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Total-angular-momentum (TAM) waves provide a set of basis functions for scalar, vector, and
tensor fields that can be used in place of plane waves and that reflect the rotational symmetry of
the spherical sky. Here we discuss three-point correlation functions, or bispectra in harmonic space,
for scalar, vector, and tensor fields in terms of TAM waves. The Wigner-Eckart theorem dictates
that the expectation value, assuming statistical isotropy, of the product of three TAM waves is
the product of a Clebsch-Gordan coefficient (or Wigner-3j symbol) times a function only of the
total-angular-momentum quantum numbers. Here we show how this works, and we provide explicit
expressions relating the bispectra for TAM waves in terms of the more commonly used Fourier-space
bispectra. This formalism will be useful to simplify calculations of projections of three-dimensional
bispectra onto the spherical sky.

I. INTRODUCTION

Cosmological measurements have over the past several decades made the notion of a period of inflationary expansion
in the early Universe particularly appealing. The principal aim of early-Universe cosmology has thus become the
elucidation of the new physics responsible for inflation. While the simplest single-field slow-roll (SFSR) inflation
models predict primordial perturbations to be very nearly Gaussian [1], they do require some nonvanishing departures
from Gaussianity [2]. Moreover, just about any extension of SFSR models, or embedding of toy SFSR models into
more realistic models [3–5], or alternatives or additions to inflation [6] lead to larger departures from Gaussianity.
There has thus been ever-growing attention focused on the search for non-Gaussianity.
The vast majority of the literature on departures from Gaussianity focuses on the bispectrum (the three-point

correlation function in Fourier space) for the primordial curvature, a scalar quantity [7]. However, inflation also
predicts primordial gravitational waves (tensor metric perturbations) [8], and some inflationary models involve the
introduction of vector fields [9]. There are also discussions of primordial magnetic fields [10]. Just as there may arise
non-Gaussianity in the primordial scalar perturbation, there may also be non-Gaussianity in these vector fields, in
magnetic fields [11, 12], and in the gravitational-wave background [13–15]. Additional work on non-Gaussianities with
vector and scalar fields can be found in Refs. [16].
Non-Gaussianity in the primordial scalar perturbation is most commonly parametrized in terms of a bispectrum,

the expectation value for the product of three Fourier modes of wavevectors k1, k2, and k3, of the fields under
consideration. If the fields under consideration include vector or tensor fields, then the bispectrum will also depend
on some contractions of the polarization vectors/tensors for these fields.
Many cosmological observations, however, are performed on a spherical sky, and many observables (e.g., CMB tem-

perature/polarization) depend only on an angular position on the sky. While others may depend on three-dimensional
positions, astronomical measurements discriminate between the two angular coordinates and a radial coordinate.
Comparison of measured quantities with theoretical Fourier-space bispectra therefore necessarily require projection of
the three-dimensional Fourier-space bispectra onto the two-dimensional spherical sky. The bispectra projected onto
the spherical sky depend on the three multipoles l1, l2, and l3, associated with the three spherical-harmonic coeffi-
cients being correlated. Such projections necessarily involve the complications associated with spherical harmonics,
Clebsch-Gordan coefficients, and Wigner-3j symbols, and sometimes even Wigner-6j and Wigner-9j symbols.
In a recent paper [17], we developed a total-angular-momentum (TAM) formalism to provide sets of basis functions

for scalar, vector, and tensor fields in three spatial dimensions that reflect the rotational symmetry of the Universe
about any given point (taken to be our location). The purpose of these TAM waves is to incorporate the rotational
symmetry of the sky from the start, rather than start with plane waves which are later projected onto the sky. These
TAM waves generalize the more familiar tensor spherical harmonics [18–20], which provide a basis for tensor functions
on the two-sphere, to a basis for functions in three-dimensional Euclidean space. The TAM waves of Ref. [17] are
also provided for scalar and vector fields, and for all five components of a traceless tensor, not just the two transverse
components.
Each TAM wave is labeled by a wavenumber k, total-angular-momentum quantum numbers J , and azimuthal

quantum numberM . There are three sets of TAM waves for each kJM for vector fields (to reflect the three components
of a vector field) and five sets of TAM waves for each kJM for a symmetric traceless rank-2 tensor. We provided in
Ref. [17] several different sets of bases, for a given JM , for these three vector TAM waves and five tensor TAM waves.
In the orbital-angular-momentum (OAM) basis, the three vector basis functions for a given JM have orbital angular
momentum l = J − 1, J, J + 1, and the five tensor basis functions have l = J − 2, J − 1, J, J + 1, J + 2. In the second
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basis, the three vector basis functions for a given JM include a longitudinal (L) mode and two transverse modes (E
and B) of opposite parity. The five tensor functions in this basis include a longitudinal (L) mode, two vector modes
(V E and V B) of opposite parity, and two transverse-tensor modes (TE and TB) of opposite parity. The third basis
represents vector fields of a given JM in terms of states of helicity λ = 0,±1 and tensor fields in terms of modes of
helicity λ = 0,±1,±2. The most general scalar, vector, or tensor field can then be written in terms of these TAM
waves, rather than Fourier modes. Spherical-sky observables are then obtained more naturally from these TAM waves
than from Fourier waves.
In this paper we calculate the bispectra for TAM waves in terms of the more commonly used Fourier-space bispectra.

As we will see, the Wigner-Eckart theorem guarantees that the expectation value of the product of three TAM-wave
coefficients depends on M1, M2, and M3 only through the Clebsch-Gordan coefficient (or equivalently Wigner-3j
symbol or Gaunt integral); there may then be some dependence on J1, J2, and J3 in a prefactor in addition to that
in the Clebsch-Gordan coefficient. The specific form for the prefactor will depend on whether the bispectrum is
for scalar, vector, and/or tensor fields as well as on the tensorial nature of the bispectrum (i.e., how the indices on
the polarization vector/tensors are contracted). The principal results of this paper are thus the specific forms for
these prefactors for a variety of bispectra. These results will facilitate the calculation of observables, such as angular
bispectra, for theories that involve such correlations, particularly those that involve vector and/or tensor fields.
We begin in Section II with a brief review of the total-angular-momentum wave (TAM) formalism, and we use

the notation and conventions of Ref. [17] throughout. Section III presents the bispectra for three scalar TAM waves.
Section IV follows to calculate bispectra involving two transverse-vector TAM waves, in the E/B basis, and one
scalar TAM wave. Section V presents bispectra of two transverse-traceless tensor TAM waves plus one scalar TAM
wave. Section VI then deals with the correlation of one symmetric traceless tensor TAM wave with two scalar TAM
waves, where the traceless tensor can be a transverse-traceless, vectorial, or longitudinal. The same results apply
also to correlation of one traceless tensor TAM wave and two longitudinal vector TAM waves. Section VII provides
concluding remarks and provides a list of the equation numbers for the central results that relate the Fourier-space
and TAM-wave three-point functions. Appendix A presents helicity-basis overlap integrals that are used earlier in the
paper. We discuss a semi-classical picture to understand the structure of the TAM-wave bispectra in Appendix B.

II. REVIEW OF TOTAL ANGULAR MOMENTUM WAVES

Here we very briefly re-introduce total-angular-momentum (TAM) waves for scalar, vector, and tensor fields. We
follow throughout the convention and notation of Ref. [17] and refer the reader there for more details.
TAM waves are eigenfunctions of eigenvalue −k2 of the Laplacian that are also eigenstates of quantum numbers

J and M of total angular momentum squared and its third component. The scalar TAM waves are denoted by

Ψk
(JM)(x). TAM vector waves of orbital angular momentum l are specified by Ψ,k

(JM)a(x), where a = {x, y, z} is the

vector index and l = J − 1, J, J + 1. TAM tensor waves of orbital angular momentum l are specified by Ψ,k
(JM)ab(x),

where a and b are the tensor indices and l = J − 2, J − 1, J, J + 1, J + 2. The scalar, vector, and tensor TAM waves
are distinguished by the number of indices.
These TAM waves satisfy the completeness relations,

∑

JM

∫
k2 dk

(2π)3

[
4πiJΨk

(JM)(x)
]∗ [

4πiJΨk
(JM)(x

′)
]

= δD(x − x
′), (1)

∑

JMl

∫
k2 dk

(2π)3

[
4πilΨl,k

(JM)a(x)
]∗ [

4πilΨl,k
(JM)

a(x′)
]

= δD(x − x
′), (2)

∑

JMl

∫
k2 dk

(2π)3

[
4πilΨl,k

(JM)ab(x)
]∗ [

4πilΨl,k
(JM)

ab(x′)
]

= δD(x − x
′). (3)

These relations imply that an arbitrary scalar, vector, or tensor field can be expanded, respectively,

φ(x) =
∑

JM

∫
k2 dk

(2π)3
φk
(JM) 4πi

JΨk
(JM)(x), (4)

Va(x) =
∑

JMl

∫
k2 dk

(2π)3
V l,k
(JM) 4πi

lΨl,k
(JM)a(x), (5)

