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Abstract

Three-step cascade decays into two invisible particles and two visible particles via two inter-

mediate on-shell particles develop cusped peak structures in several kinematic distributions. We

study their basic properties and demonstrate that the masses of the missing particles and the in-

termediate particles can be determined by the cusp and endpoint positions. Effects from realistic

considerations such as finite decay widths, the longitudinal boost of the mother particle, the initial

state radiation, and spin correlations are shown to be under control for the processes illustrated.

1



I. INTRODUCTION

At the energy frontier, the LHC experiments are taking us to an unprecedented territory

of the Tera-scale physics beyond the Standard Model (SM). At the cosmo frontier, we have

entered an era of precision cosmology. With much progress made in the two frontiers,

we have to admit that our understanding of the universe is still far from being complete.

According to the precise measurements of the cosmic microwave background fluctuations,

such as WMAP [1], about 95% component of the current universe has never been directly

observed in the laboratory. The dominant component (≈ 72%) is dark energy that is

responsible for the accelerating expansion of the universe [2]. The second dominant (≈ 23%)

is cold dark matter (CDM), which is assumed to be in a form of nonrelativistic matter

but cannot be explained within the SM. Even in the realm of particle physics, the SM

is regarded as an effective theory below a certain scale albeit its extraordinary success in

explaining current experimental data with incredibly high precision. For example, theoretical

unnaturalness of the SM, dubbed as the gauge hierarchy problem, suggests new physics

beyond the SM at the TeV scale. Therefore, there is a very intriguing possibility that such

CDM components appear in new particle physics models.

Indeed particle physics has theoretical answers for the astrophysical question about CDM.

One of the most popular scenarios is a thermal production of weakly interacting massive

particles [3]. In this scenario, a stable particle X had been once in thermal equilibrium in

the early history of the universe, but later got frozen out as its reaction rate became slower

than the expansion rate of the universe. The stability of the CDM particle over cosmic

time is often attributed to an unbroken parity symmetry or a discrete symmetry. Under

such a symmetry, the SM particle fields are in the trivial representation while new particle

fields are in some nontrivial representation. The decay of the lightest new particle into SM

particles is prohibited. The current observation highly suggests that the CDM particle has

its mass at the electroweak scale and its couplings with a size of weak interaction. Some

popular models with weakly interacting massive particles are supersymmetric models with

R parity [4], the universal extra dimension (UED) model with Kaluza-Klein (KK) parity [5],

and the littlest Higgs model with T parity [6].

This weakly interacting massive particle is likely to be produced at the LHC, and to be

identified by missing transverse energy. The measurement of its mass is of crucial importance
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FIG. 1: The antler decay topology of a parity-even particle D into two missing particles (X1 and

X2) and two visible particles (a1 and a2).

to reveal the identity of the CDM, but a very challenging task at the LHC because such

invisible particles are produced in pairs. With large errors especially in jet energy measure-

ments, the combinatoric complications disentangle the indirect information on the missing

particle mass. In the literature, many new ideas to measure the CDM mass have been pro-

posed [7], such as endpoint methods [8], polynomial methods [9, 10], MT2 methods [11–14],

and combined methods [15].

Recently, we have proposed a new approach to measure the missing particle mass by using

the singular structures in the kinematic distributions of the antler decay [16, 17]. The antler

decay is a resonant decay of a parity-even particle D into a pair of the missing particles

(X1 and X2) and a pair of SM visible particles (a1 and a2) through two on-shell parity-

odd intermediate particles (B1 and B2), as depicted in Fig. 1. We have studied two kinds of

singular structures, a cusp and an endpoint. The positions of cusps and endpoints determine

the masses of the missing particle as well as the intermediate particle, if the mother particle

mass mD is known from other decay channels directly into two SM particles1.

There are a few merits of this method: (i) the positions of the cusps and endpoints are

stable under the spin correlation effects since it is purely determined by the phase space; (ii)

a cusp as a sharp and non-smooth peak is statistically more advantageous to search than

an endpoint, and more identifiable to observe than a kink; (iii) the simple configuration of

outgoing particles can reduce combinatoric complication which is commonly troublesome in

many missing particle mass measurement methods; (iv) the derived analytic functions of

1 This is possible since the particle D has even parity.

3



D C B

a1

X2

X1 a2

Cascade Type I

D C B

X1

X2

a1 a2

Cascade Type II

FIG. 2: The cascade decay topology of a parity-even particle D into two missing particles (X1 and

X2) and two visible particles (a1 and a2).

some kinematic distributions allow us to reconstruct the mass parameters by best-fitting.

As a companion of Ref. [17], this paper focuses on another decay topology of a parity-

even particle D into two visible particles and two missing particles, the cascade decay shown

in Fig. 2. In this process, the mother particle D decays through three steps in series,

finally ended up with a missing particle X2. There are two non-trivial types of this decay,

Type I and Type II, according to at which step the first missing particle X1 is produced.

Unlike the antler decay case with one kind of intermediate particle, the cascade decay involves

two different intermediate particles. We thus need to fix one more unknown mass, which

requires more independent observables. The study of the basic properties of cusps and

endpoints to determine all of the unknown masses is our main purpose. The cusp in the

invariant mass distribution of the Type I cascade decay has been discussed in the context

of new physics models with the CDM particle stabilized by Z3 symmetry [18].

The rest of the paper is organized as follows. In Sec. II, we categorize all possible

kinematic variables from the four-momenta of the two visible particles. Section III deals

with the Type I cascade decay. We present the expressions of cusps and endpoints of

various kinematic distributions in a common case where ma1 = ma2 = 0 and mX1 = mX2 .

