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Abstract

We analyze the prospective impact of supersymmetric radiative corrections
on tests of charged current universality involving light quarks and leptons.
Working within the R-parity conserving Minimal Supersymmetric Standard
Model, we compute the corresponding one-loop corrections that enter the ex-
traction of the Cabibbo-Kobayashi-Maskawa matrix element Vud from a com-
parison of the muon-decay Fermi constant with the vector coupling constant
determined from nuclear and neutron β-decay. We also revisit earlier studies of
the corrections to the ratio Re/µ of pion leptonic decay rates Γ[π+ → e+ν(γ)]
and Γ[π+ → µ+ν(γ)]. In both cases, we observe that the magnitude of the
corrections can be on the order of 10−3. We show that a comparison of the
first row CKM unitarity tests with measurements of Re/µ can provide unique
probes of the spectrum of first generation squarks and first and second gener-
ation sleptons.
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1 Introduction

New physics beyond the Standard Model (BSM) is widely expected to be discov-
ered at the Large Hadron Collider (LHC). If so, a key challenge will be to identify the
scenario that best accounts for the collider signatures and to determine the parame-
ters of the corresponding Lagrangian. In this respect, high precision measurements of
electroweak precision observables (EWPOs), such as the muon anomalous magnetic
moment, may provide crucial input. During the first decade of LHC operations, much
of the effort at the “intensity frontier” or “precision frontier” will involve low-energy
studies involving hadronic, nuclear, and atomic systems (for recent reviews, see e.g.,
Refs. [1, 2]). In this paper, we consider one such class of observables that involve the
weak decays of light quarks and leptons.

Historically, such studies played a crucial role in testing and confirming the univer-
sality of the Standard Model (SM) charged current (CC) interaction. The comparison
of Fermi constants extracted from the muon lifetime and neutron/nuclear β-decays,
respectively, indicated that the underlying universality of CC interactions of leptons
and quarks is obscured by the mismatch between quark flavor and mass eigenstates –
leading ultimately to the Cabibbo-Kobayashi-Maskawa (CKM) matrix – but is oth-
erwise intact. Today, the most stringent tests of lepton-quark universality involve
the first-row CKM unitarity relation,

|Vud|2 + |Vus|2 + |Vub|2 = 1 . (1.1)

The largest and most precisely known entry in this relation, Vud is obtained from
a comparison of the muon decay Fermi constant, Gµ with the corresponding β-decay

Fermi (or vector coupling) constant Gβ
V extracted from superallowed 0+ → 0+ nuclear

β-decays [3]. The value of Vus is obtained from Ke3 decay branching ratios [4]. For
both the nuclear and kaon decays, extraction of the corresponding CKM matrix
element requires theoretical input (see e.g., Refs. [3, 4, 5, 6]). Given the overall
resulting uncertainty and the much smaller magnitude of Vub, the latter can be ignored
in testing Eq. (1.1). A measure of this test is given by the quantity

∆CKM =
(
|Vud|2 + |Vus|2 + |Vub|2

)
exp

− 1 , (1.2)

where the “exp” subscript indicates the value extracted from experiment with the
corresponding theoretical input. Currently,

∆CKM = −0.0001± 0.0006 , (1.3)

with comparable uncertainties coming from Vud and Vus [5]. This agreement with the
SM places stringent constraints on a variety of BSM scenarios.

A similarly powerful test of CC universality involves the ratio of pion decay
branching ratios

Re/µ =
Γ[π+ → e+ν(γ)]

Γ[π+ → µ+ν(γ)]
. (1.4)
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The theoretical interpretation of this ratio in terms of BSM physics is remarkably
clean, as many hadronic theory uncertainties that affect the individual branching
ratios cancel from the ratio. Recent work using chiral perturbation theory puts the
overall relative error bar at the 10−4 level [7], leading to a present error bar dominated
by the experimental uncertainty:

∆e/µ ≡ ∆Re/µ

Re/µ

≡
Rexp

e/µ − RSM
e/µ

RSM
e/µ

= −0.0034± 0.0030± 0.0001 , (1.5)

where the “SM” superscript indicates the theoretical SM prediction [7]. The first
error is the experimental and the second is the theoretical error in the SM prediction
for RSM

e/µ.
In what follows, we analyze the sensitivity of ∆CKM and ∆e/µ to supersymmetric

radiative corrections in the R-parity conserving Minimal Supersymmetric Standard
Model (MSSM). (For a discussion of the effects of R-parity violation, see e.g., Ref. [8].)
Supersymmetry (SUSY) is one of the most widely considered and strongly motivated
BSM scenarios, and the MSSM represents the natural starting point for any study
of SUSY effects on EWPOs. Our focus on CC universality tests is motivated by the
prospects of significant improvements in experimental and theoretical precision in
both ∆CKM and ∆e/µ. Experiments presently underway at TRIUMF [9] and PSI [10]
aim to reduce the experimental uncertainty in ∆e/µ to the level of 5 × 10−4, and
one hopes that future generation experiments will lead to additional significant re-
ductions. Similarly, new measurements of the neutron decay correlation parameters
using the PERC [11] detector may lead to an overall uncertainty in |Vud|2 of a few
times 10−4, while progress in computing the ratio of pseudoscalar decay constants
FK/Fπ using lattice QCD may yield a similar improvement in the error bar on |Vus|2.
Since radiative corrections involving weak scale particles generally have the scale
α/π ∼ 10−3, it is interesting to analyze the prospective sensitivity of these observ-
ables to weak scale SUSY.

Previous analyses of CC universality in the R-parity conserving MSSM have ap-
peared in Refs. [12] and [13]. The authors of Ref. [14] performed a model-independent
analysis of first row CKM unitarity violation in an effective operator framework. The
author of Ref. [15] analyzed the effects of right-handed currents in the determinations
of |Vub| and |Vcb|, specifically in the MSSM. At the time Ref. [12] appeared, there ex-
isted a long-standing ∼ 2σ deviation of ∆CKM from zero. The authors of Ref. [12]
showed – using a semi-analytical exploration of the MSSM parameter space – that the
sign of the discrepancy was at odds with the implications of conventional models for
SUSY-breaking mediation. Subsequently, the re-measurement of kaon decay branch-
ing ratios has lead to agreement with CKM unitarity, assuming the values of the kaon
form factor f+

K(0) is taken from lattice QCD computations [16]. Alternately, one may
on the ratio of Kℓ2 and πℓ2 decay widths and lattice QCD computations of the decay
constant ratio FK/Fπ [17]. Thus, it is interesting to revisit the analysis of Ref. [12].
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In doing so, we carry out a more general investigation of the relevant MSSM parame-
ters using a numerical scan that takes into account relevant experimental constraints.
At the same time, we consider the behavior of ∆e/µ in the same scan, reproducing
the results of Ref. [13] but uncovering a novel correlation with ∆CKM. We show that
the correlation of these two EWPOs may provide unique diagnostic of the first and
second generation squark and slepton spectrum that may ultimately be compared
with the results of LHC searches if the latter discover superpartners.

We summarize our findings here:

(i) The generic magnitude of the SUSY corrections is of order 10−3 or smaller.

(ii) The corrections entering the determination of Vud – and thus ∆CKM – are largest
for relatively light charginos and either light first generation squarks or second
generation sleptons. Current collider bounds on squark masses [18, 19], together
with the deviation of the muon anomalous magnetic moment from the SM
expectation, suggest that the scenario with relatively light charginos and second
generation sleptons is most likely. The effects of first generation slepton loops
on Vud are suppressed.

(iii) SUSY loop contributions to ∆e/µ are largest in magnitude in the presence of
light charginos and a relatively large mass splitting between the first and second
generation left-handed sleptons. In this case, the sign of the correction indicates
which of the two slepton generations is lightest.

(iv) Global constraints on SUSY contributions to ∆CKM and ∆e/µ from EW precision
data are relatively weak, since the corrections to gauge boson propagators cancel
in both cases. Our results illustrate are the more general insensitivity of low-
energy CC observables to the ρ parameter that is otherwise strongly constrained
by Z-pole observables.

(v) There exist strong correlations between the SUSY loop corrections to ∆CKM and
∆e/µ for various representative slepton and squark spectra for light charginos.
These are given in Table 1.

