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Abstract

The kinematics of a final state system with two invisible particles and two visible particles can

develop cusped peak structures. This happens when the system has a fixed invariant mass (such as

from a narrow resonant particle decay or with a fixed collision c.m. energy) and undergoes decays

of two on-shell intermediate particles. Focusing on the antler decay topology, we derive general

analytic expressions for the invariant mass distribution and the kinematic cusp position. The sharp

cusp peaks and the endpoint positions can help to determine the masses of the missing particles and

the intermediate particles. We also consider transverse momentum variables and angular variables.

In various distributions the kinematic cusp peaks are present and pronounced. We also study the

effects on such kinematic cusp structures from realistic considerations including finite decay widths,

the longitudinal boost of the system, the initial state radiation, and spin correlations.
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I. INTRODUCTION

With the advent of the Large Hadron Collider (LHC), the TeV scale physics will be

fully explored in the coming decades. Most pressing of all to learn is the mechanism of the

electroweak symmetry breaking and the related underlying dynamics beyond the standard

model (SM). Among many interesting phenomena associated with the new physics at the

TeV scale, the signature of events with large missing energy is one of the most exciting

possibilities at the LHC. This is expected from new particles that do not leave any trace in

the hadronic and electromagnetic components of the detector. These new missing particles

may help to address one of the most profound puzzles in cosmology: what constitutes

nearly a quarter of the energy density of our current universe in a form of cold dark matter

(CDM) [1]. The thermal history of the early universe suggests that a stable neutral particle of

the electroweak-scale mass and interaction, called the Weakly Interacting Massive Particles,

is a plausible explanation of CDM [2] and may be discovered as a missing particle at TeV-

scale colliders.

Missing energy signal is generic in many new physics models. Additional discrete sym-

metry is often introduced to prohibit dangerous processes such as proton decay and to make

the model compatible with the electroweak precision tests. Such a discrete symmetry (or

parity) often needs nontrivial representations of new particles, while it assigns vanishing

charges (or trivial representation) to the SM particles. Therefore, the lightest new particle

is stable, becoming a natural candidate for the CDM. One of the most studied examples is

the lightest neutralino in supersymmetric (SUSY) theories with R parity conservation [3].

Other examples include the lightest Kaluza-Klein (KK) particle in universal extra dimen-

sional (UED) theories with KK parity conservation [4], and the heavy photon in the little

Higgs models with T -parity conservation [5]. In this regard, the search for missing particles

at the LHC and future colliders has great implications in understanding both the fundamen-

tal particle physics and the nature of our universe. At hadron colliders, the experimentally

observable signature will be missing energy-momentum transverse to the beam direction.

Great efforts have been made on the phenomenological studies of the missing energy signals

in various new physics models [6, 7] and optimistic conclusions have been reached such that

significant excess is expected above the SM background at the LHC [8].

In order to reveal the CDM identity and to compare with the results from direct and
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indirect DM searches, it is imperative to determine the missing particle mass at colliders.

This is a very challenging task since such weakly interacting neutral particles leave neither

charged particle tracks nor significant energy deposit in the detector. Furthermore, the

missing particles always come in pairs in an event due to the conserved “parity”, so that the

final state kinematics is under-constrained. Finally, if we consider hadronic collisions as at

the LHC, the partonic c.m. energy as well as the frame are unknown on an even-by-event

basis.

As reviewed in Ref. [9], most of the techniques for the missing particle mass measurement

can be categorized into the following three cases: (i) endpoint methods [11]; (ii) polynomial

methods [12, 13]; (iii) MT2 methods [14–17]. All of three methods rely on a cascade decay of

a heavy new particle, ended up with a single missing particle X . At each step of a cascade

chain, a visible particle is produced, which may provide information on the missing particle

mass as well as the intermediate new particle mass.

Endpoint methods use the kinematic edges of invariant mass distributions of the visible

particles in a given cascade decay. If the cascade chain is long enough with at least three

visible particles, the number of kinematical constraints is sufficient to determine all of the

masses involved [9]. When the decay chain is not long, the observables are insufficient for

complete mass determination. In addition, the positions of endpoints are more sensitive to

the mass difference than to the absolute mass.

Polynomial methods use reconstructable events in which the number of on-shell kinematic

constraints exceeds the number of unknown masses and momentum components. By com-

bining multiple event information, one can maximize the information for determination of

mass parameters [12]. Early studies depend on a long decay chain, at least two-step cascade

decays in each chain with four visible particles and two invisible particles [9].

The MT2 variable, originally proposed in Ref. [14], is useful at hadron colliders to measure

the mass of a new mother particle when pair-produced. Two mother particles decay through

the same decay chain. For each chain, the transverse mass is constructed from the missing

transverse momentum. As a function of a trial mass for the missing particle, MT2 is the

minimum value of the larger value of these two transverse masses. The minimization is over

all possible missing transverse momenta of two decay chains as satisfying the observed total

missing energy. The MT2 distribution has the maximum at the mother particle mass when

the trial mass hits the true missing particle mass. Therefore, it provides one relation between
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FIG. 1: The antler decay topology of a heavy new particle D into two missing particles (X1 and

X2) and two visible particles (a1 and a2).
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FIG. 2: The cascade decay topology of a heavy new particle D into two missing particles (X1 and

X2) and two visible particles (a1 and a2).

the mother particle mass and the missing particle mass. A more exciting observation is that

the endpoint curve of MT2 as a function of the trial mass shows a kink where the trial

mass becomes the true mass [16]. Later the relation of the variable MT2 and the on-shell

kinematic constraints are studied to suggest mass measurement method for a short decay

chain [10].

In all of three methods above, a crucial issue is how to fully reconstruct the kinematics of

a signal event. This relies on exclusive selection of events of a given type. If the decay chain

is long, the reconstruction becomes more difficult as combinatoric complications emerge: the

large number of involved particles entangle the origin of the decay of each observed particle.

The hemisphere method, an algorithm to group collinear and high-pT particles, was shown

to be useful to some extent in the inclusive MT2 analysis for the disentanglement of the

data [18].

Recently, it has been pointed out that the missing particle mass can be determined from

singular structures in kinematic distributions for shorter and simpler decay chains [19, 20].

4



In our previous work [19], we considered a resonant “antler decay” of a heavy new particle

into a pair of missing particles and a pair of SM visible particles, as shown in Fig. 1, and

found non-smooth peaks in some kinematic distributions. These peaks are called “cusps”

and the positions of the cusps depend only on the masses of the involved particles. The cusp

is statistically more advantageous because it is at the peak region. The mass measurements

can be benefited from knowing the kinematic cusp structures.

We consider a resonant decay of a heavy particle D into two visible particles and two

missing particles. The invariant mass distributions of this type of decay for massless visible

particles were first presented in our previous publication [19], and recently further studied

in Ref. [21]. Obviously this heavy particle D is parity-even. The general topology of such

resonant decays is divided into two classes:

1. Antler decay topology: a heavy particleD decays into two parity-odd particles (B1 and

B2) at the first step and each parity-odd particle subsequently decays into a missing

particle (denoted by dashed lines) and a visible particle, as in Fig. 1.

2. Cascade decay topology: a heavy particle D decays through three step cascade decays

in series into two invisible particles and two visible particles. One invisible particle

is from the last step. The other invisible particle is from either the first step or the

second step, which yields two non-trivial cascade topologies, as in Fig. 2.

The antler decay and the cascade decay are siblings to each other as they share the same

skeleton of topology. Since they have different orientation of incoming and outgoing particles,

the cusps appear with different manifestations. In this paper, we focus on the antler topology

only and leave the presentation on the cascade decay topology to a companion paper [22].

Antler decays arise in many new physics models. We now list a few examples for illus-

tration.

• In the Minimal Supersymmetric Standard Model (MSSM), the heavy CP-even neutral

Higgs bosons may have sizable rates of the following decay [23]:

H → χ̃0
2 + χ̃0

2 → Zχ̃0
1 + Zχ̃0

1. (1)

• In the MSSM with an additional U(1) gauge interaction, the extra U(1) gauge boson

Z ′ can have antler decay modes like [24]

Z ′ → ℓ̃− + ℓ̃+ → ℓ−χ̃0
1 + ℓ+χ̃0

1. (2)
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• The ultraviolet completion of the little Higgs model with T parity conservation often

involves an extension of the Higgs sector that accommodates heavy Higgs bosons.

