, it is not generated by any Hamiltonian.

Rather, ΓTrun is the normal bundle over Γo —where the base space Γo is regarded as the

homogeneous, isotropic subspace of the full phase space Γ of general relativity— and Xα is

the lift to ΓTrun of the Hamiltonian vector field on Γo, induced by the full Hamiltonian vector

field on Γ. In the classical theory, this subtlety can be ignored if one works with the space of
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solutions (rather than the phase space), as is common in the standard cosmology literature.

But it becomes important for passage to quantum theory if one wishes to treat both the

perturbations and the background quantum mechanically. Then there is no conceptual

justification for trying to construct dynamics for the full truncated system by imposing a

quantum constraint. One can do this only on the homogeneous sector, and one then has to

‘lift’ this quantum dynamics to the full Hilbert space just as in the classical theory.

Having constructed the dynamics of gauge invariant variables on the truncated phase

space, we then used LQG techniques to construct quantum kinematics: the Hilbert space

Ho of states of background quantum geometry, the Hilbert space H1 of gauge invariant

quantum fields Q̂, T̂ representing perturbations and physically interesting operators on both

these Hilbert spaces. The imposition of the quantum constraint on the homogeneous sector

leads one to interpret the background scalar field φ as a relational or emergent time variable

with respect to which physical degrees of freedom evolve. Furthermore, the background ge-

ometry is now represented by a wave function Ψo which encodes the probability amplitude

for various FLRW geometries to occur. The physically interesting wave functions Ψo are

sharply peaked, but the peak follows a bouncing trajectory, not a classical FLRW solution

that originates at the big bang. In addition, Ψo has fluctuations about this bouncing tra-

jectory. Quantum fields Q̂, T̂ , representing inhomogeneous scalar and tensor perturbations,

propagate on this quantum geometry and are therefore sensitive not only to the major de-

parture from the classical FLRW solutions in the Planck regime, but also to the quantum

fluctuations around the bouncing trajectory, encoded in Ψo. Therefore at first the problem

appears to be very complicated. However, a key simplification made it tractable: Within

the test field approximation inherent to the truncation strategy, the propagation of Q̂, T̂
on the quantum geometry Ψo is completely equivalent to that of their propagation on a

specific, quantum corrected FLRW metric g̃ab. Although ~ does appear in its coefficients,

this ‘dressed, effective metric’ g̃ab is smooth and allows us to translate the evolution of Q̂, T̂
with respect to the relational time to that in terms of the conformal (or proper) time of g̃ab.

Furthermore, away from the Planck regime, g̃ab satisfies Einstein’s equations to an excellent

approximation. In this sense, the standard quantum field theory of Q̂, T̂ emerges from the

more fundamental description of these fields evolving on the quantum geometry Ψo with

respect to the relational time φ. This exact relation between quantum fields Q̂, T̂ on the

quantum geometry Ψo and those on the dressed, effective geometry of g̃ab enabled us to carry
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over adiabatic regularization techniques from quantum field theory in curved space-times to

those on quantum geometries Ψo. Together, all this structure provides us with a well-defined

quantum theory of the truncated phase space we began with.

This framework has a broad range of applicability because scenarios of the early universe

are often based on linear perturbations on FLRW backgrounds. Our construction provides

an avenue to extend them all the way to the quantum gravity era because quantum pertur-

bations now propagate on a quantum geometry which is completely regular, with specific

upper bounds for curvature and density in the background. We can therefore use the new

framework to re-examine the ‘trans-Planckian issues’ encountered in these scenarios. Note

first that, the truncated theory under consideration here allows modes with trans-Planckian

frequencies. There is no obstruction because the quantum geometry underlying LQG is sub-

tle: In particular, while there is a minimum non-zero eigenvalue of the area operator, there is

no such minimum for the volume or length operators even though their eigenvalues are also

discrete. The real danger is not the existence of such modes but rather that the energy density

in these modes may not be negligible compared to that in the quantum background geometry.

