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Magnetars have been proposed as sources of gravitational waves, potentially observable by cur-
rent and future terrestrial gravitational-wave detectors. In this paper, we calculate the stochastic
gravitational wave background generated by summing the contributions from all magnetars in the
universe and we study its accessibility to the second and third generation gravitational-wave detector
networks. We perform systematic scans of the parameter space in this model, allowing the magnetic
field, the ellipticity, the initial period, and the rate of magnetars to vary over the currently believed
range of values. We also consider different proposed configurations of the magnetic field (poloidal,
toroidal, and twisted-torus) and different proposed star-formation histories. We identify regions
in the parameter space of poloidal and toroidal models that will be accessible to the second and
third-generation gravitational-wave detectors, and conclude that the twisted-torus models are likely
out of reach of these detectors. Poloidal field configuration with type II superconductor equation of
state in the interior, or with a highly disordered magnetic field, as well as the toroidal configuration
with very strong toroidal magnetic field in the interior (> 1016 G) are the most promising in terms
of gravitational-wave detection.

I. INTRODUCTION

Stochastic gravitational-wave background (SGWB) is
expected to arise from the superposition of contributions
from many independent and unresolved gravitational-
wave (GW) sources. The SGWB could be cosmological—
for example, arising in various inflationary models [1–4],
or in models of cosmic (super)strings [5–9]. It could also
be astrophysical, due to the superposition of waves gener-
ated by many astrophysical sources, such as compact bi-
nary coalescences [10–17] and neutron stars (quadrupole
emission [18, 19] or initial instabilities [20–26], including
magnetars [24, 27–30]). Magnetars, neutron stars with
very strong magnetic fields, were first proposed [31] to
explain the observed features of soft gamma repeaters
(SGRs) and anomalous X-ray pulsars (AXPs). Besides
driving the powerful electromagnetic radiation that en-
abled observation of these objects, the strong magnetic
field is expected to induce a quadrupolar deformation in
the magnetar structure, thereby generating GWs during
its rapid spinning (if its symmetry axis is not aligned
with the spin axis). Superposition of GWs generated by
all magnetars in the universe results in a SGWB, which
is the subject of this study.

Several interferometric GW detectors around the world
have operated over the past decade. This includes the
three LIGO detectors operating at two USA sites (Han-
ford, WA and Livingston Parish, LA) [32, 33], Virgo de-
tector in Italy [34, 35], and GEO600 in Germany [36, 37].
These detectors reached their initial design sensitivities
and acquired several years of data that are currently be-
ing analyzed in search for different types of GW signals.
Among others, several searches for the SGWB have been
completed [38–41], placing competitive upper limits on

the amplitude of the SGWB.
Currently under construction is the second generation

of GW detectors, including Advanced LIGO [42, 43],
Advanced Virgo [44], GEO-HF [45], and KAGRA (also
known as LCGT) [46]. These detectors are expected to
acquire first data in 2014, with strain sensitivities about
10 times better than the initial generation of detectors.
Furthermore, efforts are under way to design the third-
generation GW detectors, with yet another factor of 10 in
sensitivity improvement. Specifically, a design study of
the Einstein Telescope project [47, 48] was completed in
2011 in Europe. While the second-generation detectors
are expected to make first detections of GW signals, the
third-generation detectors are expected to explore the full
scientific potential of gravitational-wave astrophysics, en-
abling systematic studies of various GW sources, as well
as probing the cosmology of the very early universe. Fig-
ure 1 shows the strain sensitivity curves for the first, the
second, and the third generation of GW detectors that
will be used in this study.
It has been argued that the SGWB due to magnetars

may be observable by the second-generation GW detec-
tors [24, 27–30]. In this paper we aim to precisely iden-
tify how the SGWB measurements can be used to learn
about the physics that governs the behavior of magne-
tars, for example by constraining the equation of state in
the interior of magnetars. More specifically, we perform
a systematic scan of the parameter space of the magnetar
SGWB model and we identify which parts of it are acces-
sible to the second and third generation of GW detectors.
We also explore three different types of the magnetic field
configuration in magnetars (following [30]), as well as the
importance of the uncertainty in the star formation his-
tory. In Section 2 we present the model of SGWB due
to magnetars, following [29]. In Section 3 we present the
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FIG. 1. Strain sensitivity curves for the initial LIGO, Ad-
vanced LIGO, and ET-D. In addition to the standard strain
sensitivity, we also show the strain sensitivities for Advanced
LIGO detector configurations focusing on narrow frequency
bands around 650 Hz and 1 kHz. Advanced Virgo is expected
to have similar strain sensitivity to that of Advanced LIGO.

results of the parameter scan, and in Section 4 we discuss
the implications for the three different proposed config-
urations of magnetic field in magnetars. We conclude in
Section 5.

