phy5|c§“

ha Open Research of 1

This is the accepted manuscript made available via CHORUS, the article has been
published as:

Energy dependence of the p resonance in mirt elastic
scattering from lattice QCD
Jozef J. Dudek, Robert G. Edwards, and Christopher E. Thomas (for the Hadron Spectrum
Collaboration)
Phys. Rev. D 87, 034505 — Published 12 February 2013
DOI: 10.1103/PhysRevD.87.034505


http://dx.doi.org/10.1103/PhysRevD.87.034505

JLAB-THY-12-1666
TCDMATH 12-10

Energy dependence of the p resonance in w7 elastic scattering from lattice QCD

Jozef J. Dudek," 2 * Robert G. Edwards,*t and Christopher E. Thomas?:
(for the Hadron Spectrum Collaboration)

Y Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
2 Department of Physics, Old Dominion University, Norfolk, VA 238529, USA
3School of Mathematics, Trinity College, Dublin 2, Ireland

We determine the energy-dependent amplitude for elastic 7w P-wave scattering in isospin-1 by
computing part of the discrete energy spectrum of QCD in finite cubic boxes. We observe a rapidly
rising phase shift that can be well described by a single p resonance. The spectrum is obtained
from hadron correlators computed using lattice QCD with light quark masses corresponding to
mgx ~ 400 MeV. Variational analyses are performed with large bases of hadron interpolating fields
including, as well as fermion bilinears that resemble gg constructions, also operators that resemble
pairs of pions with definite relative and total momentum. We compute the spectrum for a range of
center-of-mass momenta and in various irreducible representations of the relevant symmetry group.
Hence we determine more than thirty values of the isospin-1 P-wave scattering phase shift in the
elastic region, mapping out its energy dependence in unprecedented detail.

PACS numbers: 14.40.Be, 12.38.Gc, 13.75.Lb

I. INTRODUCTION

Hadron spectroscopy is principally the study of reso-
nances which decay strongly, with widths of tens or hun-
dreds of MeV, into asymptotic states corresponding to
a multiplicity of hadrons stable under the strong inter-
action like the pion. Hadron resonances typically appear
as enhancements in the continuous energy distribution of
these multi-hadron final states. The simplest examples
are elastic (or nearly elastic) resonances like the p(770)
which appears in the I = 1, J = 1 (isospin-1, spin-1)
channel of w7 scattering, or the A(1232) in the I = %,
J = % channel of 7V scattering. In the elastic case the
energy dependence of a partial-wave (definite-J) ampli-
tude can be expressed in terms of a single real number,
the phase-shift, which in the case of a narrow resonance
will show a rapid rise from angles near 0°, through 90°,
approaching 180° at energies above the resonance.

Although our only observables involve asymptotic
many-hadron states, our desire is to understand hadron
resonances at the level of interacting quarks and gluons
within QCD, and this presents a significant theoretical
challenge. The stable hadrons (e.g. pions) in the ini-
tial and final states are strongly interacting quark-gluon
composites and the interactions that give rise to the res-
onant intermediate state contain nontrivial features like
quark-antiquark annihilation. These complex and inter-
related effects demand a consistent treatment of the non-
perturbative dynamics of QCD.

Lattice QCD, in which the theory is formulated on a
cubic Euclidean space-time grid of finite extent, has the
advantage of being a first-principles approach to QCD in
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which the approximations required to render the theory
computationally tractable are under control. It is a non-
perturbative approach that, in the formulation we will
use, respects unitarity - a particularly important feature
since we plan to study resonances (like the p) which max-
imally saturate unitarity. The lattice grid spacing acts
as a regulator for the field theory which can be progres-
sively reduced toward the continuum. In practice the use
of ‘improved’ discretised actions leads to discretisation
errors which are small for many quantities of interest.
The restriction to finite spatial volume turns out to be
a tool that allows us indirect access to hadron scattering
amplitudes. These amplitudes are not directly accessible
via (n > 2)-point Euclidean correlation functions [1] but
can be inferred using the discrete energy spectrum which
follows from periodic boundary conditions applied to a
finite volume. The formalism for relativistic elastic scat-
tering in a cubic box is presented in [2, 3] for the case of
a system in its rest-frame, with the extension to moving
frames in [4-6].

A well known practical problem with the implemen-
tation of lattice QCD is the poor scaling of the required
computation time for a realistic calculation with decreas-
ing value of the quark mass. Only very recently have we
seen calculations with quark masses low enough that the
determined pion mass comes out near the experimental
value, and they are typically of only the simplest of quan-
tities (see a review in [7]). In this paper we will present
calculations performed with a single strange quark of ap-
proximately the correct physical mass and two degen-
erate light quarks with a mass such that the pion has
m ~ 400 MeV.

The challenge then is to compute the excited state
spectrum of QCD in a finite-volume so that it can be re-
lated to scattering amplitudes. In a series of papers [8—14]
we have explored the problem of extracting excited state
energy spectra from large matrices of 2-point correlation
functions, (()|(9f(t)(9;r (0)|0), where O are composite op-



erators with the quantum numbers of hadrons, built from
quark and gluon fields. Using a large basis of such op-
erators, we have extracted highly excited spectra using
variational analysis. Computing with such large operator
bases is made efficient using the distillation framework
[15], which also renders simple the inclusion of quark
annihilation diagrams with a high degree of statistical
precision. This was demonstrated in the computation of
the isospin-0 meson spectrum in [13], where for example,
the n and 7’ masses were determined with statistical un-
certainty below 2% and even exotic isoscalar states with
JPC = 1~F above 2100 MeV could be cleanly extracted.

In [8, 9, 11, 13], the meson operator basis was limited to
constructions of the type ¥ I't, where I’ was constructed
using Dirac gamma matrices and up to three gauge-
covariant derivatives. The resulting spectra did not show
the expected strong volume dependence of multi-hadron-
like states, and the proposed explanation was that the
fermion bilinear operators have only weak overlap onto
such states. To remedy this we should augment the op-
erator basis with some having large overlap onto multi-
hadron-like states.

In [16, 17] we considered the case of the empirically
non-resonant I = 2 7w scattering using a basis of 7m-
like interpolating fields of the form (YIT'x9)z, - (YT xt0)7,,
the use of distillation allowing for operators of definite
relative momentum at both source and sink and thus en-
abling a variational analysis of matrices of correlation
functions. By considering multiple frames in which the
entire 77 system is in-flight and many irreducible repre-
sentations of the reduced symmetry group of a boosted
cube, the S and D-wave scattering phase-shifts were
mapped out across the elastic region 2m, < En < 4my,
showing the expected weak repulsive interaction.

In this paper we will present results combining these
two operator bases, forming matrices of correlation func-
tions that include both constructions of the form T
and (YL 0)z - (YT x1p) 5, with vector quantum numbers.
The resulting variationally obtained spectrum leads to a
detailed mapping of the P-wave phase shift for isospin-1
T scattering.