Tab(x) =
∑

JMl

∫
k2 dk

(2π)3
T l,k
(JM) 4πi

lΨl,k
(JM)ab(x), (6)
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in terms of TAM waves and expansion coefficients,

φk
(JM) =

∫
d3xφ(x)

[
4πiJΨk

(JM)(x)
]∗

, (7)

V l,k
(JM) =

∫
d3xV a(x)

[
4πilΨl,k

(JM)a(x)
]∗

, (8)

T l,k
(JM) =

∫
d3xT ab(x)

[
4πilΨl,k

(JM)a(x)
]∗

. (9)

(10)

By using the plane-wave expansions,

eik·x =
∑

JM

4πiJ
[
Y ∗

(JM)(k̂)
]
Ψk

(JM)(x), (11)

ε̂a(k̂)e
ik·x =

∑

JMl

4πil
[
ε̂b(k̂)Y l ∗

(JM)b(k̂)
]
Ψl,k

(JM)a(x), (12)

ε̂ab(k̂)e
ik·x =

∑

JMl

4πil
[
ε̂cd(k̂)Y l ∗

(JM)cd(k̂)
]
Ψl,k

(JM)ab(x), (13)

and orthogonality of the TAM waves,

∫
d3x

[
4πiJ

′

Ψk′

(J′M ′)(x)
]∗ [

4πiJΨk
(JM)(x)

]
= δJJ′δMM ′

(2π)3

k2
δD(k − k′), (14)

∫
d3x

[
4πil

′

Ψl′,k′ a
(J′M ′)(x)

]∗ [
4πilΨl,k

(JM)a(x)
]

= δll′δJJ′δMM ′

(2π)3

k2
δD(k − k′), (15)

∫
d3x

[
4πil

′

Ψl′,k′ ab
(J′M ′)(x)

]∗ [
4πilΨl,k

(JM)ab(x)
]

= δll′δJJ′δMM ′

(2π)3

k2
δD(k − k′), (16)

we can also write the expansion coefficients for scalar, vector and tensor waves as

φk
(JM) =

∫
d2k̂ φ̃(k)Y ∗

(JM)(k̂), (17)

V l,k
(JM) =

∫
d2k̂ Ṽ a(k)Y l ∗

(JM)a(k̂), (18)

T l,k
(JM) =

∫
d2k̂ T̃ ab(k)Y l ∗

(JM)ab(k̂). (19)

Similarly, if we choose to decompose the vector field into L/E/B waves and the tensor fields into L/V E/V B/TE/TB
waves, which we label by α, then we also have

V α,k
(JM) =

∫
d3xV a(x)

[
4πiJΨα,k

(JM)a(x)
]∗

=

∫
d2k̂ Ṽ a(k)Y α ∗

(JM)a(k̂), (20)

Tα,k
(JM) =

∫
d3xT ab(x)

[
4πiJΨα,k

(JM)a(x)
]∗

=

∫
d2k̂ T̃ ab(k)Y α ∗

(JM)ab(k̂). (21)

Finally, we can write the L/E/B vector TAM waves in terms of the L/E/B vector spherical harmonics as

ΨB,k
(JM)a(x) = jJ (kr)Y

B
(JM)a(n̂),

ΨE,k
(JM)a(x) = −i

[
j′J (kr) +

jJ (kr)

kr

]
Y E
(JM)a(n̂)− i

√
J(J + 1)

jJ (kr)

kr
Y L
(JM)a(n̂),

ΨL,k
(JM)a(x) = −i

√
J(J + 1)

jJ (kr)

kr
Y E
(JM)a(n̂)− ij′J(kr)Y

L
(JM)a(n̂), (22)
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and the L/V E/V B/TE/TB tensor TAM waves in terms of the L/V E/V B/TE/TB tensor spherical harmonics as

ΨL,k
(JM)ab(x) =− 1

2
(jJ(kr) + 3j′′J (kr)) Y

L
(JM)ab(n̂)−

√
3J(J + 1)fJ(kr)Y

V E
(JM)ab(n̂)

− 1

2

√
3(J + 2)!

(J − 2)!

jJ(kr)

(kr)2
Y TE
(JM)ab(n̂),

ΨV E,k
(JM)ab(x) =−

√
3J(J + 1)fJ(kr)Y

L
(JM)ab(n̂)− (jJ (kr) + 2j′′J (kr) + 2fJ(kr)) Y

V E
(JM)ab(n̂)

−
√
(J − 1) (J + 2)

(
fJ(kr) + 2

jJ(kr)

(kr)2

)
Y TE
(JM)ab(n̂),

ΨTE,k
(JM)ab(x) =− 1

2

√
3(J + 2)!

(J − 2)!

jJ(kr)

(kr)2
Y L
(JM)ab(n̂)−

√
(J − 1) (J + 2)

(
fJ(kr) + 2

jJ(kr)

(kr)2

)
Y V E
(JM)ab(n̂)

− 1

2

(
−jJ(kr) + j′′J (kr) + 4fJ(kr) + 6

jJ(kr)

(kr)2

)
Y TE
(JM)ab(n̂),

ΨV B,k
(JM)ab(x) =− i

(
j′J(kr) −

jJ (kr)

kr

)
Y V B
(JM)ab(n̂)− i

√
(J − 1) (J + 2)

jJ(kr)

kr
Y TB
(JM)ab(n̂),

ΨTB,k
(JM)ab(x) =− i

√
(J − 1) (J + 2)

jJ (kr)

kr
Y V B
(JM)ab(n̂)− i

(
j′J (kr) + 2

jJ(kr)

kr

)
Y TB
(JM)ab(n̂), (23)

where fJ(x) = (jJ (x)/x)
′. For later use, we define additional radial functions for vector TAM waves with α, β = E,L

by

Ψα,k
(JM)a(x) ≡ −i

∑

β

j
(α,β)
J,v (kr)Y β

(JM)a(n̂), (24)

and for tensor TAM waves with α, β = L, V E, TE by

Ψα,k
(JM)ab(x) ≡ −

∑

β

j
(α,β)
J,t (kr)Y β

(JM)ab(n̂), (25)

and for tensor TAM waves with α, β = TB, V B by

Ψα,k
(JM)ab(x) ≡ −i

∑

β

j
(α,β)
J,t (kr)Y β

(JM)ab(n̂). (26)

The precise forms for j
(α,β)
J,v can be read off Eq. (22) and for j

(α,β)
J,t from Eq. (23). Some of these radial profiles have

appeared in previous full-sky studies in cosmology. For example in the line-of-sight approach to CMB polarization, the

full-sky EE and BB power spectra, Eq.(29) of Ref. [20]), contain radial kernels identical to the functions j
(TE,TE)
J,t (x)

and j
(TB,TB)
J,t (x) defined here.

A. From TAM-bispectrum to angular bispectrum

Throughout this paper, we will calculate TAM bispectra of the form,

〈
Xα1, k1

J1M1
Y α2, k2

J2M2
Zα3, k3

J3M3

〉
, (27)

where X , Y , and Z represent generic scalar, vector and tensor fields, and αi represents the particular mode of interest
(L/E/B for vector fields and L/V E/V B/TE/TB for tensor fields). The TAM-wave bispectra above are related to
the angular bispectra for various observables as follows. Suppose we observe some projection of a three-dimensional
field X(x). The spherical-harmonic coefficients for the projection can be written in terms of the Fourier components

X̃(k) of the field as

aαX
lm =

∫
d3k

(2π)3
gX(k)X̃(k)Yα ∗

lm (k̂) =

∫
k2dk

(2π)3
gX(k)Xα, k

(lm), (28)
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in terms of a transfer function gX(k) which, assuming statistical isotropy, is a function only of the wavevector
magnitude k. Here we suppress tensor indices, as the end result (as will be spelled out more clearly in the rest of
the paper) is the same for scalar, vector and tensor fields, and Yα

lm generically represents the corresponding α modes
of scalar, vector, and tensor spherical harmonics. The observable angular bispectrum is then related to the TAM
bispectrum as

〈
aα1,X
J1M1

aα2,Y
J2M2

aα3,Z
J3M3

〉
=

∫
k21dk1
(2π)3

gX(k1)

∫
k22dk2
(2π)3

gY (k2)

∫
k23dk3
(2π)3

gZ(k3)
〈
Xα1, k1

J1M1
Y α2, k2

J2M2
Zα3, k3

J3M3

〉
. (29)

For example, if we take X(x) to be Bardeen’s curvature perturbation Φ(x), and the aXlm to be CMB-temperature
spherical-harmonic coefficients, then the appropriate transfer function is

gT (k) = 4πilgTl(k), (30)

in terms of the radiation transfer function gTl(k) [21]. If the aXlm are taken to be the density of galaxies on the sky,
then the transfer function is

gg(k) = 4πilbg

(
2

3

k2T (k)

H2
0Ωm

)∫
dzWg(z)D(z)jl[kdA(z)], (31)

with galaxy bias bg, matter transfer function T (k),, linear growth factor D(z), comoving angular=diameter distance
dA(z), and redshift distribution Wg(z) of galaxies normalized to

∫
dzWg(z) = 1. Here, H0 and Ωm are, respectively,

the Hubble and matter-density parameters at present.