Large top Yukawa coupling leads to substantial decay of the neutral heavy Higgs into

a pair of T -parity odd top quarks t−, followed by t− decay into the SM top quark and

the heavy photon AH (the CDM candidate) [5]:

H → t− + t̄− → tAH + t̄AH . (3)

• In the UED model with KK parity conservation, the second KK mode of the Z boson

can have antler decay modes [25]. Z(2) decays into a pair of the first KK modes of the

lepton, followed by its decay into a SM lepton and the CDM particle B(1):

Z(2) → L(1) + L(1) → ℓ−B(1) + ℓ+B(1). (4)

• At lepton colliders with e+e− or µ+µ− collisions, the well-determined c.m. energy

renders some pair production and their subsequent decay processes to be of the antler

topology. One example is

e+e−/µ+µ− → ℓ̃+ + ℓ̃− → ℓ+χ̃0
1 + ℓ−χ̃0

1. (5)

In the current work, we only focus on the generic features of antler kinematics. The rest of

the paper is organized as follows. We begin our discussion by explaining the unique features

of the antler kinematics in Sec. II. Focused on the symmetric antler decay, we consider

the massive visible particle case in Sec. III. The cusps and endpoints in the kinematic

distributions of the invariant mass, transverse momenta, and angular variables are to be

presented. In Sec. IV, we study the massless visible particle case. We discuss some effects

of more realistic considerations in Sec. V, such as the finite decay widths of the resonant

particles, the longitudinal boost, the initial state radiation, and the spin correlations. We

conclude in Sec. VI. A few appendices are devoted to some technical details for a general

four-body phase space treatment, the derivations of the cusp peak and analytic expressions

of some kinematic distribution, and more discussions for the general antler decay.
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FIG. 3: Kinematic configuration of the antler decay in the rest frame of the mother particle D

via two intermediate particles B1 and B2, followed by B → aX. θ1 and θ2 are defined in the rest

frames of B1 and B2, respectively, and φ in the D rest frame.

II. KINEMATICS OF ANTLER DECAY TOPOLOGY WITH TWO MISSING

PARTICLES

We consider the resonant decay of a heavy particle D into two visible particle a1 and a2,

and two missing particle X1 and X2 via a chain of two-body decays through intermediate

particles B1 and B2, as depicted in Fig. 1:

D(P ) → B1(p1) +B2(p2), (6)

B1(p1) → a1(k1) +X1(k3), B2(p2) → a2(k2) +X2(k4).

Since most of the processes of our interest are symmetric between two decay branches, we

focus on the symmetric antler decay, defined by

Symmetric antler: B ≡ B1 = B2, a ≡ a1 = a2, X ≡ X1 = X2. (7)

The general antler decay with arbitrary masses is to be discussed in Appendix B.

In the three-dimensional momentum space, the kinematic configuration of the antler

decay is illustrated in Fig. 3. In the rest frame of the mother particle D, the intermediate

particles B1 and B2 are moving back-to-back, and the momentum direction defines the

principal decay axis z, with B1 moving into the +z direction and B2 into the −z direction.

Two momenta of a1 and X1 in the B1 rest frame form the decay plane P1, which is identified

as the xz-plane. In the same way, the decay plane P2 is defined by the B2 decay products.

In the decay plane P1, we define a polar angle θ1 between the +z direction and the a1
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momentum in the B1 rest frame. Similarly, θ2 is the polar angle between the −z direction

and the a2 momentum in the B2 rest frame. The azimuthal angle between two decay planes

P1 and P2 is denoted by φ.

As explicitly shown in Appendix A, these three internal angles (θ1, θ2, and φ) specify the

phase space configuration of the antler decay topology. The dynamics of the antler decay is

encoded in the differential decay width dΓ defined in the rest frame of D. dΓ is a function

of the internal phase space variable (θ1, θ2, φ):

dΓ ∝ |̂M|2 dΦ̂4, (8)

where |̂M|2 is a reduced matrix elements and dΦ̂4 = d cos θ1 d cos θ2 dφ (see Appendix A for

more details). The reduced matrix element |̂M|2 is a smooth function of (θ1, θ2, φ), and thus

dΓ/dΦ̂4 does not show any singular behavior.

Kinematic singularities emerge as missing particles allow us only the projection of the

full kinematic phase space onto a lower dimensional phase space accessible by the visible

particle momenta. This partial access inevitably hides some of necessary information for

the full mass reconstruction. However, we can still decode the mass information out of some

observables, say Y ’s.

In order to obtain dΓ/dY , we project the hypersurface of the phase space (θ1, θ2, φ)

onto Y : for each value of Y , dΓ/dY is proportional to the volume of the hypersurface

corresponding to that specific value of Y . When the hypersurface fails to be a manifold at a

certain point Y , dΓ/dY develops non-smoothness. This is called singular points, where the

differential (∂Y/∂θ1, ∂Y/∂θ2, ∂Y/∂φ) vanishes
1. As a result, we see non-smooth behaviors in

the distribution of Y , which give rise to kinematic cusps and endpoints. General discussions

on the development of singularity in the multi-dimensional observable phase space have been

presented in Ref. [20].

Since the mother particle D is moving in the lab frame, a kinematic variable Y from the

momenta of two visible particles a1 and a2 can be classified into three categories:

1. Lorentz-invariant variable: there is only one Lorentz-invariant observable, the invariant

1 In multi-dimensional cases, this condition is a reduced rank condition of Jacobian matrix of mapping from

the phase space to the observable Y ’s [20].
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mass of a1 and a2,

m =
√

(k1 + k2)2. (9)

2. Longitudinal-boost invariant variables:

• the transverse momentum of one visible particle i:

pT i = |kiT | . (10)

Here and henceforth, a bold-faced letter denotes a three-momentum.

• the total transverse momentum of the a1-a2 system:

pT = |k1T + k2T | . (11)

In the four-body decay under consideration, this is the same as the magnitude of

the missing transverse momentum /pT of the decay.

• the transverse mass of the a1-a2 system:

mT =
√

p2T +m2. (12)

• the cluster transverse mass of the a1-a2- /pT system:

mC
T = mT + /pT . (13)

• the rapidity difference:

∆η = |ηa1 − ηa2|, where ηai =
1

2
ln

(
Ei + kiz
Ei − kiz

)
. (14)

3. Non-invariant variable: we consider an angular variable Θ, which is the angle between

one visible particle (say a1) in the c.m. frame of a1 and a2 and the c.m. moving direction

in the D rest frame, given by

cosΘ = − k
(a1a2)
1 · (k1 + k2)

(D)

∣∣k(a1a2)
1

∣∣ ∣∣k1 + k2

∣∣(D)
. (15)

Here the superscript in a momentum denotes the reference frame. We emphasize that

this cosΘ variable is not observeble unless the D rest frame is reconstructed.
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In the following two sections we derive the cusps and endpoints of m, mT , pT , pT i, and

cosΘ as functions of masses in the rest frame of D. According to the motion of the mother

particle D, or the possibility of reconstructing the rest frame of D, these relations with

masses may not be able to observe. If the D rest frame is known like in an e+e− linear

collider, all of the results derived in the D rest frame are well defined and measurable.

If D has unknown longitudinal motion but definite transverse motion event by event, the

expressions of Lorentz invariant (category 1) and longitudinal-boost invariant (category-

2) kinematic variables hold true. If D has additional ambiguity in its transverse motion,

which is inevitable from the initial state radiation (ISR) in a hadron collider, only the

results of Lorentz invariant variable m are measurable. As shall be shown in Sec. V, the

longitudinal boost effect distorts the cosΘ distribution quite significantly while the ISR

effects are manageable for leptonic decays.

III. MASSIVE VISIBLE PARTICLE CASE

In this section, we consider the case of massive visible particles. For a resonant decay, it

is very convenient to express the kinematics in terms of rapidity variables. For a two-body

decay of i → j + k, we write the four-momentum of the particle j in the rest frame of the

mother particle i as p
(i)
j = (E

(i)
j ,p

(i)
j ) = (mj cosh ηj , mj sinh ηjp̂

(i)
j ). Here ηj is the rapidity

of particle j in the rest frame of the mother i, given by

cosh ηj ≡
E

(i)
j

mj

=
m2

i +m2
j −m2

k

2mimj

. (16)

The superscript of a rapidity, specifying the reference frame, is omitted when it is the rest

frame of the mother particle. In this section, we assume that all of the particles are massive.

The massless case will be covered in the next session by taking the massless limit from the

massive case.

Now we illustrate the symmetric antler decay defined in Eq. (7), which has two indepen-

dent rapidity parameters ηB and ηa:

cosh ηB =
mD

2mB
, cosh ηa =

m2
B −m2

X +m2
a

2mamB
. (17)

Note that ηB is determined by D → B1B2 decay, and ηa by B1 → a1X1 decay (or B2 → a2X2

equivalently).
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In the D rest frame, the momenta of the particles a1 and a2 are

k
(D)
1 = ma




cosh ηB cosh ηa + sinh ηB sinh ηa cos θ1

sinh ηa sin θ1

0

sinh ηB cosh ηa + cosh ηB sinh ηa cos θ1




, (18)

k
(D)
2 = ma




cosh ηB cosh ηa + sinh ηB sinh ηa cos θ2

sinh ηa sin θ2 cosφ

sinh ηa sin θ2 sin φ

− sinh ηB cosh ηa − cosh ηB sinh ηa cos θ2




, (19)

where the internal phase space angles of (θ1, θ2, φ) are defined in Fig. 3.

