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We study the next-to-leading order perturbative QCD corrections to the transverse momentum-
weighted Sivers asymmetry in semi-inclusive hadron production in lepton-proton deep inelastic scat-
tering. The corresponding differential cross section is evaluated as a convolution of a twist-three
quark-gluon correlation function, often referred to as Qiu-Sterman function, the usual unpolarized
fragmentation function, and a hard coefficient function. By studying the collinear divergence struc-
ture, we identify the evolution kernel for the Qiu-Sterman function. The hard coefficient function,
which is finite and free of any divergence, is evaluated at one-loop order.

PACS numbers: 12.38.Bx, 12.39.St, 13.85.Hd, 13.88.+e

I. INTRODUCTION

In recent years, transverse spin physics has attracted tremendous attention from both the experimental and theo-
retical communities. As transverse spin can correlate with the transverse momentum of the partons inside a polarized
proton, transverse spin observables, such as single transverse spin asymmetries (SSAs), are sensitive probes of par-
ton’s transverse motion and a path to three-dimensional proton tomography [1]. Significant theoretical progress has
been made in studying the single transverse spin asymmetries in the past several years. Two QCD mechanisms for
generating SSAs have been proposed and applied extensively to phenomenology: the transverse momentum dependent
(TMD) factorization approach [2–6] and the collinear twist-3 factorization approach [7–11]. They were shown to be
closely related and, thus, provide a unified picture for the SSAs [12].
One of the most studied asymmetries is the so-called Sivers effect [13]. At the partonic level, it corresponds to an

azimuthal correlation ∼ S⊥ · (P × k⊥), with S⊥ and P being the spin and momentum vector of the polarized proton
and k⊥ being the transverse momentum of the parton. Such correlation is encoded in the so-called Sivers function,
if one uses the TMD factorization formalism; or the twist-3 quark-gluon correlation function, often referred to as
Qiu-Sterman function, within the collinear twist-3 factorization formalism. The evolution equations for either the
Sivers function [14–17] or the Qiu-Sterman function [18–25] have been derived recently, which enhances the accuracy
of the phenomenological applications.
A natural step forward, as a follow-up to the derivation of evolution equations, will be the computation of the next-

to-leading order (NLO) corrections to the transverse spin-dependent cross sections. Although tremendous progress has
been made in the evaluation of NLO perturbative QCD (pQCD) corrections to the spin-averaged cross sections, similar
efforts on the transverse spin-dependent cross sections are still rather limited. This is largely due to the complexity of
such type of calculations. So far, the only NLO correction in this direction is performed for Drell-Yan production [20].
NLO corrections to other processes will provide process-dependent corrections to the hard-part coefficient functions,
and can also be used to extract the universal behavior of the evolution kernel for the relevant spin-dependent parton
distributions and/or fragmentation functions. A NLO calculation for a particular physical process, thus, provides a
direct test of QCD factorization for the associated observables.
In this paper we follow Ref. [20] on the Drell-Yan production and perform a NLO calculation for the Ph⊥-weighted

Sivers asymmetry in semi-inclusive deep inelastic scattering (SIDIS). Here, Ph⊥ is the transverse momentum of the
final-state hadron. Since the transverse momentum is being integrated out, our result is presented within the collinear
factorization formalism in terms of twist-3 Qiu-Sterman function, NLO hard-part coefficient function, and the usual
unpolarized fragmentation function, as we demonstrate in detail below. We expect that our result will lead to an
improved extraction of Qiu-Sterman function at the NLO level from the SIDIS data. A similar opportunity has
been recently discussed for the inclusive DIS process [26]. The rest of our paper is organized as follows. In Sec.
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II we introduce the notation for the semi-inclusive hadron production in deep inelastic scattering and present the
Ph⊥-weighted Sivers asymmetry at leading order. In Sec. III we present the NLO pQCD corrections. We first give
the result for virtual corrections and then study the real corrections. We then combine the real and virtual parts to
obtain the final cross section. We show that all the soft divergences cancel out between real and virtual corrections.
The remaining collinear divergence is absorbed in the redefinition of the unpolarized fragmentation function, and the
twist-3 Qiu-Sterman function. This provides an alternative way to derive the evolution equation for the Qiu-Sterman
function. We conclude our paper in Sec. IV.