III. SCALAR BISPECTRUM

Before turning to vector and tensor fields, for which the TAM formalism provides the most substantial advantage,
we begin by way of introduction with scalar bispectra in the TAM formalism.
The bispectrum Bsss(k1, k2, k3) for the scalar field is usually defined in terms of Fourier modes as

〈
φ̃(k1)φ̃(k2)φ̃(k3)

〉
= (2π)3δD(k1 + k2 + k3)Bsss(k1, k2, k3), (32)

where the Dirac delta function arises as a consequence of statistical homogeneity, and the dependence of the bispectrum
only on the magnitudes k1, k2, and k3 as a consequence of statistical isotropy. The subscript ‘sss’ is used to denote
the bispectrum for three scalar fields, to distinguish it from the bispectra to be discussed below that involve vector
and/or tensor fields.
If the scalar bispectrum is defined as in Eq. (32), then the expectation value for the product of three TAM-wave

coefficients are given by

〈
φk1

(J1M1)
φk2

(J2M2)
φk3

(J3M3)

〉
=

∫
d2k̂1

∫
d2k̂2

∫
d2k̂3

〈
φ̃(k1)φ̃(k2)φ̃(k3)

〉
Y ∗

(J1M1)
(k̂1)Y

∗

(J2M2)
(k̂2)Y

∗

(J3M3)
(k̂3). (33)

We then substitute Eq. (32) and expand the Dirac delta function, using the plane-wave expansion, Eq. (11), as

(2π)3δD(k1 + k2 + k3) =

∫
d3x e−ik1·xe−ik2·xe−ik3·x

=

∫
d3x

∑

limi

(4π)3(−i)l1+l2+l3jl1(k1r)jl2(k2r)jl3 (k3r)

×Y(l1m1)(k̂1)Y
∗

(l1m1)
(n̂)Y(l2m2)(k̂2)Y

∗

(l2m2)
(n̂)Y(l3m3)(k̂3)Y

∗

(l3m3)
(n̂), (34)

to eliminate the k̂i integrals. We can then write the TAM-wave bispectrum as

〈
φk1

(J1M1)
φk2

(J2M2)
φk3

(J3M3)

〉
= (4π)3(−i)l1+l2+l3Bsss(k1, k2, k3)

∫
d3xΨk1 ∗

(J1M1)
(x)Ψk2 ∗

(J2M2)
(x)Ψk3 ∗

(J3M3)
(x), (35)

in terms of an overlap of three TAM waves. Below we will see that the TAM-wave three-point functions will always
depend, even with vector and tensor fields, on overlaps of three TAM waves. Since the scalar TAM waves are
Ψk

JM (x) = jJ (kr)YJM (x̂), the overlap is simply,
∫

d3xΨk1

J1M1
(x)Ψk2

J2M2
(x)Ψk3

J3M3
(x) = GJ1J2J3

M1M2M3
JJ1J2J3

(k1, k2, k3), (36)
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where

Gl1l2l3
m1m2m3

=

∫
d2n̂Y(l1m1)(n̂)Yl2m2

(n̂)Yl3m3
(n̂) =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
m1 m2 m3

)(
l1 l2 l3
0 0 0

)
, (37)

is the Gaunt integral, and

Jl1l2l3(k1, k2, k3) =

∫ ∞

0

r2 dr jl1(k1r)jl2 (k2r)jl3(k3r). (38)

Therefore,

〈
φk1

(J1M1)
φk2

(J2M2)
φk3

(J3M3)

〉
= (4π)3(−i)l1+l2+l3GJ1J2J3

M1M2M3
JJ1J2J3

(k1, k2, k3)Bsss(k1, k2, k3). (39)

We have thus evaluated the TAM-wave three-point correlation function in terms of the overlap of three TAM waves.
We then arrive at our final result, Eq. (39), which provides a simple expression for the TAM-wave three-point function
in terms of the Fourier-space bispectrum, by evaluating that overlap. The factors connecting the Fourier-space and
TAM-wave three-point functions are the easily evaluated and familiar Gaunt integral, and the radial integral, Eq. (38).
The Gaunt integral is proportional to a Wigner-3j symbol and the Clebsch-Gordan coefficient. Its presence here is
a result of the Wigner-Eckart theorem, and we will see in the Sections below that the expectation value for the
product of any three TAM waves—not just scalar TAM waves—will be proportional to a Clebsch-Gordan coefficient
times a function only of J1, J2, and J3. We choose to write the results in terms of the Gaunt factor, rather than
Clebsch-Gordan coefficients or Wigner-3j symbols simply because it provides for more compact expressions.
The radial integral in Eq. (39) can be evaluated numerically using standard techniques [22–24], but often an end

result, which requires an additional integral over the ki, can be obtained more quickly by changing the orders of those
ki integrals and the radial integral in Eq. (38).
Below we will generalize Eq. (39) to three-point functions involving vector and tensor fields as well.

IV. TWO TRANSVERSE VECTORS AND A SCALAR

We now proceed with the analogous calculation for the three-point correlation function that involves two transverse-
vector fields and a scalar. The transverse vector field V a(x) satisfies ∇aV

a = 0, or in Fourier space, kaṼ
a(k) = 0.

Such a vector-vector-scalar correlation arises, for example, in models in which a magnetic field (the transverse-vector
field) is produced during inflation and thus correlated with the inflaton field (the scalar field) [11].
Our goal is to calculate the TAM-wave bispectra,

〈
V α1,k1

(J1M1)
V α2,k2

(J2M2)
φk3

(J3M3)

〉
, (40)

for {α1, α2} = {E,B} that correspond to a given Fourier-space bispectrum.

A. Fourier-space bispectra

We begin by discussing the Fourier-space bispectrum. Each Fourier component of the transverse-vector field can
be written

Ṽ a(k) =
∑

λ=±

ε̂aλ(k)Ṽλ(k), (41)

in terms of two helicity-basis polarization vectors ε̂λ(k) and helicity Fourier amplitudes Ṽλ(k). The helicity basis

vectors can be written as ε̂±(k) =
[
ε̂1(k) ± ik̂× ε̂1(k)

]
/
√
2, where ε̂1 is any unit vector in the plane perpendicular

to k. The most general Fourier-space vector-vector-scalar three-point function can therefore be written,

〈
Ṽ a(k1)Ṽ

b(k2)φ̃(k3)
〉
=
∑

λ1λ2

ε̂aλ1
(k1)ε̂

b
λ2
(k2)

〈
Ṽλ1

(k1)Ṽλ2
(k2)φ̃(k3)

〉
. (42)
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Given the orthonormality of the polarization vectors, this relation can then be inverted to provide the three-point
correlation,

〈
Ṽλ1

(k1)Ṽλ2
(k2)φ̃(k3)

〉
= ε̂aλ1

(k1)ε̂
b
λ2
(k2) 〈Va(k1)Vb(k2)φ(k3)〉 , (43)

for the helicity amplitudes.
Now consider the tensor structure of the three-point function on the right side of Eq. (43). By momentum conser-

vation, it most generally depends on ka1 and ka2 . Among all structures one can possibly construct, gab, ka1k
b
1, k

a
1k

b
2,

ka2k
b
1 and ka2k

b
2, terms proportional to k1a or kb2 have no contribution to Eq. (43) under helicity basis, and hence to the

bispectrum through Eq. (42).1 The most general parity-conserving three-point function can then be written,

〈
Ṽ a(k1)Ṽ

b(k2)φ̃(k3)
〉
= (2π)3δD(k1 + k2 + k3)

[
gabB(1)

vvs(k1, k2, k3) + ka2k
b
1B

(2)
vvs(k1, k2, k3)

]
, (44)

in terms of two vector-vector-scalar bispectra B
(1)
vvs(k1, k2, k3) and B

(2)
vvs(k1, k2, k3). Two different bispectra arise

because there are two components for each polarization vector.