Our discussion of the calculations and analysis leading to these findings are orga-
nized in the remainder of the paper as follows. In Sect. 2, we briefly review β-decay
and πℓ2 decays. In Sect. 3, we set up our computation and summarize current con-
straints on the parameters of the MSSM. In Sect. 4, we numerically evaluate the
MSSM corrections to ∆CKM and ∆e/µ for a large space of MSSM parameters by per-
forming scans over the relevant parameters. We also study the corrections to both
quantities as functions of a single mass parameter with all others held fixed in or-
der to derive insight into regions where effects become largest. In Sect. 5, we give
our conclusions. For the benefit of readers wishing to carry out their own numerical
studies, we provide expressions for the individual loop corrections in the Appendix.
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Table 1: Correlations between ∆CKM and ∆e/µ (see also Fig. 10c).

Case |∆CKM | |∆e/µ|

light ℓ̃2, heavy ℓ̃1 and q̃1 large large

heavy and nearly degenerate ℓ̃1 and ℓ̃2, light q̃1 large small

light ℓ̃1, heavy and nearly degenerate ℓ̃2 and q̃1 small large

light and nearly degenerate ℓ̃1, ℓ̃2 and q̃1 small small

heavy ℓ̃1, ℓ̃2 and q̃1 small small

2 An Overview of β- and πℓ2-Decays

The most precise value of Vud is obtained from an analysis of Q-values, branching
ratios, and corrected half lives or “ft” values from a series of 13 0+ → 0+ “superal-
lowed” nuclear decays. For a general nuclear or hadronic decay, the ft values can be
expressed in terms of the β-decay vector (V ) and axial vector (A) coupling constants,
Gβ

V,A as

ft =
K

(Gβ
V )

2M2
F + (Gβ

A)
2M2

GT

(2.1)

K = h̄(2π2 ln 2)(h̄c)6/(mec
2)5 , (2.2)

where MF and MGT denote the Fermi and Gamow-Teller transition matrix elements,
respectively. For the superallowed decays of interest, MF =

√
2 and MGT = 0, while

for neutron decay MF = 1 and MGT =
√
3.

One obtains Vud by expressing it in terms of Gβ
V , the muon decay Fermi constant

Gµ, and electroweak radiative corrections to both processes:

Gβ
V = GµVud[1 + ∆r

(V )
β −∆rµ]gV (0) . (2.3)

Here, ∆r
(V )
β is the correction to tree-level four-fermion semileptonic amplitude for for

β-decay and ∆rµ is the corresponding correction for muon decay, while gV (0) is an
appropriate hadronic form factor evaluated at zero momentum transfer. Note that
the corrections ∆r

(V )
β and ∆rµ do not include pure QED corrections to the effec-

tive four fermion interaction. The latter are conventionally computed separately and
combined with the corresponding real photon corrections to the decay rates before
extracting the corresponding Fermi constants. This procedure ensures the appropri-
ate cancellation of infrared (IR) divergences. The effects of BSM physics, including
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contributions from superpartner loops that we consider here, are incorporated in the
difference [

∆r
(V )
β −∆rµ

]BSM

. (2.4)

Since superpartners are all massive and since our assumption of R-parity precludes
the presence of any massless particles (photons or gluons) in the one-loop SUSY
graphs, our calculation introduces no new IR singularities.

In order to relate the quantity in Eq. (2.4) to ∆CKM, we invert Eq. (2.3) to solve

for Vud in terms of ∆r
(V )
β −∆rµ. The resulting shift in ∆CKM due to BSM physics is,

thus, given by

δ∆CKM = −2|Vud|2
[
∆r

(V )
β −∆rµ

]BSM

. (2.5)

The meaning of this quantity is as follows: if for example [∆r
(V )
β − ∆rµ]

BSM were

positive (negative), then the value of Vud extracted from Gβ
V would be decreased

(increased) relative to the value obtained using only SM radiative corrections, thereby
decreasing (increasing) ∆CKM by twice the magnitude of the BSM correction (due
to squaring of Vud). Conversely, the lower (upper) end of the range in Eq. (1.3)

implies an upper (lower) bound on [∆r
(V )
β − ∆rµ]

BSM at a given level of confidence.
As we discuss below, the present error on ∆CKM is on the verge of allowing one to
infer new constraints on the MSSM parameter space, but further reductions in both
experimental and theoretical uncertainties would be needed in order to do so.

These uncertainties have several sources. Here, we concentrate on those associated
with the determination of Vud. For the case of neutron-decay, the form factor gV is
given by,

< f |ūγλd|i >= Ūp(P
′)

[
gV (q

2)γλ +
igM(q2)

2mN
σλνq

ν

]
Un(P ) , (2.6)

where |i > is the state of the initial neutron having momentum P ; |f > and P ′ refer to
the final state proton; and q = P ′−P . The conserved vector current (CVC) property
of the SM implies that gV (0) = 1. Small corrections due to isospin breaking have
been in Ref. [20] using chiral perturbation theory. The magnitude is less than 10−4

and can be neglected for present purposes. For the superallowed decays, additional
isospin-breaking corrections are incorporated into “corrected” ft values:

Ft = ft (1 + δR)(1 + δC) , (2.7)

where δC is a nucleus-dependent isospin-breaking correction and δR is an additional
nucleus-dependent correction to the O(α) electroweak radiative corrections.

The current world average for the thirteen most precisely-known corrected ft
values is [3, 5]

Ft = 3071.87± 0.83s , (2.8)
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where the nuclear shell model (NSM) computations of Towner and Hardy (TH) have
been used to evaluate the corrections δR,C and where the error bar has been increased
to include slight differences with a result obtained using Hartree-Fock methods. As
a result, one obtains

Vud = 0.97425(14)(19) (superallowed) . (2.9)

The first error is the combined experimental and nuclear theory error, while the
second arises from hadronic uncertainties in the SM contribution to ∆r

(V )
β [6]. The

combined fractional uncertainty of 0.024% is dominated by the hadronic theory error
in ∆r

(V )
β that is common to both the nuclear and neutron decays.

In contrast to superallowed decays, whose spin-parity quantum numbers select
only the vector current transition, the neutron lifetime (τn) also depends on the axial
vector coupling

Gβ
A = GµVud[1 + ∆r

(A)
β −∆rµ]gA(0) , (2.10)

where ∆r
(A)
β can in principle differ from ∆r

(V )
β due to BSM physics and where gA is the

nucleon axial vector form factor. The value of the latter is not protected from strong
interaction renormalization of the underlying quark axial current. At present, it is not
feasible to compute gA(0) from first principles in the SM with the precision needed
for probes of new physics. Consequently, an additional neutron decay observable –
having a different relative dependence on Gβ

V and Gβ
A than τn – must be measured

in order to extract Gβ
V with sufficient precision. What currently is the most precise

value of Gβ
V from neutron β-decay was obtained by measuring the neutron lifetime

τn and angular correlations in the decay. (See Ref. [21].) The angular correlations
relate to the ratio,

λ =
Gβ

A

Gβ
V

≈ gA(0)

gV (0)

(
1 + ∆r

(A)
β −∆r

(V )
β

)
. (2.11)

At present, the value of Vud derived from neutron decay has a larger uncertainty
than given in Eq. (2.9), owing largely to the experimental uncertainties in τn and λ.
Improvements in the precision of λ are expected with measurements of other neutron
decay parameters at the Fundamental Neutron Physics Beamline at the Oak Ridge
Spallation Neutron Source and with the PERC detector under construction in Vienna
and Heidelberg.