A. Invariant mass distribution

The invariant mass of the two visible particles a1 and a2 is explicitly obtained from k
(D)
1

and k
(D)
2 in Eqs. (18) and (19):

m2 = m2
a

[
{2 cosh ηB cosh ηa + sinh ηB sinh ηa(cos θ1 + cos θ2)}2

− sinh2 ηa(sin θ1 + sin θ2 cosφ)
2 − sinh2 ηa sin

2 θ2 sin
2 φ

− cosh2 ηB sinh2 ηa(cos θ1 − cos θ2)
2

]
. (20)

In Fig. 4(a), we show the invariant mass m as a function of cos θ1 and cos θ2. For the sake

of illustration, we take mD = 1TeV, mB = 400GeV, ma = mZ , mX = 200GeV, and fixed

φ = 0. The mapping of this non-trivial hypersurface onto the m yields a singular structure

in the dΓ/dm distribution as in Fig. 4(b). To understand how this distinctive feature occurs,

we study this mapping by examining the following some critical points:

• Point (i): (cos θ1, cos θ2) = (1, 1)

Since a1 and a2 move back-to-back in the D rest frame, their invariant mass becomes

maximum. The rapidity of a1 in the rest frame of D is the same as that of a2, such

that |η(D)
a1 | = |η(D)

a2 | = ηB + ηa. Therefore, the relative rapidity of a2 with respect to a1

is η
(a1)
a2 = 2(ηB + ηa).

• Point (ii): (cos θ1, cos θ2) = (±1,∓1)

One visible particle, say a1, moves in the same direction of its mother B1 with the
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FIG. 4: (a) The invariant mass m as a function of cos θ1 and cos θ2, with φ = 0. (b) The

normalized differential decay rate as a function of m. We take the mass parameters of mD = 1TeV,

mB = 400GeV, mX = 200GeV and ma = mZ .

rapidity of η
(D)
a1 = ηB + ηa, and the other visible particle a2 moves in the opposite

direction of its mother with η
(D)
a2 = |ηB − ηa|. If ηa > ηB, the directions of a1 and

a2 in the D rest frame are the same, which implies η
(a1)
a2 = η

(D)
a1 − η

(D)
a2 . If ηa < ηB,

the direction of a1 and a2 are opposite so that η
(a1)
a2 = η

(D)
a1 + η

(D)
a2 . Regardless of

the ordering of ηa and ηB, we have η
(a1)
a2 = 2ηB. Note that two configurations of

(cos θ1, cos θ2) = (1,−1) and (cos θ1, cos θ2) = (−1, 1) are symmetric to each other.

• Point (iii): (cos θ1, cos θ2) = (−1,−1)

a1 and a2 move in the opposite direction to B1 and B2 in their mother’s rest frames,

respectively. Their rapidities are |η(D)
a1 | = |η(D)

a2 | = |ηB−ηa|, leading to η(a1)a2 = 2|ηB−ηa|.

• Point (iv): θ2 = θ1, φ = 0, cos θ1 = − tanh ηB/ tanh ηa with ηa > ηB

This special configuration gives rise to the same four-momenta of the two visible

particles as can be seen in Eqs. (18) and (19). a1 and a2 are relatively at rest, resulting

in η
(a1)
a2 = 0. The condition ηa > ηB is required to guarantee the equality of k

(D)
1 and

k
(D)
2 , which cannot be achieved if the particle B is boosted more highly than the

particle a (or equivalently | cos θ1| ≤ 1 for physical configurations).

Point (i) corresponds to the maximum endpoint, and Points (ii) to the cusped peak.

When Point (iv) exists, ı.e., when ηa > ηB, Point (iii) corresponds to the non-smooth
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FIG. 5: The shapes of the function of dΓ/dm for three representative regions, R1, R2, and R3.

With the fixed ηa = 1, we set ηB = 0.3 for R1, ηB = 0.7 for R2, and ηB = 1.5 for R3.

kink, and Point (iv) to the minimum endpoint at m = 2ma. If ηa < ηB, Point (iii)

becomes the minimum endpoint at m = 2ma cosh(ηB − ηa).

Now we present the analytic expression of the invariant mass distribution. The functional

forms are different in the following three mass regions:

R1 : ηB <
ηa
2
, R2 :

ηa
2

< ηB < ηa, R3 : ηa < ηB. (21)

In Fig. 5, we show the invariant mass distribution dΓ/d(m/mmax) for R1, R2, and R3.

Regardless of the parameter regions, the maximum endpoint corresponds to Point (i):

mmax = 2ma cosh(ηB + ηa). (22)

For R1 and R2, the minimum endpoint occurs at m = 2ma while for R3 the minimum is

different:

mmin =





2ma, for R1 and R2,

2ma cosh(ηB − ηa), for R3.
(23)

The condition of ηB > ηa in R3 does not allow the equality of k
(D)
1 = k

(D)
2 which would

lead to mmin = 2ma. In R1 and R2, there are two non-smooth points in the middle of the

distribution. Let us call the point at the smaller value of m (marked by squares) a knee

point and the other point at the larger value of m (marked by circles) a cusp point. In R1,

the knee point corresponds to Point (ii) and the cusp point to Point (iii). In R2, it is
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R1 R2 R3

mmin 2ma 2ma 2macηB−ηa

mknee 2macηB 2macηB−ηa -

mcusp 2macηB−ηa 2macηB 2macηB

mmax 2macηB+ηa 2macηB+ηa 2macηB+ηa

TABLE I: Summary of the minimum, cusp, knee, and maximum of the m distribution for the mass

parameter regions R1, R2, and R3. We have used a concise notation of coshx ≡ cx.

opposite. In R3, there is only one sharp peak, the cusp. We summarize the results of the

minimum, cusp, knee, and maximum of the m distribution in Table I.

The invariant mass distributions for three mass regions are

dΓ

dm

∣∣∣∣
R1

∝





2m cosh−1
(

m2

2m2
a
− 1
)
, if 2ma < m < 2macηB ;

4ηB m, if 2macηB < m < 2macηB−ηa ;

m
[
2(ηB + ηa)− cosh−1

(
m2

2m2
a
− 1
)]

, if 2macηB−ηa < m2macηB+ηa ;

0, otherwise ,

(24)

dΓ

dm

∣∣∣∣
R2

∝





2m cosh−1
(

m2

2m2
a
− 1
)
, if 2ma < m2macηB−ηa ;

m
[
2(ηa − ηB) + cosh−1

(
m2

2m2
a
− 1
)]

, if 2macηB−ηa < m2macηB ;

m
[
2(ηa + ηB)− cosh−1

(
m2

2m2
a
− 1
)]

, if 2macηB < m < 2macηB+ηa ,

0, otherwise ,

(25)

dΓ

dm

∣∣∣∣
R3

∝





m
[
2ηa − 2ηB + cosh−1

(
m2

2m2
a
− 1
)]

, if 2macηB−ηa < m < 2macηB ;

m
[
2ηa + 2ηB − cosh−1

(
m2

2m2
a
− 1
)]

, if 2macηB < m < 2macηB+ηa ;

0, otherwise .

(26)

Here we have employed the narrow width approximation and ignored spin correlation effects.

The detailed derivation is presented in Appendix A.

In order to show the characteristics of the m distribution, we take three samples for mass

parameters in Table II. We label them as Mass–1, Mass–2 and Mass–3, each of which

belongs to the kinematical regions of R1, R2 and R3, respectively. The visible particle is

assumed to be the Z boson.
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Region mD mB ma mX ηB ηa

Mass–1 R1 650 300 mZ 100 0.41 1.06

Mass–2 R2 850 330 mZ 100 0.74 1.18

Mass–3 R3 1000 250 mZ 100 1.32 0.80

TABLE II: Test mass spectrum sets for the symmetric antler decay. All of masses are in units of

GeV and mZ is the Z boson mass. ηB and ηa are the rapidities of the particle B and a in its

mother rest frame, respectively.
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FIG. 6: The normalized invariant mass distribution dΓ/dm for test mass sets in Table II.

In Fig. 6, we present the invariant mass distributions for the mass parameters in Table II.