To demonstrate our formalism, we take the example of non-zero B
(1)
vvs(k1, k2, k3), which may arise from a local

three-point interaction of the form φ(x)|V(x)|2 . The other bispectrum B
(2)
vvs(k1, k2, k3), which can arise as the vector-

vector-scalar correlation between the vector eletromagnetic potential and the inflaton from a φFµνF
µν coupling [11],

is left to future work.
Therefore, the Fourier-space bispectrum we will consider here will be of the form,

〈
V a(k1)V

b(k2)φ(k3)
〉
= (2π)3δD(k1 + k2 + k3)g

abBvvs(k1, k2, k3). (45)

B. TAM-wave bispectra

We now calculate the three-point correlation function,

〈
V α1,k1

(J1M1)
V α2,k2

(J2M2)
φk3

(J3M3)

〉
=

∫
d2k̂1d

2
k̂2d

2
k̂3 Y

α1 ∗

(J1M1)a
(k̂1)Y

α2 ∗

(J2M2)b
(k̂2)Y

∗

(J3M3)
(k̂3)

〈
Ṽ a(k1)Ṽ

b(k2)φ(k3)
〉
, (46)

for the E/B TAM-wave coefficients, where α1, α2 = {E,B}, and we have used Eq. (20). The first step is to expand
the Dirac delta function in Eq. (45), and using the identity,

∑

J′M ′

(−i)J
′

jJ′(kr)Y ∗

(J′M ′)(n̂)

∫
d2k̂Y α ∗

(JM)a(k̂)Y(J′M ′)(k̂) = (−i)J
[
Ψα,k

(JM)a(x)
]∗

, (47)

we find that

〈
V α1,k1

(J1M1)
V α2,k2

(J2M2)
φk3

(J3M3)

〉
= (4π)3(−i)J1+J2+J3Bvvs(k1, k2, k3)

∫
d3xΨα1,k1 ∗

(J1M1)
a(x)Ψα2,k2 ∗

(J2M2)a
(x)Ψk3 ∗

(J3M3)
(x). (48)

That is, the bispectrum of three TAM coefficients is proportional to the overlap of three TAM waves.
These overlap integrals can be evaluated with the projection of vector TAM waves in Eq. (22). The angular parts of

the overlap integral can be evaluated by writing the L/E/B vector spherical harmonics in terms of helicity spherical
harmonics as

Y ±1
(JM)a =

(
Y E
(JM)a ± iY B

(JM)a

)
/
√
2, Y L

(JM)a = Y 0
(JM)a. (49)

1 If parity violation is allowed, there may be additional terms constructed with the antisymmetric tensor ǫabc, but we restrict our attention

to parity-preserving terms.
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We can then use the helicity-harmonic integrals in Appendix A1 to obtain the spherical-harmonic overlap integrals,

∫
d2n̂Y L,a

(J1M1)
(n̂)Y L

(J2M2)a
(n̂)Y(J3M3)(n̂) = GJ1J2J3

M1M2M2
,

∫
d2n̂Y B,a

(J1M1)
(n̂)Y B

(J2M2)a
(n̂)Y(J3M3)(n̂) =

∫
d2n̂Y E,a

(J1M1)
(n̂)Y E

(J2M2)a
(n̂)Y(J3M3)(n̂)

= −1 + (−1)J1+J2+J3

2
GJ1J2J3

M1M2M3

〈J11J2,−1|J30〉
〈J10J20|J30〉

,

∫
d2n̂Y B,a

(J1M1)
(n̂)Y E

(J2M2)a
(n̂)Y(J3M3)(n̂) = i

[
1− (−1)J1+J2+J3

2

]
GJ1J2J3

M1M2M3

〈J11J2,−1|J30〉
〈J10J20|J30〉

, (50)

and we also have that

Y L
(J1M1)a

(n̂)Y
E/B,a
(J2M2)

(n̂) = 0. (51)

From these we obtain that the nonzero TAM-wave overlap integrals for J1 + J2 + J3 = even are

∫
d3xΨB,k1

(J1M1)a
(x)ΨB,k2,a

(J2M2)
(x)Ψk3

(J3M3)
(x) = −GJ1J2J3

M1M2M3

〈J11J2,−1|J30〉
〈J10J20|J30〉

JJ1J2J3
(k1, k2, k3), (52)

∫
d3xΨE,k1

(J1M1)a
(x)ΨE,k2,a

(J2M2)
(x)Ψk3

(J3M3)
(x) = GJ1J2J3

M1M2M3

[〈J11J2,−1|J30〉
〈J10J20|J30〉

∫
r2 dr j

(E,E)
J1,v

(k1r) j
(E,E)
J2,v

(k2r) jJ3
(k3r)

−
∫

r2 dr j
(E,L)
J1,v

(k1r) j
(E,L)
J2,v

(k2r) jJ3
(k3r)

]
, (53)

and when J1 + J2 + J3 = odd,

∫
d3xΨB,k1

(J1M1)a
(x)ΨE,k2,a

(J2M2)
(x)Ψk3

(J3M3)
(x) =

〈J11J2 − 1|J30〉
〈J10J20|J30〉

GJ1J2J3

M1M2M2

∫
r2 dr jJ1

(k1r) j
(E,E)
J2,v

(k2r) jJ3,v (k3r) .

(54)

Here, we have used the radial functions defined in Eq. (24). Note that strictly speaking, the Gaunt integral vanishes

if J1+J2+J3 = odd, as the Wigner-3j symbol

(
J1 J2 J3
0 0 0

)
vanishes. In every case where a Gaunt integral appears

with J1+J2+J3 = odd, though, it appears divided by a Clebsch-Gordan coefficient 〈J10J20|J30〉 which also contains
the same Wigner-3j symbol, and thus cancels that in the numerator. We choose to write things in this slightly
unconventional way to enable compact, but still unambiguous, expressions.
Eq. (48), together with the overlap integrals in Eqs. (52), (53), and (54), provide the B-B-scalar, E-E-scalar, and

B-E-scalar TAM-wave bispectra in terms of Bvvs(k1, k2, k3), the Fourier space vector-vector-scalar bispectrum.

V. TWO TRANSVERSE-TRACELESS TENSORS AND ONE SCALAR

We now consider a three-point correlation involving two transverse-traceless tensors and one scalar. Such a corre-
lation arises, for example, in inflation if the tensor modes are gravitational waves and the scalar field is the curvature
perturbation [13].
Our goal here will be to calculate the TAM-wave bispectra,

〈
Tα1,k1

(J1M1)
Tα2,k2

(J2M2)
φk3

(J3M3)

〉
, (55)

for {α1, α2} = {TE, TB} that correspond to a given Fourier-space bispectrum. Here we will take the Fourier-space
tensor-tensor-scalar three-point function to be of the form

〈
T̃ ab(k1)T̃

cd(k2)φ̃(k3)
〉
= (2π)3δD(k1 + k2 + k3)g

acgbdBtts(k1, k2, k3), (56)

that arises in single-field slow-roll inflation [13], in terms of a tensor-tensor-scalar bispectrum Btts(k1, k2, k3). The

tensor fields T ab are transverse, ∇aT̃ab(x) = 0, and traceless, gabT̃ab(x) = 0.
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We calculate the three-point correlation function of TE/TB TAM coefficients directly from Eq. (21):

〈
Tα1,k1

(J1M1)
Tα2,k2

(J2M2)
φk3

(J3M3)

〉
=

∫
d2k̂1d

2
k̂2d

2
k̂3 Y

α1 ∗

(J1M1)ab
(k̂1)Y

α2 ∗

(J2M2)cd
(k̂2)Y

∗

(J3M3)
(k̂3)

〈
T̃ ab(k1)T̃

cd(k2)φ(k3)
〉
, (57)

where α1, α2 = {L,E,B}. Expanding the Dirac delta function in Eq. (56) with Eq. (34) and using the identity,

∑

J′M ′

(−i)J
′

jJ′(kr)Y ∗

(J′M ′)(n̂)

∫
d2k̂Y α ∗

(JM)ab(k̂)Y(J′M ′)(k̂) = (−i)J
[
Ψα,k

(JM)ab(x)
]∗

, (58)

we find that

〈
Tα1,k1

(J1M1)
Tα2,k2

(J2M2)
φk3

(J3M3)

〉
= (4π)3(−i)J1+J2+J3Btts(k1, k2, k3)

∫
d3xΨα1,k1 ∗

(J1M1)
ab(x)Ψα2,k2 ∗

(J2M2)ab
(x)Ψk3 ∗

(J3M3)
(x). (59)

That is, the bispectrum of three TAM-wave coefficients is again proportional to the overlap of three TAM waves.
Our task now is to evaluate the overlap integrals,

∫
d3xΨα1,k1

(J1M1)ab
(x)Ψα2,k2,ab

(J2M2)
(x)Ψk3

(J3M3)
(x), (60)

for α1, α2 = TE, TB. With the the decomposition in Eq. (94) of Ref. [17], we only have to calculate the overlap of
three tensor spherical harmonics

∫
d2n̂Iab,cdY α1

(J1M1)ab
(n̂)Y α2

(J2M2)cd
(n̂)Y(J3M3)(n̂), (61)

for α1, α2 = L, V E/V B, TE/TB. Here the constant tensor Iab,cd is the identity tensor acting on symmetric traceless
tensors. In Appendix A2, we calculate these overlaps in the helicity basis. We then use the relations,

Y ±2
(JM)ab =

1√
2

(
Y TE
(JM)ab ± iY TB

(JM)ab

)
, Y ±1

(JM)ab =
1√
2

(
Y V E
(JM)ab ± iY V B

(JM)ab

)
, Y 0

(JM)ab = Y L
(JM)ab, (62)

to find that
∫

d2n̂Y L,ab
(J1M1)