The I = 1, J = 1 scattering channel has been con-
sidered previously in lattice QCD calculations, [18-22].
For example, in [19], four quark masses (m, = 290 —
480MeV) were considered in two-flavor QCD calcula-
tions, with up to six points on the phase-shift curve deter-
mined at each pion mass. Fits to a simple Breit-Wigner
form were used to suggest a quark mass dependence
for the p mass and width. In [20], a single pion mass,
my, = 266 MeV in two-flavor QCD on a relatively small
volume (m,L ~ 2.7) was considered, with five points on
the phase-shift curve determined; this was again fit with
a simple Breit-Wigner form. One of our objectives in
this paper is to map out the energy dependence through
determination of many discrete values of the phase shift,
conclusively demonstrating resonant behaviour and justi-
fying a resonant parameterisation. This will be achieved
through extraction of the spectrum on three volumes and

(L/a5)3 X (T/at)‘chgs Nigres Nvecs
16% x 128 479 4—-8 64
20% x 128 603 4 128
243 x 128 553 2—6 162

TABLE I. The lattice ensembles and propagators used in this
paper. The lattice sizes and number of configurations are
listed, as well as the number of time-sources (which varies
somewhat according to the correlator momentum and irrep)
and the number of distillation vectors Nvecs (to be described
in Section VI) featuring in the correlator construction.

for a large number of irreducible representations in mov-
ing frames!.

In each irreducible representation, we will extract a
spectrum of states from threshold up to high excita-
tions with many states above the inelastic thresholds into
KK,mw,.... Since we do not in this first study use in-
terpolating fields that have good overlap onto these ad-
ditional multi-hadron channels, we do not trust the de-
termined spectrum outside the elastic region and restrict
ourselves to the extraction of the elastic P-wave phase-
shift between the 77 and KK thresholds.

The remainder of the paper is organised as follows. In
Section IT we review the details of our lattice setup and in
Section IIT we describe the method by which excited spec-
tra are extracted from correlation functions. Section IV
highlights the importance of including multi-hadron-like
operators, in Section V we discuss the consequences of
performing calculations on a lattice in a finite volume
which has a reduced symmetry, and in Section VI we
summarise how correlators are constructed using the dis-
tillation technique. We show the extracted finite-volume
spectra in Section VII, in Section VIII we present the
energy-dependent phase shift which follows from these
spectra, and we give a summary in Section IX.

II. FINITE VOLUME LATTICE GAUGE FIELDS

In Euclidean time, excited state contributions to cor-
relation functions decay faster than the ground state,
and at large times they are swamped by the signals of
lower states, thus complicating the extraction of excited
states. To ameliorate this problem we have adopted
a dynamical anisotropic lattice formulation of Clover
fermions with two light quarks and one strange quark.
In this anisotropic formulation, the temporal extent is
discretized with a finer lattice spacing than the spatial di-
rections [26, 27], allowing a more precise resolution of the
discrete time-dependence of correlation functions. In this
work, computations were performed with spatial lattice
spacing as ~ 0.12fm, and a temporal lattice spacing ap-

1 advocating the use of moving frames is currently a popular trend
[23-25].
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TABLE II. Stable meson masses and the anisotropy £ = as/a¢
determined on the lattice ensembles listed in Table I. Pion
and kaon masses come from an infinite-volume extrapolation,
while the 77 and w masses are those evaluated on the 24° lat-
tice.

proximately 3.5 times smaller, corresponding to a tempo-
ral scale a; ! ~ 5.6 GeV. Results are presented for quark
mass parameters a;m; = —0.0840 and a;ms = —0.0743
corresponding to a pion mass of 391 MeV, and on lattice
sizes of 163 x 128, 202 x 128 and 243 x 128 with correspond-
ing spatial extents L ~ 2fm, ~ 2.5fm and ~ 3 fm. Some
details of the lattices and propagators used for correla-
tion constructions are provided in Table I. The masses
of the lightest stable mesons containing light and strange
quarks, as determined on these lattices, are shown in Ta-
ble II.

As well as the volume dependence of energies of multi-
hadron states originating in hadronic interactions which
are the subject of this work, there can also be depen-
dence of single-hadron energies on L. These polarization
effects, corresponding to a single hadron ‘sensing’ itself
around the periodic volume, are typically largest for the
lightest hadron, the pion, and can be characterized by
the product m, L. At the single quark mass value used
in this study, m,L ranges from 3.8 to 5.7, and since ef-
fects typically fall off exponentially with increasing m,L
we expect them to be rather small here. As an example,
previous investigations have found [16, 28] that the pion
mass variation with m,L on these lattices is not large.

In an infinite volume of continuous, isotropic space-
time, a single free particle can have any value of momen-
tum with magnitude varying continuously up from zero,
with the energy related to the momentum by the rela-
tivistic dispersion relation EZ = m? 4 [p]*>. In a finite
L x L x L volume with periodic spatial boundary condi-
tions, the momentum of a free particle is restricted to the
discrete set p'= 27” (nx, Ny, nz) = %’rﬁ, with the n’s being
a triplet of integers. We will write momenta in units of
2% with square brackets, e.g. p= [ng,ny, n;].

A further complication which arises from our use of an
anisotropic lattice is the need to determine the precise
value of the anisotropy, £, which relates the spatial lattice
spacing as to the temporal lattice spacing a; = as/€. The
anisotropy appears in the dispersion relation of a free-
particle, where as found previously [17], the dispersion
relation for the pion (and other stable hadrons) can be
well described by a continuum-like form

(ome)’ + 25 (ff) a2

for a range of lattice volumes. The result £ = 3.444(6) is

((LtEﬁ)2 =

used throughout the rest of this paper.

III. EXTRACTING EXCITED STATE SPECTRA

Our determination of the spectrum of eigenstates of
QCD in a finite volume proceeds through the calcula-
tion of matrices of correlation functions between suitable
hadronic creation and annihilation operators at time 0
and t respectively,

(1) = (00 (1)1 (0)|0),

For each correlation matrix, the set of operators {O;},
constructed from color-singlet combinations of quark and
gluon fields, all have the same conserved quantum num-
bers. Within the basis of operators used we can at-
tempt to find the optimal linear combination for inter-
polation of each possible finite-volume eigenstate [n). A
commonly-used method to achieve this is a variational
solution [2, 29, 30] and herein our particular applica-
tion of the variational method follows that developed in
Refs. [8, 9, 31]. A system of generalized eigenvalue equa-
tions is established for the correlation matrix

C(t)o"(t) = An(t)C(to)v" (1), (2)

where A\, and v" are eigenvalues and eigenvectors for a
state labelled by n. Eq. (2) is solved for the eigenvalues,
and the exponential dependence on the Euclidean time,
An(t) ~ e~ En(t=t0) "is ysed to determine the energy F,
of the state. The orthogonal® eigenvectors represent the
optimal combination of the operators O; for interpolation
of the state |n) from the vacuum, (Oﬁpt')T ~>, el
Any two-point correlation function on a finite spatial
lattice can be expressed as a spectral decomposition
VARAY
Cij(t) — Z ;EHJ e—Ent7 (3)

n

where the “spectral overlap factors”,
Zt = <n|(92|0) are related to the eigenvectors by
ZP = \2E P t0/2 9" Ci(tg).  The form of Eq. 3 as-
sumes that ¢ < T, the temporal length of the box, so
that the contributions arising from other time orderings
on the periodic lattice can be ignored. However, in
practice, these alternate time-ordered contributions have
a small but discernible effect on the determined energies;
a method to account for them was presented in Ref. [17]
and is used again in this work.