All of the three mass sets yield sharp cusp structures. Them minimum forR1 andR2 is 2mZ

as discussed before. For the R3 case, however, fast-moving intermediate particle B yields

mmin = 2mZ cosh(ηB − ηa). Unfortunately, we still have a two-fold ambiguity between R1

and R2 because we do not know a priori whether the observed mcusp is 2ma cosh(ηB −ηa) or

2ma cosh ηB. As shall be shown in the next section, the transverse momentum distribution

breaks this ambiguity through its cusp and endpoint structures. In addition, the R1 and

R2 cases have the knee structure, even though it is challenging to probe with the expected

statistics at the LHC.
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FIG. 7: The normalized transverse mass distribution dΓ/dmT for test mass sets in Table II.

B. Transverse momentum variables: mT , pT , and pT i

In this section, we investigate the distributions of the transverse mass mT , the transverse

momentum variables pT and pT i. All of the following results are obtained in the rest frame

of the mother particle D. Note that the longitudinal motion of D does not change the

results while its transverse motion changes them. The limitation of observing the cusps and

endpoints in transverse momentum at a hadron collider is to be discussed in Sec. V. First

we show the mT distribution in Fig. 7. All the mT distributions for R1, R2, and R3 do not

have any cusped peak. The maximum in the mT distribution is the same as the maximum

of m:

(mT )max = mmax. (27)

The confirmation of the same maxima in the m and mT distributions will help the recon-

struction of the antler decay.

In Fig. 8, we plot the distribution of pT and pT i. The total pT distribution does not have

the cusp structure, as expected from the mT distribution. In addition, its maximum is at

the end of a long tail, which is statistically disadvantageous to observe. The cluster transfer

mass mC of a1-a2- /pT system has no cusp structure either.

The transverse momentum of “one” visible particle shows quite different distribution.

First we note that one unambiguous pT i distribution can be constructed out of two visible

particles because of the symmetric topology of the antler decay. This pT i distribution shows
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FIG. 8: The normalized transverse momentum distribution dΓ/dpT and dΓ/dpT i for test mass sets

in Table II.

the cusp structure as well as the fast-dropping maximum structure. The cusp and maximum

of pT i are

(pT i)cusp = ma |sinh(ηa − ηB)| , (28)

(pT i)max = ma sinh (ηa + ηB) .

The position of (pT i)max gives the information about ηB + ηa, which is the same from mmax

in Eq. (22). Remarkable is that (pT i)cusp is common for all of three regions R1,2,3, which

determines |ηB − ηa|. By comparing (pT i)cusp with mcusp, we can distinguish R1 from R2.

The two-fold ambiguity in the measurement of mcusp for R1 and R2 is broken.

C. Angular variable: cosΘ

We consider the distribution of cosΘ defined in Eq. (15). Here Θ is the angle of one

visible particle with respect to the c.m. moving direction. As in the pT i distribution, the

symmetric decay chains of the antler decay guarantee one unique cosΘ distribution as shown

in Fig. 9. All of the cosΘ distributions for R1, R2 and R3 are symmetric about cosΘ = 0,

and have sharp cusps.
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FIG. 9: The normalized cosΘ distribution for the massive visible particle cases.

IV. MASSLESS VISIBLE PARTICLE CASE

Now we consider the massless visible particle case. As suggested in Eqs. (2), (4), and (5),

many new physics processes for the antler decay have massless visible particles. Although

we cannot directly apply the results with the massive visible particle to this case since the

rapidity ηa diverges, we can obtain the massless limit by using the finite combinations of

macηa and masηa :

lim
ma→0

macηa = lim
ma→0

masηa =
mB

2

(
1− m2

X

m2
B

)
. (29)

As in the massive visible particle case we assume that the rest frame of the mother particle

D can be reconstructed. All of the following results are obtained in the D rest frame.

A. Invariant mass distribution

In the massive visible particle case, the functional form of the invariant mass distribution

is different according to three mass regions of R1, R2, and R3. In the massless visible

particle case, only R1 applies since ηB ≪ ηa. Two locations of mmin and mknee merge

because ma = 0. The cusp and endpoints are given by

m
(0)
min = 0, (30)

m(0)
cusp = mB

(
1− m2

X

m2
B

)
e−ηB , (31)

m(0)
max = mB

(
1− m2

X

m2
B

)
eηB . (32)
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mD mB mX ma m
(0)
cusp m

(0)
max | cos Θ|max

Mass–10 1000 470 440 0 40.7 82.9 0.34

Mass–20 1000 440 410 0 34.6 97.1 0.47

Mass–30 1000 400 370 0 28.9 115.5 0.60

TABLE III: Test mass spectrum sets for the symmetric antler decay with massless SM particles.

All of the masses are in units of GeV.

Here the superscript (0) is used for emphasizing ma = 0. The product of the cusp and the

maximum is

m(0)
cuspm

(0)
max = m2

B

(
1− m2

X

m2
B

)2

, (33)

which depends only on the second step decay of B → aX . The ratio is

m
(0)
cusp

m
(0)
max

= e−2ηB , (34)

which is determined only by the first step decay of D → BB.

The invariant mass distribution is simplified into

dΓ

dm
∝





m log
(

m
(0)
max

m
(0)
cusp

)
, if 0 < m < m

(0)
cusp;

m log
(

m
(0)
max

m

)
, if m

(0)
cusp < m < m

(0)
max;

0, otherwise.

(35)

For 0 < m < m
(0)
cusp, dΓ/dm is a linear function of m. For m

(0)
cusp < m < m

(0)
max, it is a concave

function with the maximum at m = m
(0)
max/e. Depending on the relative position of m

(0)
cusp

and m
(0)
max/e, the maximum of the concave function may or may not show in the function

of dΓ/dm, which determines the sharpness of the cusp. If m
(0)
max/e < m

(0)
cusp (or equivalently

mB > 0.443mD), dΓ/dm is linearly increasing up to m = m
(0)
cusp, and decreasing after that:

the cusp is sharp. If m
(0)
cusp < m

(0)
max/e, dΓ/dm keeps increasing after m = m

(0)
cusp, reaches the

maximum of the concave function, and finally falls down: the cusp is not sharp. The m cusp

structure is most useful when the D → BB decay is near the threshold.

In order to show the functional behaviors, we take three mass sets for the massless visible

particle case in Table III. The mass parameters in theMass–10 correspond to the case where

both the first decay D → BB and the second decay B → aX occur near the threshold. This
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FIG. 10: The normalized invariant mass distribution dΓ/dm in the massless visible particle case

for the mass parameter sets in Table III.

is motivated by the decay of the second KK mode of Z boson in the UED model in Eq.(4).

The Mass–20 represents the marginal case for the sharp cusp, i.e., mB ≈ 0.44 mD. The

Mass–30 case has large mass gaps.

Figure 10 shows the m distributions. All of three mass sets in Table III have the same

mmin = 0. The sharpness of the cusp structure is different. The nearly degenerate mass case

(Mass–10) has a very sharp cusp. The marginal case (Mass-20) shows also an observably

sharp cusp. The large mass gap case (Mass-30) has a rather smooth cusp. If the number of

events is not enough, the obtuse cusp is difficult to read from the geometrical nature. The

functional form of dΓ/dm in Eq. (35) can help to find the cusp position by fitting the data.

B. Transverse momentum variables: mT , pT and pT i

Now we turn to the kinematic variables involving transverse monentum. First, the mT

distribution in the massless visible particle case does not show any cusp structure as shown

in Fig. 11. The absence of mT cusp is a common feature of the antler decay. The mT

maximum stands at the end of fast-dropping function for all of three mass sets, which is

easy to read. In addition it is the same as the m maximum:

(mT )
(0)
max = m(0)

max. (36)

Figure 12 shows the distributions of the total transverse momentum pT and individual
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FIG. 11: The normalized transverse mass distribution dΓ/dmT for the massless visible particles.

The mass spectrum sets are described in Table III.

Mass–30
Mass–20
Mass–10

Antler ma = 0

pT [GeV]

1 Γ

d
Γ

d
p
T

[1
/
G
eV

]

706050403020100

0.025

0.02

0.015

0.01

0.005

0

Mass–30

Mass–20

Mass–10

Antler ma = 0

pTi [GeV]

1 Γ

d
Γ

d
p
T
i

[1
/
G
eV

]

6050403020100

0.05

0.04

0.03

0.02

0.01

0

FIG. 12: The normalized transverse momentum distribution dΓ/dpT and dΓ/dpTi
for the massless

visible particles. Test mass sets are in Table III.

pT i. As in the massive visible particle case, the total pT distribution is very smooth and

gentle, without any cusp structure or fast dropping maximum. Instead, the pT i distribution

shows very sharp cusp, much sharper in general than the invariant mass distribution. Even

the Mass–30 case, which suffers from the dull cusp in the m distribution, has a very sharp

pT i cusp. In addition the pT i maximum is at the end of a fast dropping function.