II. MAGNETAR SGWB MODEL

The SGWB is usually represented in terms of the nor-
malized GW energy spectrum [49]

ΩGW(f) =
f

ρc

dρGW(f)

df
(1)

where dρGW/df is the energy density in the frequency
band [f, f + df ] and ρc is the critical energy density re-
quired to close the universe:

ρc =
3H2

0c
2

8πG
, (2)

where H0 is the Hubble constant, c is the light speed,
and G is the Newton gravitational constant. Eq. 1 can
be rewritten in terms of the integrated flux density F
[29]:

ΩGW(f) =
1

ρcc
fF (f), (3)

which is given by

F (f) =

∫

dP0p(P0)

∫ zsup(f ;P0)

0

R(z)

4πr2(z)

dEGW

dfe
(fe;P0)dz,

(4)

where R(z) is the rate of magnetars as a function of red-
shift z, r(z) is the proper distance related to the lumi-
nosity distance by dL(z) = (1 + z)r(z), and dEGW /dfe
is the gravitational wave energy spectrum emitted by
a single source at the frequency fe = f(1 + z) (in the
source frame), up to some maximal frequency fmax. P0

denotes the initial period of the magnetar, which deter-
mines fmax. Since not all magnetars are born with the
same initial period, one in principle must average over
the probability distribution p(P0) of initial periods. How-
ever, assuming that magnetars are formed by the dynamo
process, the range of initial periods is rather limited,
P0 ∈ [1, 5] ms [31, 50]. We can therefore approximate
the integrated flux by replacing the dP0 integral with the
average value of P0 to get

F (f ;P0) =

∫ zsup(f ;P0)

0

R(z)

4πr2(z)

dEGW

dfe
(fe;P0)dz. (5)

We will investigate below the importance of the choice
of the P0 value. R(z) can be written in terms of the
magnetar rate per unit comoving volume RV (z):

R(z) = RV (z)
dV (z)

dz

=
4πc

H0

RV (z) r
2(z)

√

ΩM (1 + z)3 +ΩΛ

(6)

We use the standard ΛCDM cosmology, with the matter
energy density ΩM = 0.3, dark energy density ΩΛ = 0.7
and Hubble constant H0 = 70 km s−1 Mpc−1. Finally
we write the magnetar rate in terms of the star formation
rate R∗(z):

RV (z) = λ
R∗(z)

1 + z
. (7)

where λ is the mass fraction perM⊙ that is converted into
magnetars. The (1+z) term in the denominator corrects
the cosmic star formation rate by the time dilatation due
to the cosmic expansion.
The parameter λ captures the mass fraction λNS of

neutron star progenitors (in units of M−1
⊙ ) and the frac-

tion fm of neutron stars that are born as magnetars,
λ = λNSfm. We will treat λ as a free parameter of this
model, but we estimate its typical value here following
[29]. First, assuming the Salpeter initial mass function
ξ(m), and assuming that the neutron star progenitors
have masses larger than 8M⊙, and that stars with masses
larger than 40M⊙ give rise to black holes, we have

λNS =

∫ 40M⊙

8M⊙

ξ(m)dm = 9× 10−3 M−1
⊙ . (8)

The value of fm is rather uncertain. Some estimates [51]
and population synthesis simulations [18] suggest fm ≈

0.1 but other studies suggest that all neutron stars are
born as magnetars [52] (however in this case most of the
magnetars will dissipate their magnetic field in a very
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short time after formation). It is therefore unlikely that
λ > 0.01M−1

⊙ , with typical values of order λtypical =

10−3M−1
⊙ .