If this occurs, our quantum theory of the truncated sector would not be viable. Whether this

can happen is a very non-trivial issue especially in the Planck regime immediately following

the bounce. Heuristically, if the state has just a few excitations each carrying say, 106 times

the Planck energy in a cm3 volume, there would be no difficulty (since the energy density

would be negligible). If on the other hand there is one such excitation per Planck volume,

our truncation approximation will fail. Then we cannot neglect back-reaction. This is not

an impasse to quantum theory as such, but the proper treatment of such states will have to

await full LQG.

The key question then is whether the test field approximation underlying this truncation

scheme is satisfied. A priori this is a difficult issue and, to our knowledge, had not been

considered in the literature because even to formulate this question precisely one needs the

notion of the renormalized stress-energy tensor on the Hilbert space H1 of quantum pertur-

bations propagating on the quantum geometry of Ψo. In our framework this was provided

by ‘lifting’ the adiabatic techniques of [95, 99] to quantum fields on quantum geometries Ψo.

Specifically, by appealing to symmetry principles and regularity requirements, we argued

that it was appropriate to focus attention on those states Ψo⊗ψ ∈ Ho⊗H1 of the combined

system for which:
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1) ψ is invariant under the translational symmetry of Ψo;

2) ψ is a 4th order adiabatic state w.r.t. g̃ab; and,

3) at the bounce, the energy density 〈ρ̂〉 in the state ψ is negligible

compared to the energy density 〈ρ̂o〉 in the background.

We then showed that the truncation approximation is self-consistent if 〈ρ̂〉 continues to

remain negligible compared to 〈ρ̂o〉 from the bounce time η̃
B
to a late time η̃0 of physical in-

terest (e.g., when radiation decoupled from matter). In particular, our argument shows that

the full stress-energy tensor is not needed; this significantly simplifies the task of performing

numerical simulations that are needed to check self-consistency.

As noted in section I, this criterion does not imply that truncated solutions are necessarily

close to exact solutions because the sum of all higher order effects need not be negligible.

However, in practice such criteria are generally regarded as sufficient for truncations to be

trustworthy. Indeed, this philosophy governs the entire theory of cosmological, stellar and

black hole perturbations in general relativity as well as perturbative calculations in quantum

field theory. In the same spirit, our self consistency criterion can be used to test viability of

the first order truncation in the studies of the very early universe that include the Planck

regime.

In the next paper [2] we will use this criterion in the context of inflation. We first extend

the general framework of this paper slightly to incorporate the (1/2)m2φ2 potential and R3

spatial topology. (The value of m is fixed by using the 7 year WMAP data [102, 103].) We

motivate the initial conditions —called ‘quantum homogeneity’ at the bounce— and carry

out detailed numerical simulations using the ‘obvious’ 4th order adiabatic vacuum for the

initial quantum state ψ of perturbations. They show that the back-reaction of perturbations

remains negligible over the 11 orders of magnitude in matter density and curvature, from

the big bounce until the onset of slow roll. Furthermore, the power spectrum at the end of

inflation turns out to be very close to that obtained in the standard inflationary scenario

and is thus compatible with the WMAP observations. By varying initial conditions for

the background (within computational feasibility) we show that these results are robust.

Furthermore, we show that self-consistency is preserved if the initial state is chosen to

be in a neighborhood of the ‘obvious’ 4th adiabatic order vacuum. Taken together these

results establish existence of self-consistent extensions of the inflationary scenario to

the Planck regime. Finally, there is a small range for the value φB of the background
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inflaton field φ at the bounce for which the quantum state at the onset of inflation differs

sufficiently from the Bunch Davies vacuum assumed in standard inflation to give rise to

non-Gaussianities that could be measured in future observations along the lines of [104–107].

We will conclude by pointing out a direction for significant improvements and extensions

of this framework. We began with a truncation of general relativity coupled with matter,

that is well-suited for cosmology of the early universe. In the passage to the quantum the-

ory, for the homogeneous sector we used LQC framework, rooted in the quantum geometry

underlying LQG. This was crucial for the resolution of the big bang singularity and the

subsequent quantum dynamics in the Planck era. On the other hand, to facilitate com-

parisons with the standard cosmological literature, we used a Fock-type representation for

perturbations Q̂, T̂ . As in the Gowdy models [25–29], this is a well-defined and internally

consistent quantization. But it would be more satisfactory to use a ‘polymer-type’ represen-

tation rooted in LQG also for perturbations not only for aesthetic reasons but also because

it would provide sharper guidelines to relate the truncated quantum theory to full LQG.

