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Many recent works on large N holographic QCD in the planar limit have not considered UV
completions, restricting exclusively towards analyzing the IR physics. Due to this, the UV problems
like Landau poles and divergences of Wilson loops including instabilities at high temperatures have
not been addressed. In some of our recent papers, we have discussed a possible UV completion, which
is conformal in the UV and confining in the far IR, that avoids the Landau poles and the Wilson
loop divergences. In this paper we give a general field theoretic considerations of this including the
complete RG flow. We extend our UV complete model to study scenarios both above and below
the deconfinement temperature and argue how phase transition in our model should be understood.
Interestingly, because of the UV completion, subtle issues like instability due to negative specific
heat do not appear.

PACS numbers: 98.80.Cq

1. INTRODUCTION

The gauge/gravity duality has so far proved to be a
powerful technique to solve many strong coupling prob-
lems of large N gauge theories, and especially large N
QCD, in the planar limit. The application of a gravity

dual to understand strongly coupled gauge theory was,
in retrospect, the next best thing to do. A simple way to
see this would be to consider a particular gauge-theory
defined on a 3 + 1 dimensional slice at a certain energy
scale Λ. Now imagine we stack up all the slices together,
described at different energy scales, along an orthogonal
direction (call it the “radial” direction r). This way we
will get a five dimensional space that captures the full
dynamics of a given gauge theory from the Ultra-Violet
(UV), i.e large r, to the Infra-Red (IR), i.e small r. The
“radial” direction would then obviously be the direction
along which the energy would change, i.e the direction of
the Renormalisation Group (RG) flow. For a Conformal
Field Theory (CFT), the theory does not change along
the radial direction1 and therefore could as well be de-
fined at the boundary of the five-dimensional space. The
scale invariance of the underlying gauge theory will re-
strict the geometry of the five-dimensional space to the
Anti-deSitter (AdS) space [1], although it would be in-
teresting to argue that this is the unique choice2.
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1 Assuming the usual behavior of the irrelevant operators.
2 Furthermore, a Feynman diagram for any interaction between
point-like particles, when stacked up as above, would look like
an interaction between extended objects, i.e strings! This is ba-
sically the essence of using string (or gravity) duals to study
gauge theories. It will be informative to make this more precise.

However, for gauge theories with inherent RG flows,
the situation will be different and it would be instructive
to study the theories at various r (although we could also
restrict ourselves to the boundary again). The example
that we are interested in is largeN QCD, which we expect
to be asymptotically conformal3 in the UV and confining
in the far IR. Specific geometries that do the jobs for
both zero and non-zero temperatures were presented in
[5, 6] although the details of the gauge theories were not
presented there. In this paper we will fill up some of the
gaps left in [5, 6] and argue why we believe our choice of
the gravity dual is better suited to study large N thermal
QCD (see also [7] for another model that studies UV
complete large N thermal QCD from a bottom-up five-
dimensional point of view).

2. THE FIELD THEORY FROM THE GRAVITY

DUAL

The gravity dual of a large N thermal QCD above the
deconfinement temperature, described using only a fla-

vored Klebanov-Strassler geometry [2] with a black-hole
has few ultra-violet (UV) problems. For example, there
are Landau poles coming from the flavor branes, and
the Wilson loops are generically UV divergent [4]. All
these issues could be resolved if we properly augment the
Klebanov-Strassler geometry, which we will henceforth
call the Ouyang-Klebanov-Strassler black-hole (OKS-
BH) [3, 5, 6] geometry, with a suitable asymptotically

3 It is important that we demand conformal behavior in the UV
and not asymptotic freedom. This is because the ’tHooft cou-
pling λ ≡ g2

YM
N approaches a constant in the limit g2

YM
→ 0

and N → ∞. This way, the theory is actually asymptotically
free in terms of g2Y M but conformal in terms of λ. Furthermore,
we will demand λ to be very large throughout the whole RG flow
so that the gravity dual can be restricted to its classical limit.
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Anti-de Sitter (AdS) space. In this paper we will start
with a gauge theory interpretation of the background.