IV. INCLUDING MULTI-HADRON
OPERATORS

Although we have previously reported on the extrac-
tion of a significant number of excited meson states

2 v“TC(to)vm = n,m
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FIG. 1. The extracted spectrum of states, on the 24% volume, using variational analysis on a matrix of correlation functions with

total momentum P =

[0, 0, 1] transforming irreducibly in the A; representation of the relevant group. The three columns left to

right correspond to a large basis featuring operators of both fermion bilinear structure and 77 structure, just fermion bilinear
and just 77 respectively. The histograms show the relative size of matrix element overlaps (n|O%|0) for a range of operators. The
red, gray and blue bars are fermion bilinears while the orange bars (drawn somewhat wider to be more visible) are 7 operators

Also shown by the dashed orange lines are the energies of non-interacting 7w pairs, B2l =

\/m2 i (2 +\/m727+

and the dashed purple line shows the position of the KK threshold above which the system is 1nelastlc.

[8, 9, 11, 13, 14], those calculations used only operators
built from a single fermion bilinear at rest or in flight,
O; ~ YTy1p. A large basis was built using up to three
gauge-covariant derivatives acting on the fermion fields,
and this allowed many states to be extracted from varia-
tional analysis of correlator matrices. It was found that
the extracted spectrum, which could be largely described
in terms of constituent ¢ constructions supplemented
with ‘hybrid’ states in which a gluonic excitation is also
present, showed only very weak dependence on the lattice
volume. In particular, the spectrum lacked signatures of
multi-meson states, which if non-interacting would ap-
pear with a strongly volume-dependent spectrum and a
characteristic distribution across irreducible representa-
tions of the lattice symmetry group. In the interacting
theory we expect the actual eigenstates to be (volume-
dependent) admixtures of what we might call “single-
hadron” basis states and multi-hadron basis states.

Our explanation for this observation of a restricted
spectrum is that the fermion bilinear operators have an
overlap onto multi-hadron states that is suppressed by
powers of the lattice volume, such that they couple only
very weakly into the multi-hadron sector. To the ex-
tent that the eigenstates in any particular volume are
admixtures of single-hadron and multi-hadron states, one
can argue that correlators computed using fermion bilin-
ears contain contributions from all eigenstates, |n), of
the appropriate symmetry in > Z; ZJ e Pnt. This is
true, but there remains the practical problem of extract-
ing the spectrum, which is particularly challenging when
there are nearly-degenerate states, a likely occurrence in
a dense spectrum of hadron scattering states. An effec-
tive solution, which does not depend upon distinguishing
small energy differences, is to make use of orthogonality
within the variational method, as described in the pre-
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FIG. 2. Effective mass of Eq. 4 with a;F1 = 0.1654, a:FE2 = 0.1779 for a range of mixing angles, 6. Left panel shows typical
time-separations in our calculation over which the time-dependence is essentially flat. Right panel indicates that eventually the
presence of two low-lying states could be detected but only through observation of unrealistically long time separations with

high statistical precision.
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FIG. 3. Effective mass of lowest principal correlator obtained
from variational analysis using only fermion bilinear opera-
tors (more time sources were used here than presented in the
central column of Fig. 1). The gray band indicates a fit to
the principal correlator using two exponentials as described in
the text. The dashed gray line is the lower energy in that fit.
Red and purple bands indicate the energies obtained from the
lowest two principal correlators when using the full operator
basis (with a smaller number of time sources).

vious section, where each state is optimally interpolated
by a different orthogonal linear superposition of the basis
operators even if the states are approximately degener-
ate.

The lack of operators that have significant overlap on
multi-hadron states causes the variational analysis to
be unable to form orthogonal eigenvectors in the larger

single multi 3
space {| &), [malt )}, since they have access only to

{|;sinele )3 We present a simple model below of what can
happen if only a restricted operator basis is used when

the true eigenstates of the system in finite-volume are ad-

mixtures of single-hadron and multi-hadron basis states.
In [17] we demonstrated the construction of wr-like
operators built from products of variationally optimised
pion operators of definite momentum, 7f(k). In simple
terms we construct

() fl’b“ = Z C(ﬁ A; ks 132) WT(El) WT(Ez)
P,A ) ) ) b

k1,k2

for definite total momentum P = l% + Eg in irreducible
representation, A. The sum is over the different direc-
tions, for fixed magnitude, of the definite pion momenta
El,Eg, with the weights C ensuring that the operators
transform in A. Through the use of multiple possible
choices of magnitudes, |k1|, |k2|, we can build a basis of
operators.

The importance of including mwr-like operators in ad-
dition to fermion bilinears is demonstrated in Fig. 1
which shows the extracted spectrum computed on the
243 lattice when the system has a total momentum of
P= [0,0,1] and lies in the irreducible representation Ay,
roughly corresponding to helicity-0 (to be discussed more
in the next section). The three columns show the spec-
trum extracted using the full basis of operators (fermion
bilinears plus wr-like), only fermion bilinear operators,
and only mm-like operators. There are striking differ-
ences, notably the large gap between a;Fcy, = 0.20 and
0.30 which, when 77 operators are included, is populated
by several states which have large overlap onto the 77
operators. For our current purpose, the most important
difference is the presence of two states in the elastic re-
gion with the full basis while only one appears with the
restricted operator bases. Notice that in the full basis
these two states each have large overlap onto both the
fermion bilinear operators and the w7 operator of lowest
relative momentum.

The essential problem with using a restricted opera-
tor basis can be demonstrated using a simple two-state



mixing hypothesis, where the state basis is a “would-be”
stable single hadron state, |p), and a multi-hadron state,
|77). The finite-volume energy eigenstates are linear su-
perpositions of these two basis states:

|E1) = cosf|p) + sinf|nm)
|Es) = —sin|p) + cos O|7r).

A variational analysis that used multiple operators with
good overlap onto both |p) and |77) would be able to re-
solve the two orthogonal combinations, with two separate
principal correlators having time dependences ~ e~
~ e~ P2t However, if one restricts to only operators with
good overlap onto |p), the variational method will not
be able to form two orthogonal vectors and the principal
correlator will have a time-dependence similar to

(ple™"]p) = cos® DB sin® 0P, (4)

which features both energy scales. In practice these en-
ergies can be very close together, e.g. a;F; = 0.1654(7)
and a;Ee = 0.1779(7) giving a;: AE = 0.013(6) in the case
presented in Fig. 1. In Fig. 2 we show the effective mass®
corresponding to Eq. 4 for a range of mixing angles, 6.
One clearly sees that over the time-separations typically
resolved in lattice QCD calculations and, considering typ-
ical statistical uncertainty, the time-variation is compati-
ble with a single-state hypotheses. It is only at very large
times that the correlator relaxes to the true ground state
and the correlator can be seen to clearly contain more
than one state at a low energy scale. In practice correla-
tors will also contain excited-state pollution from higher
energy scales that impact at small Euclidean times.

In Fig. 3 we show the effective mass of the lowest
principal correlator obtained from variational analysis us-
ing only the fermion bilinear operators. The gray curve
shows the effective mass corresponding to a fit to the
principal correlator, between t/a; = 5 and t/a; = 41, of
the form A(t) = (1 — A)e P=t0) 4 Ae=F'(t=t0) wwhere
a B = 0.16793(28) and a;E’ = 0.494(11). The x2/Ngor
for the fit is below 1.0 indicating that the data is de-
scribed well in terms of one low-lying state and ex-
cited state contributions at a much higher energy scale.
Clearly, from this principal correlator alone, we cannot
infer the presence of two low-lying energy levels at 0.1654
and 0.1779.

In summary, if one wishes to determine the spectrum
reliably, it proves necessary to include explicit multi-
hadron operators into a variational basis. In this paper
we will consider the inclusion of operators resembling a
pair of pions of definite total and relative momentum.
Since we do not yet include any operators resembling
pairs of kaons, the next lightest stable hadrons, we will
be cautious about trusting extracted levels near the top

c(t
3 meff[C(1)] = it log 7&-({—()515)

of the elastic region where they may be mixing with KK
basis states.