The functional form of the invariant mass distribution is also given. The general mass case

is to be discussed in the Appendix. In Sec. IV, we present the corresponding results for the

Type II cascade decay. Section V is devoted to realistic considerations such as the finite

widths of the intermediate particles, the longitudinal boost of the mother particle D, the

initial state radiation (ISR), and the spin correlation. We then conclude in Sec. VI.
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II. KINEMATICS OF CASCADE DECAY TOPOLOGY WITH TWO MISSING

PARTICLES

We consider the four-body cascade decay of a heavy particle D through three sequen-

tial steps. The cascade decay into a single missing particle and three visible particles

has been extensively studied in the literature. In a supersymmetry model, a good ex-

ample is the process of q̃ → qχ̃0
2 → qℓnℓ̃ → qℓnℓf χ̃

0
1. In the UED model, we have

Q(1) → Z(1)q → L(1)ℓnq → B(1)ℓfℓnq. Here ℓn(ℓf ) denotes the near (far) lepton with respect

to the mother particle. In principle, three observable particles provide enough information

to determine all of the unknown mass parameters [7, 8]. However, there are some difficulties

in extracting proper information, especially because of combinatoric complications. It is

hard to distinguish ℓn from ℓf . Furthermore, the mother particle D is to be pair-produced

due to its odd parity, yielding another decay chain in the event.

Here we consider the three-step cascade decay with two missing particles. The mother

particle D is of even parity and thus its single production is allowed. The final states

are simply two visible particles (a1 and a2) with missing transverse energy. There is no

combinatoric complication when forming the invariant mass of two visible particles. In

addition, if the rest frame of D in the transverse direction can be determined, we can use

the transverse momenta of a1 and a2 as additional information. As shall be shown below,

some transverse momentum variable distributions accommodate cusps.

The cascade decays of D → a1a2X1X2 can be classified according to at which step the

first missing particle, say X1, is produced. We fix that the other missing particle X2 is

from the last step. If X1 is also from the last step, the final intermediate particle B is

just missing and this decay is indistinguishable from a two step cascade decay. We do not

consider this case. Then, there are two non-trivial three-step cascade decays, as depicted

in Fig. 2. In the Type I decay, X1 is from the second step. The mother particle D decays

into a visible particle a1 and a new particle C, followed by the decay of C into a missing

particle X1 and a new particle B. Finally B decays into a visible particle a2 and a missing

particle X2. In the Type II decay, X1 is from the first step: D decays into CX1, followed

by C → a1B, and finally B → a2X2. In the view point of two observable particles a1 and

a2, this Type II decay is a two-step cascade decay of a new heavy particle C. As shall be

shown, there is no cusp structure in Lorentz-invariant distributions.
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It is useful to describe the kinematics in terms of the rapidity of a massive particle i:

η
(k)
i =

E
(k)
i

mi

, (1)

where E
(k)
i and mi are the energy and mass of the particle i in the rest frame of a particle

(system) k. To avoid confusion, we adopt the following rapidity notations for the Type I and

Type II decays:

Type I Cascade Type II Cascade

rapidity notation ξi ζi
(2)

For the sake of simplicity, we omit the superscript specifying the reference frame when the

rapidity is defined in the rest frame of its mother particle.

With the four-momenta k1 and k2 of the two observable particles a1 and a2 in the lab

frame, respectively, we consider the following observables in three categories:

• Lorentz invariant observables: the invariant mass of a1 and a2,

m =
√

(k1 + k2)2 . (3)

• Longitudinal-boost invariant observables:

– the magnitude of the transverse momentum of a visible particle ai,

pT i =
∣

∣kT
i

∣

∣ , (4)

– the magnitude of the transverse momentum of the a1-a2 system,

pT =
∣

∣kT
1 + kT

2

∣

∣ , (5)

– the transverse mass of the a1-a2 system,

mT =
√

p2T +m2 . (6)

• Non-invariant observables:

– cosine of Θi, the angle of the visible particle ai in the c.m. frame of a1 and a2,

with respect to their c.m. moving direction,

cosΘ =
k
(aa)
1 · k(D)

|k(aa)
1 ||k(D)|

. (7)
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Here the bold-faced letter denotes the three-vector momentum, k = k1 + k2, and the super-

script (D) and (aa) denote the D-rest frame and the c.m. frame of a1 and a2, respectively.

We note that the cosΘ variable is observable only if the rest frame of the mother particle

D is reconstructed.

As shall be shown, pT i and mT distributions show cusp structures if the mother particle

D is produced at rest in the transverse direction. These additional cusp structures are

very valuable to determine all of the unknown masses. At a hadron collider, however,

reconstructing the transversely rest frame of D is not feasible since strong QCD interactions

always yield sizable ISR, which causes transverse kick to the mother particle D. The cusps

and endpoints in the D rest frame get affected. In Sec. V, we study the ISR effects on the

mT and pT i cusps and endpoints.

The final comment in this section is on the simplifying assumption about mass parameters.

In general, the involved seven particles (D, C, B, a1, a2, X1, X2) may have different masses.

However, the cascade decay processes in many new physics models have massless visible

particles and the same kind of invisible particles. In the main text, therefore, we consider

only the following case:

ma1 = ma2 = 0, mX1 = mX2 . (8)

The results for the most general case with seven different masses are presented in the Ap-

pendix.

III. TYPE I CASCADE DECAY

As illustrated in Fig. 2, the Type I cascade decay is the decay of a parity-even particle

D into two missing particles X1 and X2 and two visible particles a1 and a2 through

D(P ) −→ C + a1(k1), (9)

C −→ B +X1,

B −→ a2(k2) +X2.

Here D, C, a1, and a2 are parity-even while B, X1, and X2 are parity-odd. In order to

accommodate the Type I cascade decay, we need at least two heavy parity-even particles.