The cosmic star formation rate R∗(z) has been studied
extensively in the literature. In our calculation, we adopt
the one proposed by Hopkins and Beacom [53] and set
the maximum redshift zmax = 6. We also repeat our
calculation using four other star formation rates (SFR)
and compare these five results: Fardal et al. [54], Wilkins
et al. [55], Nagamine et al. [56], and Hernquist and
Springel [57]. These models of star formation history are
compared in Figure 2.
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FIG. 2. Comparison of different models of star formation
history: Hopkins and Beacom [53], Fardal et al. [54], Wilkins
et al. [55], Nagamine et al. [56], and Hernquist and Springel
[57].

We therefore rewrite Eq. 3 as

ΩGW(f) =
8πG

3c2H3
0

λf (9)

×

∫ zsup(f,P0)

0

R∗(z)

(1 + z)
√

ΩM (1 + z)3 +ΩΛ

dEGW

dfe
(fe;P0)dz.

The upper limit of the integral zsup is constrained by
both zmax and fmax and is thus given by

zsup(f, P0) =

{

zmax if f < fmax(P0)
1+zmax

fmax(P0)
f

− 1 otherwise
. (10)

In other words, we exclude magnetars that produce gravi-
tational waves with frequencies smaller than f (after red-
shift), as well as magnetars beyond the maximal redshift
zmax of the models of star formation history we choose.
We complete the model following Regimbau and Mandic
[29]

dEGW

dfe
=

dEGW

dt

∣

∣

∣

∣

dfe
dt

∣

∣

∣

∣

−1

with fe ∈ [0− 2/P0]

= Iπ2f3
e

(

5c2R6

192π2GI2

(

ǫB
Bp

)−2

+ f2
e

)−1

,(11)

assuming that the spin axis of the neutron star is perpen-
dicular to the magnetic axis so that gravitational waves
are emitted only at twice the spinning frequency 2/P
(with P0 being the initial period of the star).

The spin-down rate dfe
dt

is calculated from the rate of
the rotational energy loss due to electromagnetic and GW
radiation [30]. The first term in the brackets of Eq. 11
comes from the electromagnetic dipole radiation, which
is proportional to the magnetic field strength at the poles
B2

p. The second term is due to the GW emission. Since
both dEGW/dt and the spin-down rate due to GW emis-
sion are proportional to ǫ2B [30], this term of Eq. 11 does
not depend on ǫ2B. Overall, however, the energy spectrum
dEGW/dfe increases with (ǫB/Bp)

2, as further discussed
in Section IV.

As shown by Marassi et al. [30], if the spin and mag-
netic axes are not perpendicular, GWs will also be emit-
ted at the frequency 1/P — in particular, the component
of dEGW

dfe
with fe = 2/P (fe = 1/P ) is proportional to

sin2 α (cos2 α) where the wobble angle α is the angle be-
tween the two axes. The precession motion will drive α
towards π/2 (0) if the neutron star is prolate (oblate),
and the time-scale of this process is unknown. Since the
value of α and its time evolution do not significantly af-
fect the accessibility of the GW background [30], we sim-
plify our model to use α = π/2.

We assume the neutron star radius R and the moment
of inertia I to be 10 km and 1045 g cm2 respectively. The
magnetic field strength Bp is evaluated at the magnetic
poles and is expected to be between about 1014− 1015 G
[58] (in this study we consider newborn magnetars and
neglect a possible dissipation of the magnetic field).

The star quadrupole ellipticity ǫB is determined by
the magnetic field configuration and strength. However,
we will first study the model assuming no relationship
between the ellipticity and the magnetic field, and will
then consider three specific magnetic field configurations
(poloidal, toroidal, and twisted torus) which will imply
different relations between the magnetic field strength
and ellipticity.

The continuity of the GW signal produced by the mag-
netars is characterized by its duty cycle D. Assuming
τ(z) is the average signal duration of magnetars at red-
shift z, the duty cycle is defined by

D =

∫ zsup

0

R(z)τ(z)(1 + z)dz, (12)

where 1+ z rescales τ(z) to account for the time-dilation
effect. By summing up the time duration of all mag-
netars, Marassi et al. [30] showed that the duty cycle of
the SGWB from magnetar populationD ≫ 1, confirming
that the produced background is continuous in time.
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FIG. 3. We show regions of the parameter space of the mag-
netar SGWB model accessible to the future second-generation
detectors (Advanced LIGO [42, 43]) and third-generation de-
tectors (Einstein Telescope [47, 48]). The accessible regions
are above the corresponding curves. We assume star forma-
tion rate from [53] and the initial period P0 = 1 ms.