The analytic expressions of (pTi
)(0)cusp and (pTi

)(0)max can be easily obtained from Eq. (28) by

21



Mass–30

Mass–20

Mass–10

Antler ma = 0

cosΘ

1 Γ

d
Γ

d
co
s
Θ

10.80.60.40.20−0.2−0.4−0.6−0.8−1

2

1.5

1

0.5

0

FIG. 13: The normalized cosΘ distribution for the massless visible particle cases.

applying Eq. (29):

(pT i)
(0)
cusp =

1

2
m(0)

cusp, (pT i)
(0)
max =

1

2
m(0)

max. (37)

These nontrivial relations of (pT i)
(0)
cusp and (pT i)

(0)
max with m

(0)
cusp and m

(0)
max help to check the

antler decay topology.

C. Angular variable: cosΘ

Figure 13 shows the normalized dΓ/d cosΘ distributions for three massless visible particle

cases. The function increases with | cosΘ|, and drops to zero suddenly at |cosΘ|(0)max. This

is because the cusp and the endpoint merge, resulting in more pronounced endpoints with

sharp peaks at both ends. The maximum of cosΘ is simply determined by the first step

decay D → BB:

|cosΘ|(0)max = tanh ηB. (38)

The full analytic function of dΦ̂4/d cosΘ is given by

Γ

d cosΘ
∝





1

sin3Θ
, for | cosΘ| < tanh ηB,

0, otherwise.
(39)

The suddenly ending behavior of the cosΘ distribution is because massless visible particles

cannot access all kinematic space of cosΘ. The detailed derivation of Eqs. (38) and (39) is

in Appendix A4.
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FIG. 14: The invariant mass distribution dΓ/dm in the antler decay with finite ΓB effects. We

have taken the mass spectrum sets of Mass–1 and Mass–10.

V. EFFECTS FROM REALISTIC CONSIDERATIONS

In the previous sections, we have considered only the kinematics in the rest frame of

D, ignoring the decay width of the intermediate particle B, the longitudinal boost of the

mother particle D, the ISR effects, and the spin correlation. These S-matrix element effects

can smear the kinematic cusps and endpoints.

A. Finite width effects

The previous results are based on the narrow width approximation. This approach is very

effective for the proposed processes in Eqs. (1)−(5) since all of the intermediate particles

(χ̃0
2, ℓ̃

±, L(1), and t−) have very small total decay widths, much smaller than one percent

of their masses. If the total decay width ΓB is large, its effects can smear the cusp and

endpoint structures. If the on-shell B particle is kinematically not accessible so that the

decay process is through off-shell B, then the singular structures are destroyed completely

since there is no constraints on the phase space from the mass relations.

In Fig. 14, we show the invariant mass distributions with the effect of finite ΓB for the

massive SM particle case (Mass–1) and the massless case (Mass–10). We take ΓB to be

3%, 10%, and 50% of mB for the massive case, and 1%, 10%, and 50% for the massless
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FIG. 15: The normalized transverse momentum distribution dΓ/dpT with various finite total decay

width of the intermediate particle B.

case. If ΓB/MB is small enough (≤ 3% for the massive case and ≤ 1% for the massless

case), the m cusp remains fairly preserved. Even though the sharp cusp gets dull slightly,

the position of the cusp is not shifted for both cases. The endpoint position is stable for

the massive case, but shifted considerably for the massless case. If ΓB/mB is about 10%,

the cusp is smeared into a round peak and the endpoint position is shifted significantly for

both cases. In the massive visible particle case, the smooth peak position is also shifted. In

the massless case, the peak stands near the true cusp position. If ΓB/MB ≃ 50% in which

case a large contribution to the S-matrix element arises from the intermediate off-shell B,

the sharpness and position of the cusp are lost. The endpoints move towards new positions

of m = mD −2mX . This is from the allowed phase space of the decay D → XXaa. At least

we can determine the mass difference between D and X using the m distribution.

Now we show the ΓB effects on the pT i distributions in Fig. 15. We take the massive

Mass–1 case and the massless Mass–10 case. The pT i distribution has very vulnerable

cusp and endpoint from the finite ΓB effects. Even for small width effects (≤ 3% for the

massive case and ≤ 1% for the massless case) the sharp cusp becomes dull, and its position is

significantly shifted. The pT i maximum is more sensitive to the ΓB effects. For the massless

SM particle case, even 1% of ΓB/mB shifts the position of pmax
T i a lot.

Finally, Fig. 16 shows the cosΘ distribution with finite ΓB effects. Here the most dramatic

collapse occurs. Even with very small width of ΓB/mB = 1%, the sharp cusp becomes round,
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FIG. 16: The normalized cosΘ distribution with various finite total decay width of the intermediate

particle B.

difficult to read. For ΓB/mB = 10%, the cusp shape is lost completely.

In summary, the effects of the finite width of the intermediate particle B smear the cusp

shape and shift the cusp position to some extent. The invariant mass distribution has the

least distortion, while the pT i and cosΘ distributions have significant changes, especially for

the massless visible particle case. However, the proposed processes in Eqs. (1)–(4) are not

affected since ΓB/mB is much smaller than 1%.

B. Longitudinal boost effect

At hadron colliders, the longitudinal motion of the particle D is not determined event

by event. Among the kinematic variables discussed before, only the cosΘ is affected, which

is defined with a momentum in the D rest frame. In order to see the longitudinal boost

effects, we convert the cosΘ distribution in the D rest frame into that in the pp frame at

the LHC, by convoluting with the parton distribution functions of a proton. We have used

CTEQ6 [26]. In Fig.17, we compare the normalized cosΘ distribution in the D rest frame

(thin curves) with that in the pp lab frame with
√
s = 14 TeV (thick curves). For simplicity

we assume that the heavy particle D is produced through the s-channel gluon fusion and/or

qq̄ annihilation.

In the massive visible particle case (mass-2), the cusped peaks vanish almost completely.
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FIG. 17: Comparison of the cosΘ distribution in the D rest frame (thin curves) and in the pp

lab frame with
√
s = 14 TeV (thick curves). The mass parameters used here are Mass-10 and

Mass-2 defined in Tables II and III.

In the massless case (mass-10), the pointed cusps become round, very hard to read. We

conclude that the cusp in the cosΘ distribution is not observable at the LHC. In the e+e−

collisions, however, the fixed c.m. energy removes the longitudinal boost ambiguity, and

thus the cosΘ cusp provides valuable information on the missing particle mass.

C. ISR effect

At a hadron collider, scattering occurs between two partons. And these patrons radiate

gluons, which is called the initial state radiation [29]. Even if D is singly produced at the

parton level, there is some ambiguity in the transverse motion of D. As discussed at the end

of Sec. II, the ISR affects the transverse momentum variables as well as the cosΘ variable.

We examine the ISR effects on the cusp and endpoint structures in the distribution of

individual pT i, which alone accommodates cusps among transverse momentum variables.

We simplify the discussion by assuming that D is produced by qq̄ initial states, and its

decay products are color neutral as in Eqs. (2) and (4). Final state radiation and its color

interference with ISR can be neglected. The ISR gluons are to be identified as jets. A veto

on jets can remove the transverse motion ambiguity, in principle. If jets are soft, however,

they are very likely to be missed. Soft jets tend to spread out and thus cannot excite showers
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FIG. 18: The individual transverse momentum distribution dΓ/dpT i with and without the ISR

effects by the thin line and the thick line, respectively. We set the mass parameters in the Mass–

10 case, and veto the extra jet with pT > 50GeV.

in the hadron calorimeter of the detector.

In Fig. 18, we compare the pT i distributions with and without the ISR effects in the

above simple case. We use the results of the parton shower Monte Carlos in PYTHIA for

the ISR [30], and veto jets with pjetT > 50GeV. The Mass–10 case is considered since very

limited range in its pT i distribution is likely to be most affected by the ISR effects. It is

remarkable that the ISR effects do not smash the cusp and endpoint structures: the cusp

remains almost intact; the fast falling endpoint gets tailed but moderately. This is expected

from the pT distribution of the dilepton in the Drell-Yan process, which consists of two

components. The Gaussian part with the peak around ∼ 5GeV is dominant while the tail

part leading to hard gluon emission is subdominant. Our veto on high pT jets removes

the contribution of the tail part. The cosΘ distribution has much larger effects from the

longitudinal boost than from the ISR.

D. Spin-correlation effect

The effects of the spin-correlation by the full matrix elements are different from new

physics process to process. In addition, if we consider the associated production of the par-

ticle D in order to control the SM background, the spin correlation effects get intertwined
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FIG. 19: The invariant mass distribution dΓ/dm and the individual transverse momentum dis-

tribution dΓ/dpT i with and without spin correlations of Z(2) → L(1)L(1) → ℓ−B(1)ℓ+B(1) in the

minimal UED model. We have set 1/R = 500GeV and ΛR = 20.

with the additional pT and/or longitudinal boost effects. To maximize the discovery signifi-

cance, it is desirable to develop an individual strategy for each process in Eqs.(1)–(4), which

is beyond the scope of this paper.