A detailed discussion of the determination of Vus can be found in Ref. [4]. The
result, which we use below, is

Vus = 0.2252± 0.0009 . (2.12)

Combining the latter with Eq. (2.9) leads to the result for ∆CKM quoted in Eq. (1.3).
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We turn now to pion leptonic decays. Theoretically, we will denote the corrections
to the πℓ2 decay widths as ∆r

(A)
π (ℓ)−∆rµ with

Γ[π+ → ℓ+νℓ(γ)] =
G2

µ|Vud|2
4π

F 2
πmπm

2
ℓ

[
1− m2

ℓ

m2
π

]2

{
1 + 2

[
∆r(A)

π (ℓ)−∆rµ
]
+ brem

}
, (2.13)

where Fπ = 92.4 MeV is the pion decay constant and where the “(γ)” and “+ brem”
indicate the inclusion of real radiation as needed to cancel infrared divergences in
the Standard Model contributions to ∆r

(A)
π (ℓ). The subscript “A” appears since

only matrix elements of the hadronic axial vector current contribute to pion decays,
in contrast to the determination of Vud for which we are interested in the hadronic
vector current. The ratio Re/µ is then insensitive to any quantities that are lepton-
species independent, such as Fπ, Vud, and ∆rµ. The resulting dependence of Re/µ

and ∆e/µ on BSM physics is then encoded in the difference

2
[
∆r(A)

π (e)−∆r(A)
π (µ)

]BSM
. (2.14)

As in the case of Eq. (2.4), the superpartner loop contributions to the difference
(2.14) are free from IR divergences.

The result for ∆e/µ given in Eq. (1.5) has been obtained from a comparison of the
average of separate measurements of Re/µ carried out at TRIUMF [22] and PSI [23]
and with theoretical SM prediction [7]. Two new measurements are underway at
these laboratories [9, 10] that plan for an experimental error of ∼ 0.0005, comparable
to the previous and longstanding value for the theoretical uncertainty in the SM
prediction. The smaller theoretical error quoted above is given in a recent two-loop
chiral perturbation theory computation. Part of the reduction in the theory error
results from matching the low-energy constants, or counterterms, to low-energy QCD
in the large NC limit. Assuming both experiments achieve their planned precision,
the resulting uncertainty in ∆e/µ will be comparable in magnitude to, but slightly
smaller than, the error in ∆CKM.

Looking further to the future, we observe that further reductions in the uncer-
tainties in both ∆CKM and ∆e/µ would be needed if these observables are to probe
significant portions of the MSSM parameter space. In the case of ∆e/µ, the challenge
will be entirely experimental as the present theory error is smaller than the expected
magnitude of SUSY corrections, particularly in the regime of light superpartners. For
∆CKM, one would require progress from a combination of experiment and hadronic
physics theory. In what follows, we use the magnitude of the SUSY corrections to
set a benchmark for these future improvements.

3 MSSM Radiative Corrections

One-loop corrections come in the form of vertex, propagator and box diagrams
for both muon decay (∆rµ) and light quark-decay (∆r

(V )
β , ∆r

(A)
π (ℓ)). Graphs for the
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supersymmetric contributions are shown in Figs. 13–17 of Appendix A. (Note that
we do not show corrections to the W -boson propagators, since these cancel from the
differences in Eqs. (2.4) and (2.14).) Explicit results for individual graphs are given
in Appendix A. Here, we outline the general framework for the computation and
comment on some general characteristics.

In the R-parity conserving MSSM, all of the internal lines involve superpartners.
As noted above, the masses of the latter are much greater than the scale of external
momenta in the decay process, and we encounter no infrared (IR) divergences whose
effect would have to be compensated by inclusion of real radiation. This situation
contrasts with that of the SM corrections, where the presence of internal photon
and charged lepton lines lead to soft and collinear IR divergences. As a result, our
computation can be simplified by neglecting external masses and momenta in the
loop integrals.

The SUSY contributions do, however, lead to ultraviolet (UV) divergences in
the vertex and external leg corrections. We regularize these UV divergences using
dimensional reduction, working in d = 4− 2ǫ spacetime dimensions for the momenta
and d = 4 dimensions for the Clifford algebra. Use of the latter is needed to preserve
supersymmetry at one-loop order. Renormalization is carried out by subtracting all
terms proportional to 1/ǫ − γ + ln 4π with appropriate counterterms, a procedure

known is “DR renormalization” ∗. All divergences cancel in the differences ∆r
(V )
β −

∆rµ and ∆r
(A)
π (e) − ∆r

(A)
π (µ) (see Appendix B); the one-loop corrections are finite

and insensitive to the UV regulator.
In addition to the cancellation of W -boson propagator corrections from the differ-

ences (2.4) and (2.14), there exist additional cancellations that simplify the analysis

of the SUSY corrections on the underlying MSSM parameters. In the case of ∆r
(V )
β

and ∆rµ, the residual finite corrections to the eνW vertex and electron propagators
are identical, so these corrections cancel from the difference (2.4) . Specifically, de-
noting the external leg, vertex, and box corrections as ∆leg, ∆vertex, ∆box respectively
and writing

∆r
(V )
β −∆rµ = ∆leg +∆vertex +∆box , (3.1)

this cancellation implies that

∆leg ≡ ∆β−leg −∆µ−leg , (3.2)

is independent of any corrections to the electron propagator, while all corrections to
the eνW vertex cancel from

∆vertex ≡ ∆β−vertex −∆µ−vertex . (3.3)

The remaining first generation slepton mass-dependence enters via the box graphs,
whose contributions are numerically suppressed [12]. Thus, we expect the SUSY

∗It is common to denote all DR-renormalized quantities with a hat, viz, ∆̂rµ. We will not do so
here, however, to avoid cumbersome notation.
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corrections to ∆CKM to be largely independent of first generation slepton masses
– an expectation that we confirm numerically below. Similarly, corrections to the
udW vertex and external light quark fermion propagators cancel from (2.14), thereby
desensitizing ∆e/µ to first generation squark masses. Thus, we expect

(i) ∆r
(V )
β −∆rµ will be most sensitive to details of the electroweak gaugino, first

generation squark, and second generation slepton spectrum, becoming largest
when the latter classes of sfermions are non-degenerate with one set being
relatively light,

(ii) ∆r
(A)
π (e) − ∆r

(A)
π (µ) will be most sensitive to spectra of electroweak gauginos

plus those of the first and second generation sleptons, becoming largest when
the latter are non-generate with, again, one set being relatively light.

In short, ∆CKM and ∆e/µ probe, respectively, slepton-squark and slepton universality
in the MSSM.

Given the cancellation of the udW vertex and external leg corrections from (2.14),
∆e/µ carries no dependence on the gluino mass at O(αs). In principle, (2.4) will
display some gluino mass sensitivity since the hadronic CC vertex and external leg
corrections do not cancel. In practice, this dependence is typically negligible, due
to conservation of the vector current, or CVC. In the case of SM corrections, CVC
implies that in the limit of exact isospin symmetry, the hadronic vector charged
current receives no strong interaction renormalization. Tiny corrections associated
with the light quark mass differences and electromagnetic effects that break isospin
symmetry may arise. The analog for the SUSY corrections is that for degenerate up-
and down-squarks, the gluino loop contributions will cancel from the sum of vertex
and external leg corrections, a consequence of “super CVC” [12]. This degeneracy will
be broken by the difference in up- and down-quark mass contributions to the squark
masses as well as by any mixing between left- and right-handed squarks. Since the
latter is typically taken to be proportional to quark Yukawa couplings, the breakdown
of super CVC will lead to a negligible sensitivity to the gluino mass.

3.1 Present Constraints

Collider searches for superpartners have placed lower bounds on many of the
masses relevant for radiative corrections computed here. Prior to the operation of
the LHC, results from superpartner searches at LEP and the Tevatron yielded the
following lower bounds [4]:

mχ̃0

1
> 46 GeV, mχ̃0

2
> 62.4 GeV, mχ̃0

3
> 99.9 GeV, mχ̃0

4
> 116 GeV ,

m±
χ̃1
, m±

χ̃2
> 94 GeV ,

mẽ > 107 GeV, mµ̃ > 94 GeV, mτ̃ > 81.9 GeV ,

mq̃ > 379 GeV, mb̃ > 89 GeV, mt̃ > 95.7 GeV, mg̃ > 308 GeV . (3.4)
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In the case of first and second generation squarks and gluinos, more stringent
lower bounds have recently been reported by the ATLAS and CMS collaborations.
Namely, squark masses are constrained to be above roughly 1000 GeV [18]. The exact
limits on the squark masses of course depend on assumptions about the MSSM, and
these are summarized in Ref. [19]. However, for the purposes of this paper, we will
simply take mq̃ > 1000 GeV when illustrating the general implications of present
LHC search results.