III. ACCESSIBILITY TO THE SECOND AND

THIRD GENERATION DETECTORS

We scan the parameter space of the magnetar SGWB
model described in Section II. In particular, since the
spectrum depends on the ratio of ellipticity and the polar
magnetic field, we will treat ǫB/Bp as one free parame-
ter, ranging between 10−20 and 10−14 G−1. We will also
treat λ as a free parameter, allowing it to take values
in the range 10−4

− 1 M−1
⊙ , although the likely value of

this parameter is expected to be λ < 10−2 M−1
⊙ . We

therefore scan the ǫB/Bp − λ plane, and for each point
in this plane we compute ΩGW(f). We then compare the
spectrum to the projected sensitivities for the second and
third-generation GW detectors. For the second genera-
tion, we assume the standard Advanced LIGO expected
strain sensitivity [42, 43], and also explore the detector
configurations where the strain sensitivity is amplified at
650 Hz or 1 kHz. For the third generation, we assume
the ET-D strain sensitivity curve of Einstein Telescope
[47, 48]. In all cases, the projected sensitivity is defined
as the signal-to-noise ratio of 2, assuming two co-located
detectors and one year of exposure.

The results of the scan are shown in Figure 3 using the
star formation rate from [53] and P0 = 1 ms. The second-
generation detectors will be able to probe large parts of
this parameter space, reaching even the typical values of
the magnetar rate, λ ∼ 10−3 M−1

⊙ . Some parts of the

parameter space, corresponding to λ & 10−2 M−1
⊙ and

ǫB/Bp & 10−17 G−1, may be accessible to multiple fre-
quency bands of the second-generation detectors, allow-
ing a more detailed study of the SGWB spectrum. The
vertical part of the LIGO and Advanced LIGO curves,

where the spectrum is not sensitive to ǫB/Bp, corre-
sponds to the regime where GW emission dominates over
the electromagnetic emission - in this case, the second
term in the bracket of Eq. 11 dominates over the first
one, so the whole bracket can be approximated at f−2

e ,
independent of ǫB/Bp. The third-generation detectors
will be able to probe a substantially larger part of this
parameter space, reaching much lower values of the mag-
netar rate and ǫB/Bp.
To estimate the importance of the choice of the star

formation rate model and of the initial period P0, we
computed the sensitivity curves for the second and third-
generation detectors using five different models of star
formation rate [53–57] and five different values of P0. The
results are shown in Figure 4—the uncertainties in the
star formation rate and in the initial period lead to a
factor of 3-4 uncertainty in the ǫB/Bp parameter.

IV. IMPLICATIONS

We now investigate the implications of the results of
our scans for different magnetic field configurations of
magnetars. Since different field configurations imply dif-
ferent relations between the magnetic field and the ellip-
ticity of the magnetar, the SGWB searches can be used to
probe these different field configurations and the physics
that gives rise to them. In general, a poloidal magnetic
field extends throughout both the interior and the exte-
rior of the magnetar with the expected field strength of
Bp ∼ 1014 − 1015 G [58]. In addition, a toroidal mag-
netic field component has been suggested to exist within
a torus-shaped region inside the magnetar [27, 59, 60]
in order to account for the observed features of the soft
gamma repeaters (SGRs) and the anomalous X-ray pul-
sars (AXPs). Following Marassi et al. [30] we con-
sider three different cases: poloidal-dominated, toroidal-
dominated, and twisted-torus configurations. For each
case we assume the star formation rate from Hopkins &
Beacom [53] and P0 = 1 ms.