One good example is found in the UED model [19]. It is based on a single flat extra

dimension of size R, compactified on an S1/Z2 orbifold. All of the SM fields propagate
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mD mC mB mX ξB

Mass–a1 1045.7 1023. 514.2 500.9 0.12

Mass–b1 600 400 200 100 0.60

Mass–c1 600 500 150 100 1.16

TABLE I: Test mass spectrum sets for the Type I cascade decay. All of the masses are in units of

GeV.

freely in the whole five-dimensional spacetime. Each field has an infinite number of KK

excited states. Since the KK parity is conserved, the lightest KK particle with odd KK

parity is stable and becomes a good candidate for the CDM. Usually the first KK mode of

the U(1)Y gauge boson B(1) is the lightest KK particle [19, 20]. All of the second KK states

of the SM particles have even KK-parity and mass of ∼ 2/R. Lower limit of 1/R >∼ 400

GeV is set based on the combination of the constraints from the ρ parameter [21], the

electroweak precision tests [22], the muon g − 2 measurement [23], the flavor changing

neutral currents [24], the direct searches by the D0 collaborations at the Tevatron [25] and

the ATLAS and CMS collaborations [26]. The second KK modes are within the reach of the

LHC. Possible Type I cascade decays are

Z(2) → ℓn + L(2) → ℓn +B(1)L(1) → ℓn +B(1) + ℓfB
(1), (10)

g(2) → qn + q(2) → qn +B(1)q(1) → qn +B(1) + qfB
(1). (11)

Now we present the cusps and endpoints of m, mT , pT , pT i, and cosΘ distributions in

terms of the masses. For the simple case in Eq. (8), there are two independent rapidities,

ξB and ξC , given by

cosh ξB =
mC

2mB

(

1 +
m2

B

m2
C

− m2
X

m2
C

)

, cosh ξC =
mD

2mC

(

1 +
m2

C

m2
D

)

. (12)

We will also use En and Ef , the energy of the near visible particle a1 and the far visible

particle a2 in its mother’s rest frame, respectively:

En =
mD

2

(

1− m2
C

m2
D

)

, Ef =
mB

2

(

1− m2
X

m2
B

)

. (13)

For illustration, we take three sets for the mass parameters in Table I. The Mass–a1

is motivated by the Z(2) decay in Eq. (10). The KK masses are determined by the UED

model parameters of ΛR = 20 and 1/R = 500GeV, where Λ is the cutoff scale [19]. Almost
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equal spacing in the KK mass spectrum leads to very degenerate masses, i.e., mD ≈ mC ≈
2mB ≈ 2mX . The Mass–b1 case has substantial mass gaps for each pair of adjacent masses.

Finally the Mass–c1 case has a sizable mass gap between mC and mB +mX .

For the precise mass measurement using the singularities, it is necessary to have visible

cusp and endpoint. A sharp cusp is considered as a visible one. The visibility of an endpoint

is determined by the functional behavior near the endpoint, either fast dropping or long-

tailed. We take the former as a visible endpoint.

(i) Invariant mass m distribution: We first discuss the distribution of the invariant mass m

of two visible particles. The differential decay rate dΓ/dm is

dΓ

dm
∝











2ξBm, for 0 < m < mcusp
cas1 ,

m ln
(mmax

cas1)
2

m2
, for mcusp

cas1 < m < mmax
cas1,

(14)

where the cusp and endpoint are

(mcusp
cas1 )

2
= 4EnEfe

ξC−ξB , (mmax
cas1)

2 = 4EnEfe
ξC+ξB . (15)

Note that the functional behavior of dΓ/dm is the same as that of the antler decay [17].

The general case with 7 different masses is discussed in the Appendix.

The degree of the sharpness of the m cusp is deduced from Eq. (14). The dΓ/dm function

is linear in m form < mcusp
cas1 , and a concave function formcusp

cas1 < m < mmax
cas1. At m = mmax

cas1/e,

the concave function reaches its maximum. Ifmmax
cas1/e < mcusp

cas1 , which is equivalent to ξB < 1,

the cusp can be considered to be pronounced.

In Fig. 3, we show the normalized differential decay rate dΓ/dm for the three mass

parameter sets in Table I. In order to compare the shapes of cusps only, we present it as a

function of m/mmax
cas1. The vertical lines denote the positions of mcusp

cas1 in units of mmax
cas1. The

Mass–a1 case with ξB = 0.12 has a very sharp m cusp. The Mass–b1 case with ξB = 0.60

shows a triangular shape with a cusped peak. However, the Mass–c1 case with ξB = 1.16

has a dull cusp. The endpoints for all of three cases are fast dropping, as suggested by the

concave function in Eq. (14).

(ii) Transverse mass mT distribution: Figure 4 shows the normalized differential decay rate

dΓ/dmT , which is defined in the rest frame of D. For all of three cases, the mT distributions

show visible cusp structures. Even the Mass–c1 case, which has a dull cusp in the m

distribution, has a quite sharp cusp. This is contrasted to the antler decay case where
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FIG. 3: The normalized differential decay rate of the invariant mass of two visible particles, dΓ
Γdm

for the Type I cascade decay. The masses are in Table I.
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FIG. 4: The normalized differential decay rate of the transverse mass of two visible particles, dΓ
ΓdmT

for the Type I cascade decay. The masses are in Table I.

there is no cusp in the mT distribution [17]. As shall be shown in the next section, the

Type II cascade decay also has a cusp in the mT distribution. Therefore the presence of

the mT cusp signals the cascade decay topology. The cusp and maximum positions in terms

of the masses are

(mT )
cusp
cas1 = En + Efe

ξC−ξB , (mT )
max
cas1 = En + Efe

ξC+ξB , (16)
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FIG. 5: The normalized differential decay rate of the transverse momentum of two visible particles,

dΓ
ΓdpT

for the Type I cascade decay for the masses in Table I.

where En and Ef are in Eq. (13).

(iii) The system pT distribution: Figure 5 shows the normalized distribution of the trans-

verse momentum pT of two visible particle system. For all of the three mass spectra in

Table I, the pT distribution has smooth peak without a cusp structure. The endpoint of pT

distribution is

(pT )
max
cas1 = En + Efe

−ξC+ξB . (17)

Only the Mass–a1 case has the endpoint of fast-dropping shape, which is attributed to

very small momentum transfer to the visible particles. More general cases of Mass–b1 and

Mass–c1 have long-tailed endpoints. The pT distribution is not useful for the mass mea-

surement.