Therefore, let us first ask: Would this change of representation make a qualitative difference

in the results? The following heuristics lead us to believe that the answer is in the nega-

tive. Note that Q̂, T̂ represent perturbations and, in any self-consistent solution Ψo⊗ψ, the

energy density in the perturbations is negligible compared to that in the background.15 On

general grounds one would expect that, in a viable LQG representation of states capturing

this physics, their dynamics and properties would be well approximated by our ψ ∈ H1.

As a concrete illustration, we can use the following simplistic strategy to aid intuition. Use

the background structure available in the truncated sector to decompose the perturbations

Q(~x), T (~x) into Fourier modes thereby representing these fields as an assembly of harmonic

oscillators, and then imagine using the polymer representation of these oscillators to con-

struct the LQG Hilbert space HLQG
1 for these fields. Then one knows [108, 109] that for low

energy states the results of the polymer and the standard (Fock-type) quantization are in

excellent agreement. This suggests the ‘hybrid’ approach is viable from practical or phe-

nomenological perspective. Moreover, it is well suited to bridge quantum field theory on

15 This is a major conceptual difference from, say, the Gowdy model where gravitational waves are not

perturbations around any ‘background’ geometry. Indeed, in the vacuum Gowdy models, the entire

energy density resides in the gravitational waves.
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quantum geometries with the well-established quantum field theory in curved space-times.

However, from a fundamental perspective it is highly desirable to systematically extend

this framework by replacing H1 with an appropriate Hilbert space that descends from LQG.

In particular, such an extension will enable one to arrive at the regularization and renor-

malization procedure ‘starting from above’ i.e., from full LQG considerations. By contrast,

in this paper, we have introduced this procedure ‘starting from below’, i.e., from quantum

field theory in curved space-times. Put differently, our primary goal of this paper is to

carve out a path to extend the cosmological perturbation theory to the Planck era. The

emphasis has been on showing that there does exist such a framework with a number of

desirable mathematical properties and physical features which, moreover, is well suited for

phenomenological applications. But from a fundamental LQG perspective, it can and should

be related to LQG even more closely.
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Appendix A: Truncated dynamics: A simple example

In this appendix we will illustrate the truncation procedure of section III using λΦ4-

theory. This example is simple enough to perform explicit calculations that bring out the

main conceptual subtleties —in particular the differences between dynamics of the exact

and truncated theories— which are sometimes overlooked in the cosmology literature.

1. Space-time framework

As in the main text we assume that the space-time M is topologically M × R, where

the Cauchy surfaces M are topologically 3-toruses T3. But the space-time metric ηab is now
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assumed to be flat (with signature -,+,+,+). Denote by S the space of suitably regular

solutions to

�Φ− µ2Φ− λΦ3 = 0 (A1)

and by So its subspace consisting of spatially homogeneous solutions. We are interested in

a small neighborhood of So in S. In this neighborhood, it is convenient to consider curves

Φ[ǫ](~x, t) = φ(t) + ǫϕ(1)(~x, t) +
ǫ2

2!
ϕ(2)(~x, t) + . . .+

ǫn

n!
ϕ(n)(~x, t) + . . . (A2)

parameterized by ǫ ∈] − 1, 1[, which pass through So at ǫ = 0. The ϕ(n)(~x, t) are to be

thought of as the nth order, inhomogeneous perturbations on the homogeneous solution

φ(t). Since we are interested in curves that move away from So, to avoid redundancy,

without any loss of generality we will assume that the first order perturbation ϕ(1)(~x, t) are

purely inhomogeneous, i.e. that

∫

d̊v ϕ(1)(~x, t) = 0 ∀t . (A3)

Here in what follows all the integrals are over M and d̊v is the natural volume element

thereon. Substituting the expansion (A2) in (A1) and matching coefficients of ǫn for each n

we obtain a hierarchy of equations:

φ̈+ µ2φ+ λφ3 = 0, (�− µ2 − 3λφ2)ϕ(1) = 0,

(�− µ2 − 3λφ2)ϕ(2) = 6λφ(ϕ(1))2, (�− µ2 − 3λφ2)ϕ(3) = 6λ ((ϕ(1))3 + 3φϕ(1)ϕ(2)),

. . . . . . (A4)

Note that the first equation on φ is non-linear but an ordinary differential equation (ODE)

and each of the subsequent equation on ϕ(n) is a linear partial differential equation (PDE) in

ϕ(n) with sources containing lower order fields, already determined by solving the previous

equations in the hierarchy. Thus, the task of solving the non-linear PDE (A1) is reduced

to solving one non-linear ODE and a succession of linear PDEs.16 The idea is that an

approximate solution to the full problem can be obtained by truncating the series to the

16 Note that the equation on ϕ(1) has no source terms. Therefore, if the initial data is purely inhomogeneous,

so is the solution. Because equations of ϕ(n) for n > 1 have source terms which are non-linear in the

lower order fields, we cannot demand that they be purely inhomogeneous. Note also that, for n > 1 there

is freedom in adding a solution to the homogeneous equation. This can be removed, e.g., by choosing

retarded solutions to the inhomogeneous equations.
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appropriate order, i.e., by ignoring terms of O(ǫn+1), say. As usual, while the meaning of the

approximation in terms of the smallness parameter ǫ (which could be tied to the coupling

constant λ for physical reasons) is clear, the truncated series can be a good approximation

to the full solution Φ only if ϕ(n) remain small compared to φ. It is important to note that

this scheme of obtaining approximate solutions is distinct from an alternative procedure that

appears to be used often in the cosmology literature (although sometimes only implicitly).

That strategy corresponds to defining a field δΦ via Φ(~x, t) = φ(t) + δΦ and solving the

equation

�δΦ− µ2δΦ− (3λφ2)δΦ− (3λφ) δΦ2 − λδΦ3 = 0 (A5)

To the linear order this strategy agrees with (A4), but not to higher. Indeed, already at

the second order, one now has to solve a non-linear PDE, with a function φ as a coefficient,

which is in some ways more complicated than solving the original (A1).

2. The Hamiltonian framework

For the λΦ4 system, one could pass to the quantum theory directly from the classical

space-time formulation sketched above. However, general relativity is a background inde-

pendent theory and the generalized Dirac quantization strategy followed in LQC requires

us to pass through the Hamiltonian framework. Therefore we will now illustrate how the

truncation procedure of section A1 works in the phase space language.

The full phase space Γ is spanned by pairs (Φ(~x),Π(~x)) on the 3-manifold M which is

topologically T3 and its homogeneous subspace Γo is spanned by real numbers (φ, p(φ)). The

symplectic structure is given by:

Ω(δ1, δ2) =
∫

d̊v [δ1Φ δ2Π− δ2Φ δ1Π] , (A6)

where δ ≡ (δΦ, δΠ) denotes tangent vectors to Γ. The corresponding Poisson brackets

are also the familiar ones: {Φ(~x1), Π(~x2)} = δ(~x1, ~x2). Dynamics is generated by the

Hamiltonian H :

H(Φ,Π) =
1

2

∫

d̊v [Π2 +DaΦD
aΦ+ µ2Φ2 + λ

2
Φ4] . (A7)

Note that although Γ is infinite dimensional just as the solution space S, and Γo is 2-

dimensional just as So, there is a key difference: Γ and Γo are vector spaces unlike S and

So. As we will see the ability to define constant vector fields on Γ plays an important role in
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defining truncated dynamics. (This structure is also available on the phase space of general

relativity and used in the main text to define truncated dynamics.)