In general, electroweak precision observables (EWPOs) imply additional indirect
constraints on the MSSM parameter space due to superpartner contributions at the
one-loop level.† To the extent that loop corrections to EWPOs are dominated by
contributions to the electroweak gauge boson propagators, one may derive constraints
using the oblique parameters. At present, a global analysis of EWPO leads to the
allowed ranges

S = −0.13± 0.10, T = −0.13± 0.11, U = 0.20± 0.12 , (3.5)

where correlations between the errors are described below. The corresponding χ2-fit
function is

χ2 = (σ2)−1
ij (Si − S̄i)(Sj − S̄j) , (3.6)

where the indices i and j are summed from 1 to 3, with i = 1, 2, 3 corresponding,
respectively, to S, T , and U . The quantities S̄i are the corresponding central values
and are listed in Eq. (3.5), while the matrix σ2 is given as

(σ2)ij = ρijσiσj , (3.7)

where the σi are the errors in the oblique parameters appearing in Eq. (3.5) and the
correlation matrix ρ is

ρ =




1 0.866 −0.588
0.866 1 −0.392
−0.588 −0.392 1


 .

Setting χ2 < 7.815 in Eq.(3.6) defines a 95% confidence level allowed region for a
three parameter fit.‡

For each choice of the MSSM parameters that we use to compute the corrections
to the low-energy CC observables, we also compute the contributions to the oblique
parameters. We discard any parameter set that falls outside the allowed region for

†Here, we distinguish “EWPO” as referring to these indirect constraints, and “LEP” as referring
to the direct search bounds.

‡We note that in many theories of new physics, the oblique parameter U automatically is very
small (see, e.g., Ref. [4]). Therefore, one might presume that it would be appropriate to perform a
χ2-fit for two oblique parameters instead of three. However, it turns out that the oblique parameter
U is not small for the scans over MSSM parameters performed in this paper. This is demonstrated
in Figs. 7 and 11.
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the latter. Of course, a more complete treatment of present EWPO constraints would
require computing non-oblique corrections to each observable, and performing a new
global fit, and retaining only those parameters that satisfy an appropriate criterion
for a goodness of the fit (see, e.g., Ref. [24]). In the present case, we find that
implementation of the oblique parameter constraints does not lead to a significant
restriction of the MSSM parameter space that is most relevant to the low-energy
observables. Consequently, we anticipate that a more comprehensive EWPO analysis
is unlikely to yield significant additional constraints. Nonetheless, our expectations
should be checked by a more comprehensive, model-independent EWPO analysis – a
task that goes beyond the scope of the present study.

4 Parameter Scans and Numerical Analysis

In order to evaluate the possible magnitude of the corrections (2.4) and (2.14),
we have scanned over the relevant MSSM parameters, taking into account the afore-
mentioned constraints and then computing the resultant CC radiative corrections.
The relevant parameters include: gaugino masses M1, M2, M3; the supersymmet-
ric Higgs-Higgsino mass parameter µ; the ratio of up- and down-type Higgs vacuum
expectation values, tan β; and the slepton and squark mass matrices m2

L, m
2
R, m

2
Q,

m2
U and m2

D. (We take the triscalar couplings Aℓ, Au and Ad to vanish.) To avoid
unacceptably large flavor changing neutral currents, we have taken the mass matrices
to be flavor diagonal. In what follows, we discuss results of two types of variations
of MSSM parameters. In the first type, we vary a single MSSM parameter while
keeping the other parameters fixed. In the second type, a random number generator
is used to select parameters distributed uniformly over ranges. Parameter ranges are
listed in Table 2. In all figures, left-right sfermion mass mixings vanish.

The results of our numerical study are indicated by the plots in Figures 1-12.

Table 2: Parameter values for plots. All mass scales are in GeV.
Fig. µ tanβ M1 M2 M3 mL11 mL22 mQ11

1 100–1000 1 50 50 10000 110 110 10000
2a & 2b 50 1 50 100–1000 10000 110 110 10000

2c 50 1 50 500–9500 10000 110 110 10000
3 250 1 150 200 10000 150 100–5000 1000
4 ±(50–1000) 1 50–1000 ±(50–1000) 10000 110 110 1000
5 ±(50–1000) 1 50–1000 ±(50–1000) 10000 110 110 1000
6 ±(50–1000) 1 50–1000 ±(50–1000) 10000 110 110 1000
7 ±(50–1000) 1 50–1000 ±(50–1000) 10000 110 110 1000
8a 75–1000 20 100 150 10000 100 500 200
8b 200 20 100 75–1000 10000 100 500 200
9 ±(45–1000) 1–50 45–1000 ±(45–1000) 10000 45–5000 45–5000 45–1000
10 ±(45–1000) 1–50 45–1000 ±(45–1000) 10000 45–5000 45–5000 45–1000
11 ±(45–1000) 1–50 45–1000 ±(45–1000) 10000 45–5000 45–5000 45–1000

12a & 12b 45 1 45 45 10000 50–2000 5000 500
12c & 12d 45 1 45 45 10000 5000 50–2000 500
12e & 12f 45 1 45 45 10000 1000 5000 50–2000

11
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Figure 1: ∆CKM vs. µ. The total correction is given by the light solid line. The vertex and
external leg contribution is given by the heavy line. The box graph contribution is given
by the dashed line.

We first observe that the corrections to ∆CKM are at most of order 10−3 in the
region of relatively light superpartner masses. On the basis of the size of electroweak
couplings and the masses of superpartners, one might expect corrections to be larger.
However, significant cancellations between loop corrections occur, thereby reducing
the magnitude of the total. These cancellations can be understood in part from the µ-
dependence shown in Fig. 1. For large µ, and light M1,2, the electroweak gauginos are
nearly pure bino, wino, and Higgsino states – corresponding to the spectrum which
would occur in the limit of unbroken electroweak symmetry. In this limit, the vertex
and external leg corrections for each Wff interaction sum to a mass-independent
constant: α̂/4π sin2 θ̂W in the DR scheme [13]. This constant then cancels exactly
in the difference ∆vertex + ∆leg. For this regime, the box graph contribution ∆box

dominates, so that the dashed and light solid lines in Fig. 1 nearly coincide.
As µ becomes lighter, the cancellation of vertex and external leg corrections no

longer holds. Though ∆vertex +∆leg remains finite in this region, it introduces some
dependence on the other MSSM parameters and for very light superpartners, can
lead to corrections of order 10−3 (see the heavy line in Fig. 1). The box graph
correction, in contrast, varies only gently with µ. Moreover, its sign is opposite to
that of ∆vertex +∆leg. Consequently, in the light µ region, the latter cancels against
∆box. For the particular parameter choice used in generating Fig. 1, the cancellation
is quite strong, leading to a total correction that is much smaller in magnitude than
that of either ∆box or ∆vertex + ∆leg individually. At present, we have no physical
explanation for this cancellation, but simply report it as a result.

In Fig. 2a, we show ∆CKM as a function of M2 for light µ. The same cancellation
as indicated above occurs for light M2 and persists into the heavy M2 region, where

12
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Figure 2: Corrections as functions of M2.

∆box and ∆vertex + ∆leg are becoming small individually. The cancellation becomes
exact in the region of M2 ∼ 500 GeV, as we observe from Fig. 2b. There, we give
the ratio of ∆box/(∆vertex +∆leg) as a function of M2. The ratio becomes close to −1
for M2 in the vicinity of 500 GeV.

Since generically the finite corrections ∆r
(V )
β and ∆rµ tend to cancel each other

in the difference ∆r
(V )
β − ∆rµ, the overall effect on ∆CKM will be maximized in

special regions of parameter space where one contribution which otherwise cancels
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Figure 3: ∆CKM as a function of mµ̃L.
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Figure 4: Points inside LHC bounds are black. Points outside electroweak bounds are red.

is relatively suppressed. One situation is the region of a large splitting between the
first generation squark and second generation slepton masses. Given the present LHC
lower bounds on squark masses, such a situation is phenomenologically more viable
for light µ̃ and heavy ũ, d̃. In Fig. 3, we show ∆CKM as a function of mµ̃L for heavy
squark masses in the region of light µ and M2.