(iv) Single particle pT i distribution: We show the individual transverse momentum pT i dis-

tributions in Fig. 6. The thin solid line labeled by “near” (“far”) is the pT i distribution of the

near visible particle a1 (the far visible particle a2). The pTf distribution has both the cusp

and the endpoint structures. On the contrary, the pTn distribution has only an endpoint of

a suddenly ending shape, which holds true for all of the mass cases. The positions of the

cusp and the endpoint in the pTf distribution are given by

(pTf)
cusp
cas1 = Efe

ξC−ξB , (pTf)
max
cas1 = Efe

ξC+ξB , (18)
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FIG. 6: The normalized differential decay rate of the transverse momentum of one visible particle,

dΓ
ΓdpTi

for the Type I cascade decay. In the Mass–a1 case, the line labeled by “near” (“far”)

denotes the pT i distribution of a1 (a2). Thick lines are the summed distributions of pT i.

and the endpoint in the pTn distribution is located at

(pTn)
max
cas1 = En. (19)

However, we cannot distinguish a1 from a2 event by event. Therefore we consider a more

practical observable, the sum of two pT i distributions. The thick lines in Fig. 6 represent

the sum. Depending on whether (pTn)
max
cas1 > (pTf)

max
cas1 or not, the summed distribution shows

very different shape. For the former case as in Mass–a1, the spiky (pTn)
max
cas1 stands outside

the pTf distribution, which reveals the pTf cusp and endpoint. For the later case as in

Mass–b1 and Mass–c1, the (pTn)
max
cas1 peak lies in the middle of pTf distribution. The pTf

cusp gets distorted and thus barely visible.

(v) cosΘ distribution: The variable cosΘ in Eq. (7) is defined by the angle of one visible

particle. We have two cosΘ distributions for a1 and a2, which cannot be distinguished. In

Fig. 7, therefore, we present the summation of two cosΘi distributions in the rest frame of

D for Mass–a1 and Mass–b1 cases. It is symmetric about cosΘ = 0, and has two cusp

structures, cosΘcusp1
cas1 and cosΘcusp2

cas1 , marked by the vertical arrows. In terms of masses, they

are

cosΘcusp1
cas1 =

En −Ef exp(ξB − ξC)

En + Ef exp(ξB − ξC)
, cosΘcusp2

cas1 =
En −Ef exp(−ξB − ξC)

En + Ef exp(−ξB − ξC)
. (20)
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FIG. 7: The summed distributions of cosΘi in the Type I cascade decay for the masses in Table

I.

In the Mass–a1 case, cosΘ
cusp1
cas1 stands on a steep slope, which is difficult to probe. The

Mass–b1 case shows two pronounced cusps.

IV. TYPE II CASCADE DECAY

Type II cascade decay is a chain decay of

D(P ) −→ C +X1, (21)

C −→ B + a1(k1),

B −→ a2(k2) +X2.

A good example can be found in the MSSM:

H/A→ χ̃0
1 + χ̃0

2, χ̃0
2 → ℓn + ℓ̃, ℓ̃→ ℓf + χ̃0

1. (22)

As in the Type I cascade decay, we restrict ourselves to the realistic cascade decay with

ma1 = ma2 = 0 and mX1 = mX2 . Then there are two independent rapidities, ζC and ζB:

cosh ζB =
mC

2mB

(

1 +
m2

B

m2
C

)

, cosh ζC =
mD

2mC

(

1 +
m2

C

m2
D

− m2
X

m2
D

)

. (23)

For illustration, we consider three mass sets for the Type II cascade decay in Table II.

(i) Invariant mass m distribution: We first study the distribution of the invariant mass of

a1 and a2. Note that in the view point of a1 and a2, this Type II cascade decay is a three
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mD mC mB mX mmax

Mass–a2 614 299 222 161 138.0

Mass–b2 600 300 200 100 193.6

Mass–c2 400 250 150 120 120.0

TABLE II: Test mass spectrum sets for the Type II cascade decay. All of the masses are in units

of GeV.
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Type II Cascade

m [GeV]

1 Γ

d
Γ

d
m

[1
/
G
eV

]

250200150100500

0.02

0.015

0.01

0.005

0

FIG. 8: The normalized differential decay rate of the invariant mass of two visible particles, dΓ
Γdm

for the Type II cascade decay. The mass spectrum sets are described in Table II.

body decay of the mother particle C. The presence of the invisible X1 decayed from D does

not change any Lorentz invariant result. The m distribution is the same as that of, i.e., mℓℓ

of the decay χ̃0
2 → ℓnℓ̃→ ℓnℓf χ̃

0
1 in the MSSM. This mℓℓ distribution is well known to have

no cusp structure. The endpoint is [27]

(mmax
cas2)

2 = m2
C

(

1− m2
B

m2
C

)(

1− m2
X

m2
B

)

. (24)

In Fig. 8, we show the m distribution for three sets of the mass parameters in Table II, all

of which have right-angled triangle shapes without a cusp.

The absence of a cusp in a two-step cascade decay can be understood by a simple kine-

matic configuration. For the antler decay (D → B1 + B2 → a1X1 + a2X2) in the massless

visible particle case (ma1 = ma2 = 0), the following four critical points correspond to a
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FIG. 9: The normalized differential decay rate of the transverse mass of two visible particles, dΓ
dmT

for the Type II cascade decay. The mass spectrum sets are described in Table II.

kinematic singular structure [17]:

1D configuration ma1a2

a2⇐= B2←− D• B1−→ a1=⇒ max

a2=⇒ B2←− D• B1−→ a1⇐= cusp

a2=⇒ B2←− D• B1−→ a1=⇒ min

a2⇐= B2←− D• B1−→ a1⇐= min

(25)

Here we simplify the picture as an one-dimensional case. It is clear to see that mmin
a1a2

hap-

pens when two observable particles move in the same direction, while one of two kinematic

configurations of back-to-back moving visible particles corresponds to either mmax
a1a2

or mcusp
a1a2

.