Generically, the positions of cusps and endpoints are not affected by the spin correlation

effects since they are determined purely by the constrained phase space, i.e., by the mass

relations [20]. In order to see this feature, we consider the Z(2) decay in the framework of

the minimal UED model (mUED) [27]:

Z(2) → L(1) + L(1) → ℓ−B(1) + ℓ+B(1). (40)

In Fig. 19, we show the m and pT i distributions including the full matrix elements of

the process in Eq. (40) at the LHC with
√
s = 14TeV. We have fixed 1/R = 500GeV and

ΛR = 20, which generates the KK masses of mD = 1048GeV, mB = 515GeV, ma = 0, and

mX = 500.9GeV. First finite width effects are negligible: very degenerate mass spectrum

in the mUED model yields very small total decay width such that ΓB/mB ∼ 10−4. Second

the longitudinal boost effects do not apply to m and pT i. As shown in Fig. 19, the spin

correlations hardly change the m and pT i distributions. The distributions with and without

the spin correlation effects are almost identical.

Brief comments on the SM background and detector simulation effects are in order here.
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In Ref. [19], we have shown that the cusp structure survives over the SM backgrounds and

the detector simulations in a benchmark process of pp → Z ′ → ℓ̃+ℓ̃− → ℓ+χ̃0
1ℓ
−χ̃0

1 in a

supersymmetry model with an extra U(1) gauge field. In addition the missing particle mass

as well as the intermediate particle mass can be determined, even though the uncertainty

is about 10%. It was demonstrated that the analytic expression for the invariant mass

distribution is very helpful to reconstruct the mass parameters by best-fitting. If the decay

products are hadronic, the experimental resolution gets worse and the uncertainty of the

mass determination increases.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have considered the antler decay topology of a parity-even heavy particle

into two missing particles (X1 and X2) and two visible particles (a1 and a2) via intermediate

on-shell particles (B1 and B2). We studied the singularity structures in various kinematic

distributions, especially non-smooth peaks called the cusps. We show that the distributions

of the invariant mass m of a1 and a2, the individual transverse momentum pT i, and the

cosΘ develop conspicuous cusp structures. We have provided the detailed derivations for

the positions of the cusps as well as the endpoints in terms of the particle masses. The

analytic functional forms of the invariant mass and cosΘ distributions have been also given.

The cusp and endpoint structures of the antler decay have a few advantages: (i) if the

mother particle mass mD is known from other decay channels, they can be used to determine

both the missing particle and intermediate particle masses; (ii) the cusped peaks are more

identifiable than endpoints and kinks due to higher statistics at the kinematical maxima;

(iii) the simple configuration of outgoing particles, two visible particles and two missing

particles, avoids combinatoric complication, which is troublesome in many missing particle

mass measurement methods; (iv) the position of the cusp is independent of the S-matrix

element such as the spin correlation effects, since it is purely determined by the phase space.

We point out that the pT i cusp and endpoint have some desirable features for observation.

The pT i cusp tends to be sharp irrespective of mass parameter regions. It is complementary

to the robust m cusp, which is sharp only when the masses are nearly degenerate. The pT i

endpoint is always located at fast-dropping end, which is easier to read off. Finally, the cusp

position for the massive visible particle case is uniquely determined by the involved masses,
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while the m cusp has two-fold ambiguity.

It is noted that the cusp structures have some limitations for the missing particle mass

determination, especially at the LHC. The sharp cusped peaks in the cosΘ distribution are

not readily observable at the LHC, due to the longitudinal boost of the produced D particle.

The effects of the finite width of the intermediate particle could affect the cusp and end-

point in the individual transverse momentum distribution. However, for generically weakly

coupled theories beyond the SM, the new particles for the antler decay have relatively small

decay widths, and thus the pT i cusp is expected to be preserved. The cusp in the invariant

mass distribution, which is the most robust observable at the LHC, is most pronounced for

a degenerate mass spectrum.

In addition, the relations among different cusps and endpoints help to identify the antler

decay topology. For example, the mT maximum is equal to the m maximum. The cusp

and endpoint of pT i distribution are half of those of m distribution in the massless visible

particle case. One can use these facts for the consistency of the assumptions on the event

topology. Similar intriguing relations exist for the massive visible particle case.

In conclusion, if a new physics model accommodates an antler decay, the measurement of

kinematic cusps and endpoints can be helpful to determine the missing particle mass as well

as the intermediate particle mass. The proposed processes in various new physics models are

expected to have stable cusp and endpoint structures in the m, mT , and pT i distributions

at the LHC.
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Appendix A: Kinematic distributions in the symmetric Antler decay

In this Appendix, we derive the kinematic distributions of the invariant mass and the

cosΘ for the symmetric antler decays D → B1+B2 → a1X1+a2X2 where mB1 =mB2 ≡mB,

ma1 =ma2 ≡ma and mX1 =mX2 ≡mX . We first describe the four-body phase space and
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choose special internal phase variables. For each four-momentum, we specify the reference

frame in the superscript. For example, k
(B1)
1 is the four-momentum of a1 in the rest frame

of B1. Since we calculate physical quantities mostly in the D rest frame, we omit the

superscript for the D rest frame for simplicity. Note that this is different from the notation

in the main text where we omit the superscript for momenta in the lab frame.

1. Four-body phase space

We consider four body decays of

D(P ) → a1(k1) + a2(k2) +X1(k3) +X2(k4). (A1)

The differential decay rate of the process is

dΓ =
1

2mD
|M|2 dΦ4(P ; k1, k2, k3, k4), (A2)

where |M|2 is the helicity amplitude squared, and dΦ4 is the element of four-body phase

space, defined by [28, 31]:

dΦ4(P ; k1, . . . , k4) = (2π)4δ4

(
P −

4∑

i=1

ki

)
4∏

i=1

d3ki

(2π)32Ei
. (A3)

If the decay in Eq. (A1) is through the antler decay, i.e., through D → B1B2 followed by

Bi → aiXi(i = 1, 2), the helicity amplitude squared |M|2 has two propagator factors of B1

and B2. Using the narrow width approximation ΓB/mB ≪ 1, the matrix element squared

can be expressed in terms of two Dirac delta functions:

|M|2 ≡ |̂M|2 1

(p21 −m2
B)

2 +m2
BΓ

2
B

1

(p22 −m2
B)

2 +m2
BΓ

2
B

ΓB≪mB−→ |̂M|2
(

π

mBΓB

)2

δ(p21 −m2
B) δ(p

2
2 −m2

B), (A4)

where p1 = k1 + k3 and p2 = k2 + k4 are the momentum of B1 and B2, respectively. In this

limit, |̂M|2 does not develop any singular behavior and still remains as a smooth function

containing spin correlation information.

After the integration using delta functions, the differential decay width is simplified to

dΓ =
1

215π4mDm2
BΓ

2
B

|̂M|2 λ1/2
B λa d cos θ1d cos θ2dφ, (A5)
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where λB = λ (1, m2
B/m

2
D, m

2
B/m

2
D), λa = λ (1, m2

a/m
2
B, m

2
X/m

2
B), and the standard kine-

matic function is λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac + 2bc. The polar angles of θ1 and θ2

and the azimuthal angle φ are defined in Fig. 3. For simplicity, we use short-hand notations

of

v1 ≡ cos θ1, v2 ≡ cos θ2, (A6)

and name dv1dv2dφ the normalized four-body phase space dΦ̂4 of the antler decay:

dΦ̂4 = dv1dv2dφ. (A7)

2. Change of variables and the independence between angular variables

For a general two body decay of a → bc:

a(pa) → b(pb) + c(pc), (A8)

the energy-momentum conservation in the rest frame of the mother particle a leads to

ma = E
(a)
b + E(a)

c , (A9)

p
(a)
b = −p(a)

c .

