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We assess the detectability of the gravitational wave signals from highly eccentric compact bina-
ries. We use a simple model for the inspiral, merger, and ringdown of these systems. The model
is based on mapping the binary to an effective single black hole system described by a Kerr met-
ric, thereby including certain relativistic effects such as zoom-whirl type behavior. The resultant
geodesics source quadrupolar radiation and in turn are evolved under its dissipative effects. At the
light ring, we attach a merger model that was previously developed for quasicircular mergers but
also performs well for eccentric mergers with little modification. We apply this model to determine
the detectability of these sources for initial, Enhanced, and Advanced LIGO across the parameter
space of nonspinning close capture compact binaries. We conclude that, should these systems ex-
ist in nature, the vast majority will be missed by conventional burst searches or by quasicircular
waveform templates in the advanced detector era. Other methods, such as eccentric templates or,
more practically, a stacked excess power search, must be developed to avoid losing these sources.
These systems would also have been missed frequently in the initial LIGO data analysis. Thus,
previous null coincidence results with detected GRBs can not exclude the possibility of coincident
gravitational wave signals from eccentric binaries.

PACS numbers: 95.30.Sf, 97.60.Lf
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I. INTRODUCTION

In dense stellar regions, such as galactic nuclei or glob-
ular clusters, individual black holes (BHs) or neutrons
stars (NSs) can become gravitationally bound as en-
ergy is lost to gravitational radiation during a close pas-
sage. These dynamically captured pairs may be addi-
tional sources for gravitational-wave (GW) detectors, as
well as sources of electromagnetic (EM) transients such as
short gamma-ray bursts (SGRBs). Eccentric pairs will be
distinguishable from quasicircular coeval binaries, which
are born in a bound system and have had time to circu-
larize before reaching the sensitive bandwidths of ground-
based GW observatories such as LIGO [1], VIRGO [2],
GEO600 [3] and KAGRA(LCGT) [4].

The primary purpose of this paper is to study the de-
tectability of sources that retain eccentricity while in the
LIGO band (for simplicity we only employ LIGO sen-
sitivity curves). Before getting into the details of our
model and results, we briefly review current event rate
estimates, high-eccentricity population fractions, possi-
ble EM counterparts, and the GW detectability of dy-
namically captured compact objects.

∗Electronic address: weast@princeton.edu
†Electronic address: stmcwill@princeton.edu

A. Event Rates

Galactic nuclei are a promising setting for the forma-
tion of dynamical capture binaries. Mass segregation
around a central massive BH can lead to large densi-
ties of stellar mass BHs and stars. For example, the
Fokker-Planck model used in [5] suggests that our galac-
tic nucleus should have ∼ 2000 BHs and ∼ 400 NSs in the
central 0.1 pc. In [6, 7], the event rate for the formation
of BH-BH binaries from GW capture in this setting was
estimated to be roughly between 0.01-1.0 yr−1 Gpc−3,
with corresponding Advanced LIGO detection rates of
≈ 1 − 102 yr−1. This rate assumes that the number
density n of BHs in galactic nuclei has a scatter with
〈n2〉/〈n〉2 = 30. Assuming no scatter would reduce the
above rate by a factor of 30. This also assumes a number
density of contributing galaxies of 0.05 Mpc−3, i.e. it in-
cludes all galaxies as contributing roughly equally. Lower
mass galaxies are not as well understood, though if a sig-
nificant number of them have total cluster mass fractions
above the 2.5% used in the aforementioned calculation,
this rate would increase. Other unaccounted for effects,
such as steeper profiles from light-dominated mass func-
tions [8], could also potentially increase this rate. The
formation of BH-NS binaries is estimated to be ∼ 1% of
this rate [6].

Dynamical capture binaries may also form in glob-
ular clusters (GCs) that undergo core-collapse [9, 10].
In [11] binary formation through tidal capture was stud-
ied. Using M15 as a prototypical GC, it was calculated
that the NS-NS tidal capture rate would peak at ∼ 50
yr−1 Gpc−3 at z = 0.7 (falling to ∼ 30 yr−1 Gpc−3 by
z = 0) for their default model of core-collapse. They
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also provide a scaling to BH-NS and BH-BH mergers
which (assuming MBH = 4.5M⊙ and a relative fraction
of BHs to NSs fBH/fNS ≈ 0.28) gives rates that peak at
∼ 70 yr−1Gpc−3 and ∼ 20 yr−1Gpc−3 for BH-NS and
BH-BH mergers, respectively. This scaling does not in-
clude complications due to BH ejection [12–16]. Also,
these calculations do not include the likely reduction in
compact object (CO) populations within the GC due to
natal kicks. In [17] it was found that including a 5%
NS retention fraction when fitting simulation results to
observations of M15, and assuming no central BH re-
duced the estimated number of NSs in the inner 0.2 pc
by ∼ 1/4 compared to a similar study that did not in-
clude natal kicks [18]. The calculated NS-NS merger rate
is quite sensitive to the fraction f of NSs in the core,
scaling as ∼ f2, which means the aforementioned rates
could be too large by an order of magnitude if retention
rates are this low. However, observations suggest that in
some GCs the NS retention fraction could be as high as
20% [19]. Also, note that the tidal capture cross section
used in [11] is more than an order of magnitude smaller
than the GW capture cross section (discussed in the fol-
lowing section) for compact objects, and using the latter
would increase the rates by the same factor. In geometric
units G = c = 1 (which, unless otherwise stated, we use
throughout), tidal capture is estimated to occur in [11]
for periapse values rp/M<− 32, 25, and 13 for NS-NS,
BH-NS, and BH-BH binaries respectively.

In [20] NS-NS binary formation in GCs via exchange
interactions was studied, giving a merger rate of ∼ 2 yr−1

Gpc−3. A similar mechanism was explored in [21] for BH-
NS systems; the results depend sensitively on the initial
mass fraction of BHs, with more massive BHs leading
to higher event rates. For example, models where the
GC contained M = 35⊙ BHs lead to advanced LIGO
detection rates of 0.04-0.7 yr−1. Though in contrast to
tidal/GW capture discussed in the previous paragraph,
the mechanisms looked at in both these studies typically
produce binaries with periods of 0.1 days or longer, and
they will effectively circularize before entering the LIGO
band.