(n̂)Y L
(J2M2)ab

(n̂)Y(J3M3)(n̂) = GJ1J2J3

M1M2M3
, (63)

∫
d2n̂Y V B,ab

(J1M1)
(n̂)Y V B

(J2M2)ab
(n̂)Y(J3M3)(n̂) =

∫
d2n̂Y V E,ab

(J1M1)
(n̂)Y V E

(J2M2)ab
(n̂)Y(J3M3)(n̂)

= −1 + (−1)
J1+J2+J3

2
GJ1J2J3

M1M2M3

〈J11J2,−1|J30〉
〈J10J20|J30〉

, (64)

∫
d2n̂Y V B,ab

(J1M1)
Y V E
(J2M2)ab

(n̂)Y(J3M3)(n̂) = i
1− (−1)J1+J2+J3

2
GJ1J2J3

M1M2M3

〈J11J2,−1|J30〉
〈J10J20|J30〉

, (65)

∫
d2n̂Y TB,ab

(J1M1)
(n̂)Y TB

(J2M2)ab
(n̂)Y(J3M3)(n̂) =

∫
d2n̂Y TE,ab

(J1M1)
(n̂)Y TE

(J2M2)ab
(n̂)Y(J3M3)(n̂)

=
1 + (−1)

J1+J2+J3

2
GJ1J2J3

M1M2M3

〈J12J2,−2|J30〉
〈J10J20|J30〉

, (66)

∫
d2n̂Y TB,ab

(J1M1)
(n̂)Y TE

(J2M2)ab
(n̂)Y(J3M3)(n̂) = −i

1− (−1)
J1+J2+J3

2
GJ1J2J3

M1M2M3

〈J12J2,−2|J30〉
〈J10J20|J30〉

. (67)

We now use Eq. (94) of Ref. [17], along with the orthonormality conditions,

Y L
(J1M1)ab

(n̂)Y
V E/V B,ab
(J2M2)

(n̂) = 0, Y L
(J1M1)ab

(n̂)Y
TE/TB,ab
(J2M2)

(n̂) = 0, Y
V E/V B
(J1M1)ab

(n̂)Y
TE/TB,ab
(J2M2)

(n̂) = 0, (68)
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to find that for J1 + J2 + J3 = even,
∫

d3xΨTB,k1

(J1M1)ab
(x)ΨTB,k2,ab

(J2M2)
(x)Ψk3

(J3M3)
(x) = GJ1J2J3

M1M2M3

∫
r2drjJ3

(k3r)

[ 〈J11J2,−1|J30〉
〈J10J20|J30〉

j
(TB,V B)
J1,t

(k1r)j
(TB,V B)
J2,t

(k2r)

−〈J12J2,−2|J30〉
〈J10J20|J30〉

j
(TB,TB)
J1,t

(k1r)j
(TB,TB)
J2,t

(k2r)

]
, (69)

∫
d3xΨTE,k1

(J1M1)ab
(x)ΨTE,k2,ab

(J2M2)
(x)Ψk3

(J3M3)
(x) = GJ1J2J3

M1M2M3

∫
r2drjJ3

(k3r)

[
j
(TE,L)
J1,t

(k1r)j
(TE,L)
J2,t

(k2r)

−〈J11J2,−1|J30〉
〈J10J20|J30〉

j
(TE,V E)
J1,t

(k1r)j
(TE,V E)
J2,t

(k2r) +
〈J12J2,−2|J30〉
〈J10J20|J30〉

j
(TE,TE)
J1,t

(k1r)j
(TE,TE)
J2,t

(k2r)

]
, (70)

and for J1 + J2 + J3 = odd,

∫
d3xΨTB,k1

(J1M1)ab
(x)ΨTE,k2,ab

(J2M2)
(x)Ψk3

(J3M3)
(x) = GJ1J2J3

M1M2M3

∫
r2drjJ3

(k3r)

[
−〈J11J2,−1|J30〉

〈J10J20|J30〉
j
(TB,V B)
J1,t

(k1r) j
(TE,V E)
J2,t

(k2r)

+
〈J12J2,−2|J30〉
〈J10J20|J30〉

j
(TB,TB)
J1,t

(k1r) j
(TE,TE)
J2,t

(k2r)

]
. (71)

Here, we have used the radial functions defined in Eq. (25) and Eq. (26). Eq. (59), together with the overlap integrals
in Eqs. (69), (70), and (71), provides the TB-TB-scalar, TE-TE-scalar, and TB-TE-scalar TAM-wave bispectra in
terms of Btts(k1, k2, k3), the Fourier-space tensor-tensor-scalar bispectrum.

VI. ONE SYMMETRIC TRACELESS TENSOR AND TWO SCALARS (OR TWO LONGITUDINAL
VECTORS)

We now calculate the three-point correlation that involves one symmetric traceless tensor and two scalars. The
traceless tensor may be a longitudinal (L) mode, one of the two vector modes (V E or V B), or one of the two
transverse-tensor (TE or TB) modes. The three-dimensional galaxy-survey observables of such a three-point tensor-
scalar-scalar correlation were studied in Ref. [15]. Moreover, a tensor-scalar-scalar correlation between inflationary
gravitational waves (the tensor mode) and the primordial curvature perturbation (the scalar mode) arises generically
during inflation [13]. The TAM-wave bispectra we present here may be useful in calculating full-sky observables
associated with these couplings.
To be precise, we consider here a tensor-scalar-scalar bispectrum Bsst(k1, k2, k3) defined by

〈
∇̃aφ(k1)∇̃bφ(k2)T̃

cd(k3)
〉
= (2π)3δD(k1 + k2 + k3)g

acgbdk1k2Bsst(k1, k2, k3). (72)

Given that V a = ∇aφ is a longitudinal-vector field, we can also write this three-point function as a vector-vector-tensor
bispectrum Bvvt(k1, k2, k3), where here “vector” is a longitudinal vector, of the form,

〈
Ṽ a(k̂1)Ṽ

b(k̂2)T̃
cd(k̂3)

〉
= (2π)3δD(k1 + k2 + k3)g

acgbdBvvt(k1, k2, k3). (73)

The three-point function of one TAM coefficient and two scalar TAM coefficients can be calculated from
〈
V L,k1

(J1M1)
V L,k2

(J2M2)
Tα,k3

(J3M3)

〉
= (4π)3(−i)J1+J2+J3Bvvt(k1, k2, k3)

∫
d3xΨL,k1 a

(J1M1)
(x)ΨL,k2 b

(J2M2)
(x)Ψα,k3

(J3M3)ab
(x), (74)

and using Eq. (72) and φk
JM = iV L,k

(JM)/k,

〈
φk1

(J1M1)
φk2

(J2M2)
Tα,k3

(J3M3)

〉
= −(4π)3(−i)J1+J2+J3Bsst(k1, k2, k3)

∫
d3xΨL,k1 a

(J1M1)
(x)ΨL,k2 b

(J2M2)
(x)Ψα,k3

(J3M3)ab
(x). (75)

That is, we only need to calculate the overlap,
∫

d3xΨL,k1 a
(J1M1)

(x)ΨL,k2 b
(J2M2)

(x)Ψα,k3

(J3M3)ab
(x) =

∫
d3x

[
i

k1
∇aΨk1

(J1M1)
(x)

] [
i

k2
∇bΨk2

(J2M2)
(x)

]
Ψα,k3

(J3M3)ab
(x), (76)

for α = L, V E, V B, TE, TB. Below we discuss the three cases where the traceless tensor is longitudinal (L), vectorial
(V E/V B), or transverse (TE/TB).
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A. The transverse-traceless components

We start with transverse-traceless tensors, α = TE, TB. Since the transverse-traceless fields are divergence-free,
we can integrate by parts in the integral in Eq. (76) to get,

1

k1k2

∫
d3xΨk1

(J1M1)
(x)
[
∇a∇bΨ

L,k2

(J2M2)
(x)
]
Ψα,k1,ab

(J3M3)
(x). (77)

We next use the definition [17],

ΨL,k
(JM)ab(x) =

√
3

2

(
1

k2
∇a∇b +

1

3
gab

)
Ψk

(JM)(x), (78)

of longitudinal-tensor TAM waves, and the fact that the tensor mode is traceless, to rewrite the three-wavefunction
overlap as,

∫
d3xΨL,k1 a

(J1M1)
(x)ΨL,k2 b

(J2M2)
(x)Ψα,k3

(J3M3)ab
(x) =

√
1

6

[
k2
k1

∫
d3xΨk1

(J1M1)
(x)ΨL,k2

(J2M2)ab
(x)Ψα,k3, ab

(J3M3)
(x) + (1 ↔ 2)

]
, (79)

for α = TE, TB. What we now need to calculate is the overlap of a transverse tensor, a longitudinal tensor, and a
scalar. Using Eq. (23) and Eqs. (63)–(67), we find that when J1 + J2 + J3 = even,