In the next section we present in somewhat more detail
the construction of two-meson operators relevant for a
study of 77 scattering in isospin-1.

V. MESON-MESON OPERATORS ON A FINITE
CUBIC LATTICE

The symmetry of a lattice with a finite extent is re-
duced compared to that of an infinite volume contin-
uum. In our implementation, we have a cubic lattice
discretisation in a cubic box with periodic boundary con-
ditions. The appropriate symmetry group is the dou-
ble cover of the octahedral, or cubic, group with parity,
Of , and this is the symmetry relevant for a system of
hadrons overall at rest. The allowed momenta are quan-
tised by the boundary conditions giving p = %" (n,m,p),
or p = [n,m,p] in our notation, where L is the spatial
extent of the lattice (in physical units) and n,m,p are
integers. For a system ‘in flight’, i.e. with a non-zero
overall momentum, P =+ 0, the symmetry is reduced fur-
ther to that of the little group [32], which we denote by

LG(ﬁ), the subgroup of OF under which P is invariant.

The consequences of this reduced symmetry were dis-
cussed in detail in Ref. [17] and here we briefly review the
salient points relevant for 77 scattering in isospin-1. For
P= 6, the continuum spin, J, is no longer a good quan-
tum number on the lattice and states are instead labelled
by the irreducible representations, irreps, of the octahe-
dral group, of which there are a finite number. Parity,
P, and any relevant flavour quantum numbers are still
good. The manner in which the various components of
a J¥ state are distributed, or subduced, into the irreps,
AP is presented in Table II of Ref. [17].

The situation is more complicated for P #+ 0; the pat-
tern of subductions of the various helicities, A, into the
little group irreps depends on LG(P), i.e. the type of

momentum P, see Ref. [11]. Table II of Ref. [17] shows
these subductions. Note that, apart from the A = 0 com-
ponents, parity is not a good quantum number for a sys-
tem in flight, but any relevant flavour quantum numbers
are still good.

A state consisting of two identical hadrons must have
a definite symmetry under the interchange of the two
hadrons; it must be symmetric under this interchange
if the hadrons are bosons or antisymmetric if they are
fermions. This generalises to systems of two hadrons,
having identical masses, related by a symmetry, e.g. 7,
7~ and 70 if isospin is a good symmetry, or K and K
related by charge-conjugation. In particular, taking into
account the symmetry of the spin and any flavour parts
of the wavefunction, the spatial wavefunction must have
some definite symmetry under this interchange and so is



P LG(ﬁ)‘ AP ar N
T, 1%, 3!
[0,0,0] oy T, 3!
Ay 3!
A 1T, 3t
. Es 11, 32
[0,0,n] Dicy B, 41
B 3!
A 11, 32
) A 3t
[0,n,n] Dica B? 1 32
B 11, 32
A 11, 32
[n,n,n] Dics Ao 3!
E, 11, 32
[n,m, O} C Al 12, 34
[n,n,m} * A2 11, 33

TABLE III. The pattern of subductions of I = 1 7w partial
waves, £ < 3, into lattice irreps, A, where N is the number
of embeddings of this £ in this irrep. This table is derived
from Table IT of Ref. [17] by considering the subductions of
the ¢ when P = (0 and the subductions of the various helicity
components for each £ when P # 0. Here P is given in units
of 27” and n,m are non-zero integers with n % m. We show
the double-cover groups but only give the irreps relevant for
integer spin.

restricted to either only even or only odd partial waves?,

¢. For 77 in isospin-1, the flavour (isospin) wavefunction
is antisymmetric and so Bose symmetry restricts the sys-
tem to odd partial waves (with parity P = (—1)! = —1
when P = 0). The reduced symmetry of the finite vol-
ume lattice means that multiple partial waves appear in
a single irrep as shown in Table III.

We note that, in contrast, for a two-meson state such as
mr’, where 7’ represents an excited pion, or mw, there is
in general no such Bose symmetry constraint. For such
a system overall at rest, parity, P o< (—1)¢, is a good
quantum number and so, even on a finite volume lattice,
odd and even partial waves do not appear together in any
irrep®. However, when P #* 6, parity is not a good quan-
tum number, there is in general no definite symmetry
under the interchange of the two hadrons® and all £ can
mix; there is no separation between odd and even partial
waves. In the current work, we restrict ourselves to scat-
tering below inelastic thresholds and so do not consider

4 e.g. if isospin is a good symmetry, even (odd) 77 partial waves
have isospin I = 0 or 2 (I = 1) with positive (negative) G-parity.
KK states with positive (negative) charge-conjugation parity, C,
~ (KK + C KK), only occur in even (odd) partial waves

e.g. non-interacting m(k)w(—k) and m(—k)w(k) have the same
energy and appropriate linear combinations are eigenstates of
parity

6 ¢.g. non-interacting 7 (k1 )w(k2) and 7 (k2)w(k1) with P = k1 4k

do not in general have the same energy

5

such mixing between odd and even partial waves. This
will however be relevant as we go higher up in energy and
in other scattering channels.

We use the single and multi-meson operators, respect-
ing the symmetries of the finite volume lattice, which
have been developed in a series of papers [8, 9, 11, 17].
For a single meson at rest, we first construct an oper-
ator with definite continuum J* and J,-component M,
oM (k = 0), consisting of a fermion bilinear featuring
gauge-covariant derivatives and Dirac gamma matrices,
and with the correct flavour structure. We then sub-
duce these into the relevant octahedral group irreps to
form lattice operators [8, 9]. At non-zero momentum,
our construction considers the subduction of an opera-
tor with definite continuum helicity, A, Q7 P”\(E)7 where

k is quantised as discussed above, into the relevant little
group irreps [11]. The general pattern of subductions is
summarised in Table II of Ref. [17].

In Ref. [17] we discussed the single-meson operators
relevant for a pion, which has I = 1 and negative G-
parity, at rest and in flight. At rest, the subduction of a
JP =0~ operator into the irrep A¥ = A7 is trivial,

oY }(0) = 0° () .
1
At non-zero momentum, for all the momenta we consider,
the subduction into the As irrep is also trivial,

o 1(k) =0 (k) .

When we use the variational method to find the optimal
linear combination of operators to interpolate a pion, we
will include operators subduced into A from other J
(for P = 0) and other helicity, A, subduced into Ay (for

P # (). We use m(k) as a shorthand to represent these
optimal operators in the appropriate irreps.

For the p meson, which has I = 1 and positive G-
parity, at rest the three-dimensional 77 irrep is a simple
representation of J© = 1~ and the subduction is straight-
forward; this is given explicitly for our basis choice in
Appendix A of Ref. [9]. In flight, the A = 0 components
subduce into the A; irrep and, depending on LG(ﬁ),
the A = £1 components subduce into either the two-
dimensional Fs irrep or the one-dimensional B; and Bs
irreps [11].

As mentioned above and discussed in detail in Ref. [11],
for a system in flight, parity is in general not a good
quantum number. The helicity-0 components have a ‘re-
flection parity’, 7 = P(—1)7, where J and P are respec-
tively the spin and parity at rest. For the momenta we
consider, A = 0 with 7 = +(—) subduces into the A;(As)
irrep and so there is no mixing between these even on a
finite volume lattice. However, for A # 0 there is no such
symmetry and therefore, for example, the A = +1 com-
ponents of the p(17) appear in the same lattice irreps as
the A = +1 components of the b1 (17) (both these mesons
have the same flavour structure). This is not relevant in



the current work where we are restricting ourselves to rel-
atively low energies, below inelastic thresholds, but must
be taken into account if we wish to consider higher en-
ergies. Similar situations occur in other scattering chan-
nels.