Smooth flow at the center
of the RG fixed point surface

(strongly coupled gauge theory)
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FIG. 1: In the far IR, one may note that the cascading
RG flow is never captured by the classical gravity theory.
The classical supergravity description would capture only the
smooth parts of the RG flow shown in (a) at the center of
each slices. Note that the circles drawn on each slices should
be taken as helices that become more and more straight as
we go to the center of each of the slices. The vertical dis-
tances in (a) has no physical meaning and only refer to the
slices described using appropriate Seiberg dual descriptions.
On the other hand, in (b) the RG flows all tend to go to zero
at some UV scales. This is where the theory becomes con-
formal (all scales are chosen with α

′ = 1). Note that, only
the strongly coupled parts of figure (b) are captured by the
classical supergravity description.

2.1. Continuous RG Flow from UV to IR

The Beta functions are also easy to compute to first
order in gsNf from the gravity dual. Region 1, 2 and 3
correspond to small, intermediate and large r region in
the dual geometry. In Region 1 the two couplings at a
scale Λ run in the following way:

Λ
∂

∂Λ

[

4π

g12
+

4π

g22

]

=
Nf

8

(

6r6 + 36a2r4

r6 + 9a2r4

)

∣

∣

∣

r=Λ
(2.1)

Λ
∂

∂Λ

[

4π

g12
− 4π

g22

]

= 3M

[

1 +
3gsNf

4π
log(Λ2 + 9a2)

]

r=Λ

where the RHS of both equations is evaluated at r ≡ Λ
in the gravity picture. The constant a appearing above
is the bare resolution parameter that one may set to zero
and the flow is depicted by the inner circles of Fig 1 (a)4.

4 This is however not so above the deconfinement temperature.
As shown recently in [8], even if we demand a vanishing bare
resolution parameter, it will get a contribution from the horizon
radius rh, such that a ∼ O(rh). Of course, on the gauge theory
side, the branes are still wrapped on vanishing cycle.

In this limit, the RG flow is clearly the NSVZ RG flow
[12]. On the other hand, in region 2, where we still have
two couplings, the RG flow is highly non-trivial. This can
be derived from the gravity dual where we see that the
three-form fluxes play an important role in the running
of the couplings [11]:

8π2

g12
= e−Φ

[

π − 1

2
+

1

2π

∫

S2

B2

]

(2.2)

8π2

g22
= e−Φ

[

π +
1

2
− 1

2π

∫

S2

B2

]

(2.3)

Finally in region 3, the scenario is somewhat simpler.
The two couplings flow approximately at the same rate
and the flow is governed by the Nf D7 and anti-D7
pairs that we keep in region 3 to cancel the Landau
poles. These seven-branes are responsible for restoring
the SU(Nf) × SU(Nf ) chiral symmetry above the de-
confinement temperature (i.e when we insert a black-hole
with a horizon radius rh [5, 6]). The running of the cou-
pling, which we call gYM , is now:

Λ
∂gYM

∂Λ
= gYM

3

∞
∑

n=1

Dn

Λ3n/2
(2.4)

whereDn are all independent of Λ and whose precise form
will be derived in [11]. The RG flow in the UV region i.e.
region 3 is shown in Fig 1(b).
The Beta functions discussed above can now be suc-

cinctly expressed as a continuous flow from UV to IR as
shown in fig 2. We have represented this using a slightly
unconventional way. We get the complete RG flow by
gluing the three regions altogether and using S-duality to
transmute strong coupling into weak coupling. Starting
from IR regime, once a particular coupling gets strong,
a S-duality is performed to reverse the sign of the beta
function associated with that coupling. This appears as
the sharp edges in the figure above. From the UV region
this can be seen in the following way: The coupling starts
as a constant in Region 3, when it gets to the transition
point (r0 = 200), it has a small plateau region contin-
uing in region 2, then it flows down to Region 1. The
RG flow continues after the transition point rmin = 100,
but since the rate of change is fast more sharp corners
appear in region 1. These are the points connected to
their S-dual values. Eventually this reaches the smallest
energy possible after which we expect linear confinement
at low temperatures. More details on this construction
will appear soon in [11].