There is also the possibility that eccentric mergers
could result from hierarchical triples though the Kozai
mechanism. This has been suggested to occur in BH-
BH mergers in GCs [16, 22, 23], CO mergers around su-
permassive BHs in galactic nuclei [24], as well as coeval
or dynamically formed BH-NS or NS-NS binaries [25].
Though the dynamics of these systems will be differ-
ent from those studied here, they could be similar at
late times. Efforts to understand this mechanism in
the general-relativistic regime are ongoing (see e.g. [26])
and the event rates of these systems are not well known
(though see [27]).

B. Cross Sections, High Eccentricity Fractions

We focus on mergers with initial periapse rp <∼ 10M,
where M is the total mass, making this study comple-
mentary to previous studies [6, 7]. As we show later,
in this regime essentially all mergers occur with non-
negligible eccentricity (e >∼ 0.2). This is also the regime
where strong-field effects such as black hole spin and
zoom whirl behavior can influence the dynamics. To es-
timate the fraction of dynamical capture binaries that
retain high-eccentricity, we can use Newtonian dynam-
ics with quadrupolar energy loss following [28–30]. First,
for a hyperbolic orbit with a small velocity at infinity
v ≪ 1, the relationship between impact parameter b and
rp is rp ≈ b2v2/2M . In other words, the cross section
σ ∝ b2 scales linearly with rp. The maximum pericenter
passage that leads to a bound system through gravita-
tional radiation loss1 is rp,m ≈ (31η)2/7v−4/7M , where
η = m1m2/M

2 = q/(1 + q)2 is the symmetric mass ratio
with q the mass ratio. For a galactic nuclear cluster where
v ≈ 1000 km/s, between 20− 30% of dynamical capture
binaries (where the range is from q = 1 to q = 0.1) will
have rp/M < 10; for a globular cluster with v ≈ 10 km/s
this drops to 1.5− 2.0%.
Although we focus on those with small initial peri-

apse, all dynamical capture binaries will have a repeated
burst phase [7]. For a large fraction of expected binary
masses the repeated bursts will be within the Advanced
LIGO band. The burst frequency is νb ≈ r−1

p (rp/M)−1/2;
the lowest frequency occurs at rp = rp,m, which ranges
from (1 − 100Hz)/M10 for q = 0.1 encounters in globu-
lar clusters to q = 1 encounters in nuclear clusters, with
M10 = M/10M⊙. To estimate the percentage of systems
that will end with a low eccentricity inspiral phase, if the
initial periapse is rp,i, and we consider the repeated burst
phase to end at a periapse of rp,f with eccentricity ef ,

from [29] rp,i ≈ 0.57rp,f(1 + ef )e
−12/19
f [1 + O(e2f )]. For

example, if a binary with ef < 0.1 by rp,f = 10M can
be considered to have of a low eccentricity inspiral phase,
then this corresponds to all systems with rp,i > 27M . For
nuclear clusters, this is between 20− 40% for q = 1− 0.1,
while the corresponding range for globular clusters is
94− 96%.

C. Electromagnetic Counterparts

Binary NS or BH-NS mergers are thought to be pro-
genitors for SGRBs, and may also source a number of

1 As mentioned earlier, for the COs considered here energy lost

to tidal effects is much less than GW emission at these separa-

tions, so the latter process determines the cross section. Also,

when a bound system is formed, the fraction that have a semi-

major axis large enough to have the binary be tidally unbound

by subsequent interaction with the surrounding cluster potential

is insignificant.
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other EM transients [31, 32]. Possibilities include opti-
cal/UV emission on timescales of a day from radioactive
decay of ejected material. (This depends on heavy el-
ement opacities. Recent work using more detailed cal-
culations suggest the timescale may be up to a week
with emission peaking in the IR [33]). Interaction of the
outflow with surrounding matter can also produce radio
emission on timescales of weeks to years [34]. And, for
binary NS mergers, strong shocks produced can emit in
radio to X-rays over a second to day timescales [35].
Simulations of eccentric BH-NS and NS-NS mergers

have shown a rich variation in outcome with impact pa-
rameter, with the possibility of large accretion disks as
well as ejecta that could undergo the r-process [11, 36–
39]. There is also significant variability in observed
SGRBs. It is not implausible that this may in part be
due to a sub-class of SGRBs associated with dynami-
cal capture binaries. Though not conclusive, there is
also observational evidence for multiple SGRB progen-
itors. Of SGRBs with identified host galaxies, ∼ 25%
have offsets of >∼ 15 kpc from their hosts [40], which
would be consistent with kicked, primordially formed bi-
nary COs or with dynamically formed binaries in globular
clusters. The latter may be preferred for the largest off-
sets [41], especially if primordial binary COs experience
weak kicks [42]. X-ray afterglows suggests that differ-
ent progenitors may be responsible for SGRBs with and
without extended emission [43]; simulations of dynami-
cal capture binaries show it is more common to get long
tidal tails, which could lead to extended emission as the
material falls back to the accretion disk. There is also a
claim that a high-energy gamma-ray source observed in
Terzan 5 may be the remnant of a binary CO merger-
powered SGRB [44]; if true, this provides evidence that
dense cluster environments can be significant sources of
binary CO mergers.
The timescales between close encounters in eccentric

mergers may also explain observed delays between pre-
cursors and SGRBs [45]. For example, NS crust cracking
on a non-merging close encounter could potentially cause
flares that precede the merger by an interval ranging from
milliseconds to possibly a few seconds [38].

D. Gravitational Wave Detectability

Multimessenger exploration is of course an exciting
possibility. Even a null GW detection provides astronom-
ical information as it rules out compact object mergers
as the source of an observed GRB, but only if the de-
tectability of these types of signals is understood. Given
the disparate nature of the waves from dynamical cap-
ture vs coeval mergers, data analysis methods designed
specifically for each are required for this kind of astron-
omy. Methods to search for quasicircular inspiral (of rel-
evance to the majority of coeval binaries, and a subset of
dynamical capture binaries that form with a sufficiently
large periapse to circularize before merger) have been

the predominant focus of the GW community over the
past decades [46]. Comparatively, there is a dearth of
studies on the detectability of highly-eccentric mergers.
In [47] the single burst from a parabolic close encounter
was studied, while [6] included the additional signal pro-
vided by subsequent bursts. This repeated burst phase
was studied in [7] using 2.5 and 3.5 order post-Newtonian
(PN) equations-of-motion. It was found that GWs from
this phase may be detectable by Advanced LIGO out to
200-300 Mpc for BH-NS binaries and 300-600 Mpc for
BH-BH binaries. Since the PN approximations begin to
break down close to merger the evolution was only fol-
lowed to rp = 10M . To model the last stages of merger
requires numerical relativity (NR), and there have been
a number of numerical studies of eccentric mergers [36–
38, 48–53]. However, because of the computational ex-
pense of these simulations, it is not possible with current
computer resources to follow high-eccentricity binaries
through multiple close encounters. The challenge is com-
pounded by a large parameter space including impact pa-
rameter, mass ratio, BH spin and NS equation of state. It
is thus not reasonable to expect that brute-force numer-
ical simulations will be able to provide templates before
the Advanced LIGO era, even accounting for expected
increases in computer power.