The resulting possibility of an overall correction having a magnitude comparable
or larger than the present sensitivity is indicated by the scatter plot in in Fig. 4.
Here, we show ∆CKM as a function of the lightest chargino mass for heavy squarks
and light sleptons, scanning over the remaining electroweak gaugino-Higgsino mass
parameters, as indicated in Table 2. We also illustrate the impact of imposing indirect
electroweak precision observable (EWPO) constraints and direct LEP bounds. The
red points are outside these bounds. Points consistent with LHC data and all other
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Figure 5: Corrections to ∆CKM , as functions of M1, M2 and µ.
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Figure 6: Contributions to ∆CKM as functions of µ.

constraints are black (note that we have set the squark mass parameter to 1 TeV
for this plot). The impact from the oblique parameter constraints is negligible. The
primary impact from including LEP constraints is to impose a lower bound on the
lightest chargino mass. The weak dependence on oblique parameter constraints is
expected, since the oblique parameters characterize the impact of superpartner loops
on the electroweak gauge boson propagators and since the propagator corrections
cancel from ∆CKM . Scatter plots for the oblique parameters are shown in Fig. 7.

For mχ1 close to the LEP lower bound, ∆CKM can be as large as 10−3 and have
either sign. We note that the maximum magnitude of ∆CKM is slightly larger than
the present combined experimental and theoretical error. Further reductions in these
uncertainties would be needed in order for a first row CKM unitarity test to provide a
significant probe of superpartner loop effects. The sign of ∆CKM in Fig. 4 is sensitive
to the value of the µ-parameter, but not to M1 or M2. The magnitude of ∆CKM

in this figure is sensitive to µ and M2, but not M1. This is illustrated in Fig. 5.
An interesting feature of Fig. 5 is the sharp sign change of ∆CKM as a function of
µ. This is due to competition between the vertex and external leg contributions to
∆CKM and the box graph contribution. As shown in Fig. 6, the vertex and external
leg contributions are negative, whereas the box graph contribution is positive. The
vertex and external leg contribution approaches zero in the limit of large |µ|, due to
the effects of electroweak symmetry breaking becoming negligible in this limit.

Ref. [12] investigated superpartner corrections in special regions of parameter
space. The authors of that work showed that when ũ and d̃ had the same masses and
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Figure 7: Scatter plots of the oblique parameters corresponding to Figs. 4, 5 and 6.
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Figure 8: ∆e/µ vs. µ and M2. The total correction is given by the light solid line. The
vertex and external leg contribution is given by the heavy line. The box graph contribution
is given by the dashed line.

mixing angles, M2
LR ≫ |M2

L −M2
R|, κf̃ = Mf̃2

/Mf̃1
was large,

[
∆r

(V )
β −∆rµ

]SUSY

∼ αEM
(c2W − s2W )

32πs2W c2W
ln
(
κq̃2/κ

4
µ̃

)
, (4.1)

where cW is the cosine of the weak mixing angle and sW is the sine. Under the
assumed limits on MSSM parameters, box graphs can be neglected. Ref. [12] also
considered the limit of large sfermion masses and M2

LR ≈ 0. In this case,

[
∆r

(V )
β −∆rµ

]SUSY

∼ αEM

2π
cos(2β)

[
M2

Z

3m2
q̃

ln

(
m2

q̃

< M2
χ̃ >

)
− M2

Z

m2
µ̃

ln

(
m2

µ̃

< M2
χ̃ >

)]
,

(4.2)
where < M2

χ̃ > is the squared-mass scale for the charginos and neutralinos. As a
cross check on our analysis, we have numerically verified Eqs. (4.1) and (4.2) using
our scans in the limits assumed in Ref. [12].

Turning now to Re/µ, we first compare our computation with the results of
Ref. [13]. For completeness, we show our results in Figs. 8a–9c, which agree with
the corresponding graphs in Ref. [13]. In Fig. 9, the absolute value of ∆e/µ is plotted,
in accordance with Ref. [13]. We also plot the SUSY correction without the absolute
value in Fig. 10a. For comparison, we show the β-decay correction for the same set
of mass constraints in Fig. 10b. The correlation between the β-decay correction and
the pion decay correction is shown in Fig. 10. We note that both Figs. 4 and 10b
are scatter plots of ∆CKM vs. mχ1. However, as noted in Table 2, the bounds on
the MSSM parameters are different. In particular, tanβ and the sfermion masses are
fixed in Fig. 4 but are not in Fig. 10b.

In Fig. 9, the absolute value of ∆e/µ is plotted, in accordance with Ref. [13]. The
corresponding corrections obtained without using absolute values are indicated in
Figs. 10a and 10b. As expected, ∆e/µ goes to zero for degenerate first and second
generation sleptons, corresponding to “slepton universality”. Away from this regime,
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Figure 9: Scatter plots of |∆e/µ|. Points inside electroweak bounds are given by green
circles. Points outside electroweak bounds are given by red triangles.

the magnitude of ∆e/µ can be as large as the expected experimental uncertainty of
the present experiments and as much as five times larger than the theoretical SM
uncertainty when the lightest chargino and lighter of the two slepton generations
is sufficiently light. Moreover, for ẽL lighter (heavier) than µ̃L, the sign of ∆e/µ is
negative (positive). Thus, a reduction in the experimental error to a level commen-
surate with the theoretical SM uncertainty would allow for a significant probe of
the MSSM parameter space, including the nature of the first and second generation
slepton spectrum. Fig. 11 shows scatter plots of oblique parameters corresponding
to Figs. 9 and 10.

In Figs. 10c and 10d, we give the correlation between the corrections ∆CKM and
∆e/µ. (Fig. 10c shows points inside and outside LHC bounds, whereas Fig. 10d
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Figure 10: Corrections to ∆e/µ and ∆CKM . Points inside electroweak bounds (including
LHC bounds) are black. Points inside electroweak bounds (excluding LHC bounds) are
green. Points outside electroweak bounds are red. Note that Figs. 10a–10c all are of the
same points. Fig. 10d shows a larger set of points within LHC bounds. Note also that, in
contrast to Fig. 4 the squark and slepton mass parameters are also varied in these plots.

only shows points within LHC bounds. The purpose of Fig. 10d is to show a larger
number of points, since only a small proportion of points in Fig. 10c are within LHC
bounds.) We observe the existence of three branches in which loop corrections are
enhanced: (a) ∆e/µ is negatively enhanced, but ∆CKM receives no enhancement; (b)
both are enhanced, but ∆e/µ is positive and ∆CKM is negative; (c) ∆CKM is positively
enhanced, but ∆e/µ receives no enhancement; imposition of LHC constraints cuts into
this branch. As we discuss below, these features are associated with dependencies of
the corrections on sfermion masses, as illustrated in Fig. 12.
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Figure 11: Scatter plots of the oblique parameters corresponding to Figs. 9 and 10.
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Figure 12: Corrections to ∆e/µ and ∆CKM , as functions of sfermion masses.
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First, Figs. 12a and 12b show the dependence on the first generation slepton mass
for heavy first generation squarks and second generation sleptons. In the limit of a
small first generation slepton mass but a large second generation slepton mass, ∆e/µ

is enhanced and negative, but ∆r
(V )
β −∆rµ is not. This is due to the fact that ∆e/µ

depends on the difference between the first and second generation slepton masses,
whereas ∆r

(V )
β − ∆rµ is relatively insensitive to the first generation slepton mass.

Thus, branch (a) corresponds to this sfermion spectrum.
Figs. 12c and 12d then show the dependence on the second generation slepton

mass for heavy first generation squarks and sleptons. In the limit of a small second
generation slepton mass but large first generation slepton and squark masses, ∆e/µ

and ∆r
(V )
β −∆rµ both are positively enhanced, corresponding to branch (b). In the

case of ∆e/µ, this is again due to the dependence on the difference between first
and second generation slepton masses. Moreover, as discussed above, the quantity
∆r

(V )
β − ∆rµ depends on the difference between the first generation squark and the

second generation slepton masses and thus can become relatively large when one or
the other of these sfermion masses is relatively light.

Finally, Figs. 12e and 12f show the dependence on the first generation squark
mass for heavy sleptons. In the limit of a small first generation squark mass and a
large second generation slepton mass, ∆r

(V )
β −∆rµ is negatively enhanced, but ∆e/µ

receives no enhancement. For this spectrum, one thus obtains branch (c). As stated

previously, ∆r
(V )
β − ∆rµ is sensitive to the difference between the first generation

squark and the second generation slepton masses. However, dependence on squark
masses cancel in ∆e/µ. We also note that the sign of ∆r

(V )
β −∆rµ indicates whether

the first generation squarks or second generation sleptons are heavier.
New results from the LHC raised the limit on the squark mass. As seen in

Figs. 10c and 10d, LHC constraints contract branch (c). This is because this branch
corresponds to the limit of a low squark mass.

