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Abstract

We explain the physical nature of the subset solution to the sign problem in chiral random matrix

theory: The subset sum over configurations is shown to project out the canonical determinant

with zero quark charge from a given configuration. As the grand canonical chiral random matrix

partition function is independent of the chemical potential, the zero quark charge sector provides

the full result.
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I. INTRODUCTION

Chiral random matrix theory [1] has given us several deep insights into the QCD sign

problem which prohibits direct application of lattice QCD methods at nonzero quark chem-

ical potential [2]. The random matrix framework has allowed us to understand the failure of

the quenched approximation [3], to formulate the OSV relation [4] which replaces the Banks-

Casher relation [5] and to derive the first analytical result for the average phase factor of

the fermion determinant [6].

These lessons from chiral random matrix theory apply directly to QCD at nonzero chem-

ical potential since the two are equivalent in the microscopic limit (this limit is also known

as the ǫ-regime of chiral perturbation theory). For this reason it is most interesting that the

sign problem in a chiral random matrix theory can be solved by means of the subset method

[7, 8]. In particular this subset method works even in the region of µ > mπ/2 where the

sign problem is severe.

The aim of the present paper is to provide the physical explanation of why the subset

method introduced in [7, 8] solves the sign problem in chiral random matrix theory: As we

will show in detail below the subset construction projects out the canonical determinant with

zero quark charge from the fermion determinant. Since the chiral random matrix partition

function is independent of the chemical potential the zero charge part makes up the full

result.

In this paper we start from a random matrix theory for QCD that is µ-independent even

for finite size of the random matrix. This choice has a direct physical motivation: First,

in the microscopic domain (where the size, n, of the random matrix goes to infinity while

the quark mass times n and the square of the chemical potential times n are held fixed) the

random matrix partition function is identical to the partition function of chiral perturbation

theory in the ǫ-regime [9, 10]. Second, being a theory of pions, which are bound states of

quarks and anti-quarks, chiral perturbation theory naturally does not couple to the quark

chemical potential. As chiral perturbation theory is the effective theory for QCD at low

temperatures and µ < mN/3 the µ-independence of the partition function is natural in this

regime.

In general, random matrix partition functions for QCD only need to be µ-independent

in the microscopic domain. In the present context it is convenient to work with a random
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matrix theory where this µ-independence is manifest even at finite n.

II. SUBSET AND CANONICAL DETERMINANTS IN CHIRAL RANDOM MA-

TRIX THEORY

Our starting point is a variation of the chiral random matrix theory at non-zero chemical

potential µ introduced in [11] (see [12] for a review). It is defined by

Z(m,µ) =

∫

dΦ1dΦ2 det





m eµΦ1 − e−µΦ†
2

−e−µΦ†
1 + eµΦ2 m



 e−nTr(Φ1Φ
†
1
+Φ2Φ

†
2
), (1)

where Φ1 and Φ2 are complex n×n matrices. We have chosen to work with this form of the

partition function because it is independent of µ even for finite n (this was also the case for

the partition function used in [11], see the appendix), and because the chemical potential

appears in the form exp(±µ) which allows us to project out the canonical partition function

in the same way as in lattice QCD. The µ-independence of the partition function follows

immediately by using that the Gaussian integral is only nonzero for terms that have an equal

number of factors Φi and Φ†
i for i = 1, 2. The relation to the form used in [7, 8] is given in

the appendix.

In the subset method of [7, 8], one first performs a sum over a subset of roots of unity

contained in the integral over the matrices Φ1 and Φ2. The critical observation in [7, 8] is

that the determinants

d(µ, θk) ≡ det





m eµ+iθkΦ1 − e−µ−iθkΦ†
2

−e−µ−iθkΦ†
1 + eµ+iθkΦ2 m



 , (2)

where θk = 2kπ/Ns with Ns ≥ 2n+ 1 [19] sum up to a positive real number

1

Ns

Ns−1
∑

k=0

d(µ, θk) ∈ R+. (3)

This number can then in turn be used to generate a Monte Carlo ensemble of configurations

and subsequently the unquenched expectation values. Note the invariance of the Gaus-

sian measure under these phase rotations (the arguments below apply to any measure with

the same invariance properties). Next we show that the measure Eq. (3) is a canonical

determinant with zero baryon number which is manifestly positive.
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For a given configuration (Φ1,Φ2) we decompose the fermion determinant