2.2. Higgsing

In region 3, we have a SU(N + M) × SU(N + M)
gauge group5 which breaks down to SU(N+M)×SU(N)

5 The UV gauge group is generated by wrapping D5 and anti-D5
branes on a vanishing cycle of a resolved conifold, removing the
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FIG. 2: A slightly unconventional way to represent the RG
flow in our model. We get the complete RG flow by gluing
the three regions altogether and using S-duality to transmute
strong coupling into weak coupling. As before, all scales are
chosen with α

′
≡ 1.

by the Higgs mechanism as we enter Region 1. We will
study this mechanism in two versions: supersymmetric
and non-supersymmetric. Since the purpose is to break
the gauge group, we will ignore any fundamental matter
fields in the following discussion.

The Higgsing process should simply be engineered by
making some anti-D5 brane DOFs heavy, i.e by mov-
ing the anti-D5 branes away from the N D3 and the M
wrapped D5 branes on the resolved sphere. In a super-
symmetric theory, where the UV completion is done by
a N = 2 theory, this process would mean moving the
anti-D5 brane DOFs along the Coulomb branch, which
in turn implies that the anti-D5 branes’ world-volume
scalar multiplets, transforming under a certain subgroup
of SU(N+M), will be responsible for the Higgsing mech-
anism.

For the non-supersymmetric theory, this is rather easy
to demonstrate. All we require is that the vev of the
Higgs field φ should only transform under a certain sub-
group of the first SU(N + M) group. The Lagrangian
is:

L = −1

2
DµφkDµφk − V (φ) − 1

4
F aµν
i F a

iµν (2.5)

where i = 1, 2 refers to each SU(N + M) copy in the
product gauge group. Dµφk = ∂µφk − ig1A

a
1µ(T

a
1 )klφl

with g1, A1µ and T1 being the gauge coupling, gauge field
and generators of the first SU(N+M) group respectively.

The rest of the discussion should follow the standard
Higgs mechanism once we demand that the potential
V (φ) is minimized at 〈φi〉 ≡ vi and the field φi(x) is
expressed as:

φi(x) = vi +Hi(x) (2.6)

where Hi(x) is a real scalar field. It is obvious now that
the gauge field Aa will get massive if T a

ijvj 6= 0 and thus

tachyons by fluxes and separating the D5 and the anti-D5 branes
along the other sphere which is kept resolved at r = 0.

the gauge group is broken6. In our case, we only want to
break M of the generators. How this is done depends on
the details of the potentials and the specific values of N
and M .

The supersymmetric case follows the same line of ar-
gument as above. The general Lagrangian now is:

L =

∫

d4θ KΦ̄eV Φ+

∫

d2θ

[

W +
1

32πi
τtrfW

2
α

]

+ h.c.

(2.7)

where
(

Φ,Wα = − 1
4
D̄D̄DαV

)

are the appropriateN = 1
chiral and the vector multiplets with (φk, A

a
µ) being the

complex scalar and the vector fields in their respective
multiplets, K is a gauge invariant Kähler potential, W is
a gauge invariant superpotential, τ ≡ ϑ

2π+i 4πg2 is the com-

plexified gauge coupling with ϑ-angle and trf is the trace
in the fundamental representation. The FI terms don’t
appear because they are forbidden by the non-Abelian
gauge invariance.

The scalar potential obtained by expanding the above
Lagrangian in components is a sum of F 2 and D2 terms.
The F and the D terms are:

Fk = −∂W̄
∂φk

, Da = φ̄k (T
a
R)kl φl (2.8)

where T a
R denotes the generator in the R representation.

To preserve supersymmetry we must have Fk = 0 and
Da = 0. Actually in the absence of FI terms whenever
Fk = 0 has a solution, Da = 0 always has a solution.
So we assume we already have a solution that satisfies
Fk = 0. This solution can break the gauge symmetry as
in the non-supersymmetric case. This can be seen in the
following way.

Write down the relevant kinetic terms of the scalar
component of the Higgs multiplet, as:

∫

d4θ Φ̄eV Φ = −
∣

∣(∂µ + igAa
µT

a)φ
∣

∣

2
+ ... (2.9)

which is exactly the same as in the non-supersymmetric
case. If the F -term solution leads to M generators T a

such that T a
ijvj 6= 0, then the gauge group is broken from

SU(N+M) to SU(N). How this happens again depends
on the details of the N , M values and the form of the
superpotential.