5 Discussion and Conclusions

Precision tests of CKM unitarity and lepton universality provide powerful indi-
rect probes of BSM physics. Here, we have uncovered a novel correlation between
MSSM corrections to first row CKM unitarity and the ratio Re/µ of πℓ2-decays that
would be indicative of interesting details for the first and second generation sfermion
spectrum.§ If superpartners are discovered at the LHC, these correlations could pro-
vide a particularly interesting diagnostic tool in an effort to specify the underlying

§As noted in Sect. 2, we computed apparent violations of first row CKM unitarity, due to the
measured value of |Vud| possibly deviating from the value appearing in the MSSM Lagrangian.
(Standard Model assumptions go into the measurement of |Vud|.) We did not compute corrected
values of CKM matrix elements in an effective Lagrangian or β-functions for CKM parameters. For
a study of the latter, see e.g., Ref. [25].
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Lagrangian. For example, the observation of a significant and positive deviation of
∆CKM would either be inconsistent with the present LHC bounds on first generation
squarks – thereby pointing to the presence of some other new physics – or would sug-
gest a spectrum for gluinos and first generation squarks that evades these bounds. On
the other hand, agreement of ∆CKM with the SM but a significant deviation for ∆e/µ

would indicate heavy first generation squarks, consistent with the early LHC con-
straints, but relatively lighter and non-degenerate first or second generation sleptons,
with the sign of the effect indicating the mass hierarchy.

More generally, the study of these charged current observables introduces con-
siderable simplifications of the MSSM parameter space analysis, since superpartner
contributions to the gauge boson propagators cancel from the relevant ratios – thereby
weakening the impact of indirect constraints from electroweak precision data – as do
some classes of vertex plus external leg corrections. In this sense, the present study
provides a concrete illustration of the unique potential for insight that comparisons
of low-energy CC processes may provide in the LHC era.

As our analysis indicates, application of this diagnostic tool to the R-parity con-
serving MSSM requires a precision of a few times 10−4, at least when a subset of
the superpartners are relatively light. The sensitivities of present tests of first row
CKM unitarity and lepton universality with πℓ2-decays are just beginning to probe
the relevant region of MSSM parameter space. Importantly, however, the prospects
for more sensitive probes are promising, particularly in light of reduced hadronic un-
certainties in the SM predictions for Re/µ. In the case of first row CKM unitarity,
similar reductions in the hadronic uncertainties associated with SM contributions to
∆r

(V )
β −∆rµ and with the determination of Vus, along with commensurate reductions

in the experimental uncertainty in the determination of Vud from nuclear and neutron
β-decay, would be desirable.
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A Loop Graphs

In this appendix, we give explicit expressions for one-loop graphs involving Stan-
dard Model superpartners, which contribute to β-decay corrections. Specifically, we
give results for external leg, vertex and box graphs which contribute to ∆r

(V )
β and

∆rµ. Extensive discussions of the corrections entering ∆e/µ appear in Ref. [13] so we
do not reproduce them here.

A.1 External Leg Corrections

f

χ

f

f̃ ′

Figure 13: A one-loop correction to the graph for an external fermion leg. The internal
scalar f̃ ′ is a sfermion. The internal χ-field is a chargino, a neutralino or a gluino, depending
on the specific diagram. (We shall use similar notations for subsequent loop diagram
figures.) The fermion-sfermion interactions are defined according to Fig. 14.

χf

f̃ ′

Figure 14: The tree-level interaction between f , χ and f̃ ′. The value of this vertex inter-
action is ig(gLPL + gRPR).

A generic external leg contribution for either β-decay or muon decay is shown in
Fig. 13. The general result for an electroweak correction given by Fig. 13 is

∆
(13)
diagram =

g2

(4π)2

(
1

2

)
C

[
αǫ

2
−
∫ 1

0

dxx log((xm2
f̃ ′
+ (1− x)m2

χ)/µ
2)

]
, (A.1)

where mf̃ ′ andmχ are the masses of the f̃ ′-field and the χ̃-field respectively in Fig. 13.
A similar result holds for a supersymmetric QCD correction, except with the weak
coupling g replaced with the strong coupling gs. The superscript on ∆

(diagram)
leg indi-

cates that the quantity is the contribution to the external leg correction from a single
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diagram, in contrast to the total external leg correction ∆leg given in Eq. (3.1). The
variable x is the Feynman parameter. The coefficient of 1/2 in front of the Feyn-
man parameter integral is due to the fact that the square root of the fermion field
strength renormalization appears in a coupling correction. The quantity µ is the ’t
Hooft scale. The quantity C is

C = −
(
|gL|2 + |gR|2

)
, (A.2)

where gL and gR are couplings defined in Fig. 14. This computation was performed
in dimensional reduction. The term αǫ is given as

αǫ =
1

ǫ
− γ + log(4π) +O(ǫ) , (A.3)

where ǫ is the dimensional reduction parameter defining the loop diagram in d =
4− 2ǫ dimensions, and γ is the Euler-Mascheroni constant. Both αǫ and µ cancel in
∆r

(V )
β −∆rµ.

Table 3: The values of C from Eq. (A.1), for the external leg graphs in β-decay. Note that
the weak coupling g is replaced by the strong coupling gs for the diagrams involving the
gluino ΛG.

f f̃ ′ χ C

u ũi χ0
j −1

2
|Z1i

U |2(Nj2 + tan θWNj1/3)
2

u d̃i χj −|Uj1|2|Z1i
D |2

u ũi ΛG −8
3
|Z1i

U |2

d ũi χC
j −|Vj1|2|Z1i

U |2

d d̃i χ0
j −1

2
|Z1i

D |2(Nj2 − tan θWNj1/3)
2

d d̃i ΛG −8
3
|Z1i

D |2
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Table 4: The values of C from Eq. (A.1), for the external leg graphs in muon decay.

f f̃ ′ χ C

µ ℓ̃i χ0
j −1

2
|Z2i

L |2(Nj2 + tan θWNj1)
2

µ ν̃J χC
j −|Vj1|2|Z2J

ν |2

νµ ℓ̃i χj −|Uj1|2|Z2i
L |2

νµ ν̃J χ0
j −1

2
|Z2J

ν |2(Nj2 − tan θWNj1)
2

Tables 3 and 4 list the values of the coefficient C from Eq. (A.1) for external leg
contributions to β-decay and muon decay. According to the convention in Ref. [26],
ZL is the selectron mixing matrix, Zν is the sneutrino mixing matrix, ZU is the up
squark mixing matrix and ZD is the down squark mixing matrix. According to the
convention in Ref. [27], N is the neutralino mixing matrix, and U and V are the
chargino mixing matrices. We note that unlike the other mixing matrices, absolute
values do not appear on N in Tables 3 and 4. This is because N is an orthogonal
matrix whose components are real.

A.2 Vertex Corrections

Generic vertex graph corrections are shown in Fig. 15. The correction due to the
vertex graph in Fig. 15a has the general form,

∆
(15a)
vertex = − g2

(4π)2

√
2H

{
αǫ

2

−
∫ 1

0

du

∫ 1

0

dωω log
[(

ωm̄2
f̃
+ (1− ω)m2

χ +∆m2
f̃
ω(1− 2u)/2

)
/µ2
]}

,

(A.4)

where

m̄2
f̃
=

m2
f̃1
+m2

f̃2

2
, (A.5)
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f1 f2

W

f̃1
f̃2

χ0

(a)

f̃

W

χ1 χ2

f1 f2

(b)

Figure 15: Vertex corrections involving superpartners. The internal fermion in Fig. 15a is a
neutralino or a gluino. The W -f̃1-f̃2 interaction in Fig. 15a is defined as −igGLL(q1+ q2)

µ,
where q1 is the momentum of f̃1 and q2 is the momentum of f̃2. The W -χ1-χ2 interaction
in Fig. 15b is given as igγµ(a+bγ5). The f̃ -f1-χ1 interaction is given as −ig(g1LPL+g1RPR),
and the f̃ -f2-χ2 interaction is −ig(g2∗L PR + g2∗R PL). The fermion-sfermion interactions in
both Figs. 15a and 15b are defined according to Fig. 14.