D(µ) ≡ det





m eµΦ1 − e−µΦ†
2

−e−µΦ†
1 + eµΦ2 m



 (4)

into canonical determinants

D(µ) =

2n
∑

q=−2n

eµqDq, (5)

where

Dq ≡
1

2π

∫ π

−π

dθ e−iqθD(iθ). (6)

(See [13–15] for applications of canonical determinants to lattice QCD.) Likewise we decom-

pose the partition function, Z, into canonical partition functions

Z(µ) =

2n
∑

q=−2n

eµqZq, (7)

where

Zq = 〈Dq〉, (8)

and 〈. . .〉 is the expectation value with respect to the Gaussian weight for Φ1,2. As Z is

independent of µ we necessarily have Zq = 0 for q 6= 0. For odd q the canonical determinants

vanish as well, Dq=2l+1 = 0. This follows trivially fromD(i(µ+π)) = D(iµ) and exp(−iq(µ+

π)) = exp(−iqµ)(−1)q. For even index, however, the canonical determinants are nonzero for

a typical configuration (Φ1,Φ2), and only after averaging will one find Zq=2l = 0 for l 6= 0.

To make the connection to the subset construction of [7, 8] we first rewrite the canonical

partition functions

Dq =
1

2π

∫ π

−π

dθ e−iq(−iµ+θ)D(i(−iµ+ θ))

=
1

2π
e−qµ

∫ π

−π

dθ e−iqθD(µ+ iθ), (9)

where in the first line we shifted the contour into the complex plane. The determinant inside

the integrand is now

D(µ+ iθ) = det





m eµ+iθΦ1 − e−µ−iθΦ†
2

−e−µ−iθΦ†
1 + eµ+iθΦ2 m



 . (10)
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To establish the relation between this subset construction and the canonical determinants

introduced above first note that we can replace the subset-sum over θk in Eq. (3) by an

integral

1

Ns

Ns−1
∑

k=0

d(µ, θk) =
1

2π

∫ π

−π

dθ d(µ, θ). (11)

This follows from the observation that the integrand is a polynomial in e±iθ of maximum

order 2n and that all integrals follow from the orthogonality relations

1

2π

∫ π

−π

dθ ei(j−l)θ = δjl. (12)

The same orthogonality relation holds for the sum

1

Ns

Ns−1
∑

q=0

eiθq(j−l) = δjl (13)

provided that |j|, |l| ≤ Ns. Therefore the sum over k gives the exact value of the integral if

Ns ≥ 2n+ 1.

By comparison of Eq. (2) with Eq. (10) we then see that the subset sum is equivalent to

the projection onto the q = 0 canonical determinant, that is

1

Ns

Ns−1
∑

k=0

d(µ, θk) = D0. (14)

This is the physical explanation of what the subset is.

Since Zq=0 = Z (the q = 0 part makes up the entire partition function because it is

independent of µ) the subset method gives the full result. Moreover, as the subset sum for

a given configuration is equivalent to the canonical determinant with q = 0, it is clear that

the subset sum is necessarily real and positive: as can be seen explicitly from Eq. (9), we

have that Dq=0 is independent of µ, and for µ = 0 all determinants in the subset sum are

real and positive. This is the physical explanation of why the subset method works, see also

[7, 8].

For the variant of the chiral random matrix partition function used in [7, 8] the inter-

pretation of the subset is analogous, see Appendix A. The original argument for why the

subset method works given in [7, 8] is also related to the argument given above.

5



In general the QCD partition function will of course depend on the chemical potential and

hence in QCD one will need to evaluate all Dq. For the evaluation of Dq it is also possible

to turn the integral into a sum. In this case the maximum order of the polynomial in e±iθ is

2n + |q|, and therefore the subset sum evaluates the integral exactly for Ns ≥ 2n + |q|+ 1.

Note, however, that the Dq with q 6= 0 are not real and positive so we do not have a weight

to perform Monte Carlo Simulations (even if we can do these integrals exactly). This is in

exact analogy with the observations of [15] in lattice QCD.

The argument given above also applies if Φ is unitary rather than complex. More gen-

erally, for unitary lattice gauge theories where the chemical potential is introduced into the

temporal links by [16]

Ut → eµUt,

U †
t → e−µU †

t . (15)

the partition function is µ-independent and equal to the charge zero canonical partition

function. The subset method then applies in exactly the same way as in the random matrix

model discussed above.

III. CONCLUSIONS

The subset solution to the sign problem in chiral random matrix theory has been shown to

be equivalent to the projection, configuration by configuration, onto the zero quark number

canonical determinants. Since the chiral random matrix partition function is independent

of the chemical potential, the canonical partition function makes up the full grand canonical

partition function. This gives the physical reason how the subset construction works. The

same argument applies to unitary lattice gauge theories at nonzero chemical potential.