From the on-shell conditions of p2i = m2
i (i = b, c), the energies and momenta of the particles

b and c are simply expressed by the rapidities ηb and ηc:

E
(a)
b =

m2
a +m2

b −m2
c

2ma
≡ mb cosh ηb, (A10)

E(a)
c =

m2
a −m2

b +m2
c

2ma
≡ mc cosh ηc, (A11)

∣∣∣p(a)
b

∣∣∣ =
∣∣p(a)

c

∣∣ = mb sinh ηb = mc sinh ηc. (A12)

For the symmetric antler decay, the same masses of mB≡mB1 =mB2 and ma≡ma1 =ma2

lead to two independent rapidities:

cosh ηB =
mD

2mB

, cosh ηa =
m2

B −m2
X +m2

a

2mamB

. (A13)

Now we present less intuitive but more convenient kinematic variables. First, we consider

the rapidity of a2 in the rest frame of B1, not B2, denoted by α ≡ η
(B1)
a2 :

coshα = cosh 2ηB cosh ηa − v2 sinh 2ηB sinh ηa, (A14)
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where v2 is defined in Eq. (A6). The second useful variable is u, the cosine of the angle θ
(B1)
a1a2

between a1 and a2 in the rest frame of B1:

u =
k
(B1)
1 · k(B1)

2∣∣∣k(B1)
1

∣∣∣
∣∣∣k(B1)

2

∣∣∣
=

√
1− v21

√
1− v22 cosφ+ (sinh 2ηB − v2 cosh 2ηB) v1

cosh 2ηB − v2 sinh 2ηB
. (A15)

For simplicity, we define

v′2 = cosh 2ηB − v2 sinh 2ηB, (A16)

v′′2 = sinh 2ηB − v2 cosh 2ηB.

Then the azimuthal angle φ is inversely obtained by

cosφ =
uv′2 − v1v

′′
2√

1− v21
√

1− v22
. (A17)

The advantage of this new angular variable u is that d2Φ̂4/dudv2 = π: u and v2 are

independent variables contrary to the expectation from the functional dependence of u on v1

and v2 in Eq. (A15). In order to show this non-trivial result, we begin with d3Φ̂4/dv1dv2dφ =

1 in Eq. (A7). We change the variable φ into u as

dΦ̂4 = dv1dv2dφ = dv1dv2du

∣∣∣∣
∂φ

∂u

∣∣∣∣ (A18)

= dv1dv2du
v′2√

(1− v21)(1− v22)− (uv′2 − v1v′′2)
2

≡ dv1dv2du
v′2√

f(u, v1, v2)
.

Since the integrand v′2/
√
f(u, v1, v2) is not separable into products, u, v1 and v2 are not

independent with one another. If we integrate one of the three variables, however, we have

the statistical independence of the remaining two variables. First v1 and v2 are independent

variables by definition. In order to see the independence of v2 and u, we integrate v1 out for

given u and v2. The integration limit of v1 is matched with the roots of f(u, v1, v2) = 0 for

fixed u and v2. The result of the integration is a simple constant:

∫ v
(max)
1

v
(min)
1

dv1
v′2√(

v1 − v
(min)
1

)(
v
(max)
1 − v2

)
(v′2)

2

= π. (A19)

Therefore dΦ̂4/dudv2 = π is also flat: u and v2 are independent. Similarly, one can show

the independence of u and v1 from the symmetry under the exchange of v1 and v2.
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3. The invariant mass distribution

The invariant mass m of a1 and a2 is more simply expressed in terms of α and u by

m2 = 2m2
a + 2m2

a(cosh ηa coshα− u sinh ηa sinhα), (A20)

where α and u are defined in Eqs. (A14) and (A15) respectively. The expression in the

motherhesis of Eq. (A20) is nothing but the cosine hyperbolic of the rapidity of the particle

a1 in the rest frame of a2:

χ ≡ cosh η(a1)a2
=

m2

2m2
a

− 1 = cosh ηa coshα− u sinh ηa sinhα. (A21)

Now let us change variables from (u, v2) to (χ, α):

dudv2 = dχdα
1

sinh 2ηB sinh2 ηa
. (A22)

Note that the Jacobian factor is simply a constant. From d2Φ̂4/dudv2 = π, we have

dΦ̂4

dχ
=

π

sinh 2ηB sinh2 ηa

∫ αmax(χ)

αmin(χ)

dα, (A23)

where αmin(χ) and αmax(χ) are the minimum and maximum of α variable at a given χ,

respectively.

In order to obtain αmin(χ) and αmax(χ), we use the conditions of u ∈ [−1, 1] and v2 ∈
[−1, 1]. Then the definitions of coshα and χ in Eqs. (A14) and (A21), respectively, constrain

the values of coshα and χ as

cosh(2ηB − ηa) ≤ coshα ≤ cosh(2ηB + ηa), (A24)

cosh(α− ηa) ≤ χ ≤ cosh(α + ηa). (A25)

Therefore, the values of αmin(χ) and αmax(χ) in Eq. (A23) depend on the relative size between

ηB and ηa/2 or ηB and ηa. This is related with the three different mass parameter regions

of R1, R2, and R3 in Sec. IIIA:

R1 : ηB <
ηa
2
, R2 :

ηa
2

< ηB < ηa, R3 : ηa < ηB. (A26)

Let us elaborate the derivation of αmin(χ) and αmax(χ) for the region R1. Figure 20

illustrates two curves of χ = cosh(α − ηa) and χ = cosh(α + ηa) in the parameter space of
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χ = cosh(α+ ηa)

χ = cosh(α− ηa)

α

ηaηa − 2ηB ηa + 2ηB

χ

1

cosh 2ηB

cosh(2η1 − 2ηB)

cosh(2η1 + 2ηB)

FIG. 20: Allowed parameter space of (α, χ) plane for the region R1.

(α, χ). Within the bound of ηa − 2ηB < α < ηa + 2ηB as in Eq.(A24), αmin(χ) and αmax(χ)

are different according to the value of χ, summarized by

For R1 αmin(χ) αmax(χ)
∫
dα

1 < χ < c2ηB ηa − cosh−1 χ ηa + cosh−1 χ 2 cosh−1 χ

c2ηB < χ < c2ηa−2ηB ηa − 2ηB ηa + 2ηB 4ηB

c2ηa−2ηB < χ < c2ηB+2ηa −ηa + cosh−1 χ ηa + 2ηB 2ηB + 2ηa − cosh−1 χ

(A27)

Here we use the simplified notation of cx ≡ cosh x. The derivations for R2 and R3 are

similar and straightforward.

With the help of Eq. (A23), the final expressions for dΦ̂4/dm is given by

1

N

dΦ̂4

dm

∣∣∣∣∣
R1

=





2m cosh−1
(

m2

2m2
a
− 1
)
, if 1 < χ < c2ηB ;

4ηBm, if c2ηB < χ < c2(ηa−ηB);

2(ηa + ηB)m−m cosh−1
(

m2

2m2
a
− 1
)
, if c2(ηa−ηB) < χ < c2(ηa+ηB),

(A28)

1

N

dΦ̂4

dm

∣∣∣∣∣
R2

=





2m cosh−1
(

m2

2m2
a
− 1
)
, if 1 < χ < c2(ηa−ηB);

2(ηa − ηB)m+m cosh−1
(

m2

2m2
a
− 1
)
, if c2(ηa−ηB) < χ < c2ηB ;

2(ηa + ηB)m−m cosh−1
(

m2

2m2
a
− 1
)
, if c2ηB < χ < c2(ηa+ηB),

(A29)
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1

N

dΦ̂4

dm

∣∣∣∣∣
R3

=





2(ηa − ηB)m+m cosh−1
(

m2

2m2
a
− 1
)
, if c2(ηa−ηB) < χ < c2ηB ;

2(ηa + ηB)m−m cosh−1
(

m2

2m2
a
− 1
)
, if c2ηB < χ < c2(ηa+ηB),

(A30)

where the normalization factor N is

N =
π

sinh 2ηB

1

(ma sinh ηa)2
. (A31)

4. The angular distribution dΓ/d cos Θ

In this subsection, we derive dΦ̂4/d cosΘ, restricting ourselves to the massless visible

particle case (ma1 =ma2 =0). Recall that Θ is the angle of a visible particle, say a1, in the

c.m. frame of a1 and a2, with respect to their c.m. moving direction in the D rest frame.

For dΦ̂4/d cosΘ, we begin with d3Φ̂4/dv1dv2dφ = 1. The key point is the Jacobian factor

from dv1dv2dφ to d cosΘ. For this goal, we first obtain the analytic expression of φ in terms

of v1, v2, and cosΘ.

In the case of ma = 0, the k1 and k2 four-momenta in the B1 rest frame become

k
(B1)
1 = E

(B1)
1 (1,

√
1− v21, 0,−v1) = Eℓ(1, k̂1), (A32)

k
(B1)
2 = E

(B1)
1 (v′2,

√
1− v22 cos φ,

√
1− v22 sinφ,−v′′2 ) = Eℓv

′

2(1, k̂2),

where Eℓ = mB(1 −m2
X/m

2
B)/2, k̂i = ki/|ki|(i = 1, 2), and the definitions of v′2 and v′′2 are

in Eq. (A16). Defining k ≡ k1 + k2 = (Ecm,k), we have some useful expressions of

m2 = 2E2
ℓ v
′

2(1− u), (A33)

E(B1)
cm = Eℓ(1 + v′2),

|~k(B1)|2 = E2
ℓ {1 + 2v′2u+ (v′2)

2}.