In Section IV we have argued that to reliably deter-
mine the complete spectrum we need operators that have
good overlap onto multi-hadron basis states. We find
that operators built from the product of two or more
single-hadron operators of the form described above are
able to achieve this. We will follow the construction used
in Ref. [17] where a general 77 creation operator is,

AT 5 S R P
)5 = S B A s B () T (R
ElE{EI}*
Eze{l_@:z}*
ky+ko=P

()
where 7 (k) is a single-pion operator and C is a Clebsch-
Gordan coefficient for Ay ® Ay — A with Ay = A7 of
OF if k12 = 0 and Ay s = Ay of LG(ky ) if k12 # 0, and
where A is an irrep of LG(P). The sum over kj 2 is a sum
over all momenta in the stars of ELQ, which we denote by
{k12}*, and by which we mean all momenta related to
ELQ by an allowed lattice rotation. The {El, Eg] label on

the w7 operator indicates that it was constructed from
single-pion operators with momenta in {k}* and {ks}*.
We refer to Ref. [17] for further details, a discussion of
the Clebsch-Gordan coefficients, and explicit values of C.

As discussed in Ref. [17], we use “optimised” single-
pion operators, W(E), in order to obtain w7 correlators
which are dominated by ground state pions at smaller
times, i.e. to reduce contamination from wx’, where 7’
is any higher mass state with pion quantum numbers.
We follow that reference and construct variationally op-
timal operators by diagonalising a matrix of correlators
in large basis of operators for each relevant irrep. As
described in Section III, the n*® eigenvector gives the
variationally optimal linear combination of the basis op-
erators to overlap with state n. Our basis consists of
all single-meson operators subducing into the relevant
irreps constructed from any possible Dirac gamma ma-
trix structure and 0,1,2,3 derivatives at rest [9] or 0,1,2
derivatives in flight [11]. The efficacy of these operators
was demonstrated in Ref. [17] and their use allows us to
perform analyses at smaller Euclidean times.

In the current work we restrict ourselves to overall mo-
menta P = [0,0,0],[0,0,1],[0,1,1],[1,1,1] and [0,0,2].
The various combinations of El and Eg used in our 77 op-
erator constructions are presented in Table IV. For each
lattice irrep, we include in our basis these w7 operators
along with all relevant isospin-1 single-meson operators
from any possible Dirac gamma matrix structure com-
bined with 0,1,2,3 derivatives at rest [9] or 0,1,2 deriva-
tives in flight [11]. The number of operators we use in
each irrep is summarised in Table V.

P ‘ Volumes ‘ l;1 Ez AP
3 on3 o43| [0,0,1] [0,0,-1] T
[O,OO]SO] 163, 20%, 24 011 0-1-1] T
h 16° 1,1,1 1,-1,-1] 15
0,0,0 0,0,1] A
[0705 1] 3 3 3 [07_ 7O] [07171 A17E27Bl *
DiC4 16 720 ’24 [- ,-1,0] [1,171} Al,Ez,BQ *
0,0,-1  [0,0,2 A
0,0,0] 0,1,1 A,
[07 1, 1] 3 3 3 [07 1, O} [07 0, 1} By
Dieg | 16%,20° 24 [-1,0,0]  [1,1,1] A1, By
[17170} [_ ) 71} BlaBQ
0,1,-1  [0,0,2 A, B,
1,1,1] 0,0,0] 1,1,1 Ay
biég 163,20°%,24%| [1,0,0] [0,1,1] Ay, B,
2,0,0] -1,1,1] Ay, Es
[0,0,2]] 16%,20%,24%] [0,0,0] 0,0,2] A

TABLE IV. The two-pion operators used presented for each P
on various volumes; also shown is LG(P). Example momenta
k1 and ks are shown; all momenta in {k1}* and {k2}* are
summed over in Eq. 5. Swapping around k1 and ko gives the
same operators up to an overall phase. (*these By and Ba
were not considered on the 16® volume)

P Irrep Single-meson 7 207,243 (16%)
[0,0,0] T, 26 2 (3)
A 18 1(4)
B» 29 2 (2)
[0,0,1] B, 9 1 (0)
B 9 1(0)
A 27 3(3)
0,1,1] B 29 3 (3)
B> 29 2 (2)
11,1 Ay 21 3 (3)
’ Es 35 2 (2)
[0,0,2] A 18 (D)

TABLE V. Number of single-meson and w7 operators used
for each P and irrep on the various volumes. The two-meson
operators are listed in Table IV and all relevant single-meson
operator structures are considered including up to 3 deriva-
tives at rest and up to 2 derivatives at non-zero momentum.



VI. CORRELATOR CONSTRUCTION
THROUGH DISTILLATION

In Section IV we have emphasised the need to include
operators that have a strong overlap with expected multi-
meson states and the desire to perform a variational anal-
ysis of a matrix of correlation functions forces us to find
a correlator construction method that allows for such op-
erators at both source and sink. In the isospin-1 chan-
nel, the contractions to form these correlators will in-
volve quark-line ‘annihilation’ — that is diagrams which
feature propagation of a quark from ¢ to the same ¢. In
the previous section we described how multi-hadron op-
erators transforming irreducibly under the relevant sym-
metry can be constructed from products of single-hadron
operators of definite momentum. The projection into def-
inite relative momentum requires a sampling of all spatial
sites on a timeslice. The correlator construction method
known as distillation [15] satisfies all the above desider-
ata in a natural and efficient way.

Distillation is a quark-field smearing method which is
designed to increase overlap onto the low modes relevant
for low-lying hadronic states — we define a smearing op-
erator on a time-slice which acts in 3-space (Z) and color

(4)

N
O, 553 1) = &a(@ist) & (3755 1), (6)

n=1

where one option is to choose {£,} to be the lowest N
eigenvectors of the gauge-covariant Laplacian on times-
lice t. If all the quark fields in a correlator are smeared by
application of this operator, the combination of eigenvec-
tors and the Dirac matrix inverse, M 1, called a ‘peram-
bulator’, & (tYM~1(t', )6 (t) = Tom(t',t) will appear
in any propagation. Thus the basic numerical problem
to be solved is inversion of the Dirac matrix on sources,
{&n}n=1...~v, which is a smaller vector space than that of
the full lattice. A detailed presentation of the properties
of distillation can be found in Ref. [15].

Five basic topologies of diagram appear when one Wick
contracts correlators in a basis of YT and YT A1) - YT Bep
operators projected into overall isospin-1 — these are
shown in Fig. 4. All five topologies require light-quark
perambulators between fixed ¢4 and varying ¢, and these
are obtained by inversion of the Dirac matrix from a
source on tg.. While the propagation from tg.. t0 tspc
seen in topologies Ao and Ayy does not require any ex-
tra inversions, the propagation from ¢ to ¢ seen in Aoy
and A4 requires inversion from sources at every t we
wish to consider. Such 7(t,t) perambulators, computed
for both light and strange quarks on the 16 lattice, were
previously used in [13] in the computation of isoscalar
correlators featuring 1/I'Y) operators. In this paper we
use 7(t,t) perambulators computed on 163,203,243 lat-
tices for all 128 timeslices.