For a two-step cascade decay (C → a1 + B → a1 + a2X2), a1 and a2 in one-dimensional

space have only two independent kinematic configurations, moving in the same direction

and moving in the opposite direction. The former corresponds to the minimum m, while

the later to the maximum m. There is no critical point left for the cusp.

(ii) Transverse mass mT distribution: Unlike the invariant mass distribution, the mT distri-

bution contains the information about the transverse momentum of the first missing particle

X1. As shown in Fig. 9, there is a cusp here. We stress once again that this mT cusp appears

only when D is produced at rest in the transverse direction.
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FIG. 10: The normalized differential decay rate of the transverse momentum of two visible particles,

dΓ
ΓdpT

for the Type II cascade decay. The mass spectrum sets are in Table II.

Another interesting feature is that the position of the mT cusp is nothing but the m

maximum:

(mT )
cusp
cas2 = mmax

cas2. (26)

This non-trivial equality is a unique feature of the Type II cascade decay.

(iii) System pT distribution: The total pT distributions for the Type II cascade decay are

shown in Fig. 10. All of the three mass sets have smooth pT distributions. And their end-

points are all long-tailed. This feature is common for the antler, Type I, and Type II cas-

cade decay topology.

(iv) Single particle pT i distribution: Figure 11 shows the distribution of the individual trans-

verse momentum of the near a1 and the far a2. The near pTn distribution has a sharp cusp

and a fast dropping endpoint. The pTf distribution has a long tailed endpoint without any

cusp. In terms of masses they are simply

(pTn)
cusp
cas2 =

mC

2

(

1− m2
B

m2
C

)

e−ζC , (pTn)
max
cas2 =

mC

2

(

1− m2
B

m2
C

)

eζC . (27)

Note that the product of (pTn)
cusp
cas2 and (pTn)

max
cas2 removes the ζC dependence, which depends

on the intermediate masses mC and mB. In addition the ratio (pTn)
cusp
cas2/(pTn)

max
cas2 depends

only on the rapidity ζC .
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FIG. 11: The normalized differential decay rate of the transverse mass of one visible particle, dΓ
ΓdpTi

for the Type II cascade decay. The left figure is for the near visible particle a1, and the right one

is for the far visible particle a2.
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FIG. 12: The sum of two normalized differential decay rate with respect to the individual transverse

momenta of the near and far visible particles.

As discussed before, the individual pT i distribution cannot be constructed. Instead we

show the sum of two distributions in Fig. 12. For the Mass–a2 case, the cusp in the pTn

distribution and the smooth peak of the pTf distribution are located nearby. In their sum,

the pTn cusp survives over the relatively round pTf peak and the fast dropping pTn endpoint

is also measurable. For the Mass–c2 case, however, the pTn cusp and the pTf peak are
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FIG. 13: The sum of dΓ/d cos Θi for the Type II cascade decay.

separated so that the summed distribution shows both. With finite number of data, it

would be difficult to distinguish the pTn cusp from the pTf peak.

(v) The cosΘ distribution: We consider the cosΘ distribution for theType II cascade decay.

In Fig. 13 we show the normalized differential decay rate dΓ/d cosΘ for the near and far

visible particles (denoted by thin lines) as well as their sum (thick lines) for the Mass–

A2 and Mass–C2. In both cases, the summed distribution of cosΘi is symmetric about

cosΘ = 0, and has one sharp cusp denoted by vertical lines in Fig. 13. The cosΘ cusp

position in terms of the mass parameters is

cosΘcusp
cas2 =

mC

(

1− m2
B

m2
C

)

−mB

(

1− m2
X

m2
B

)

e−ζB

mC

(

1− m2
B

m2
C

)

+mB

(

1− m2
X

m2
B

)

e−ζB

. (28)

(vi) Mass determination from the cusps and endpoints : Unlike the antler decay with one

kind of intermediate particles, the cascade decay has two different intermediate particles.

In addition, the Type II decay has fewer independent observables of cusps and endpoints:

there is no m cusp structure; the mT cusp position is the same as the m endpoint. A con-

cern arises whether we have enough information to determine all of the masses, especially at

the LHC where the cosΘ cusp cannot be used. We show that three unknown masses (mC ,

mB, and mX) are unambiguously determined by three singularities of mmax
cas2, (pTn)

cusp
cas2 , and

(pTn)
max
cas2, as

mC = RαmD, mB =

√

1− α1

Rα

mC , mX =

√

1− α2

Rα

mB, (29)
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where Rα is

Rα =
1 + α1α2

α3 − α1 − α2
, (30)

and α1,2,3 are

α1 =
(mmax

cas2)
2

2mD

√

(pTn)
max
cas2/(pTn)

cusp
cas2

, (31)

α2 =
2
√

(pTn)max
cas2/(pTn)

cusp
cas2

mD

,

α3 =

√

(pTn)max
cas2

(pTn)
cusp
cas2

+

√

(pTn)
cusp
cas2

(pTn)
max
cas2

.

V. EFFECTS OF REALISTIC CONSIDERATIONS

All of the previous expressions of the cusps and endpoints have been derived in an ideal-

istic situation: the total decay widths of decaying particles are ignored; the D rest frame is

assumed to be reconstructed; the ISR effects are neglected; the spin-correlation effects from

the full matrix elements are negligible. In this section, we investigate these effects on the

position and shape of the kinematic cusp and endpoint.

A. Finite width effects

Up to now we have applied the narrow width approximation, ignoring the width of de-

caying particles. Since the effect of finite ΓD is shown to be very minor in Ref. [16], we focus

on the effects of ΓB and ΓC .