Now the Lorentz transformation matrix from the B1 rest frame to the c.m. frame of a1a2

is

Λ(a1a2←B1) =




γcm −k(B1)T

m

−k(B1)

m
I3×3 + (γcm − 1) k̂(B1)k̂(B1)T


 , (A34)

where γcm = E
(B1)
cm /m, and the superscript T denotes the transpose of the vector. The

three-momentum of a1 particle in the c.m. frame of a1 and a2 is

k
(cm)
1 =

{
−E

(B1)
cm

m
k(B1) + k1 + (γcm − 1) (k̂(B1) · k(B1)

1 )k̂(B1)

}
. (A35)
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Since k in the D rest frame is k(D) = −P
(cm)
D = −Λ(a1a2←B1)P

(B1)
D , we have

k(D) = −
{
−E

(B1)
D

m
k+P

(B1)
D + (γcm − 1) (k̂(B1) ·P(B1)

D )k̂(B1)

}
. (A36)

The dot-product of k
(cm)
1 and k(D) leads to cosΘ:

cosΘ =
k
(cm)
1 · k(D)

|k(cm)
1 ||k(D)|

. (A37)

Finally we express cosΘ in terms of (v1, v2, φ):

cosΘ =
(v2 − v1) sηB√

2− 1
2
(v1 + v2)2 +

1
2
(v1 − v2)2 c2ηB + 2

√
(1− v21)(1− v22) cos φ

. (A38)

Note that the maximum of cosΘ occurs when v1 = ±1 and v2 = ∓1, i.e., when the visible

particles a1 and a2 are moving in the same direction. The maximum of cosΘ in the D-rest

frame is then

|cosΘ|max = tanh ηB. (A39)

Finally cos φ is expressed in terms of v1, v2, and Θ:

cos φ =
−1 + 1

4
(v1 + v2)

2 + 1
4

(
2s2ηB
cos2 Θ

− c2ηB

)
(v1 − v2)

2

√
(1− v21)(1− v22)

, (A40)

where sη ≡ sinh η for simplicity. For the Jacobian factor, we introduce three independent

variables, v+, v−, and t, defined by

v± = v1 ± v2, t =
2s2ηB
cos2Θ

− c2ηB . (A41)

Note that the maximum of | cosΘ| in Eq.(A39) leads to the t integration range as 1 ≤ t < ∞.

Since

dΦ̂4 = dv1dv2dφ =
1

2
dv+dv−dt

∣∣∣∣
∂φ

∂t

∣∣∣∣ , (A42)

the differential four-body phase space with respect to t is

dΦ̂4

dt
=

1

4

∫
dv+dv

2
−

1√
v2−(1− t2) + 8t− 2v2+t− 8− 2v2+

. (A43)
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The integration range is

0 ≤ v2− ≤ −8 − 2v2+ + 8t− 2v2+t

t2 − 1
, (A44)

0 ≤ v2+ ≤ 4(t− 1)

t+ 1
. (A45)

Finally the integration over v− and v+ yields

dΦ̂4

d cosΘ
= 4

√
2π sinh2 ηB

1

sin3 Θ
. (A46)

Appendix B: The invariant mass distribution of generic antler decays

In this section, we present the analytic expression of the invariant mass distribution of

generic non-symmetric antler decays with mB1 6= mB2 , ma1 6= ma2 and mX1 6= mX2 . The

derivation is very similar to Appendix A, but in this general case the mass parameter space

is divided into finer twelve regions. Since the derivation of the formulae for each region is

long and tedious, we show only the results here.

1. Massive visible particles (ma 6= 0)

In generic antler decays, there are in general six different rapidity parameters, given by

cosh ηX1 =
m2

B1
+m2

X1
−m2

a1

2mX1mB1

, cosh ηX2 =
m2

B2
+m2

X2
−m2

a2

2mX2mB2

,

cosh ηB1 =
m2

D +m2
B1

−m2
B2

2mB1mD

, cosh ηB2 =
m2

D +m2
B2

−m2
B1

2mB2mD

,

cosh ηa1 =
m2

B1
+m2

a1
−m2

X1

2ma1mB1

, cosh ηa2 =
m2

B2
+m2

a2
−m2

X2

2ma2mB2

. (B1)

We define

η++ = ηB1 + ηB2 + ηa1 + ηa2 , (B2)

η+− = |ηB1 + ηB2 + ηa1 − ηa2 |, (B3)

η−+ = |ηB1 + ηB2 − ηa1 + ηa2 |, (B4)

η−− = |ηB1 + ηB1 − ηa1 − ηa2 |. (B5)

From positive definite definition of the rapidity, η++ is the larges among four η±±’s. However

the relative size of the other three η’s is different according to the mass parameters. We
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order η+−, η−+ and η−− and name them to be η1 ≤ η2 ≤ η3. We have 6 regions depending

on this ordering:

η+− ≤ η−+ ≤ η−−, η−+ ≤ η+− ≤ η−−,

η+− ≤ η−− ≤ η−+, η−+ ≤ η−− ≤ η+−,

η−− ≤ η+− ≤ η−+, η−− ≤ η−+ ≤ η+−.

To obtain dΓ/dm, we introduce the general χ, defined by

χ ≡ cosh η(a1)a2
=

m2 −m2
a1 −m2

a2

2ma1ma2

. (B6)

The general invariant mass distribution have 12 different cases in total, given by

• If |ηB1 + ηB2 − ηa2 | ≥ ηa1 or ηB1 + ηB2 + ηa2 ≤ ηa1 ,

1

Ñ

dΦ̂4

dm
=





−η1m+m cosh−1
(

m2−m2
a1
−m2

a2

2ma1ma2

)
, if cη1 ≤ χ ≤ cη2 ,

η2 − η1, if cη2 ≤ χ ≤ cη3 ,

η++ − cosh−1
(

m2−m2
a1
−m2

a2

2ma1ma2

)
, if cη3 ≤ χ ≤ cη++ ,

0, otherwise.

(B7)

• If |ηB1 + ηB2 − ηa2 | < ηa1 < ηB1 + ηB2 + ηa2 ,

1

Ñ

dΦ̂4

dm
=





2m cosh−1
(

m2−m2
a1
−m2

a2

2ma1ma2

)
, if 1 ≤ χ ≤ cη1 ,

−η1m+m cosh−1
(

m2−m2
a1
−m2

a2

2ma1ma2

)
, if cη1 ≤ χ ≤ cη2 ,

(η1 + η2)m, if cη2 ≤ χ ≤ cη3 ,

η++m−m cosh−1
(

m2−m2
a1
−m2

a2

2ma1ma2

)
, if cη3 ≤ χ ≤ cη++ ,

0, otherwise.

(B8)

Here the normalization factor Ñ is given by

Ñ =
π

ma1ma2 sinh 2ηB sinh ηa1 sinh ηa2
. (B9)

Note that the minimum of the invariant mass distribution can be different from ma1 +ma2 ,

according to the mass parameter regions. Crucial is whether the kinematic configuration

that a1 and a2 are relatively at rest is allowed.
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2. Massless visible particles (ma = 0)

In this subsection, we present the invariant mass distribution for massless visible particle

but different intermediate particle cases, i.e., when mB1 6= mB2 and ma1 = ma2 = 0. In

this case, η−− is always larger than η+− and η−+, leading to η3 = η−−. Here we need to

consider only the leading terms of O
(
m−1a1 m

−1
a2

)
, which are absent in cosh η+− and cosh η−+.

Therefore, the invariant mass distribution is divided into three regions. Using cosh−1 x =

ln(x+
√
x2 − 1) ≈ ln(2x) for x ≫ 1, we have

dΦ̂4

dm
∝





m log
(

m
(0)
max

m
(0)
cusp

)
, if 0 < m < m

(0)
cusp ;

m log
(

m
(0)
max

m

)
, if m

(0)
cusp < m < m

(0)
max;

0, otherwise,

(B10)

where

m(0)
cusp =

√(
m2

B1
−m2

X1

mB1

)(
m2

B2
−m2

X2

mB2

)
exp

(
−ηB1 + ηB2

2

)
, (B11)

m(0)
max =

√(
m2

B1
−m2

X1

mB1

)(
m2

B2
−m2

X2

mB2

)
exp

(
ηB1 + ηB2

2

)
. (B12)

This is the generalized results of Eqs. (31) and (32). Note that the product m
(0)
cuspm

(0)
max

depends only on the second step decays of B1 → X1a1 and B2 → X2a2 while the ratio

m
(0)
max/m

(0)
cusp only on the first step decay of D → B1B2.
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