In order to reduce statistical noise, and make
more use of each configuration, we compute correla-

t tore t tore

o

t tre t tsre

FIG. 4. A schematic of the basic Wick-contraction topologies
required to compute a matrix of correlation functions in a
{le"w, YTAy - JTBw} basis with isospin-1. ts. is fixed and
the time dependence with respect to t — tsc is studied.

tors for several values of tg.. and average over them,
C(t) = NL Y. Ot + tses tare). Although we have in-
verted from every timeslice on the lattice (in order
to have the 7(¢,t) perambulators), covariance between
neighbouring timeslices reduces the effectiveness of aver-
aging over ts. once the sources get too close together,
so in practice, given the computational cost of contract-
ing perambulators into correlators, we average only over
a handful of well-separated tg.. values, typically fewer
than 8 per configuration.

As an example of the distillation contraction for
T4y - YTBy at both source and sink, choosing the
temporal origin to be at ts,c = 0, we have

(O 0y, ¢ OTF Oy - doOT§ Oty Go0TH Ty ),

where the 3-space (Z) and color (i) dependence of
I'(t)zi,7 might include gauge-covariant spatial deriva-
tives and/or a projection into definite momentum. In-
tegration of the quark fields leads to terms which include
the Wick contraction Ay,

At = Tun (0, )02, (Do (1, ) OE (1)
X 7r(t,0) 27, (0) 75 (0, 0) 22, (0),
where the repeated distillation indices are summed over
and where the Dirac-spin indices are suppressed. This
factorised form is such that any operator construction,

T' (embedded in @, = ¢/T¢,,), can be considered. For
example, if there is a momentum projection, a Dirac spin

projection (I'*?) and gauge-covariant derivatives (D),
then

00 (pit)
=P Z 5);(5@’1, t) e [

T1,4j

D s s (1) Emiiis ),
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be equal to 1 at t/a; = 31. The inset shows the data at

t/a; = 31 indicating the relative statistical noise on the cor-
relators.

and provided eiﬁ'f[%}. . :ﬁ)gj(t) is well-supported in the
restricted space of vectors {§n(fi)}n=1___N, distillation
should provide an efficient method to compute the corre-
lator. In practice [9, 11, 15, 17] we find that the modest
numbers of vectors, N, given in Table I, are sufficient
to obtain excellent signals for hadrons with momenta
P 56(%)"

We demonstrate the quality of the determined cor-
relators in Figs. 5 and 6. In Fig. 5 we present corre-
lators, evaluated on the 243 lattice in the A; irrep of
P = [001], constructed using the simplest fermion bilin-
ear operator, 1)y;%, and the lowest momentum 77 opera-
tor ~ 7([001])7([000]). We see that correlators featuring
multi-pion operators are not much noisier than simple
fermion bilinears and that both types of operator are
likely to have a significant overlap with the ground state
and differing overlaps with excited states. In Fig. 6 we
show that the statistical noise on correlators does not
grow rapidly with increase in the momentum of pions in
7w operator constructions.

VII. FINITE-VOLUME SPECTRA

We computed correlation matrices for a range of to-
tal momentum P and irreps A using the fermion-bilinear
plus w7 operator basis described in Section V. The corre-
sponding finite-volume spectra were determined by appli-
cation of the variational method described in Section III.
As an illustration, we show in Fig. 7 the ‘principal cor-
relators’, Ay (t), for the lowest eight levels (from a total

10

0.025
-= 700077001

0.020 (-

- M_1-107111

- T00-17002

0015

mean [C(t)]

0010

0.005

0.000 . . . . .
0 5 10 15 20 25

FIG. 6. P = [001], A; correlators evaluated on the 24° lat-
tice. The statistical noise, relative to signal, is shown for 77
diagonal correlators for a set of pion momenta.

of 22) in the case P = [001], A = A; on the 243 lattice.
The fits to the time-dependences of these determine the
energies with high precision. The corresponding opera-
tor overlap structure was previously displayed in the first
column of Fig. 1. The effective masses of the five lowest
principal correlators are shown together in the bottom-
right pane of Fig. 7.

In Fig. 8 we show the extracted volume dependence
of the spectra for P= [001] for the irreps, Ay and Es.
Also shown are the energy thresholds for various inelas-
tic processes and the energies of non-interacting meson-
meson states 7w, KK, mw. Clearly we are not observing
the expected number of levels in the inelastic region and
we expect that this is caused by our not using operator
constructions with good overlap onto e.g. KK. As men-
tioned in Section V, in the Ejs irrep, parity is not a good
quantum number and contributions from J¥ = 17 can
appear — indeed the points shown in grey at a; Fcm ~ 0.25
appear to have large overlap with operators characteris-
tic of the b; meson. Since the operator basis we have
used does not sample well the inelastic spectrum, we will
restrict our analysis to the elastic region between 77 and
KK thresholds.

In Fig. 9 we show the volume dependence of the spec-
tra across P and A in the elastic region. For the phase-
shift analysis which follows in the next section we ex-
clude points very close to KK threshold since we have
not included K K-like operators in the basis. Levels
determined on the 163 lattice, which potentially suffer
from the largest unwanted exponential m,L dependence
and which are often noisy, are mostly excluded from the
phase-shift analysis.
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VIII. ELASTIC SCATTERING PHASE SHIFT

Our implementation of the formalism relating elastic
7w scattering phase-shifts to the finite-volume spectrum
at rest and in flight is presented in Section VIII of [17].
Here we repeat only the essential feature, that the phase-
shifts are related to the finite-volume energies by a for-
mula which for 77 in I = 1 takes the form,

ezi‘sl(Ecm) O
dot 0 02003 Eem)

The matrices here, in the space of £ contributing to the
irrep, are formally infinite dimensional, with U being a
matrix of known functions particular to the little group
irrep (]3, A). Which values of ¢ contribute to a given
(]3, A) is determined by the subductions given in Ta-
ble III. We presume we can truncate the matrices to a
finite size since at low energy we expect dys3 < 93 < d7.

In Fig. 10 we present the determined phase-shifts as-
suming that all d,>3 are negligible throughout the elastic

J

13

region. In this case Eq. 7 becomes one equation in one un-
known, 61 (Fem), for each energy level, Egny (]3, A,n) in the
elastic region. The assumption dy~1 = 0 will be shown
to be justified in Subsection VIIIB.

A. Resonant Parameterisations

The phase-shift in Fig. 10 shows clear resonant be-
havior in a small region around a;FE., = 0.152 which
suggests we might attempt to describe 01(Ecm) using a
parameterisation featuring a single resonance. A popular
choice is a variant of the relativistic Breit-Wigner with an
energy-dependent width enforcing the p24+! behavior as
Pem — 0 mandated by angular momentum conservation:

Ecm Fl(Ecm)
tandy (Eem) = —5———
an o1 (Eem) m? — B2,
BW 9> v}
where T'p2) (Eem) = o— . (8)
=t 6m B2,

The parameterisation of the width is in terms of a cou-
pling constant, g, which, it has been suggested, is largely
independent of the quark mass [19, 33].

We choose to fit the energy levels directly within a x? function of the form,

)= >

[Ecm(L; PAn) — EB2*(L; PAn; {ai})} C~'(L; PAn; P'A'W) [Ecm(L; P'N'w) — BR(L; P'A'Y; {as})

(9)

where EP2™(L; PAn; {a;}) is the n*® solution of Eq. 7 with a parameterised phase-shift depending upon parameters
with values {a;}, e.g. the resonance mass mg and the coupling, g. Data covariance, C, whose off-diagonal elements
between energies evaluated on the same ensemble can be non-zero, is estimated using jackknife.