We find that the mass spectrum is the most crucial factor to determine the stability of

the cusp and endpoint structures under the width effects. Out of six cases in Tables I and II,

the Mass–a1 has very vulnerable structures. This case is special because of its degenerate

masses: the observable particles have very small momentum transfer and their kinematic

phase space is highly limited.

In Fig. 14 and Fig. 15, we show, for the Mass–a1 case, the finite width effects on the m,

mT ,
∑

pT i, and cosΘ distributions. We present four cases for ΓB and ΓC : on-shell (solid

line), Γ/M = 0.01 (long dashed line), Γ/M = 0.1 (short dashed lien), and Γ/M = 0.5

(dotted line). Here Γ/M ≡ ΓB/mB = ΓC/mC for simplicity. Just one percent of Γ/M
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FIG. 14: The finite decay width effects on the m and mT distributions in the Mass–a1 case. Solid

lines are for the on-shell decay, the long dashed lines for Γ/M = 0.01, the short dashed lines for

Γ/M = 0.1, and the dotted lines for Γ/M = 0.5. Here Γ/M ≡ ΓB/MB = ΓC/MC .
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FIG. 15: The finite decay width effects on the summed distributions of pT i and cosΘi in the

Mass–a1 case of the Type I cascade decay. As before, we take Γ/M = 0, 0.01, 0.1, 0.5.

destroys all of the sharp cusp structures into smooth peaks. In addition, the positions of the

peaks are shifted significantly from the true cusp positions. For Γ/M >∼ 0.1 the summed pT i

and cosΘi distributions lose their functional characteristics completely, leaving very smooth

and featureless distributions. In summary sizable widths like Γ/M >∼ 0.01 smash the cusps.

The fast-falling endpoints in the m, mT , and pT i distributions are also smeared out
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FIG. 16: Finite width effects on the normalized m distribution. We take the Mass–b1 case for

Type I decay, and Mass–c2 for Type II decay. As before, we take Γ/M = 0, 0.01, 0.1, 0.5.

considerably. The degree of its shifting is large even for Γ/M = 1%. One interesting

observation is that two shifted endpoints of them andmT distributions are the same asmD−
2mX , denoted by vertical arrows. This new endpoint is from the kinematic configuration

where two visible particles’ momenta span all of the phase space determined by mD and

mX . Even though we do not know the intermediate particle masses, the missing particle

mass mX can be read off. For this information, the mT distribution is more advantageous

than the m distribution, because of its fast falling shape.

In a realistic new physics process, however, this Mass–a1 case does not allow even one

percent of Γ/M . For example, the Z(2) decay in the minimal UED model has the decay

widths of

ΓD = ΓZ(2) ≃ 270MeV, ΓC = ΓL(2) ≃ 5MeV, ΓB = ΓL(1) ≃ 1MeV, (32)

which leads to Γ/M ∼ 10−5. In summary, the extreme Mass–a1 case has generically negli-

gible width effects. The cusp and endpoint structures are reserved.

We consider more general mass parameters, Mass–b1 for the Type I and Mass–c2 for

the Type II cascade decay. First we examine the finite width effects on the invariant

mass distributions in Fig. 16. These cases show more stable cusp and endpoint structures

from the finite width effects. For Γ/M = 1%, the m distributions in both Type I and

Type II decays do not change, keeping the same cusp and endpoint structures. For 10%
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FIG. 17: The width effects on the normalized dΓ/dmT for the Type I Mass–b1 and

Type II Mass–c2 cascade decays. As before, we take Γ/M = 0, 0.01, 0.1, 0.5.

of Γ/M , the m cusp of the Type I decay retains its position, though losing its sharpness.

The m endpoints in both Type I and Type II decays are shifted into the new position

mD−2mX . If Γ/M = 50%, the Type I decay does not retain the shape and position of the

m cusp, and the Type II decay loses the right-angled triangle shape of the m distribution.

Both cases have the same new endpoint at mD − 2mX , which is also valuable information

for the missing particle mass measurement.

In Fig. 17, we show the width effects on the mT distributions. The mT cusp structures

are more stable than the m cusps in both Type I and Type II decays. For Γ/M = 1%,

the changes in the distribution are unnoticeable. For Γ/M >∼ 10%, we start to lose the

sharpness of the cusps but still keep the positions for the cusp in both cases. If Γ/M = 50%,

the cusped peaks become dull further with relatively stable positions, and the mT endpoints

are shifted into mD − 2mX .

Figures 18 and 19 show the width effects on the summed distributions of pT i and cosΘi

respectively. Both distributions preserve the cusp structure for Γ/M = 1%. If Γ/M >∼ 10%,

however, the finite width effects almost smear the cusp and endpoint structures.
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FIG. 18: The width effects on the summed distributions of pT i for Γ/M = 0, 0.01, 0.1, 0.5.
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FIG. 19: The summed cosΘ distributions for Γ/M = 0, 0.01, 0.1, 0.5.

B. Longitudinal boost effect

In hadronic collisions, the longitudinal motion of the particle D is not determined. This

longitudinal ambiguity affects the kinematic variable cosΘ, which is defined in the D rest

frame. In order to see the longitudinal boost effects, we convert the cosΘ distribution in

the D rest frame into the pp frame at the LHC, by convoluting with the parton distribution

functions of a proton. In Fig. 20, we compare the summed distributions of cosΘi in the

D-rest frame (thin curves) with that in the pp lab frame at
√
s = 14 TeV (thick curves).

For the parton distribution function, we have used CTEQ6 [28]. We take the Mass–a1 for
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FIG. 20: Normalized differential decay rates versus cosΘ in the D-rest frame (thin curves) and in

the pp lab frame with
√
s = 14 TeV (thick curves).

Type I and the Mass–c2 for Type II decay. For simplicity we assume that the heavy

particle D is singly produced through the s-channel gluon fusion.