6 The condition Ta
ijvj 6= 0 may not be too stringent a requirement.

This is because Ta
kj

vjT
a
ki
vi are non-negative no matter what lin-

ear transformations we do. So it must be zero to preserve the
symmetry. However generically one could also take linear com-
binations of various T that leave v unchanged. This can be done
by diagonalizing the mass matrix Ma

k
Mb

k
, where Ma

k
≡ ig1T

a
kj
vj,

which would involve such linear combinations.
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3. PHASE TRANSITION AND OTHER

APPLICATIONS

In [5, 6, 8], the theory above the deconfinement tem-
perature was studied in details. The high temperature
phase was understood therein as the one coming from a
black-hole with a horizon radius rh where the tempera-
ture was related to rh. The scenario at low temperatures
were not discussed in details in [5, 6, 8]. Here, we will
study these two phases and discuss their associate phase
transition. More elaborations on this is presented in [15].
Before actually computing the phase transition, let us

discuss the stability of the black hole geometry at high
temperatures. A positive specific heat cv implies stability
while a negative specific heat implies instability, which in
fact turned out to be the case of many models that study
large N thermal QCD without a UV completion [9]. The
specific heat can be obtained from the internal energy as:
Eint

cv =

(

∂Eint

∂T

)

V

, T =
g′

4π
√
h

∣

∣

∣

rh
≃ rh

πL2
(3.10)

where g = 1−r4h/r
4. We have introduced the AdS5 length

scale L in anticipation of the AdS cap, and the internal
energy is given by the integral of the zeroth component of
the stress tensor. To calculate the heat capacity, we have
to know how much energy is encoded in the geometry.
As r → ∞, the space-time is approximately AdS5×T 1,1,
where T 1,1 is the internal space. The internal energy T00

of asymptotically AdS5 space-time can be easily calcu-
lated using results from [10]. Thus, using the background
above the deconfinement temperature given in [5, 6, 8],
the internal energy, in terms of the string coupling gs and
the Newton’s constant GN , becomes:

Eint =

∫

d3x
√
g T00 =

π2rh
4

gs2GN
(3.11)

which gives the following value for the specific heat:

cv = +
4π6L8

gs2GN
T3 (3.12)

This means that the heat capacity is positive for pos-
itive temperatures, showing that the model is stable at
high temperatures. With a stable blackhole geometry we
will now see how phase transitions are realized in our
model. For more details please refer to [11, 15].
Phase transitions of SU(N) gauge theory can be re-

alized by spontaneous breaking of the center symmetry
ZN . In the confined phase, ZN symmetry is preserved
and its associated order parameter, a temporal Wilson
loop, is zero (i.e. 〈W 〉 = 0). In the deconfined phase,
ZN symmetry is spontaneously broken with 〈W 〉 6= 0. In
[6], we computed 〈W 〉 using the gravity description and
showed that OKS-BH geometry with large black holes
give 〈W 〉 6= 0 while the OKS geometry without black
holes gives 〈W 〉 = 0. This indicates that the extremal

geometry is dual to the confined phase while the non-
extremal geometry corresponds to the deconfined phase.
Here we will obtain the critical temperature for con-

finement/deconfinement transition by computing the free
enegy of extremal and non-extremal geometries and iden-
tifying it with the free energy of the gauge theory.
We start with the on-shell type IIB supergravity ac-
tion with appropriate Gibbons-Hawking boundary terms
SGH , counter-term, Scounter, necessary to renormalize the
action [10][5][15] as:

S = βEfree = SIIB + SGH + Scounter (3.13)

where Efree is the free energy, and SIIB is the ten dimen-
sional type IIB Euclidean supergravity action including
localized sources [16][17]. Just like the case for AdS grav-
ity discussed by Hawking and Page [14] and subsequently
by Witten [13], the above action gives rise to both ex-
tremal and non-extremal metric and both geometries can
incorporate non-zero temperature of the dual gauge the-
ory in the following way: Wick rotate t → iτ, τ ∈ (0, β)
and identify temperature T as T = 1/β. At a fixed tem-
perature of the gauge theory, we have two geometries
− extremal and non-extremal − and the geometry with
smaller on-shell action will be preferred. The free energy
of the gauge theory will then be given by the free energy
of the geometry obtained through (3.13).
Denoting the on-shell value of the action for the ex-

tremal geometry with S1 and the non-extremal geometry
with S2, we compute the action difference in the absence
of D7 branes and localized sources, i.e. Nf = 0 and the
axio-dilaton τ is a constant (i.e. without fundamental
matter), as [15]:

△S = S2 − S1

=
gsM

2β2V8

2κ2
10N

lim
R→∞

[

r4h
32

log

(R
rh

)

− 5dr4h
128

]

(3.14)

where V8 is the volume of R3×T 1,1, T 1,1 being the base of
the conifold with approximate radius L = (gsN)1/4

√
α′,

N,M are number of D3 and D5 branes in the dual gauge
theory, R is the boundary value of r, and rh is the black
hole horizon radius. Here d > 0 is a constant indepen-
dent of N,M, gs and depends on the boundary values
of derivatives of the metric [15]. In obtaining (3.14), we
have only kept terms up to linear order in gsM

2/N which
is valid forN ≫ gsM

2 and the exact form of Scounter, SGH

is presented in [15]. Furthermore in the limit R → ∞ in
(3.14), we are dropping R−n, n > 0 terms. The critical
temperature is obtained by evaluating the critical horizon
rch for which △S(rch) = 0 and the result is [15]:

rch = Rexp

(

−5d

4

)

, Tc =
1 +O

(

gsM
2

N

)

π exp
(

5d
4

)

(gsN)1/4
√
α′

(3.15)
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where we have used the scalingR = L = (gsN)1/4
√
α′ →

∞. For T > Tc, △S < 0, i.e the black hole geome-
try has lower free energy and thus preferred, while for
T < Tc, △S > 0, i.e the extremal geometry is pre-
ferred. For extremal geometry, one readily gets an en-
tropy s = −∂Efree

∂T = 0, while for the black hole s ∼
N2T 3

[

1 + gsM
2b

N log(LT )
]

at lowest order in gsM
2/N

and b > 0 is a constant independent of N,M, gs. Thus
the black hole describes liberated degrees of freedom and
we have phase transition. Note we do not have any D7-
branes − i.e we do not have any matter in the fundamen-
tal representation7 − the confinement to deconfinement
phase transition for the gauge theory mimics the first or-
der transition in pure glue theory and is described by a
Hawking-Page transition in the dual geometry.
Observe that in deriving (3.14), we defined the bound-

ary r = R → ∞, but did not explicitly add a UV ge-
ometry. By adding counter terms Scounter to the on-shell
action, we subtracted the terms in SIIB + SGH that di-
verge at the boundary r = R, which is effectively choos-
ing a particular UV completion. The UV completion
resulting from our regularization already gives us a first
order phase transition with an exact result for the critical
temperature and thus is already insightful. Furthermore,
since confinement is an IR phenomenon, the critical tem-
perature may not be extremely sensitive to the details of
the UV completion and thus the Tc in (3.15) can even be
relevant for the UV complete geometry.

4. CONCLUSION AND DISCUSSIONS

In this paper we have managed to tie up some of the
loose ends of our earlier works [5, 6, 8] related to the
gauge theory description of the UV complete geometry
predicted in the gravity side. The RG flow from UV to IR
at zero temperature shows how the conformal behavior
in the far UV ties up with the confining dynamics in the
far IR. The intermediate-energy physics is more involved
and will be elucidated in our upcoming work [11] where
we will also discuss how to evaluate the spectrum of the
theory. As an interesting outcome of the UV completion,
we could see how the stability of our background could
be justified. Furthermore phase transition and related
IR issues appear naturally in our set-up. If we ignore the
flavor branes, our gravity description gives us a first-order
phase transition. Further details on this has appeared in
[15]. In the presence of the flavor branes, the physics is
slightly more involved and will be discussed in [11].
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7 The field theory has bi-fundamental fields Ai, Bj and in the far
IR can be equivalently described by pure glue SU(M) theory. If
Tc is very small, the confined phase consists of glue balls and the

deconfined phase consists of free gluons of SU(M). If Tc is large,
the deconfined phase is best described by Ai, Bj fields.
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