A. Poloidal-Dominated Field Configuration

In the poloidal magnetic field configuration, the ellip-
ticity is given by

ǫB = β
R8B2

p

4GI2
, (13)

following Bonazzola and Gourgoulhon [61]. The distor-
tion parameter β is dimensionless and it accounts for the
magnetic field geometry and the equation of state (EOS).
Numerical simulations [61] indicate that if the interior
of the neutron star is a normal conductor, the distor-
tion parameter is typically β < 10, even if the current
flow is limited to the core of the star. If the star’s inte-
rior is a type I superconductor, such that the magnetic
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FIG. 4. Top-left: Comparison of the third-generation sensitivity curves (ET-D) for P0 = 1 ms and for five different choices
of star formation rate [53–57]. Top-right: Comparison of the third-generation sensitivity curves (ET-D) for the Hopkins
and Beacom star formation rate model [53] and for five different values of P0. Bottom-left: same as top-left but for the
second-generation detectors (standard Advanced LIGO strain sensitivity). Bottom-right: same as top-right, but for the second-
generation detectors (standard Advanced LIGO strain sensitivity).

field is expelled from parts of the star, the distortion pa-
rameter could be significantly larger, reaching values of
several hundred. Even larger distortions are expected in
the case of the highly disordered (stochastic) magnetic
field in the interior - in such cases the overall (average)
magnetic dipole moment could be very small, but the dis-
tortion parameter can reach values β > 1000. Similarly,
in the case of type II superconducting interior, very large
stresses in the crust of the star could also lead to values
of β > 1000. It is therefore possible to turn the SGWB
constraints on ǫB into constraints on β, hence extracting
information about the equation of state in magnetars, in
the framework of poloidal-dominated magnetic field con-
figuration.

In Figure 5 we show the sensitivity curves for the sec-
ond and third-generation detectors in the β − λ plane,
for several values of Bp in the range 1014 − 1016 G. As

noted above, the second-generation detectors will be able
to probe only models where the magnetar rate is rela-
tively large, larger than the ”typical” value of 10−3 M−1

⊙ .
Depending on the average strength of the poloidal mag-
netic field, these detectors will probe models with largest
values of β, corresponding to the type II superconduc-
tor or to highly disordered (stochastic) magnetic field
in the interior of the star. They may also be able to
probe some of the type-I superconductor models. The
non-superconductor models will be out of reach of the
second-generation detectors. The third-generation de-
tectors will be able to explore a significantly larger part
of this parameters space, potentially exploring the en-
tire type-I and type-II superconductor regions down to
rather low magnetar rates of λ ∼ 10−4 M−1

⊙ (for largest
values of Bp). These detectors may even be able to probe
the non-superconductor equation of state for the largest
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values of Bp and λ.

B. Twisted-Torus Magnetic Field Configuration

The twisted-torus magnetic field configuration was in-
troduced by Braithwaite & Spruit [59]. It is argued to
be a universal equilibrium structure of the magnetic field
[62], while the pure poloidal field configuration is poten-
tially unstable [63]. The twisted-torus field configuration
takes a toroidal magnetic field closed in the interior of
the magnetar into account. The toroidal field is twisted
and stabilizes the poloidal field. The resulting ellipticity
can be modelled by

ǫB = k

(

Bp

1015G

)2

× 10−6, (14)

where k is a dimensionless parameter dependent on the
field geometry and the equation of state. Ciolfi et al.
[64] argue that for the twisted-torus field configuration
k = 4− 9 spans a realistic range of the star compactness
at Bp = 1 × 1016 G in the framework of general relativ-
ity. More specifically, k = 4 corresponds to a small com-
pactness given by the Akmal-Pandharipande-Revenhall
equation of state [65], and k = 9 corresponds to a large
compactness given by the Glendenning equation of state
[66].
The Figure 6 shows the sensitivity curves of the sec-

ond and third-generation detectors in the k−Bp plane for
several values of λ. The realistic range of k values is far
below the sensitivities of both detector generations, im-
plying that the twisted-torus field configuration models
will not be reachable by these detectors.

C. Toroidal-dominated field configuration

Very strong toroidal magnetic field component, Bt &
1016 G, has been proposed for the interior of the mag-
netar to explain the enormous energy emission in the
December 27, 2004 giant flare from the SGR 1806-20, as
argued by Stella, Dall’Osso and Israel [60]. Braithwaite
further investigated the stability of the relative strengths
of the toroidal and poloidal components, confirming that
a magnetar can indeed have such a toroidal-dominated
field configuration [67]. To model the ellipticity, we adopt
the estimate by Cutler [27]:

ǫB =

{

−1.6× 10−6(Bt/10
15G), Bt < 1015G

−1.6× 10−6(Bt/10
15G)2, Bt > 1015G

. (15)

In the framework of the toroidal-dominated models, it is
therefore natural to study the GW detector sensitivities
in the Bt − Bp plane, as shown in Figure 7. While the
second-generation detectors will be able to probe only
models with relatively strong toroidal field component
(reaching Bt ∼ 1016 G only for the largest magnetar
rate values λ, and Bt ∼ 1017 G for the more typical

λ ∼ 10−3 M−1
⊙ ), the third-generation detectors will be

able to probe much of the interesting parameter space in
these models.