The vanishing value of the canonical partition functions in chiral random matrix theory

for nonzero quark number is the result of detailed cancellations: the canonical determinants

with nonzero quark number take complex values and only the average value is zero. The

projection onto the canonical determinants with nonzero quark number can also be obtained

from a subset sum, however, it remains a challenge to devise a numerical method to control

the cancellations in the average. Such a method would potentially have direct application

to full QCD where partition functions with q 6= 0 are nonvanishing. It may also be able to
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cast further light on the special nature of the noise [17, 18] related to the sign problem.

Despite the µ-independence of the chiral random matrix partition function the random

matrix theory gives a plethora of nontrivial results for the spectral correlation functions

of the Dirac operator and for the fluctuations of the fermion determinant. The reason for

this is that the generating functionals for such partially quenched observables have a highly

nontrivial dependence on the chemical potential. It would be most interesting if one would

be able to extend the subset method to these partially quenched observables.
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Appendix A. EQUIVALENCE OF THE CHIRAL RANDOM MATRIX FORMU-

LATIONS

The form of the chiral random matrix theory used in [7, 8] was

ZB(m,µB) =

∫

dΦ1dΦ2 det





m iΦ1 + µBΦ2

iΦ†
1 + µBΦ

†
2 m



 e−nTr(Φ1Φ
†
1
+Φ2Φ

†
2
). (16)

This partition function depends on µB for finite n [11]. Because of the µB-dependence of the

partition function ZB(m,µB), the subset sum is not equal to the canonical partition function

for qB = 0 and the corresponding canonical partition functions for qB 6= 0 are nonvanishing.

The µB-dependence is, however, of a form where the partition function at non-zero µB is

trivially related to the one at µB = 0 [11]

ZB(m,µB) = (1− µ2
B)

nZB(
m

√

1− µ2
B

, 0). (17)

In [8] it was shown that the subset sum for each configuration realizes this relation. When

µB < 1 both the prefactor (1 − µ2
B)

n and the rescaled quark mass are real and positive

thus, as originally argued in [7, 8], the subset sum for the right hand side is always real and

positive. The relation, Eq. (17), is the analogue of the µ-independence of the chiral random

matrix theory used in this paper, and the fact that subsets realizes this relation configuration
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by configuration is the analogue of the projection onto the canonical determinant with zero

quark charge.

The form of the chiral random matrix theory adopted in Eq. (1) is related to the form,

Eq. (16), used in [7, 8] by a µ dependent rescaling of the mass and a trivial overall factor.

If we start from

Z(m, µ̃) =
1

(1− µ̃2)n

∫

dΦ1dΦ2 det





m
√

1− µ̃2 iΦ1 + µ̃Φ2

iΦ†
1 + µ̃Φ†

2 m
√

1− µ̃2



 e−nTr(Φ1Φ
†
1
+Φ2Φ

†
2
), (18)

then it is clear from Eq. (17) that Z(m, µ̃) is independent of µ̃. Moreover, with µ̃ given by

tanh(µ) = µ̃, (19)

then this partition function is identical to the one of Eq. (1). In order to see this first note

that cosh(µ) = 1/
√

1− µ̃2 and sinh(µ) = µ̃/
√

1− µ̃2 and then use this to express the

determinant in terms of µ

det





m/ cosh(µ) 1/ cosh(µ)(i cosh(µ)Φ1 + sinh(µ)Φ2)

1/ cosh(µ)(i cosh(µ)Φ†
1 + sinh(µ)Φ†

2) m/ cosh(µ)





= 1/ cosh2n(µ) det





m i cosh(µ)Φ1 + sinh(µ)Φ2

i cosh(µ)Φ†
1 + sinh(µ)Φ†

2 m



 . (20)

The factor 1/ cosh2n(µ) cancels against the prefactor 1/(1 − µ̃2)n in the partition function

of Eq. (18). After choosing

Φ′
1 =

i

2
(Φ1 − iΦ2), Φ′

2 =
i

2
(Φ†

1 − iΦ†
2) (21)

as new integration variables, we recover the form given in Eq. (1).

The subsets defined in [7, 8] consist of rotated matrices

Φ1 → cos θkΦ1 + sin θkΦ2, Φ2 → − sin θkΦ1 + cos θkΦ2 (22)

which translates into

Φ′
1,2 → eiθkΦ′

1,2, (23)
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as in Eq. (2).
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