Again, we are interested only in a small neighborhood of the homogeneous subspace

Γo of Γ. Therefore we are led to consider 1-parameter family of curves, parameterized by

ǫ ∈]− 1, 1[ :

Φ[ǫ](~x) = φ+ ǫϕ(1)(~x) + . . . +
ǫn

n!
ϕ(n)(~x) + . . . and

Π[ǫ](~x) =
p(φ)
Vo

+ ǫπ(1)(~x) + . . . +
ǫn

n!
π(n)(~x) + . . . (A8)

where ϕ(1)(~x), π(1)(~x) are purely inhomogeneous, and Vo is the volume of the 3-torus M.

By truncating the series at nth order we obtain the phase space that is appropriate for

describing the homogeneous solutions (φ, p(φ)), together with first, second, . . . nth order

perturbations propagating thereon. Since in the main text we focus on just the first order

perturbations, let us do the same here.

Thus, let the truncated phase-space ΓTrun consist of a doublet of pairs of canonically

conjugate fields (φ, p(φ); ϕ
(1)(~x), π(1)(~x)) where φ, p(φ) are real numbers (representing ho-

mogeneous fields on M) and ϕ(1)(~x), π(1)(~x) are purely inhomogeneous fields on M. Thus,

ΓTrun = Γo × Γ1. The symplectic structure on ΓTrun is given by ΩTrun = Ωo + Ω1, where

Ωo(δ1, δ2) = δ1φ δ2p(φ) − δ2φ δ1p(φ) Ω1(δ1, δ2) =
∫

d̊v [δ1ϕ
(1)δ2π

(1) − δ2ϕ
(1)δ1π

(1)] (A9)

which yields the Poisson brackets

{φ, p(φ)} = 1, {ϕ(1)(~x1), π
(1)(~x2)} = [δ(~x1, ~x2)−

1

Vo
] ≡ δ̄(~x1, ~x2) (A10)

where δ̄(~x1, ~x2) is the Dirac delta-distribution restricted to the purely inhomogeneous fields

on M.17 By decomposing fields Φ(~x),Π(~x) in Γ into purely homogeneous and purely inho-

mogeneous parts, one can readily see that the full pase space (Γ, Ω) is naturally isomorphic

to the truncated phase space (ΓTrun,ΩTrun). However, the physical meaning of the inho-

mogeneous fields is different in the two cases and, more importantly, the dynamics is very

different.

17 The term 1/Vo is necessary simply because the fields ϕ(1)(~x) and π(1)(~x) are purely inhomogeneous. For

example, if we integrate the left side of the Poisson bracket between ϕ(1) and π(1) over x1 (or x2), we get

zero and 1/Vo terms assures that the right side also vanishes.
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Geometrically, ΓTrun is the normal bundle over Γo (since purely inhomogeneous fields are

orthogonal to the purely homogeneous ones in the L2 norm of the space of functions on M.)

To obtain the dynamical flow on ΓTrun, let us begin with the full, non-linear Hamiltonian vec-

tor field XH on a small neighborhood of Γo in Γ. Since the exact Hamiltonian flow generated

by XH is tangential to Γo, the equations of motion on Γo are just the restrictions of those

on full Γ to the homogeneous sector: φ̇ = p(φ)/Vo, ṗ(φ) = −(µ2φ+λφ3)Vo. To obtain the

equations of motion on the (inhomogeneous) tangent vectors (ϕ(1), π(1)), we first note that

the Hamiltonian flow XH on Γ naturally drags these tangent vectors along dynamical tra-

jectories on Γo. To obtain the ‘dot’, however, we need to compare the image (ϕ(1), π(1))|t+δt

at (φ, p(φ))|t+δt with the original tangent vector (ϕ(1), π(1))|t at the point (φ, p(φ))|t of Γo.

This can be trivially accomplished because Γ has a vector space structure. The resulting

equations of motion are: ϕ̇(1)(~x, t) = π(1)(~x, t), π̇(1)(~x, t) = [D2−µ2−3λφ2(t)]ϕ(1)(~x, t). The

resulting dynamical vector field XDyn on ΓTrun is given by:

XDyn := (φ̇, ṗ(φ); ϕ̇
(1), π̇(1)

=
( p(φ)(t)

Vo
, −[µ2φ(t) + λφ3(t)]Vo; π(1), [D2 − µ2 − 3λφ2(t)]ϕ(1)

)

(A11)

Thus, the full dynamics on Γ induces a well-defined flow XDyn on ΓTrun. Furthermore,

this dynamical vector field can be expressed in a form adapted to symplectic geometry.