Table 5: The values of H from Eq. (A.4), for the vertex graphs of the type shown in
Fig. 15a, for β-decay. Note that the weak coupling g is replaced with the strong coupling
gs for the graph involving the gluino ΛG.

f1 f2 f̃ ′
1 f̃ ′

2 χ0 H

d u d̃i ũi′ χ0
j − 1

2
√
2
Zki∗

D Z1i
DZ

ki′∗
U Z1i′

U

(Nj2 + tan θWNj1/3)(−Nj2 + tan θWNj1/3)

d u d̃i ũj ΛG − 8
3
√
2
Z∗kj

U Z1j
U Z∗ki

D Z1i
D

∆m2
f̃
= m2

f̃2
−m2

f̃1
, (A.6)

mf̃1
is the mass of the f̃1-particle in Fig. 15a, mf̃2

is the mass of the f̃2-particle, and
mχ is the mass of the χ-particle. The values of H for different vertex graphs are
given in Tables 5 and 6.
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Table 6: The value of H from Eq. (A.4), for the vertex graph of the type shown in Fig. 15a,
for muon decay.

f1 f2 f̃ ′
1 f̃ ′

2 χ0 H

µ νµ ℓ̃i ν̃J χ0
j

1
2
√
2
ZkJ∗

ν Z2J
ν Zki∗

L Z2i
L (Nj2 − tan θWNj1)(Nj2 + tan θWNj1)

Table 7: The values of Λ1 from Eq. (A.7), for the vertex graph shown in Fig. 15b, for
β-decay.

f1 f2 f̃ χ1 χ2 Λ1

d u ũi χ−
j χ0

j′
1

2
√
2
V ∗
j1|Z1i

U |2(Nj′2 + tan θWNj′1/3)

(−Nj′2Vj1 +Nj′4Vj2/
√
2−Nj′2Uj1 −Nj′3Uj2/

√
2

+Nj′2Uj1 +Nj′3Uj2/
√
2−Nj′2Vj1 +Nj′4Vj2/

√
2)

d u d̃i χ0
j χj′

1
2
√
2
Uj′1|Z1i

D |2(−Nj2 + tan θWNj1/3)

(Nj2V
∗
j′1 −Nj4V

∗
j′2/

√
2 +Nj2U

∗
j′1 +Nj3U

∗
j′2/

√
2

+Nj2U
∗
j′1 +Nj3U

∗
j′2/

√
2−Nj2V

∗
j′1 +Nj4V

∗
j′2/

√
2)

The correction due to the vertex graph in Fig. 15b has the form,

∆
(15b)
vertex = − g2

(4π)2

√
2

[
Λ1

(
αǫ

2
−
∫ 1

0

du

∫ 1

0

dωω log(D/µ2)

)

+mχ1
mχ2

Λ4

∫ 1

0

du

∫ 1

0

dω
ω

D

]
, (A.7)

where
D = (1− ω)m2

f̃
+ ωm̄2

χ + ω(1− 2u)∆m2
χ/2 , (A.8)

where mf̃ is the mass of the sfermion f̃ in the figure,

m̄2
χ =

m2
χ1

+m2
χ2

2
, (A.9)

∆m2
χ = m2

χ2
−m2

χ1
, (A.10)
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Table 8: The values of Λ4 from Eq. (A.7), for the vertex graph shown in Fig. 15b, for
β-decay.

f1 f2 f̃ χ1 χ2 Λ4

d u ũi χ−
j χ0

j′
1

2
√
2
V ∗
j1|Z1i

U |2(Nj′2 + tan θWNj′1/3)

(−Nj′2Vj1 +Nj′4Vj2/
√
2−Nj′2Uj1 −Nj′3Uj2/

√
2

−Nj′2Uj1 −Nj′3Uj2/
√
2 +Nj′2Vj1 −Nj′4Vj2/

√
2)

d u d̃i χ0
j χj′

1
2
√
2
Uj′1|Z1i

D |2(−Nj2 + tan θWNj1/3)

(Nj2V
∗
j′1 −Nj4V

∗
j′2/

√
2 +Nj2U

∗
j′1 +Nj3U

∗
j′2/

√
2

−Nj2U
∗
j′1 −Nj3U

∗
j′2/

√
2 +Nj2V

∗
j′1 −Nj4V

∗
j′2/

√
2)

Table 9: The values of Λ1 from Eq. (A.7), for the vertex graph shown in Fig. 15b, for muon
decay.

f1 f2 f̃ χ1 χ2 Λ1

µ νµ ν̃J χ−
j χ0

j′
1

2
√
2
V ∗
j1|Z2J

ν |2(Nj′2 − tan θWNj′1)

(−Nj′2Vj1 +Nj′4Vj2/
√
2−Nj′2Uj1 −Nj′3Uj2/

√
2

+Nj′2Uj1 +Nj′3Uj2/
√
2−Nj′2Vj1 +Nj′4Vj2/

√
2)

µ νµ ℓ̃i χ0
j χj′ − 1

2
√
2
Uj′1|Z2i

L |2(Nj2 + tan θWNj1)

(Nj2V
∗
j′1 −Nj4V

∗
j′2/

√
2 +Nj2U

∗
j′1 +Nj3U

∗
j′2/

√
2

+Nj2U
∗
j′1 +Nj3U

∗
j′2/

√
2−Nj2V

∗
j′1 +Nj4V

∗
j′2/

√
2)

mχ1
is the mass of the χ1-particle, and mχ2

is the mass of the χ2-particle. The
quantities Λ1 and Λ4 are given as

Λ1 = g2∗L g1L(a+ b) (A.11)

and
Λ4 = g2∗L g1L(a− b) , (A.12)

where a and b are interaction terms described in the caption of Fig. 15. The coupling
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Table 10: The values of Λ4 from Eq. (A.7), for the vertex graph shown in Fig. 15b, for
muon decay.

f1 f2 f̃ χ1 χ2 Λ4

µ νµ ν̃J χ−
j χ0

j′
1

2
√
2
V ∗
j1|Z2J

ν |2(Nj′2 − tan θWNj′1)

(−Nj′2Vj1 +Nj′4Vj2/
√
2−Nj′2Uj1 −Nj′3Uj2/

√
2

−Nj′2Uj1 −Nj′3Uj2/
√
2 +Nj′2Vj1 −Nj′4Vj2/

√
2)

µ νµ ℓ̃i χ0
j χj′ − 1

2
√
2
Uj′1|Z2i

L |2(Nj2 + tan θWNj1)

(Nj2V
∗
j′1 −Nj4V

∗
j′2/

√
2 +Nj2U

∗
j′1 +Nj3U

∗
j′2/

√
2

−Nj2U
∗
j′1 −Nj3U

∗
j′2/

√
2 +Nj2V

∗
j′1 −Nj4V

∗
j′2/

√
2)

gL is defined in Fig. 14. The quantities g1L and g2L represent gL for the f1 and f2
interactions in Fig. 15b. The values of Λ1 and Λ4 for different graphs are given in
Tables 7–10.

A.3 Box Graph Corrections

At one-loop order, there are box graph corrections to ∆r
(V )
β and ∆rµ, as shown

in Figs. 16 and 17. The individual box graph contributions ∆box for either β-decay
or muon decay take one of two forms:

∆
(diagram)
box =

g2

(4π)2
Am2

Wmχmχ′

∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dz

[
xm2

χ + ym2
χ′ + zm2

f̃
+ (1− x− y − z)m2

f̃ ′

]−2

(A.13)

or

∆
(diagram)
box =

g2

(4π)2
Bm2

W

∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dz

[
xm2

χ + ym2
χ′ + zm2

f̃
+ (1− x− y − z)m2

f̃ ′

]−1

, (A.14)

depending on the individual graph. Both equations describe box graphs for muon
decay and for β-decay. The coefficients A and B are products of mixing matrices.
The values of A and B are given in Tables 11–14.
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d χC
j e

u χ0

j′ νe

ν̃Jũi

(a)

d e

u νe

χ0

j

χj′

d̃i ℓ̃i′

(b)

d

u

νe

e

χ0

j

χj′

d̃i ν̃J

(c)

d

u χ0

j′

ũi

χj νe

e

ℓ̃i′

(d)

Figure 16: Box graph contributions to ∆r
(V )
β .