E. Outline of Remainder of Paper

To begin to bridge the gap between large periapse PN
solutions and late-time numerical solutions, we introduce
a model for the inspiral, merger, and ringdown of dynam-
ical capture compact binaries. This model is based on
geodesic equations of motion in an effective Kerr space-
time, combined with quadrupole radiation (Sec. II A)
and a version of the Implicit Rotating Source (IRS)
model [54, 55] for the merger and ringdown part of the
GW signal (Sec. II C). (Except for the IRS extension,
and the comparable masses, our hybrid is reminiscent of
the “kludge” introduced to study extreme mass ratio in-
spirals [56–59], based in part on the “semi-relativistic”
approach of [60]). We validate this model through a
comparison to full numerical simulations in the strong-
field regime (Sec. II B) and to the PN approximation for
rp > 10M (Sec. II D).
The waveforms we produce here are likely not accurate

enough for optimal template-based detection of multiple-
burst events. Indeed, creating improved accuracy wave-
forms will probably require a different approach, for ex-
ample using the Effective One Body (EOB) formalism
which has recently been extended to generic orbits [61]
and calibrating it using full numerical simulations. How-
ever, our waveforms capture the relevant features with
sufficient faithfulness that we can use them to assess the
efficacy of existing LIGO search strategies. We can also
use our waveforms to investigate new search strategies
that may be better suited to highly-eccentric mergers.
In Sec. III we use this model to evaluate how well these



4

GW signals could be seen with each generation of the
LIGO detectors, varying impact parameter (equivalently
rp), total mass, and mass ratio. We use various analysis
methods: matched filtering with the model templates, fil-
tering with ringdown templates, and a burst search with
sine-Gaussian templates. We also estimate how well a
hypothetical search using incoherent stacking of bursts
following [62] would perform. Though not optimal as
matched-filtering, stacking is likely more robust to timing
uncertainties in the burst sequence. We find that if cap-
ture binaries do exist, in many cases their GW signals will
be missed by single burst or ringdown searches (and, as
we argue, quasicircular templates), whereas these sources
would be detectable with a full template or a stacked
burst search. In particular, GRB051103 [63] had a mea-
sured distance of 3.6 Mpc, and no coincident GW signal
was found using traditional searches [64, 65]. However,
there is a sizable region of the parameter space of dynam-
ical capture binaries that existing searches would have
missed. The possibility that the GRB was preceded by
an eccentric merger remains a viable possibility.
In Sec. IV we make concluding remarks and comment

on the direction of future work.

II. WAVEFORM MODEL

In this section we describe our model for high-
eccentricity merger waveforms. We first look at the inspi-
ral phase in Sec. II A, which can be considered a sequence
of GW bursts, each generated at a periapse passage. In
Sec. II B we compare the model expressions we use for the
bursts to full numerical simulations. In Sec. II C we dis-
cuss the IRS model for the merger and ringdown phase,
and in Sec. II D we present examples of the full signal,
and make further comparisons to PN results for the in-
spiral phase.

A. Repeated Burst Phase

Our objective here is to model the GW signal from
an eccentric binary that passes through a series of close
encounters prior to merger. To this end, we use a pre-
scription based on the equations of motion of a geodesic
in a Kerr spacetime, coupled with the quadrupole for-
mula for gravitational radiation. We identify the mass
and total angular momentum of the binary with the mass
and spin parameters of the effective Kerr spacetime and
the orbital angular momentum and energy with that of
the geodesics. This approach has the advantage of re-
producing the correct orbital dynamics in the Newtonian
limit and general relativistic test particle limit, while still
incorporating strong field phenomena such as pericenter
precession, frame-dragging and the existence of unstable
orbits and related zoom-whirl dynamics. For simplic-
ity, in this first study we restrict attention to equatorial
orbits, and for the most part non-spinning BHs (we com-

pare the IRS model to a merger involving a spinning BH
in Sec. II C).

The equations for an equatorial geodesic in a Kerr
spacetime with mass M and dimensionless spin a can
be written in first order form using Boyer-Lindquist co-
ordinates as:

τ̇ =
∆

ẼR2
0 − 2MaL̃/r

≡ Q,

φ̇ =
1

R2
0

[

L̃Q+ 2Ma/r
]

≡ Ω

ṙ = ∆QPr/r
2

Ṗr =
1

r2Q

[

Ω2(r3 −Ma2) +M(2aΩ− 1)
]

+
P 2
r Q

r3
[

a2 −Mr
]

. (1)

where R0 = r2 +2Ma2/r+ a2, ∆ = r2 − 2Mr+ a2, Pr =
r2ṙ/(∆Q), τ is proper time, and the overdot indicates
a derivative with respect to the coordinate time. Here
Ẽ and L̃ are the energy and angular momentum of the
geodesic.