∫
d3xΨL,k1 a

(J1M1)
(x)ΨL,k2 b

(J2M2)
(x)ΨTE,k3

(J3M3)ab
(x) =

1√
6
GJ3J2J1

M3M2M1

{
k2
k1

∫
r2drjJ1

(k1r)
[
j
(L,L)
J2,t

(k2r) j
(TE,L)
J3,t

(k3r)

−〈J31J2,−1|J10〉
〈J30J20|J10〉

j
(L,V E)
J2,t

(k2r) j
(TE,V E)
J3,t

(k3r) +
〈J32J2,−2|J10〉
〈J30J20|J10〉

j
(L,TE)
J2,t

(k2r) j
(TE,TE)
J3,t

(k3r)

]
+ (1 ↔ 2)

}
,

(80)

and when J1 + J2 + J3 = odd,

∫
d3xΨL,k1 a

(J1M1)
(x)ΨL,k2 b

(J2M2)
(x)ΨTB,k3

(J3M3)ab
(x) =

1√
6
GJ3J2J1

M3M2M1

{
k2
k1

∫
r2drjJ1

(k1r)

×
[
−〈J31J2,−1|J10〉

〈J30J20|J10〉
j
(L,V E)
J2,t

(k2r) j
(TB,V B)
J3,t

(k3r) +
〈J32J2,−2|J10〉
〈J30J20|J10〉

j
(L,TE)
J2,t

(k2r) j
(TB,TB)
J3,t

(k3r)

]
+ (1 ↔ 2)

}
.

(81)

Here, again, we use the radial functions defined in Eq. (25) and Eq. (26).

B. The vector components

Next we consider the two vector modes, α = V E, V B. The TAM waves for the vector components of the symmetric
trace-free tensor can be related to the TAM waves for transverse-vector fields [17] through

i

k
∇aΨ

V B,ab
(JM) (x) = − 1√

2
ΨB,b

(JM)(x),
i

k
∇aΨ

V E,ab
(JM) (x) = − 1√

2
ΨE,b

(JM)(x). (82)

Since the Ψ
TE/TB,k
(JM)ab are traceless, we can do the overlap integral in Eq. (76) by integrating by parts to obtain

∫
d3xΨL,k1

(J1M1)a
(x)ΨL,k2

(J2M2)b
(x)Ψα,k3,ab

(J3M3)
(x) =

√
1

6

[
k2
k1

∫
d3xΨk1

(J1M1)
(x)ΨL,k2

(J2M2)ab
(x)Ψα,k3, ab

(J3M3)
(x) + (1 ↔ 2)

]

+
1√
8

[
k3
k1

∫
d3xΨk1

(J1M1)
(x)ΨL,k2

(J2M2)b
(x)Ψα,k3,b

(J3M3)
(x) + (1 ↔ 2)

]
,(83)
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where α = TE, TB for tensor-valued TAM waves, and α = E,B for vector-valued TAM waves. Following the same
techniques as in previous Sections, we find for J1 + J2 + J3 =even,

∫
d3xΨL,k1

(J1M1)a
(x)ΨL,k2

(J2M2)b
(x)ΨV E,k3,ab

(J3M3)
(x) =

√
1

6
GJ3J2J1

M3M2M1

[
k2
k1

∫
r2drjJ1

(k1r)

{
j
(L,L)
J2,t

(k2r)j
(V E,L)
J3,t

(k3r)

−〈J31J2,−1|J10〉
〈J30J20|J10〉

j
(L,V E)
J2,t

(k2r)j
(V E,V E)
J3,t

(k3r) +
〈J32J2,−2|J10〉
〈J30J20|J10〉

j
(L,TE)
J2,t

j
(V E,TE)
J3,t

}
+(1 ↔ 2)

]

− 1√
8
GJ3J2J1

M3M2M1

[
k3
k1

∫
r2drjJ1

(k1r)

{
j
(L,L)
J2,v

(k2r)j
(E,L)
J3,v

(k3r) −
〈J31J2,−1|J10〉
〈J30J20|J10〉

j
(L,E)
J2,v

(k2r)j
(E,E)
J3,v

(k3r)

}
+(1 ↔ 2)

]
,

(84)

and for J1 + J2 + J3 =odd,

∫
d3xΨL,k1

(J1M1)a
(x)ΨL,k2

(J2M2)b
(x)ΨV B,k3,ab

(J3M3)
(x) =

√
1

6
GJ3J2J1

M3M2M1

[
k2
k1

∫
r2drjJ1

(k1r)

×
{
−〈J31J2,−1|J10〉

〈J30J20|J10〉
j
(L,V E)
J2,t

(k2r)j
(V B,V B)
J3,t

(k3r) +
〈J32J2,−2|J10〉
〈J30J20|J10〉

j
(L,TE)
J2,t

j
(V B,TB)
J3,t

}
+(1 ↔ 2)

]

+
1√
8
GJ3J2J1

M3M2M1

[
k3
k1

〈J31J2,−1|J10〉
〈J30J20|J10〉

∫
r2drjJ1

(k1r)j
(L,E)
J2,v

(k2r)jJ3
(k3r) + (1 ↔ 2)

]
. (85)

Again, we have used the radial functions defined in Eq. (25) and Eq. (26).

C. Longitudinal part

Finally, we consider the longitudinal mode of the traceless tensor field. Once again, we can write the longitudinal

tensor-valued TAM wave function ΨL,k
(JM)ab(x) in terms of differential operators acting on scalar-valued TAM waves

Ψk
(JM)(x), as shown in Eq. (78). We can also put the two longitudinal vector-valued TAM wave functions into this

operator form. Integrating by parts allows us to move around those gradient operators, and we re-write the overlap
of three TAM waves as

∫
d3xΨL,k1,a

(J1M1)
(x)ΨL,k2,b

(J2M2)
(x)ΨL,k3

(J3M3)ab
(x) =

1√
6

∫
d3x

{
k2
k1

Ψk1

(J1M1)
(x)ΨL,k2,ab

(J2M2)
(x)ΨL,k3

(J3M3)ab
(x)

+
k3
k1

Ψk1

(J1M1)
(x)ΨL,k2,a

(J2M2)
(x)ΨL,k3

(J3M3)a
(x) + (1 ↔ 2)

}
. (86)

The first term is the overlap of two longitudinal tensors and one scalar, and the second term is the overlap of two
longitudinal vectors and one scalar. The integrals are non-zero only if J1 + J2 + J3 = even, and the end result is

∫
d3xΨL,k1,a

(J1M1)
(x)ΨL,k2,b

(J2M2)
(x)ΨL,k3

(J3M3)ab
(x) =

1√
6
GJ3J2J1

M3M2M1

{∫
r2drjJ1

(k1r)

[
k2
k1

(
j
(L,L)
J2,t

(k2r) j
(L,L)
J3,t

(k3r)

−〈J31J2,−1|J10〉
〈J30J20|J10〉

j
(L,V E)
J2,t

(k2r) j
(L,V E)
J3,t

(k3r) +
〈J32J2,−2|J10〉
〈J30J20|J10〉

j
(L,TE)
J2,t

(k2r) j
(L,TE)
J3,t

(k3r)

)

−k3
k1

(
j
(L,L)
J2,v

(k2r) j
(L,L)
J3,v

(k3r)−
〈J31J2,−1|J10〉
〈J30J20|J10〉

j
(L,E)
J2,v

(k2r) j
(L,E)
J3,v

(k3r)

)]
+ (1 ↔ 2)

}
, (87)

where the various radial functions have been defined in Eq. (25) in Eq. (26).
We have thus calculated the overlaps of a traceless-tensor TAM wave and two scalar (or longitudinal-vector) TAM

waves for the longitudinal, vector, and transverse-tensor components. These results, when inserted into Eq. (74) or
Eq. (74), give the TAM bispectra for a traceless tensor field with either two longitudinal fields or two scalar fields.



13

VII. CONCLUSIONS

In this paper, we have calculated several bispectra for scalar, vector, and tensor fields in the total-angular-
momentum formalism. We began with the scalar-scalar-scalar bispectrum. We then considered an example of a
vector-vector-scalar (where here vector is a transverse vector) bispectrum and a tensor-tensor-scalar (where here
tensor is a transverse-traceless tensor). The vector-vector-scalar bispectrum is of the form that may arise from the
correlation of a magnetic field with a scalar field [11], while the tensor-tensor-scalar correlation is precisely the same
form that arises in inflation [13]. We obtained bispectra for TAM waves in the E/B basis (for vector fields) and the
TE/TB basis (for the tensor fields) through intermediate steps that involved the TAM-wave helicity basis. We then
moved on to calculate the TAM-wave three-point function for a tensor-scalar-scalar correlation that comes from a
tensor-scalar-scalar bispectrum of precisely the same form that arises in inflation [13]. For completeness (and to follow
through in Ref. [25] on CMB signatures of correlations of the form considered in Ref. [15]), we have also considered
the bispectra for two scalars and either the longitudinal of vector components of the traceless tensor field.

type of correlation Fourier-space bispectrum TAM-wave result
scalar-scalar-scalar (32) (39)

vector-vector-scalar (transverse vectors) (45) (46) and (52)–(54)
tensor(T)-tensor(T)-scalar (56) (59) and (69)–(71)
tensor(T)-scalar-scalar (72) (75), (80), and (81)

tensor(T)-vector-vector (longitudinal vectors) (73) (74), (80), and (81)
tensor(V)-scalar-scalar (72) (75), (80), and (81)

tensor(V)-vector-vector (longitudinal vectors) (73) (74), (84), and (85)
tensor(L)-scalar-scalar (72) (75) and (87)

tensor(L)-vector-vector (longitudinal vectors) (73) (74) and (87)

TABLE I: List of the types of three-point functions we consider, the equation where the Fourier-space bispectrum we consider
is defined, and the equations that contain the central results for the TAM-wave three-point functions. We distinguish between
longitudinal and transverse vectors. The labels T , V and L refer to transverse tensorial, transverse vectorial and longitudinal
part of a traceless tensor field respectively.