Unlike the finite width effects, the longitudinal boost effect does not completely smash the

characteristic shape. The sharp cusp structures survive to some extent in both Type I and

Type II cascade decays. The shift of the cosΘ cusp position is minor. Moreover the overall

functional shape remains the same even though the pp frame allows non-vanishing events

around cosΘ = 0. The cusp in the cosΘ distribution, though Lorentz non-invariant, is quite

useful to draw mass information. Again we emphasize that the e+e− linear collider does not

have this ambiguity.

C. ISR effects

The cusps and endpoints in the mT and pT i distributions play a crucial role in the

mass measurement of cascade, especially Type II, decays. The results are based on the

assumption that the transverse momentum of the mother particle D is known event by

event so that its rest frame along the transverse direction can be reconstructed. At a hadron

collider, even though D is singly produced at the parton level, the gluon radiation from

initial patrons, called the ISR, is inevitable because of strong QCD interaction: the mother

particle D receives transverse kick and the ambiguity arises in its transverse motion [30].
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FIG. 21: The normalized transverse mass distributions with and without the ISR effects by the

thin (red) line and the thick (blue) line, respectively. We take Mass–a1for the Type Icascade

decay and Mass–c2for the Type II. Extra jets with pT > 50GeV are vetoed.
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FIG. 22: The normalized pTn and pTf distributions with and without the ISR effects by the thin

(red) line and the thick (blue) line, respectively. We take Mass–a1for the Type Icascade decay

and Mass–c2for the Type II. Extra jets with pT > 50GeV are vetoed.

We examine the ISR effects on the cusp and endpoint structures in the mT and pT i

distributions. As in Ref. [17], we adopt the simplifying assumptions that D is produced by

qq̄ initial states, and decays through electroweak interactions so that final state radiation is

neglected. We also veto hard ISR gluons if pjetT > 50GeV. We use the parton shower Monte
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Carlos in PYTHIA for the ISR [31].

Figure 21 compares the mT distributions with and without ISR effects, denoted by the

thin (red) line and the thick (blue) line, respectively. We take Mass–a1 for Type I cascade

decay, and Mass–c2 for Type II decay. In both cases, the mT cusps remain almost intact

from the ISR effects. The sharpness and position keep those in the D rest frame. The

endpoints get tailed, but not significantly. Almost linearly dropping behaviors for both

cases are preserved until the vicinity of endpoints. The extrapolation of the distribution will

help to find the endpoint without the ISR effects.

In Fig. 22, we show the normalized pTn and pTf distributions with and without the ISR

effects by the thin (red) line and the thick (blue) line, respectively, in the same setup as in

Fig. 21. In the Type I cascade decay, the far visible particle accommodates both the cusp

and endpoint singularities in its transverse momentum distribution. The ISR effects do not

affect them. The near visible particle in the Type I decay has only spiky and suddenly

ending endpoint. The ISR smears this into the tailed one. Still the fast dropping behavior

survives to some extent, which can be used to read the endpoint without ISR effects. In the

Type II cascade decay, the near particle pT i distribution has the cusp and endpoint. The

ISR effects do not change the cusp while smear the endpoint. The pT i distribution of the

far visible particle, which has only the endpoint, is not affected.

In summary, the inclusion of ISR with veto on hard jets does not change the cusp struc-

tures while gets the endpoint tailed.

D. Spin-correlation effect

Our main results are based on the kinematics only, ignoring the spin-correlation in the

full matrix elements. Since this paper is focused on the basic properties of the kinematic

singular structures in the cascade decays, full analysis for each new physics process is beyond

the scope of this paper. Nevertheless we expect that the algebraic singularity origin of the

cusp and endpoint keeps them stable under the spin correlation effects [29].

In order to demonstrate this, we consider one example, the Z(2) decay in the the UED

model:

Cascade Type I: Z(2) → ℓ+ L(2) → ℓ+B(1)L(1) → ℓℓB(1)B(1). (33)
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FIG. 23: The dΓ/dm and dΓ/dpT i for the process of Z(2) → ℓ+ L(2) → ℓ+B(1)L(1) → ℓℓB(1)B(1)

with and without spin correlations.

In Fig. 23, we show their spin correlation effects. We find that the spin correlations do not

change the m and pT i distributions. Two distributions with and without spin-correlation

effects are almost identical.

We note that there are other uncertainties such as the SM background and experimental

resolutions. The magnitudes of those effects depend on a specific process, which are beyond

the scope of this paper. For a benchmark process of pp → Z ′ → ℓ̃+ℓ̃− → ℓ+χ̃0
1ℓ

−χ̃0
1 in a

supersymmetry model with an extra U(1) gauge field, we have considered all the realistic

effects including the SM backgrounds and detector simulation in Ref. [16]. The total un-

certainty in the mass measurement is about 10%. Most of the uncertainty is from huge SM

tt̄ backgrounds. Unless the observed decay products are jets, the experimental resolution

does not affect the cusp and endpoint structures dominantly. The crucial role was done by

best-fitting the m distribution based on its analytic functional form.

VI. SUMMARY AND CONCLUSIONS

We have studied the singularity structure, such as cusps and endpoints, in the kinematic

distributions of three-step cascade decay of a new parity-even particle D and the determi-
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Antler
Cascade

Type I Type II

m yes yes no

mT no yes yes

pT no no no

pTn

yes
no yes

pTf yes no

cosΘ yes yes yes

TABLE III: The presence or absence of the cusp in the kinematic distributions of m, mT , pT , pT i,

cosΘ of the antler, Type I cascade, Type II cascade decays.

nation of the missing particle mass by using such singularities.