Table 11: The values of A from Eq. (A.13), for the β-decay box graphs in Fig. 16.

Fig. A

16c −V ∗
j′1Uj′1Z

1J∗
ν Z1J∗

ν |Z1i
D |2(Nj2 − tan θWNj1)(−Nj2 + tan θWNj1/3)

16d U∗
j1V

∗
j1|Z1i′

L |2Z1i
U Z1i

U (Nj′2 + tan θWNj′1)(Nj′2 + tan θWNj′1/3)

Table 12: The values of B from Eq. (A.14), for the β-decay box graphs in Fig. 16.

Fig. B

16a |Vj1|2Z1J
ν Z1i∗

U Z1i
U (Nj′2 + tan θWNj′1/3)Z

1J∗
ν (Nj′2 − tan θWNj′1)

16b −|Uj′1|2Z1i′

L |Z1i
D |2(Nj2 + tan θWNj1)(−Nj2 + tan θWNj1/3)Z

1i′

L
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µ

νµ

ν̃J ν̃J ′

χ−

j

(a)

e

νe

µ

νµ

χ0

j

χj′

ℓ̃i ℓ̃i′

(b)

µ

νµ

νe

e

χj

χj′

ν̃J ℓ̃i

(c)

µ

νµ

νe

e

χ0

j

χ0

j′

ℓ̃i ν̃J

(d)

νe

e

χ0

j

χj′

ν̃J

µ

νµ

ℓ̃i

(e)

χ0

j′

χj νe

e

µ

νµ

ν̃J ℓ̃i

(f)

χ0

j′ νe

µ χ0

j νµ

e

ℓ̃i ν̃J

(g)

Figure 17: Box graph contributions to ∆rµ.
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Table 13: The values of A from Eq. (A.13), for the muon decay box graphs in Fig. 17.

Fig. A

17c −U∗
j1V

∗
j1Uj′1Vj′1Z

2J∗
ν Z1J

ν Z1i
L Z

2i∗
L

17d −Z1J∗
ν Z2J

ν Z1i∗
L Z2i

L (Nj2 − tan θWNj1)(Nj2 + tan θWNj1)
(Nj′2 + tan θWNj′1)(Nj′2 − tan θWNj′1)

17e Uj′1Vj′1|Z1J
ν |2|Z2i

L |2(Nj2 − tan θWNj1)(Nj2 + tan θWNj1)

17f U∗
j1V

∗
j1|Z1i

L |2|Z2J
ν |2(Nj′2 + tan θWNj′1)(Nj′2 − tan θWNj′1)

Table 14: The values of B from Eq. (A.14), for the muon decay box graphs in Fig. 17.

Fig. B

17a |Vj1|2|Z1J ′

ν |2|Z2J
ν |2(Nj′2 − tan θWNj′1)(Nj′2 − tan θWNj′1)

17b |Uj′1|2|Z2i
L |2|Z1i′

L |2(Nj2 + tan θWNj1)(Nj2 + tan θWNj1)

17g Z2J
ν Z1J∗

ν Z2i
L Z1i∗

L (Nj2 − tan θWNj1)(Nj2 + tan θWNj1)
(Nj′2 − tan θWNj′1)(Nj′2 + tan θWNj′1)
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B Cancellations of Divergences

The Fermi constants for β-decay and muon decay both receive divergent correc-
tions arising from vertex and external leg graphs (Box graphs are finite). In the limit
of no electroweak symmetry breaking, the weak couplings mediating β-decay and
muon decay are the same. When electroweak symmetry is broken, loop corrections
generate a difference between the two. However, the difference is finite (i.e., diver-
gences cancel between β-decay and muon decay). This is because divergences are due
to effects in the UV, and the scale of electroweak symmetry breaking is finite.

In this appendix, we illustrate the cancellation of divergences. Specifically, we
show that the divergent part of the difference ∆r

(V )
β −∆rµ is zero.

We define ∆div to be the divergent part of ∆r
(V )
β −∆rµ. We may express ∆div as

∆div = ∆div
leg +∆div

vert(a) +∆div
vert(b) , (B.1)

where ∆div
leg is the contribution to ∆div from external legs, ∆div

vert(a) is the contribution

from vertex corrections of the type shown in Fig. 15a, and ∆div
vert(b) is the contribution

from vertex corrections of the type shown in Fig. 15b. According to Eq. (A.1) and
Tables 3 and 4,

∆div
leg =

g2

(4π)2

(αǫ

4

)[
− 1

2
|Z1i

U |2
(
Nj2 +

1

3
tan θWNj1

)2

−1

2
|Z1i

D |2
(
Nj2 −

1

3
tan θWNj1

)2

+
1

2
|Z2i

L |2(Nj2 + tan θWNj1)
2

+
1

2
|Z2J

ν |2(Nj2 − tan θWNj1)
2

]

− g2s
(4π)2

(αǫ

4

)(8

3
|Z1i

U |2 +
8

3
|Z1i

D |2
)

. (B.2)

By the orthogonality of N and the unitarity of the other mixing matrices,

∆div
leg =

g2αǫ

(4π)2

(
2

9

)
tan2 θW − g2sαǫ

(4π)2

(
4

3

)
. (B.3)

According to Eq. (A.4) and Tables 5 and 6,

∆div
vert(a) =

g2

(4π)2

(αǫ

2

)(1

2
Zki∗

D Z1i
DZ

ki′∗
U Z1i′

U

(Nj2 + tan θWNj1/3)(−Nj2 + tan θWNj1/3)

−1

2
ZkJ∗

ν Z2J
ν Zki∗

L Z2i
L (Nj2 − tan θWNj1)(Nj2 + tan θWNj1)

)

+
g2s

(4π)2

(αǫ

2

) 8

3
Z∗kj

U Z1j
U Z∗ki

D Z1i
D . (B.4)
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By the orthogonality of N and the unitarity of the other mixing matrices,

∆div
vert(a) = − g2αǫ

(4π)2

(
2

9

)
tan2 θW +

g2sαǫ

(4π)2

(
4

3

)
. (B.5)

According to Eq. (A.7) and Tables 7 and 9,

∆div
vert(b) = − g2

(4π)2

(αǫ

2

)[1
2
V ∗
j1|Z1i

U |2(Nj′2 + tan θWNj′1/3)

(−Nj′2Vj1 +Nj′4Vj2/
√
2−Nj′2Uj1 −Nj′3Uj2/

√
2

+Nj′2Uj1 +Nj′3Uj2/
√
2−Nj′2Vj1 +Nj′4Vj2/

√
2)

+
1

2
Uj′1|Z1i

D |2(−Nj2 + tan θWNj1/3)

(Nj2V
∗
j′1 −Nj4V

∗
j′2/

√
2 +Nj2U

∗
j′1 +Nj3U

∗
j′2/

√
2

+Nj2U
∗
j′1 +Nj3U

∗
j′2/

√
2−Nj2V

∗
j′1 +Nj4V

∗
j′2/

√
2)

−1

2
V ∗
j1|Z2J

ν |2(Nj′2 − tan θWNj′1)

(−Nj′2Vj1 +Nj′4Vj2/
√
2−Nj′2Uj1 −Nj′3Uj2/

√
2

+Nj′2Uj1 +Nj′3Uj2/
√
2−Nj′2Vj1 +Nj′4Vj2/

√
2)

+
1

2
Uj′1|Z2i

L |2(Nj2 + tan θWNj1)

(Nj2V
∗
j′1 −Nj4V

∗
j′2/

√
2 +Nj2U

∗
j′1 +Nj3U

∗
j′2/

√
2

+Nj2U
∗
j′1 +Nj3U

∗
j′2/

√
2−Nj2V

∗
j′1 +Nj4V

∗
j′2/

√
2)

]
. (B.6)

By the orthogonality of N and the unitarity of the other mixing matrices,

∆div
vert(b) = 0 . (B.7)

By Eqs. (B.1), (B.3), (B.5) and (B.7),

∆div = 0 . (B.8)

Thus, we have demonstrated that the divergent part of ∆r
(V )
β −∆rµ vanishes.
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