Using Greek letters to denote the abstract indices labeling tangent vectors to Γ, Xα
Dyn can

be expressed as

Xα
Dyn = Ωαβ

o ∂βHo + Ωαβ
1 ∂βH1 (A12)

where

Ho(φ, p(φ)) := H|Γo =
Vo
2

(p2(φ)
V 2
o

+ µ2φ2 +
λ

2
)φ4
)

,

H1(ϕ
(1), π(1)) =

1

2

∫

d̊v [(π(1))2 + Daϕ(1)Daϕ
(1) + µ2(ϕ(1))2 + 3λ(φ2)(ϕ(1))2] . (A13)

Note however that this is not a Hamiltonian flow on ΓTrun because it is not of the form

(Ωαβ
o + Ωαβ

1 )∂βHTrun for any function HTrun on ΓTrun. The obvious candidate, HTrun :=

Ho +H1 does not work because Ωαβ
o ∂βH1 6= 0 (since H1 depends not only on (ϕ(1), π(1)) but

also on φ).18 More generally, one can verify that the fact that H1 depends on φ implies that

18 Had we simply defined dynamics using HTrun := Ho +H1, it would have included the homogeneous part
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the Lie derivative of ΩTrun := Ωo +Ω1 by the dynamical vector field XDyn on ΓTrun does not

vanish.

In the classical theory, the fact that we have a well-defined dynamical flow on ΓTrun

suffices. However, the fact that the flow is not Hamiltonian introduces new features in

the transition to quantum theory. Keeping the quantum perspective in mind, one can

rephrase the classical dynamics as follows. Since the homogeneous solution is to be regarded

as the background and inhomogeneities as perturbations, we can first restrict ourselves

to the homogeneous part of the phase space (Γo,Ωo) and note that, on it, the dynamics is

indeed governed by a true Hamiltonian flow, generated by Ho. Fix any dynamical trajectory

φ(t), p(φ)(t) in Γo. To specify how perturbations propagate on this background solution,

we need to lift this trajectory to the normal bundle, ΓTrun. This is precisely what the

remaining part, Ωαβ
1 ∂β H1, of the dynamical vector fieldXα

Dyn does. Given any tangent vector

(ϕ
(1)
o , π

(1)
o ) at a point, say (φ(to), p(φ)(to)), along the given dynamical trajectory, the orbit

of Xα
Dyn through the point (φ(to), p(φ)(to); ϕ

(1)
o (to), π

(1)
o (to)) of ΓTrun specifies the dynamics

of the perturbation (ϕ(1), π(1)) on the background trajectory (φ(t), p(φ)(t)). The fact that

we have lifts to ΓTrun of orbits in Γo trivially implies that, even though different choices of

the initial (ϕ(1), π(1)) define distinct orbits (describing dynamics of various perturbations),

all these orbits in ΓTrun project down to the same orbit on Γo. This is just a reflection of

the fact that the dynamics defined by Xα
Dyn neglects the back-reaction of the perturbation

on the homogeneous background.

Remark: To obtain the truncated dynamics XTrun we used the vector space structure of

Γ to transport the vector (ϕ(1), π(1))|t+δt at (φ, p(φ))|t+δt to the point (φ, p(φ))|t. However,

one can carry out this comparison more generally, e.g., if there is a natural flat connection

to transport vectors from one point of the phase space to another. This is the case when

Γ is a cotangent bundle over an affine space (as in LQG) or over a convex subset of a

vector space (as in the ADM framework of general relativity). Therefore the procedure of

inducing dynamics on the truncated phase space from the exact dynamics in a neighborhood

of the homogeneous sector of the phase space goes through also in the cosmological context

of the back reaction of the first order perturbation (ϕ(1), π(1)). This would not be physically consistent

because this dynamics ignores the inhomogeneous part of the back-reaction of the same perturbation

which is of the same order in the ǫ expansion.
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