In order to apply these equations to a binary system
we go to the center-of-mass frame and let r be the separa-
tion between the objects. Then we identify the geodesic
parameters Ẽ and L̃ with the reduced energy and angular
momentum of the system and promote these quantities
to time-dependent variables. To determine the amount
of energy and angular momentum radiated away to grav-
itational waves we use the quadrupole formula:

˙̃E = −µ

5

...
I ij

...
I ij

˙̃L = −2µ

5
ǫzij Ïik

...
I jk (2)

where µ is the reduced mass, Iij is the reduced

quadrupole moment and Ïij and
...
I ij are written in terms

of the variables {r, φ, Pr, Ẽ, L̃} using (1). We set M
in (1) to the total mass (neglecting orbital energy con-

tributions) and we set a = µL̃/M2 + aBH , where aBH is
the net spin of any BHs (though again for this study we
focus on non-spinning BHs, where aBH = 0). This use of
an effective spinning BH spacetime based on total angu-
lar momentum is motivated by [48], where is was found
that the properties of zoom whirl-like dynamics exhib-
ited in equal mass mergers in full numerical relativity are
better approximated by geodesics on the effective Kerr
spacetime than Schwarzschild, and differs from the EOB
approach which uses deformations of the Schwarzschild
metric for the merger of non-spinning objects [66]. We
note that when the orbital angular momentum is large
we will have a > 1. However, this will occur only when
the separation r is also large, so general relativistic effects
are small, and no unusual behavior arises from exceeding
the Kerr limit. We numerically integrate the coupled set
of equations (1) and (2).
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The remaining element is to calculate the observed
gravitational radiation, which will depend on the intrin-
sic source parameters (i.e. the mass, mass ratio, eccen-
tricity, and initial periapse distance), and will also vary
with sky location and relative orientation of the source to
the detector. At linear order and in the transverse trace-
less gauge, the complex gravitational wave strain hopt a
distance d from an optimally-oriented source is simply
related to changes in the quadrupole moment through

hopt ≡ hopt
+ + ihopt

× ≡ 2

d

(

Ïx x + iÏy x

)

. (3)

For general orientations, the emitted strain can be rep-
resented through a mode decomposition as

h̄ ≡ h+ + ih× =

∞
∑

ℓ=2

ℓ
∑

m=−ℓ

hℓm(t, d)−2Yℓm(θ, φ) , (4)

where −2Yℓm are the spherical harmonics of spin-weight -
2 [67], and θ and φ being the polar and azimuthal angles
of orientation, respectively. For the comparable mass,
nonspinning systems that we are primarily interested in,
the quadrupole (i.e. ℓ = 2, m = +− 2) component domi-
nates the strain, so that

h̄ ≈ h22(t, d)−2Y22(θ, φ) + h2−2(t, d)−2Y2−2(θ, φ). (5)

This completes the approach for calculating the source
waveform that reaches a detector. In a later section we
will include the sensitivity of the detector in the analysis.

B. Comparison to fully general-relativistic

numerical simulations

To provide some validation for this model we compare
several waveforms of single high-eccentricity fly-by en-
counters from full general-relativistic numerical simula-
tions to those obtained from the geodesic equation with
the quadrupole formula. The simulations include a 4:1
mass ratio BH-NS system [37], an equal mass NS-NS sys-
tem [38], and an equal mass BH-BH system. The NR
simulations were all performed using the code described
in [68].
In Fig. 1 we show several such examples from NR simu-

lations of the 4:1 BH-NS system alongside corresponding
waveforms from our model with best-fit parameters. The
peak amplitude of the geodesic is scaled to be the same
as in the simulations. The fit is performed by finding the
initial orbital parameters that maximize the phase over-
lap between the waveforms (see e.g. [69]). In this regime
the match between the waveforms is most sensitive to rp
as opposed to e. As can be seen, the fly-by waveforms
from our model provide a good match to those from sim-
ulations. Even close to the effective innermost stable
orbit (ISO) for the BH-NS system (the bottom panels
of Fig. 1), where the system begins to show evidence of
whirling behavior, our model is able to approximately
capture the shape of the waveform.

Sim.a Fitb

Binary rp e rp e Ac Overlapd

NS-BH 8.30 1.00 8.77 1.00 1.04 0.99

NS-BH 8.00 0.80 7.97 0.81 1.11 0.98

NS-BH 5.62 1.00 5.61 1.00 1.11 0.97

NS-BH 5.04 1.00 4.26 1.00 0.61 0.74

BH-BH 8.71 1.00 8.23 1.00 1.16 0.99

NS-NS 8.71 1.00 7.82 1.00 1.28 0.96

TABLE I: Fit parameters for close-encounter GWs
a Approximate initial parameters of the geodesic model based
on the initial orbital energy and angular momentum of the
simulation.
b Initial parameters of the geodesic model that best fit the
simulation data.
c Amplitude enhancement applied to waveform from best fit
geodesic model.
d Overlap between simulation and best fit geodesic model.

In Table I we give the fit parameters, amplitude en-
hancement, and overlap. We also show the approximate
initial orbital parameters (rp and e) of the simulation ob-
tained by equating a Newtonian estimate of the reduced
orbital energy and angular momentum at the beginning
of the simulation with the Ẽ and L̃ parameters of the
geodesic model described above. (Note, this is different
from the Newtonian values for rp and e used in [37, 38].)
For most of the BH-NS systems in Table I we can see
that the enhancement required to match the amplitude
of our model to the simulation results is ∼ 4 − 11%.
This is presumably due to aspects not captured by this
simple model, such as finite-size effects, as well as trun-
cation error from the simulations. The one case where
the amplitude of the simulation waveform was below the
model result was a simulation with strong whirling be-
havior (bottom-right panel of Fig. 1) where the NS had
large f -mode oscillations excited as described in [37].
We also compare the geodesic model with an equal

mass BH-BH and an equal mass NS-NS system as shown
in Fig. 2. Although one would expect a geodesic approx-
imation to be most accurate in the limit that one mass is
much larger than the other, it still provides good fits for
equal masses. This model, however, does not attempt to
include finite-size effects (such as the f -mode excitation
visible in the later part of the bottom of Fig. 2), which
would be required to address questions related to mea-
suring the NS equation of state from such GW signals.

C. Merger model

After a binary has evolved through some number of
close-encounters, it will merge. In order to include the
waveforms resulting from merger, we supplement the
model outlined in Sec. II A with a version of the Implicit
Rotating Source (IRS) model [54, 55] for the merger and
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FIG. 1: Comparison of the ℓ = 2, m = 2 component of h̄ for fly-by waveforms from 4:1 BH-NS simulations (solid) and our
model with best-fit periapse distance (dashed). The approximate effective geodesic orbital parameters of the simulated system
(left to right, top to bottom) are: (rp, e) = (8.3, 1.0), (8.0, 0.8), (5.6, 1.0), and (5.0, 1.0). The fit parameters are given in Table I.

ringdown part of the GW signal. Note that the IRS as-
sumes the waveform is circularly polarized. This is not
strictly valid for the complete merger/ringdown phase of
eccentric binaries, though as we show below, it does pro-
vide a reasonably good approximation to results from nu-
merical simulations. As with other aspects of our wave-
form model, this assumption could be refined in the fu-
ture, but it is adequate for the purpose of testing the
efficacy of existing search strategies for detecting eccen-
tric binaries.
In particular, we model the phase evolution to asymp-

totically approach the least damped quasinormal mode
frequency of the final BH, ωQNM, via