Fitting energy levels with a;Ecy < 0.18 to the Breit-
Wigner form in Eq. 8, we obtain the following parameter
values, errors and correlation,

aymp = 0.15241(33)(10) 1 —0.09
g = 4.83(13)(2) [ 1 ]

X?/Naor = 552% = 1.81,
where the first error is statistical and the second error
reflects variation of m, and £ within their respective un-
certainties (see [17]). There is observed to be very little
correlation between the mass and the coupling constant.
The energy dependence of the resulting 01 (Ecm) is shown
by the blue curve in Fig. 11.

A criticism of the parameterisation in Eq. 8 is that
the p2_ form, introduced to give the right threshold be-
haviour, continues to grow at large energies in an unreal-
istic way. As seen in Fig. 11, the phase-shift approaches
180° very slowly, allowing the effect of the resonance to be
felt many half-widths above the mass. Generally one ex-
pects the p2., behaviour to be damped at larger energies,

(

and one physically motivated approach is to appeal to
the idea that the resonance has a finite spatial size, and
introduce ‘barrier factors’. Omne implementation, com-
monly used in experimental partial wave analysis, follows
von Hippel & Quigg [34], by considering the interaction
giving rise to the resonance to have a sharp size, R. The
resulting scattering wavefunctions are outgoing spherical
Hankel functions which give rise to polynomial damping
factors. In the case £ = 1 this leads to the following
modification of the energy-dependent width:

_ ﬁpgm 1+ (pRR)2
6m E2. 1+ (pemR)?’

T2 (Eem) (10)

where pgr is the cm scattering momentum at the reso-
nance mass, pr = %\/mQR —4m2. The barrier factor is
normalised such that it does not affect the width eval-
uated at the resonance mass. We fit the same data as
above to obtain
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aymp = 0.15226(34)(11) 1 —0.14 —0.09
g = 5.06(15)(2) 1 032
R/a; = 16.6(52)(17) 1

X2/Ndof = % = 168,

which shows a slightly improved quality of fit, although
there is clearly some correlation between the coupling g
and the range R. The range expressed in physical units

R = a—Bi U2 ~ 0.6 £ 0.2fm would seem to be reason-
m

able on tlsfe usual hadronic scale. The resulting energy
dependence is shown by the red curve in Fig. 11 where
it is seen to approach 180° more rapidly than the simple
Breit-Wigner.

The particular form of the damping function is a
model-dependent choice and we can explore the sensi-
tivity by trying other parameterisations. For example a
gaussian form (previously considered in a quark model
study [35]),

- 2 2
G iy

gau. J Fem - 0
Femy (Bem) = g7 E2, e—PR/66% " (11)
Fitting the same dataset we obtain
aymp = 0.15224(34)(14) 1 —-0.18 0.16
g = 5.08(17)(3) 1 —0.47
atf =0.029(7)(3) 1

X2/Ndof = 2493;53 = 1.67,

indicating that the particular functional form of the
damping appears to be relatively unimportant. In phys-

hys

ical units, 8 = a;3 - mo 160(40) MeV. The energy

atme

dependence is shown by an orange curve in Fig. 11 that
lies almost exactly on the red curve already described.
Another parameterisation that has been used to fit ex-
perimental phase-shift data is provided by Peldez and
Yndurdin (see Ref. [36] and their subsequent papers),

Ecm
cot & (Ecm) :2p3 (m%% - Egm)
cm
2m2 En — /50 — E2,
3 " + By + By 0
mREcm Een + /50 — E2

which, while it appears cosmetically to be very differ-
ent to a Breit-Wigner, in fact has an energy depen-
dence which is rather similar, with the three parameters
mp, By, B1 able to conspire to provide damping. The
additional parameter, sg, is not allowed to float, and fol-
lowing the proposers’ suggestion is set to 2m, + m,, as
determined on this lattice, a;y/so = 0.29. Fitting yields

aymp = 0.15227(34)(12) 1 —0.06 —0.05
By = 2.71(77)(21) 1 099
By =6.0(33)(9) 1

X2 /Naot = 555 = 1.68,

a reasonable description of the data. The extremely high
degree of correlation between By and B suggests that
they may not be the most natural way to parameterise
this amplitude. The energy dependence is plotted in
Fig. 11 using a green curve that lies almost exactly under
the orange and red curves already plotted.

We have presented the data and fits in units of
the inverse temporal lattice spacing thus far to avoid
ambiguities with how one sets the lattice scale. If
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FIG. 11. P-wave n7 elastic scattering phase-shift, §1(Fem), as determined by describing the finite-volume spectra by resonant
parameterisations as described in the text. The barrier factor variations and the Peldez & Yndurdin fit all lie on top of each
other. Also shown as gray points are the data previously presented in Fig. 10. Energy region plotted is from 77 threshold to

KK threshold.

we choose our usual scale setting procedure where

a; = ::‘Z‘Lyns using the € baryon mass determined
Q

on these lattices (aymq = 0.2951) and the physical
baryon mass mghys = 1672MeV, then the simple Breit-
Wigner fit corresponds to mp = 863.5(19)(6) MeV and
I'r =10.1(6)(1) MeV. As expected in a calculation with
heavier than physical mass light quarks, the resonance
mass is somewhat larger than the physical p mass. The
small width is explained by the much-reduced phase-
space for decay of an 864 MeV resonance into two pions
of mass 391 MeV compared with the physical kinemat-
ics. We observe from the rather similar y2/Ngo¢ that
the data do not clearly distinguish between the various
parameterisations which vary only in the tails of the res-
onance. This may be due to the very narrow nature of
the resonance with the small phase space for decay.

B. Role of higher partial-waves

From Eq. 7 and Table III it is apparent that in principle
many partial waves contribute to the determination of
the finite-volume spectrum in each irrep, in particular
when the system is in-flight. The next lowest ¢ that can
contribute in w7 I = 1 scattering is £ = 3 which is leading
in e.g. irreps (P = [001], By) and (P = [001], By). For
the lattice volumes we consider, the lowest energy level
in these irreps is always above the elastic region, and
as such we cannot apply Eq. 7 without concern about
neglecting other open channels (in this case KK). If we
assume that there is zero coupling into K K and proceed

in a cavalier manner with application of Eq. 7 we obtain
points at energies only slightly above the K K threshold
that have d3 compatible with zero (roughly (—1 £ 1)°).

One way to obtain estimates of d3 in the elastic
regime is to consider a number of approximately de-
generate energy levels coming from different irreps. By
writing a version of Eq. 7 for each one we can ap-
proximately solve that coupled set of equations for
01,03 at the relevant energy. This approach was de-
scribed in some detail for 7w I = 2 scattering in
[17). An example set of levels is ([000],7] ,n =0),
([001], E5,n = 0) and ([011], By, n = 0) which on the 243
lattice all have an energy a;Ecm = 0.153(1). Solving the
coupled system of equations we find ¢; = 145.7(22)° and
83 = —0.048(55)°. The same set of levels on the 203 lat-
tice have a;Fey & 0.155(1) and give 6; = 151.1(30)° and
d3 = +0.002(24)°.