In the plane-wave formalism, the three-point correlation in Fourier space is parametrized by a bispectrum
B(k1, k2, k3) that depends on the three wavenumber magnitudes k1, k2, k3 only, multiplied by a “momentum-
conserving” Dirac delta function, a consequence of statistical homogeneity. In the TAM formalism, generically the
three-point correlation is parametrized by exactly the same bispectrum, but multiplied by an “angular-momentum-
conserving” Clebsch-Gordan coefficient (which we write in shorthand as a Gaunt factor), a consequence of statistical
isotropy (the Wigner-Eckart theorem), and an integral over radial profiles which does not depend on the azimuthal
quantum numbers. Statistical homogeneity along the radial direction is encoded in the integral over the radial profiles.
Since the E/B and TE/TB TAM waves have definite parity, parity conservation is manifest in the bispectrum

(determined by whether J1 + J2 + J3 is even or odd). This is to be contrasted with the plane-wave formalism, where
the two linear polarizations of a transverse-vector or a transverse-traceless-tensor are identified with each other by
a simple rotation about the direction of wave propagation. In the TAM formalism, the E/B modes have different
geometrical factors and different radial integrals in the bispectrum, despite the fact that their power spectra must
coincide by statistical isotropy [17]. This means that E/B modes correlate to other fields differently when cubic
interactions are taken into consideration. They thus have different bispectra.
Our survey of bispectra was not at all exhaustive. We showed in Section IVA, for example, that vector-vector-scalar

correlations can be parametrized, assuming parity invariance, in terms of two bispectra, and we then considered one of
those. There may likewise be additional types of bispectra involving tensor fields and beyond those that we considered
here. There are also additional forms for bispectra that may arise if we allow for parity violation, and in this case,
the helicity-basis TAM waves we developed in Ref. [17] should be particularly appropriate.
The value of the TAM-wave bispectra we have discussed here becomes apparent when we realize that many cos-

mological measurements are performed on the full sky, or over wide-angle surveys. Angular correlations are then
decomposed into angular power spectra CJ (usually written as Cl) parametrized by multipoles J . The advantage of
TAM waves is that once the proper scalar, vector, or tensor TAM waves are identified, rotational symmetry guarantees
that the observable CJ will receive contributions only from TAM waves with that same J . In this sense, TAM waves
provide a more natural choice of basis functions than the conventionally used plane waves. The advantage for three-
point functions is that once the proper TAM waves are identified, the results we have derived in this paper provide the
TAM-wave angular bispectra in terms of the more commonly seen Fourier-space bispectra. Since observable angular
bispectra will be obtained from projections of the TAM-wave bispectra, the J1,M1, J2,M2, J3,M3 dependences of the
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angular bispectra can be read off directly from the results we have presented here. For calculating CMB observables
from bispectra involving vector or tensor fields, the TAM approach is particularly powerful in that equivalent results
can be obtained without any Wigner-6j or Wigner-9j symbol, nor does any additional summation over the orbital
angular momentum arise, as opposed to using plane waves.
One example of the utility of this formalism will be provided in forthcoming work [25] where we calculate the

bipolar power spectrum of the cosmic microwave background that arises from scalar, vector, and tensor distortions
to the local density two-point autocorrelation function of the form discussed in Ref. [15]. In other work [26] we will
show how these TAM-wave bispectra can be used to construct estimators from wide-angle galaxy surveys (including
redshift-space distortions) for the types of distortions considered in Ref. [15].
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Appendix A: TAM-wave overlap integrals in the helicity basis

In this Section, we calculate the overlap of three TAM waves in the helicity basis. We first calculate the overlap of
two transverse-vector TAM waves and one scalar TAM wave in Section A1 and then the overlap of two transverse-
tensor TAM waves and one scalar TAM wave in Section A2.
Our starting point will be the overlap [27],

∫
d2n̂ s1Y(l1m1)(n̂)s2Y(l2m2)(n̂)s3Y(l3m3)(n̂) = (−1)l1+l2+l3+s3Gl1l2l3

m1m2m3

〈l1s1l2s2|l3 − s3〉
〈l10l20|l30〉

, (A1)

of three spin-s spherical harmonics, which holds for s1 + s2 + s3 = 0.

1. Two transverse vector TAM-waves and one scalar TAM wave

Let us first calculate
∫

d2n̂gabY λ1

(J1M1)a
(n̂)Y λ2

(J2M2)b
(n̂)Y(J3M3) (n̂) , (A2)

for λ1, λ2 = 0,±1. We use the completeness relation for the spherical basis,

gab =
∑

λ

ε̂aλ(n̂)ε̂
b∗
λ (n̂) =

∑

λ

(−1)
λ
ε̂aλ(n̂)ε̂

b
−λ(n̂). (A3)

The gab on the far left does not really depend on n̂, but the decomposition can be done at each n̂. Then, we find

∫
d2n̂gabY λ1

(J1M1)a
(n̂)Y λ2

(J2M2)b
(n̂)Y(J3M3)(n̂) =

∑

λ

(−1)
λ
∫

d2n̂ε̂aλ(n̂)ε̂
b
−λ(n̂)Y

λ1

(J1M1)a
(n̂)Y λ2

(J2M2)b
(n̂)Y(J3M3)(n̂)

= (−1)λ1 δλ1,−λ2

∫
d2n̂−λ1

Y(J1M1)(n̂)λ1
Y(J2M2)(n̂)Y(J3M3)(n̂). (A4)

Here, we use Eq. (52) of Ref. [17] to relate the vector spherical harmonics in the helicity basis to the spin-weighted
spherical harmonics [18]

ε̂aλ′(n̂)Y λ
(JM)a(n̂) = −λY(JM)(n̂)δλλ′ . (A5)

Since the sum of the three spins in the three spin-weighted spherical harmonics in Eq. (A4) is zero, we use Eq. (A1)
to calculate the angular integral of three helicity-basis TAM waves to be,

∫
d2n̂gabY λ1

(J1M1)a
(n̂)Y λ2

(J2M2)b
(n̂)Y(J3M3)(n̂) = (−1)λ1 δλ1,−λ2

GJ1J2J3

M1M2M3

〈J1λ1J2,−λ1|J30〉
〈J10J20|J30〉

. (A6)
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Due to the Kronecker delta, the only non-zero combinations are
∫

d2n̂gabY 0
(J1M1)a

(n̂)Y 0
(J2M2)b

(n̂) Y(J3M3) (n̂) = GJ1J2J3

M1M2M3
,

∫
d2n̂gabY +1

(J1M1)a
(n̂)Y −1

(J2M2)b
(n̂) Y(J3M3) (n̂) = −GJ1J2J3

M1M2M3

〈J11J2,−1|J30〉
〈J10J20|J30〉

,

∫
d2n̂gabY −1

(J1M1)a
(n̂)Y +1

(J2M2)b
(n̂) Y(J3M3) (n̂) = −GJ1J2J3

M1M2M3

〈J1,−1, J21|J30〉
〈J10J20|J30〉

. (A7)

2. Two transverse tensor TAM-waves and one scalar TAM wave

We now calculate the helicity-basis overlap integral,
∫

d2n̂Iab,cdY λ1

(J1M1)ab
(n̂)Y λ2

(J2M2)cd
(n̂)Y(J3M3)(n̂), (A8)

for λ1, λ2 = 0,±1,±2. With the completeness relation,

Iab,cd =
∑

λ

ε̂abλ (n̂)ε̂cd∗λ (n̂) =
∑

λ

(−1)
λ
ε̂abλ (n̂)ε̂cd−λ(n̂), (A9)

and Eq. (100) of Ref. [17] (the relation between tensor spherical harmonics and the spin-weight s = 2 spherical
harmonics),

ε̂abλ′ (n̂)Y λ
(JM)ab(n̂) = −λY(JM)(n̂)δλλ′ , (A10)

the integration becomes
∫

d2n̂ Iab,cdY λ1

(J1M1)ab
(n̂)Y λ2

(J2M2)cd
(n̂)Y(J3M3)(n̂) =

∑

λ

(−1)
λ
∫

d2n̂ε̂abλ (n̂)ε̂cd−λ(n̂)Y
λ1

(J1M1)ab
(n̂)Y λ2

(J2M2)cd
(n̂)Y(J3M3)(n̂)

= (−1)λ1 δλ1,−λ2

∫
d2n̂−λ1

Y(J1M1)(n̂)λ1
Y(J2M2)(n̂)Y(J3M3)(n̂).