ω(t) = ωQNM(1 − f̂) (6)

where

f̂ =
c

2
(1 +

1

κ
)1+κ

(

1− (1 +
1

κ
e−2t/b)−κ

)

. (7)

Here b = 2Q/ωQNM is determined by the quality factor
and frequency of the final BH, and κ and c are free pa-
rameters of the model. The amplitude is given, up to an

overall factor A0, by

A =
A0

ω(t)

(

| ˙̂f |
1 + α(f̂2 − f̂4)

)1/2

(8)

where
˙̂
f = df̂/dt, and α is a free parameter. We find

that α = 72.3/Q2 provides a reasonably good fit to our
numerical simulations.
In Fig. 3 we show a comparison between simulation

results of BH-NS mergers and the best match IRS model
waveforms where we let κ and c be fitting parameters.
In Fig. 4 we show the same thing for equal mass NS-NS
and BH-BH mergers. This simple model will not capture
disruption or other matter effects, and best-fit values for
κ and c will have some dependence on the parameters
of the binary, such as the impact parameter preceding
merger. However, when studying signal detectability we
fix κ = 0.64 and c = 0.26, which empirically provides
reasonably good fits to a large number of simulated wave-
forms, and therefore provides an adequate representation
of a generic eccentric merger. We attach the IRS part of
the waveform to the model from Sec. II A when the sep-
aration reaches the light ring of the effective Kerr space-
time.
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FIG. 2: Comparison of the ℓ = 2, m = 2 component of h̄
for fly-by waveforms from equal mass BH-BH (top) and NS-
NS (bottom) simulations (solid lines) and our model (dot-
ted lines) with best-fit parameters. The approximate effec-
tive geodesic orbital parameters of the simulated systems are
(rp, e) = (8.7, 1.0) for both cases. The fit parameters are given
in Table I. The feature in the waveform after the peak in the
NS-NS simulation is from f -mode excitation that occurs dur-
ing the close encounter.

D. Model Properties and Comparison to

Post-Newtonian

Combining the inspiral and merger models allows us
to generate complete waveforms for dynamical capture
binaries. In Fig. 5 we show one such example for a 4:1
mass ratio system with initial orbital parameters corre-
sponding to rp = 8M and e = 1. The waveform shows
the decreasing time interval between bursts from close
encounters as rp and e decrease due to gravitational radi-
ation. The number and timing of the bursts is a sensitive
function of the amount of energy and angular momentum
radiated in each close encounter. In Fig. 6 we show how
rp and e evolve according to this model for some example
binaries. It can be seen that the binaries considered here,
which begin on parabolic orbits with rp<−10M , still have
non-negligible eccentricity all the way to merger.

We can also compare this model to that given by the
2.5 and 3.5 order PN approximation as used in [7]. In
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FIG. 3: Comparison of the merger GW strain from a 4:1 BH-
NS simulation (solid lines) and the IRS model (dotted lines)
with best fit parameters. The top panel shows a case where
the initial BH was non-spinning. The bottom panel shows a
case with aBH = 0.5, which results in more whirling behavior
and tidal-disruption of the NS. The best fit parameters in
(7) are (κ, c) = (0.66, 0.28) (top) and (0.46, 0.18) (bottom),
and the matches are 0.98 and 0.96 respectively. The match is
weighted based on the “whitened” waveforms as described in
Sec. III assuming a total mass of 10 M⊙.

Fig. 7 we show how the difference in the energy and an-
gular momentum radiated away in a close encounter for
2.5 or 3.5 PN relative to our model changes with initial
impact parameter. The geodesic model predicts less en-
ergy and momentum loss than 2.5 PN but more than the
3.5 PN. At large impact parameters the three different
models converge. At smaller impact parameters the 2.5
and 3.5 PN approximations begin to diverge. As shown
in [70], the PN approximation fails to converge (or even
to provide physically sensible results in the case of 3.5
PN) for rp <∼ 10M .
The gravitational wave model we have outlined in this

section is relatively simple and could be improved upon
by, for example, adding more sophisticated conservative
dynamics, including finite size effects for NSs, as well as
going beyond the quadropole approximation in determin-
ing gravitational radiation. However, given the decent
match between this model and the full numerical simula-
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FIG. 4: Comparison of merger waveforms from an equal
mass BH-BH simulation (top) and NS-NS simulation that
forms a BH (bottom) with the IRS model (dotted lines)
with best fit parameters. The best fit parameters in (7) are
(κ, c) = (0.31, 0.03) (top) and (0.36, 0.19) (bottom), and the
matches are 0.98 and 0.97 respectively. The match is weighted
based on the “whitened” waveforms as described in Sec. III
assuming a total mass of 20 M⊙ and 2.8 M⊙ for the BH-BH
and NS-NS binaries, respectively.

tions, as well as its consistency with PN approximation
as described above, it can be used to investigate issues of
detectability, as we do in the next section.

III. DETECTABILITY

A. Detector Modeling

Having developed a model for the gravitational wave-
forms emitted by high-eccentricity binaries, we can now
assess the detectability of these signals for different
source parameters and detectors. The measured strain
h is given by

h = ℜ
[

F h̄
]

= F+h+ + F×h× , (9)

where F ≡ F+ − iF× is the sky-dependent detector re-
sponse. The signal-to-noise ratio (SNR) ρ using a per-
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FIG. 5: GW strain generated with our model and initial con-
ditions rp = 8M and e = 1. The top panel shows the entire
waveform while the bottom panel shows a zoomed-in view of
the end of the waveform.