We also tried parameterised fits to all data points, as
in the previous section but including a scattering length
parameterisation for the £ = 3 wave, p__ cot 65 = 1/ag3, as
well as a resonant parameterisation of §;(Fcy). The fits
were of essentially the same quality (in x?/Ngot) and gave
az = —3.4(33)(6) x 10°-a] with a negligible change in the
¢ = 1 Breit-Wigner parameters. This parameterisation
gives d3 = —1.3(13)° at the KK threshold.

In summary, the lattice data require no non-zero value
of 93 throughout the elastic region and our analysis in
the previous section based upon d3 = 0 is justified.

These observations (at m, ~ 400MeV) are in ac-
cord with experimental expectations (at the physical pion
mass). In the 77w partial wave analysis of Estabrooks



and Martin [37], no F-wave amplitude was required
in the elastic region to describe 7~p — 7w~ 7tn data.
Above inelastic threshold, the F-wave amplitude between
E.n = 1.5 and 1.9 GeV was well described by a Breit-
Wigner form with barrier factors. Subsequent experi-
ments have determined the resonance parameters of the
p3(1690) with greater precision [38]. The tail of this reso-
nance in the elastic region (which must vanish like p7 ) is
such that d3 ~ +1.8° at the KK threshold. The energy-
dependent phase-shift analysis of 77p — 777~ AT data
by Protopoescu et al. [39] suggests a 3 which is small and
negative below KK threshold, with the largest deviation
from zero ~ —1.5(5)°.

IX. SUMMARY

In summary, we have used lattice field theory methods
to compute part of the discrete energy spectrum of QCD
in finite boxes. Through the known connection of the dis-
crete spectrum to elastic scattering amplitudes, we have
mapped out the energy dependence of the w7 isospin-1
P-wave scattering phase shift in unprecedented detail up
to the KK threshold. The data, presented in Fig. 10, un-
ambiguously show the rapidly-rising form expected in the
presence of an elastic resonance. As observed in Fig. 11,
the phase shift can be well described by a single p reso-
nance. While in principle the discrete spectrum can be
sensitive to scattering in higher-partial waves, we find
that no non-zero value of F-wave (or higher) phase-shift
is required in the elastic region.

The P-wave scattering phase-shift is summarised in
Fig. 12, where the scale in all dimensionful quantities is

set using a; = 432 A simple Breit-Wigner fit describes
m

the data reasona%ly well in terms of a single narrow res-
onance. We note that the extracted coupling g is com-
patible with other lattice determinations [18-22].

This work represents a successful application in a res-
onant channel of the methodology for lattice computa-
tions of scattering phase shifts presented in Ref. [17],
where it was initially applied to a non-resonant channel.
Distillation enabled us to efficiently compute correlators
with large bases of carefully constructed fermion-bilinear
and mr-like interpolating operators, in various irreducible
representations of the relevant symmetry group and for
a range of center-of-mass momenta, with high statisti-
cal precision. In addition, the inclusion of the necessary
quark annihilation contributions is rendered straightfor-
ward. Variational analyses of the resulting correlators
gave a large number of finite-volume energy levels which,
in turn, allowed us to determine an unparalleled number
of points on the phase shift curve.

We plan to compute scattering in other channels using
the same technology, including situations where exper-
imental and phenomenological understanding is incom-
plete and where we cannot assume simple parameteri-
sations will describe the data. In these cases, mapping
out the phase shift in detail will be more important than

16

in the simple case of elastic w7 scattering in isospin-1
that we have considered here, where a single vector reso-
nance is expected to dominate the scattering amplitude.
Determining the energy dependence of the scattering am-
plitude in detail will inform the parameterisations. Fu-
ture work to explore the hadron resonance spectrum will
need to consider inelastic scattering - we can reliably ex-
tract the finite-volume spectrum above inelastic thresh-
olds by including the appropriate meson-meson-like op-
erators (e.g. KK ...), following the general methodology
developed in Ref. [17].



180

160}

140+

120}

100+

80+

5=1(Eem) /

401

Breit — Wigner

mp = 863.5(19)(6) MeV
g =4.83(13)(2)

11:1;( .
—5 =10.1(6)(1) MeV

2
r_ 9

R= ——
67 m7,

a L =29fm
o[ =24fm

°L=19fm

800 850

FIG. 12. Isospin-1, P-wave 77 elastic scattering phase shift and Breit-Wigner parameterisation for m, = 391 MeV.

region plotted is from 77 threshold to K K threshold.

1000 1050  E., / MeV

17

Energy



ACKNOWLEDGMENTS

We thank our colleagues within the Hadron Spectrum
Collaboration. Particular thanks to C. Shultz for his up-
dates to our variational fitting code. Chroma [40] and
QUDA [41, 42] were used to perform this work on clusters
at Jefferson Laboratory under the USQCD Initiative and
the LQCD ARRA project. Gauge configurations were
generated using resources awarded from the U.S. Depart-
ment of Energy INCITE program at Oak Ridge National
Lab, the NSF Teragrid at the Texas Advanced Com-
puter Center and the Pittsburgh Supercomputer Center,

J

18

as well as at Jefferson Lab. RGE and JJD acknowledge
support from U.S. Department of Energy contract DE-
AC05-060R23177, under which Jefferson Science Asso-
ciates, LLC, manages and operates Jefferson Laboratory.
JJD also acknowledges the support of the Jeffress Memo-
rial Fund and the U.S. Department of Energy Early Ca-
reer award contract DE-SC0006765. CET acknowledges
support from a Marie Curie International Incoming Fel-
lowship, PITF-GA-2010-273320, within the 7th European
Community Framework Programme. RGE thanks the
Galileo Galilei Institute for Theoretical Physics for the
hospitality and the INFN for partial support during the
completion of this work.

Appendix A: Finite-volume phase-shift relations for d¢;~1 =0

A general procedure for generating the little-group irrep matrix-elements M in: E[}

1)

n’

which are used to construct the

matrix U in Eqn 7, is provided in [17], along with the required subductions for all £ < 4. In the case of equal-mass
pseudoscalar-pseudoscalar scattering (as is relevant in this 77 case), and assuming dy~1 = 0, we can reduce Eqn 7 to

the following simple forms for various P=

[nznyn.] and irreps,

1 [ _100n 21 n
[00n] Ay : cotd1(Eem) = po Vo Z[OO ](qz) + 7—22[00 ](q )}
1 T oroom 11
[00n] Es :  cotdy(Eem) = m Z([)?g ](q2) 772& ](q2)}
1 [ Onn 1 1 Onn . 61 Onn 31 Onn
[Onn] A; : COt51(Ecm)=m Z([J,O ]( 2)+ﬁq7 é,o ]( 2)+@\/g(1222[’1 }(qQ)_ /170(7222[,2 }(qQ)]
1 [ Onn 1 1 Onn . 61 Onn 31 Onn
(Onn] Br s cot81(Fem) = 5 | Z067(6%) + =5 20 ](q2>—zﬁq22£,1 @) = {522 }@2)]
1] 11 o 61
[Onn] By :  cotdy(Eem) = m Z([,?gn] (¢®) — —5(1—223?3 L]( e \/;q22£(gm] (qz)]
L 8 1, fnnn /81 i 8 1 -
[nnn] A; : COtél(Ecm):m Zé,o ](QQ)— B é,g ]( %) — E?Re [Z£,1 ](qz)} qulm{ £,1 ]
1 [ nnn . /61 nnn
[nnn] Es : cotél(Ecm):m Z([J,O ](q2)+l £ 52 ](qQ)]

where Zf (g?) is the generalized zeta function [4] with argument ¢* = (

Pem L
2w

)"
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