V. CONCLUSION

In this paper we conducted a systematic study of the
parameter space in the model of stochastic gravitational-
wave background due to magnetars, and we identified the
regions of this parameter space that will be probed by
the upcoming second and third-generation gravitational
wave detectors. We first computed these regions for the
general case, without assuming a specific magnetic field
configuration in the magnetars, in the plane spanned by
two critical parameters: the ratio of ellipticity and the
polar magnetic field, ǫB/Bp, and the rate of magnetars
λ. We found that different choices of the star formation
history and of the initial period of magnetars P0 lead to
a factor of 3-4 uncertainty in the computed accessible re-
gions of this parameter space. Similar level of uncertainty
is also expected due to the uncertainty in the assumed
values of the average neutron star radius (R ≈ 10 km)
and the moment of inertia (I ≈ 1045 g cm2).
We then proceeded to apply our results to three differ-

ent magnetic field configurations proposed in the litera-
ture, which imply different relations between the mag-
netar ellipticity and its magnetic field strength. We
found that the twisted-torus field configuration models
will not be reachable by either the second or the third
generation of gravitational wave detectors. In the case of
poloidal-dominated configuration, the second-generation
detectors will be able to probe models with largest distor-
tions in the shape of the magnetar, corresponding to the
type-II superconductor equation of state or the highly-
disordered magnetic field in the interior, for magnetar
rates larger than ”typical”, λ > 10−3 M−1

⊙ . The third-
generation detectors will be able to also probe models
with type-I superconductor equation of state, even for
very low magnetar rates λ ∼ 10−4 M−1

⊙ . The toroidal-
dominated magnetic field configuration models will be
probed by both second and third-generation detectors—
the third-generation detectors will be able to explore a
large fraction of the interesting parameter space in these
models, reaching relatively low values of the toroidal
magnetic field strength Bt ∼ 1016 G.
The work of CW and VM was in part supported by

the NSF grant PHY0758036.
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FIG. 5. Sensitivity curves in the β−λ plane for the poloidal magnetic field configuration with different values of Bp are shown
for the second (left) and third (right) generation of GW detectors. We use the star formation rate from Hopkins and Beacom
[53] and P0 = 1 ms. The gray horizontal dashed lines denote different types of the equation of state in the interior of magnetars,
in the framework of a pure poloidal field configuration.
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Not. Roy. Astron. Soc. 379, 985 (2007).
[55] S. Wilkins, N. Trentham, and A. Hopkins,

arXiv:0803.4024 (2008).
[56] K. Nagamine, J. Ostriker, M. Fukugita, and R. Cen,

Astrop. J. 653, 881 (2006).
[57] L. Hernquist and V. Springel, Mon. Not. Roy. Astron.

Soc. 341, 1253 (2003).
[58] C. Thompson and R. Duncan, Astrop. J. 473, 322 (1996).
[59] J. Braithwaite and H. Spruit, Nature 431, 819 (2004).
[60] L. Stella, S. Dall’Osso, G. Israel, and A. Vecchio, Astrop.

J. 634, L165 (2005).
[61] S. Bonazzola and E. Gourgoulhon, Astron. Astrop. 312,

675 (1996).
[62] S. Yoshida, S. Yoshida, and Y. Eriguchi, Astrop. J. 651,

462 (2006).
[63] S. Lander and D. Jones, Mon. Not. Roy. Astron. Soc.

412, 1730 (2010).
[64] R. Ciolfi, V. Ferrari, and L. Gualtieri, Mon. Not. Roy.

Astron. Soc. 406, 2540 (2010).
[65] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall,

Phys. Rev. C 58, 1804 (1998).
[66] N. Glendenning, Astrop. J. 293, 470 (1985).
[67] J. Braithwaite, Mon. Not. Roy. Astron. Soc. 397, 763

(2009).