fectly matched filter is given by

ρ2 = 〈h|h〉, (10)

where 〈·|·〉 denotes a noise-weighted inner product given
by

〈h1|h2〉 ≡ 2

∞
∫

0

df
h̃∗
1h̃2 + h̃1h̃

∗
2

Sn
, (11)

where Sn(f) is the power spectral density of the detector

noise, and h̃ denotes the Fourier transform of the orig-
inal h time series. Because we limit our model to the
quadrupole component of the signal, and we focus on
detectors (like LIGO) for which the gravitational wave-
length is much longer than the detector’s armlength, we
can trivially relate the SNR of an optimally oriented
and located source to the SNR of an orientation- and
sky-location-averaged source. For such detectors, the re-
sponse function to the two waveform polarizations, F+

and F×, is simply the root-mean-squared (rms) average

over the sky location and polarization angles
√

〈F 2
+,×〉 =

√

1/5 [71]. Likewise, the rms average over source orien-

tations is
√

〈−2Y2, +− 2
〉 =

√

1/5, so that
√

〈ρ2〉 = ρopt/5.
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FIG. 6: Evolution of orbital parameters for a 4:1 (top) and an
equal mass ratio (bottom) binary. The effective eccentricity
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FIG. 8: The characteristic strain hc is shown for the initial
(thin dash-dotted), Enhanced (dash-dotted), and Advanced
LIGO (solid) detectors, as well as for two example signals at
DL = 1 Gpc. The first signal corresponds to an orientation-
averaged source with M = 100 M⊙, q = 1, and rp = 5M
(dashed), and the second signal is from a source with M =
10 M⊙, q = 0.1, and rp = 10M (dotted). Both signal spectra
are smoothed to diminish fluctuations and make the trend
more clear. The system with q = 0.1 has little contribution
from the merger, so the repeated burst phase dominates the
spectra, with hc∝∼f , whereas the q = 1 system signal comes
largely from the merger, where hc ≈ constant over a small
band of frequencies.

We can further define the characteristic strain hc for both
a signal and detector noise. Given Eq. (11) and the typi-
cal practice of plotting sensitivity curves logarithmically,

it is useful to define hc ≡
√

〈−2Y2, +− 2
〉fh̃opt for signals

and hc ≡
√

fSn/〈F 2〉 for detector noise, so that both sig-
nal and noise are characterized as a dimensionless strain,
and the ratio of signal-hc to noise-hc is the square root
of the integrand for ρ2 when integrated over logarithmic
frequency intervals df/f . We show this characterization
of signal and noise in Fig. 8.
For assessing the relative contribution of different

waveform segments to the SNR, it is often convenient
to work in the time domain by constructing “whitened”
waveforms [72], which weight the amplitude of the wave-
form as a function of frequency to account for the pres-
ence of noise in the detector,

h′ =

+∞
∫

−∞

df
h̃√
Sn

e−i2πft. (12)

With these whitened vectors, the noise-weighted inner
product (11) can be re-expressed in the time domain:

〈h1|h2〉 ≡
∞
∫

−∞

dt h′∗
1 (t)h

′
2(t). (13)

Figure 9 shows portions of the whitened waveform for
two example cases with the same mass ratio and initial
rp and e, but different masses. The upper panel shows
the burst with the largest SNR contribution for a source
with total mass M = 10 M⊙, while the lower panel shows
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FIG. 9: Whitened waveforms for a 10 M⊙ (top) and a 100
M⊙ (bottom) binary with initial e = 1 and rp = 5M , along
with the (whitened) best fit template among sine-Gaussian
and ringdown templates.

the loudest burst for M = 100 M⊙. The different masses
change the frequency of the signal, so different bursts are
emphasized by the detector sensitivity; in particular, for
larger masses the final burst and merger are emphasized.
We also show best-fits for two types of templates that are
described below.

B. Templates and detection strategies

While quasicircular sources are searched for using
matched-filtering, eccentric systems are far more suscep-
tible to modeling error in the relative timing and phase
of signal bursts, which is why we focus our attention
on alternative approaches to detection. For example, a
small modeling error in the energy lost during a par-
ticular periapse passage δE will induce a timing error
in the arrival time of the subsequent burst δT given by
δT ∝ δE(1 − e)−5/2. Therefore, dynamical capture bi-
naries are far more challenging to model with sufficient
accuracy to apply matched filtering due to their large
eccentricities.
We assess detection prospects of GWs from capture

binaries for two currently used templates, sine-Gaussian
(SG) and ringdown (RD) templates, as well as an ideal-
ization of a third strategy based on combining an excess
power search with stacking. The SG and RD both take
the form

h̄ = A exp

[

−
(

t− to
τ

)γ

+ iω(t− to)− iφo

]

, (14)

where γ = 1 and t>−to for the RD templates, and γ = 2
with −∞ < t < ∞ for the SG templates. Here A is the
overall amplitude, to and φo are the time and phase of

the template’s amplitude peak, τ sets the e-folding of the
amplitude, and ω is the constant frequency.
In addition to assessing the performance of two burst

templates, we calculate a rough approximation of the po-
tential performance for an excess power search that ac-
cumulates power from the entire signal [62], which we
will call a power-stacking search. Here, the data would
be transformed to a time-frequency (TF) tiling using
a basis suitable to capturing individual bursts within
a tile, and then power from different tiles correspond-
ing to bursts, as informed by our model, is combined.
Whereas in most existing TF searches an individual ele-
ment must have enough power to exceed some threshold,
with that threshold being large enough to avoid many
false alarms, the approach we describe does not require
that the signal be detectable in any single TF element.
In the case of a monochromatic signal, the SNR from
optimal filtering will accumulate with the number of cy-
cles N as

√
N , while the excess power in stacking TF

elements (constructed using any basis) overlapping the
given frequency will accumulate as N1/4. The signals
from high-eccentricity binaries are not monochromatic,
but given the typically large number of bursts occurring
in-band, and the relative flatness of both the source spec-
trum and the detector sensitivity across its most sensitive
band, we expect the aforementioned scalings to hold ap-
proximately for realistic signals.
This search would be very similar to the stacked search

proposed for combining potential GW counterparts to
observed electromagnetic signals from soft gamma re-
peaters [62]. There, TF elements were aligned in time
based on the observed bursts, and they demonstrated
the N1/4 SNR scaling when adding power for identical
injected signals. Since we do not have a separate obser-
vational trigger, our proposed search would sum power
along elements overlapping bursts as indicated by our
waveform model. We leave it to future work to fully
investigate this, though here we assume we can achieve
the N1/4 SNR scaling, and thus can estimate the per-
formance of a power-stacking search by noting that opti-
mal filtering should outperform power stacking by N1/4.
Hence, we can approximate the effective excess power
SNR as ρEP ≈ N−1/4ρ. This simple estimate will consti-
tute our third search technique in our subsequent analy-
sis.
We do not employ quasicircular (QC) templates, al-

though they have thus far been the only tool employed
to search for long-lived signals. QC templates will gener-
ically fail to match the performance of any of the above
methods for the repeated burst phase of eccentric sources
for the following reasons. First, during the long inter-
vals between eccentric bursts a QC template will still
be integrating power from the data, which is predomi-
nantly noise. Specifically, the ratio of the characteris-
tic timescale of an eccentric burst to the period between
bursts is roughly