(A11)

Then we find
∫

d2n̂Y λ1,ab
(J1M1)

(n̂)Y λ2

(J2M2)ab
(n̂)Y(J3M3)(n̂) = (−1)λ1δλ1,−λ2

GJ1J2J3

M1M2M3

〈J1λ1J2,−λ1|J30〉
〈J10J20|J30〉

. (A12)

Appendix B: A semi-classical interpretation

In this Appendix, we briefly discuss a semi-classical picture which allows us to interpret our results for the three-
point function involving two transverse vectors and one scalar in the limit of large angular momentum.
In Sec. IV, we presented three-point correlations involving two transverse vectors and one scalar, namely Eq. (46),

together with the overlap integrals in Eqs. (52), (53), and (54). Some re-arrangment of those results enables us to
rewrite them as
〈
V E,k1

(J1M1)
V E,k2

(J2M2)
φk3

(J3M3)

〉
= − (4π)

3
(−i)

J1+J2+J3 Bvvs (k1, k2, k3)GJ1J2J3

M1M2M3

×
∫

r2dr

[
[1] + [2]− [3]

2
√
[1][2]

j
(E,E)
J1,v

(k1r) j
(E,E)
J2,v

(k2r) +
√
[1][2]

jJ1
(k1r)

k1r

jJ2
(k2r)

k2r

]
jJ3

(k3r) ,

(B1)

〈V B,k1

(J1M1)
V B,k2

(J2M2)
φk3

(J3M3)
〉 = (4π)

3
(−i)

J1+J2+J3 Bvvs (k1, k2, k3)
[1] + [2]− [3]

2
√
[1][2]

GJ1J2J3

M1M2M3

×
∫

r2drjJ1
(k1r) jJ2

(k2r) jJ3
(k3r) , (B2)
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〈V B,k1

(J1M1)
V E,k2

(J2M2)
φk3

(J3M3)
〉 = − (4π)3 (−i)J1+J2+J3 Bvvs (k1, k2, k3)GJ1J2J3

M1M2M3

〈J10J20|J3 − 1, 0〉
〈J10J20|J30〉

√
2J3 + 1

2J3 − 1

×
√
(−J1 + J2 + J3) (J1 − J2 + J3) (J1 + J2 − J3 + 1) (J1 + J2 + J3 + 1)

2
√
[1][2]

×
∫

r2drjJ1
(k1r) j

(E,E)
J2,v

(k2r) jJ3
(k3r) . (B3)

Here we have introduced the shorthand notation [i] ≡ Ji(Ji + 1) for i = 1, 2, 3. These three-point functions have now
been put into forms comparable to the three-point function, Eq. (39), for three scalars. We have a bispectrum function
in terms of wave vectors with some suitable multiplying prefactor, a Gaunt integral in accord with the Wigner-Eckart
theorem, and an integral of three radial profiles. For a vector-vector-scalar correlation, we have an extra geometric
factor made of angular momenta J1, J2, and J3. In the limit of large angular momenta, i.e. J1, J2, J3 ≫ 1, these
factors are reduced to cosine and sine

[1] + [2]− [3]

2
√
[1][2]

≈ cos θ12,

√
(−J1 + J2 + J3) (J1 − J2 + J3) (J1 + J2 − J3 + 1) (J1 + J2 + J3 + 1)

2
√
[1][2]

≈ sin θ12. (B4)

where θ12 is the angle between J1 and J2, in a triangle whose three sides have length J1,J2 and J3, repectively.
These geometric factors, interpreted in a semi-classical way, can be attributed to the vector structure of vector

TAM waves. First consider the case of two B-mode transverse vectors. The three-point function is proportional to
the overlap,

∫
d3xΨk1,B,a

(J1M1)
(x)Ψk2,B

(J2M2)a
(x)Ψk3

(J3M3)
(x) =

∫
d3x

(
−iL̂√
[1]

Ψk1

(J1M1)
(x)

)
·
(

−iL̂√
[2]

Ψk2

(J2M2)
(x)

)
Ψ(J3M3)(x)

≈ − 1√
[1][2]

∫
d3xJ1Ψ(J1M1) · J2Ψ(J2M2)Ψ(J3M3)

= − 1√
[1][2]

√
[1]
√
[2] cos θ12

∫
d3xΨ(J1M1)Ψ(J2M2)Ψ(J3M3)

= − cos θ12

∫
d3xΨ(J1M1)Ψ(J2M2)Ψ(J3M3), (B5)

where according to the construction in Ref. [17] we have used Ψk,B
(JM)a(x) = KaΨ

k
(JM)(x)/

√
J(J + 1), with Ka =

−iL̂a and L̂a being the orbital angular-momentum operator. In the second line, we associate two classical angular-
momentum vectors J1,J2, of magnitude J1(J1 + 1) and J2(J2 + 1) respectively, with the first two TAM waves. Note
that J1 and J2 are not fixed vectors, since they precess about the z axis. But by angular-momentum conservation
they always differ by a third angular-momentum vector J3 of magnitude J3(J3 + 1) that is associated with the third
TAM wave, which also precesses about the z axis, as shown in Fig. 1. With this picture, the cosine factor then arises
naturally.
The case of one B mode and one E mode can be analyzed similarly,

∫
d3xΨk1,B,a

(J1M1)
(x)Ψk2,E

(J2M2)a
(x)Ψk3

(J3M3)
(x) =

∫
d3x

(
−iL̂√
[1]

Ψk1

(J1M1)
(x)

)
·
(

∇× L̂

k2
√
[2]

Ψk2

(J2M2)
(x)

)
Ψ(J3M3)(x)

≈ 1√
[1][2]

∫
d3xJ1Ψ(J1M1) ·

(
k̂2 × J2Ψ(J2M2)

)
Ψ(J3M3)

=
(
Ĵ1 ·

(
k̂2 × Ĵ2

)) ∫
d3xΨ(J1M1)Ψ(J2M2)Ψ(J3M3)

= −
((

Ĵ1 × Ĵ2

)
· k̂2

)∫
d3xΨ(J1M1)Ψ(J2M2)Ψ(J3M3), (B6)

where this time we have also used Ψk,B
(JM)a(x) = MaΨ

k
(JM)(x)/

√
J(J + 1), with Ma = iεabc∇bKc/k. We clearly see a

factor |Ĵ1 × Ĵ1| = sin θ12, which is the sine we find in the large-J limit.
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z

J2

J1

J3

θ12

k2

k1

FIG. 1: Geometry of the semi-classical picture: three classical angular-momentum vectors J1, J2, and J3 form a triangle and
precess about the chosen z-axis, associated with the three TAM waves of wave numbers k1, k2, and k3 respectively. The angle
θ12 between J1 and J2, however, remains the same. The wave vectors k1 and k2, which are not definitive for TAM waves, are
perpendicular to angular momenta J1 and J2, respectively.

To close, we consider the case of two E-mode vectors

∫
d3xΨk1,E,a

(J1M1)
(x)Ψk2,E

(J2M2)a
(x)Ψk3

(J3M3)
(x) =

∫
d3x

(
∇× L̂

k1
√
[1]

Ψk1

(J1M1)
(x)

)
·
(

∇× L̂

k2
√
[2]

Ψk2

(J2M2)
(x)

)
Ψ(J3M3) (x)

≈ − 1√
[1][2]

∫
d3x

(
k̂1 × J1

)
Ψ(J1M1) ·

(
k̂2 × J2Ψ(J2M2)

)
Ψ(J3M3)

≈
(
k̂1 × Ĵ1

)
·
(
k̂2 × Ĵ2

)∫
d3xΨ(J1M1)Ψ(J2M2)Ψ(J3M3)

=
[(

k̂1 · k̂2

)(
Ĵ1 · Ĵ2

)
−
(
k̂1 · Ĵ2

)(
Ĵ1 · k̂2

)] ∫
d3xΨ(J1M1)Ψ(J2M2)Ψ(J3M3).

(B7)

We then recognize a term proportional to Ĵ1 · Ĵ2, i.e. cos θ12, and a second term which has no such factor. It closely
resembles the structure in the exact result Eq. (B1).
So far, we have restricted our discussion to the three-point function involving two transverse vectors and one scalar.

Besides, the semi-classical picture we have proposed is still insufficient to quantitatively pin down the correct forms of
the radial integral and the J1, J2, J3 dependence. However, we may gain insight from this picture for other three-point
functions, such as the ones involving transverse-tensor field.
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