Two non-trivial decay topologies, called the Type I and Type II cascade decays, have

been studied. In the Type I decay (D → a1C, C → X1B, B → a2X2), the distribution

of the invariant mass m of two visible particles, a1 and a2, develops a cusp. Full functional

form of the m distribution for general mass parameters has been derived. If the mother

particleD is produced at rest in the transverse direction, various longitudinal-boost invariant

observables accommodate cusp structures. First the transverse mass mT distribution has

a cusp, which is complementary for the m cusp since the mT cusp is sharp even when the

m cusp is dull. Although the transverse momentum distribution of two visible particle

system does not develop a visible cusp structure and a sharp endpoint, we note that the

transverse momentum distribution of the far visible particle a2 has a cusp, and that of the

near visible particle a1 has an endpoint of the shape of a steep cliff. We also study the

summed distribution of cosΘi, which has two independent cusp structures.

In the Type II decay (D → X1C, C → a1B, B → a2X2), the kinematics of a1 and a2

is determined solely by the two-step cascade decay from the first intermediate particle C.

The invariant mass distribution does not have a cusp structure. However, the kinematic

distributions of the transverse motion carry the information from the whole three-step cas-

cade decay. Both the mT and
∑

i pT i distributions have distinctive cusp structures. In the

individual transverse momentum distribution, only the near visible particle has both a sharp

cusp and a fast-falling endpoint. The cosΘ distribution also shows a cusp as well. Includ-
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ing the antler decay topology, we have summarized the existence of cusp in the kinematic

distributions of m, mT , pT , pT i, and cosΘ in Table III.

We have also considered the effects of the finite decay widths of intermediate particles,

the longitudinal boost of the mother particle D, the ISR, and the spin correlation. The

finite width effects are significant if the decay width is sizable like Γ/M >∼ 10%: the sharp

cusp gets smeared; the endpoint position gets shifted to mD − 2mX . The longitudinal

motion of the mother particle D affects the distribution of cosΘ. At least for the sample

mass parameters, however, the cosΘ cusp remains sharp after convoluting with the parton

distribution functions of a proton at the LHC. The ISR effects do not change the cusp

structure much if we veto hard jets, but smear the endpoints. Spin correlation effects from

full S-matrix elements turn out to be negligible in most cases, which is expected since the

singularities are determined by the kinematic relations.

With the companion paper on the antler decay [17], our analysis presents the general

properties and useful formulae of the kinematic cusps and endpoints for the decay topologies

with two visible particles and two missing particles. By looking at the singularity structures

of various kinematic distributions, the hidden nature of the missing particle can be probed

effectively and elegantly. With the outstanding performance of the LHC and detectors, this

is an exciting time for such investigation.
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Appendix: Invariant mass distributions for the general Type I case

In this appendix, we present the invariant mass distribution in the general Type I cascade

decays:

D(P ) −→ C + a1(k1), (A.1)

C −→ B +X1,

B −→ a2(k2) +X2.
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As discussed in the main text, the Type II cascade decay is practically a three body decay

in the view point of visible particles. This four-body decay has generally seven different

mass parameters. We define the rapidities of six particles as

cosh ξC =
m2

D +m2
C −m2

a1

2mDmC

, cosh ξa1 =
m2

D +m2
a1
−m2

C

2mDma1

, (A.2)

cosh ξB =
m2

C +m2
B −m2

X1

2mCmB

, cosh ξX1 =
m2

C +m2
X1
−m2

B

2mCmX1

,

cosh ξa2 =
m2

B +m2
a2
−m2

X2

2mBma2

, cosh ξX2 =
m2

B +m2
X2
−m2

a2

2mBmX2

.

A very useful kinematic variable is χ, the rapidity of the particle a2 in the rest frame of a1:

χ ≡ cosh ξ(a1)a2
=

m2 −m2
a1
−m2

a2

2ma1ma2

, (A.3)

where the superscript (a1) denotes that the rapidity is defined in the rest frame of a1.

The functional expression of dΓ/dm is different according to the mass relations. The

derivation of dΓ/dm is similar to that presented in the appendix of Ref. [17]. For simple

presentation, we introduce

ξ++ = ξB + ξa1 + ξa2 + ξC , (A.4)

ξ+− = |ξB + ξa1 − ξa2 − ξC |, (A.5)

ξ−+ = |ξB − ξa1 + ξa2 + ξC|, (A.6)

ξ−− = |ξB − ξa1 − ξa2 − ξC |. (A.7)

We order ξ+−, ξ−+ and ξ−− and name them ξ1 ≤ ξ2 ≤ ξ3. Analytic functions forms of dΓ/dχ

are then written as

• if |ξB − ξa2 − ξC | ≥ ξa1 or ξB + ξa2 + ξC ≤ ξa1,

dΓ

dχ
∝







































−ξ1 + cosh−1 χ, if cosh ξ1 ≤ χ ≤ cosh ξ2,

ξ2 − ξ1, if cosh ξ2 ≤ χ ≤ cosh ξ3,

ξ++ − cosh−1 χ, if cosh ξ3 ≤ χ ≤ cosh ξ++,

0, otherwise.

(A.8)
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• if |ξB − ξa2 − ξC | < ξa1 < ξB + ξa2 + ξC ,

dΓ

dχ
∝



















































2 cosh−1 χ, if 1 ≤ χ ≤ cosh ξ1,

ξ1 + cosh−1 χ, if cosh ξ1 ≤ χ ≤ cosh ξ2,

ξ1 + ξ2, if cosh ξ2 ≤ χ ≤ cosh ξ3,

ξ++ − cosh−1 χ, if cosh ξ3 ≤ χ ≤ cosh ξ++,

0, otherwise.

(A.9)

The positions of the minimum, cusp, and maximum of the invariant mass distribution

are

Mmin
cas1 =











√

m2
a1
+m2

a2
+ 2ma1ma2 cosh ξ1, for R1,··· ,6

ma1 +ma2 , for R7,··· ,12

(A.10)

M cusp
cas1 =

√

m2
a1
+m2

a2
+ 2ma1ma2 cosh ξ3,

Mmax
cas1 =

√

m2
a1
+m2

a2
+ 2ma1ma2 cosh ξ++.
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