τGW

T
≈ (1− e)3/2 . (15)
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In other words, there will be ∼ (1 − e)−3/2 additional
cycles between bursts in a QC signal with the same peri-
apse. More over, even if the QC template is phase-aligned
to a particular burst, since the time between bursts is
much larger than the GW period, the rest of the tem-
plate will effectively have random phase alignment with
other bursts in the sequence, and on average no addi-
tional SNR will be acquired. To summarize, typically
the best matched QC template will only integrate signal
about the loudest burst, but even so the performance will
not be as good as a single burst search due to the larger
integrated noise accumulated over the period of the QC
template (expect for the higher mass systems where only
the final merger/ringdown signal is in band).

C. Results

We calculate two useful quantities related to the SNR:
the detectability horizon and the detection probability.
Since h ∝ D−1

L , where DL is the luminosity distance,
we can use (10) to calculate the distance (which we call
the detection horizon) at which a sky- and orientation-
averaged source could be observed with an SNR of 8 using
optimal filtering. The detection probability for a given
strategy is simply the ratio of the volume in which the
strategy could detect a source with some SNR to the
volume in which the source could be seen with the same
SNR using optimal filtering. In the remainder of this
section, we will calculate these quantities for various cases
of interest. We consider the following configurations:

• three detector sensitivities, corresponding to initial,
Enhanced, and Advanced LIGO;

• three detection strategies, including SGs, RDs, and
power stacking, and how they compare to optimal
filtering;

• three intrinsic system parameters:

– total system mass M , ranging from 1 M⊙–
2000 M⊙;

– mass ratio q of the binary components, rang-
ing from 0.01–1;

– initial rp, ranging from 5M–10M (with initial
e = 1; we exclude rp < 5M simply because
in most cases it is a directly collision qualita-
tively similar to rp = 5, and see [7] for a study
of rp > 10M).

In Fig. 10, we show contours of constant horizon dis-
tance as a function of q and rp for initial LIGO, assum-
ing optimal filtering, SG templates, and power stacking.
Two contours of note, at 0.77 and 3.6 Mpc, correspond
to the distances of GRB070201 [73] and GRB051103 [63],
respectively. These were two nearby gamma-ray bursts
observed by Swift during the S5 initial LIGO run, while
two interferometers were actively collecting data at or

near initial LIGO’s design sensitivity. However, no sig-
nal was found in the LIGO data using the methods ap-
plied (specifically, various burst and quasicircular inspiral
templates) for these GRBs, nor for any of the 137 GRBs
(35 with measured redshifts) that occurred while initial
LIGO was taking science data during its S5 run at or
near design sensitivity [64, 65]. Thus in Fig. 10 we re-
strict the mass ratio to the range 0.1–1, with one of the
masses fixed at 1.35 M⊙, to focus on systems including
a neutron star that are expected to generate GRBs. In
the case of a dynamical capture binary source at 0.77
Mpc, the signal is sufficiently loud that even suboptimal
searches like SG templates would detect them. However,
for a source at 3.6 Mpc, whereas an optimal filter would
have detected a signal from a large region of the parame-
ter space, including all cases with q < 0.5 or rp > 7.5M ,
and power stacking would recover signals with q < 0.4,
SG templates are far less effective, and would only re-
cover a small sliver of parameter space with q < 0.2.
This suggests the possibility that the searches applied to
the LIGO data would not have found the gravitational
wave counterpart to GRB051103 if it was in the form of
a dynamical capture binary. Furthermore, across the full
parameter space explored, the difference in performance
among these three searches is substantial, with optimal
filtering detecting sources as far as DL = 50–100 Mpc,
while power stacking only reaches DL ≈ 30 Mpc, and SG
templates only reach DL ≈ 15 Mpc.

Figures 11 and 12 show, for Enhanced and Advanced
LIGO respectively, contours of detection horizon as a
function of mass and mass ratio at a fixed rp = 6M
using an optimal filter and SG and RD templates. The
primary difference in both cases is the degradation of per-
formance for higher mass ratios (smaller q), with the SG
performing as well as or better than the RD templates
across much of the parameter space, with the exception
of comparable mass ratios, where the ringdown signal
is most emphasized. For each search, Enhanced LIGO
could detect an equal mass binary with M = 100 M⊙

out to DL = 1 Gpc, and Advanced LIGO will see the
same sources beyond 10 Gpc.

The relative performance of SG and RD is further
demonstrated in Figs. 13 and 14, which show the de-
tection probabilities of each template (equivalently, the
ratio of the detectable volume using the templates to the
volume using optimal filtering). SG templates perform
best forM ≈ 200M⊙ systems using Enhanced LIGO and
M ≈ 1000M⊙ systems using Advanced LIGO, largely in-
dependent of the mass ratio. Interestingly, RD templates
perform best for comparable mass binaries regardless of
total mass for Enhanced LIGO, whereas no such clear
general behavior is observed for Advanced LIGO. This
can be understood because Enhanced LIGO always has
fewer cycles in band than Advanced LIGO, so that the
merger-ringdown constitutes a larger fraction of the total
SNR, with that fraction further enhanced for compara-
ble masses (since ρ ∝ η = m1m2/M

2 for inspirals, but
ρ ∝ √

η for ringdowns [74]). Advanced LIGO shows no
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FIG. 10: Contours of horizon distance (ρ = 8) as a function
of mass ratio q and pericenter separation rp for initial LIGO
using an optimal filter (top), sine-Gaussian templates (mid-
dle), and an estimate of a power-stacking search (bottom) as
described in the text. We fix one component to be a 1.35
M⊙ neutron star and change the total mass with mass ratio
accordingly. We include a contour at DL = 0.77 Mpc and an-
other at 3.6 Mpc, to show the region of parameter space where
existing LIGO searches would not have seen a gravitational-
wave counterpart to GRB070201 [73] and GRB051103 [63],
respectively.

such behavior because the number of inspiral cycles is
so large that the merger-ringdown rarely dominates the
total SNR.

Figures 15 and 16 again show contours of horizon dis-
tance for Enhanced and Advanced LIGO, but as a func-
tion of total mass and initial pericenter distance at fixed
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FIG. 11: Contours of horizon distance as a function of rest
mass M and mass ratio q for Enhanced LIGO using an opti-
mal filter (top), sine-Gaussian templates (middle), and ring-
down templates (bottom) for an initial pericenter separation
of rp = 6M .

q = 1. Both q and M rather strongly affect the de-
tectability of sources over the range of masses considered.
rp moderately affects detectability for lower mass systems
(M <∼ 20 M⊙), though very little for higher mass systems
(which is expected since the number of bursts varies sig-
nificantly with rp in the range 5M < rp < 10M , but
as the mass increases fewer of the initial bursts are in
band). SG templates outperform RD templates for all
but the extremely high-mass systems, and a small region
of extremely-low mass systems with very small rp, that
merge after O(1) orbit. This is also clear in Figs. 17 and
18, which shows corresponding detection probabilities. In
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FIG. 12: Contours of horizon distance as a function of rest
mass M and mass ratio q for Advanced LIGO using an opti-
mal filter (top), sine-Gaussian templates (middle), and ring-
down templates (bottom) for an initial pericenter separation
of rp = 6M .

addition to SG and RD templates, Figs. 16 and 18 show
the relative performance of a stacked power search, which
readily outperforms burst template searches for the full
range of parameters. Since this is the case for q = 1, it
will apply more so for cases with q < 1, as they experi-
ence more cycles, so that we can conclude that a power
stacking search will always outperform a burst search,
and is likely to be the optimal search approach in the
absence of a matched-filter bank. SG and RD templates
perform best for M in the range 100 M⊙–200 M⊙ for
both Enhanced and Advanced LIGO, with the range of
horizon distances being the same as in the M − q plots.
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FIG. 13: Contours of detection probability p ≡ V/Vmax as a
function of rest mass M and mass ratio q for Enhanced LIGO
for a source inside the optimal filtering distance horizon, using
sine-Gaussian (top) and ringdown (bottom) templates for an
initial pericenter separation of rp = 6M .

This is as expected given that setting q = 1 maximizes
the signal power at fixed M and rp.
As shown in Fig. 18, all three search methods approach

optimal-filter performance for large masses M>∼500 M⊙,
since all three methods benefit from having the SNR con-
centrated in a small number of cycles. However, for lower
masses and therefore a larger number of in-band cycles,
the SG and RD template performances degrade much
more rapidly than power stacking. Whereas SG and RD
templates reach detection probabilities as low as 0.01%,
power stacking remains above 10% for the full parameter
space considered. Since our power-stacking estimate is
an idealization, uncertainties in the timing and frequen-
cies of eccentric bursts may degrade the performance of
a true TF power-stacked search. On the other hand the
results of [62] suggest this method is rather robust to tim-
ing uncertainties that are smaller than the characteristic
time of each burst .

IV. CONCLUSIONS

We have developed a novel waveform model for ec-
centric binary gravitational waveforms which can be ap-
plied for rp<−10M , where conventional post-Newtonian



14

M [M⊙]

q
V/Vmax

 

 

10
0

10
1

10
2

10
310

−2

10
−1

10
0

0.0001 0.0003 0.001 0.003 0.01 0.03 0.1 0.3 1

M [M⊙]

q

V/Vmax

 

 

10
0

10
1

10
2

10
310

−2

10
−1

10
0

0.0001 0.0003 0.001 0.003 0.01 0.03 0.1 0.3 1

FIG. 14: Contours of detection probability p ≡ V/Vmax as a
function of rest mass M and mass ratio q for Advanced LIGO
for a source inside the optimal filtering distance horizon, using
sine-Gaussian (top) and ringdown (bottom) templates for an
initial pericenter separation of rp = 6M .

waveforms fail. Such binaries may form through dynam-
ical capture in dense stellar environments. Our model
is not sufficiently accurate to generate a matched-filter
bank, and doing so will be very challenging for large
eccentricities. However, the model is adequate to sup-
ply mock signals to explore the performance of existing
LIGO searches in detecting highly-eccentric binary sys-
tems. Of existing search strategies, the ringdown and
burst searches are best adapted to these systems. How-
ever, we find that a large fraction of the parameter space,
where we included impact parameter 5 ≤ rp ≤ 10M (see
[7] for a complimentary study of rp ≥ 10M), total mass
M ∈ [1, 2000]M⊙ and mass ratio q ∈ [0.01, 1], has a sig-
nificantly smaller horizon distance than what is in princi-
ple achievable with a matched filter search. This implies a
corresponding volume of sources could have been missed
in prior searches and may be missed in future searches if
better adapted strategies are not employed.
Though it may be impractical to construct templates

in the near future (via numerical or analytical methods)
for these systems that are accurate enough for optimal
searches, a refinement of the waveform model presented
here should be adequate for informing a power-stacking
search. This method has the potential to increase SNR
by ≈ N1/4 for an N -burst event compared to a single
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FIG. 15: Contours of horizon distance as a function of rest
mass M and pericenter separation rp for Enhanced LIGO us-
ing an optimal filter (top), sine-Gaussian templates (middle),
and ringdown templates (bottom). The mass ratio is q = 1.

burst search. Though less than the effective N1/2 scaling
of a full template search, this would still be a significant
improvement. Note also that even for systems with larger
impact parameters that do evolve to an essentially qua-
sicircular inspiral following the burst phase, for most ex-
pected binary parameters the burst phase will be within
the band of ground-based detectors. Thus, the quasi-
circular inspiral phase will be truncated compared to a
primordial quasicircular inspiral, and though such a sys-
tem may still be detectable with a quasicircular template,
it would of course be mis-identified, and a bias would be
introduced in the estimation of the binary parameters.
For future work, we intend to implement a power-stack
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search using this waveform model to fully explore the ef-
ficacy of this method and its (in)sensitivity to timing
errors, as well as continue to refine the model to include
(for example) spin precession and finite body effects for
neutron stars. We mentioned that the standard PN equa-
tions are ill-suited to studying the late stages of mergers,
in particular for high eccentricity binaries, motivating our
development of the effective Kerr with radiation-reaction
model described here. However, the EOB approach [66]
is an alternative to the PN expansion that is well behaved
all the way to merger for quasicircular orbits. This ap-
proach has recently been extended to generic orbits [61],
and it will be interesting to explore EOB as the basis for
a repeated burst waveform model.
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