II. TRANSVERSE MOMENTUM-WEIGHTED SIVERS ASYMMETRY AT LEADING ORDER

We start this section by specifying our notation and the kinematics of SIDIS. We consider the scattering of an
unpolarized lepton e with momentum ℓ, on a transversely polarized proton p with momentum P and transverse spin
vector S⊥,

e(ℓ) + p(P, S⊥) → e(ℓ′) + h(Ph) +X, (1)

where h represents the observed final-state meson with momentum Ph. In the approximation of one-photon exchange,
we define the virtual photon momentum q = ℓ − ℓ′ and its invariant mass Q2 = −q2. The usual SIDIS variables are
defined as follows:

S = (P + ℓ)2, xB =
Q2

2P · q
, y =

P · q

P · ℓ
=

Q2

xBS
, zh =

P · Ph

P · q
. (2)

The differential cross section that includes the so-called Sivers effect, the sin(φh − φs) module, can be written as the
following form [27]

dσSivers
dxBdydzhd2Ph⊥

= σ0

[

FUU + sin(φh − φs)F
sin(φh−φs)
UT

]

, (3)

where σ0 =
2πα2

em

Q2

1+(1−y)2

y
, FUU and F

sin(φh−φs)
UT are the spin-averaged and transverse spin-dependent structure

functions, respectively. φh and φs are the azimuthal angles for the final-state hadron momentum Ph and spin vector
S⊥. In this paper, we define all our angles in the so-called hadron frame [28]. The spin-averaged differential cross
section dσ/dxBdydzhd

2Ph⊥ ≡ σ0FUU , and the Ph⊥-integrated spin-averaged cross section is defined as

dσ

dxBdydzh
≡

∫

d2Ph⊥

dσ

dxBdydzhd2Ph⊥

. (4)

At the same time, the transverse spin-dependent differential cross section d∆σ(S⊥)/dxBdydzhd
2Ph⊥ ≡ σ0 sin(φh −

φs)F
sin(φh−φs)
UT , and the transverse momentum-weighted transverse spin-dependent cross section is given by [5]

d〈Ph⊥∆σ(S⊥)〉

dxBdydzh
≡

∫

d2Ph⊥ǫ
αβSα

⊥P
β
h⊥

d∆σ(S⊥)

dxBdydzhd2Ph⊥

, (5)

where ǫαβ is a two-dimensional anti-symmetric tensor with ǫ12 = 1, and ǫαβSα
⊥P

β
h⊥ = Ph⊥ sin(φh − φs). Thus, the

Ph⊥-weighted Sivers asymmetry is given by

A
Ph⊥ sin(φh−φs)
UT (xB , y, zh) ≡

d〈Ph⊥∆σ(S⊥)〉

dxBdydzh

/

dσ

dxBdydzh
. (6)

There are multiple studies on the higher order pQCD corrections to the spin-averaged cross sections, see, for example,
Ref. [29]. As a warm-up excercise, we also calculate this cross section to NLO order, and our findings are consistent
with Ref. [29]. Since this result is well-known, we only give the final expression here (in the MS scheme)

dσ

dxBdydzh
= σ0

∑

q

e2q

∫

dx

x

dz

z
q(x, µ2)Dq→h(z, µ

2)δ(1− x̂)δ(1− ẑ) + σ0
αs

2π

∑

q

e2q

∫

dx

x

dz

z
q(x, µ2)Dq→h(z, µ

2)

×

{

ln

(

Q2

µ2

)

[Pqq(x̂)δ(1 − ẑ) + Pqq(ẑ)δ(1− x̂)] + CF

[

1 + (1− x̂− ẑ)2

(1− x̂)+(1− ẑ)+
− 8δ(1− x̂)δ(1 − ẑ)

]

+δ(1− ẑ)CF

[

(1 + x̂2)

(

ln(1− x̂)

1− x̂

)

+

−
1 + x̂2

1− x̂
ln x̂+ (1− x̂)

]

+δ(1− x̂)CF

[

(1 + ẑ2)

(

ln(1− ẑ)

1− ẑ

)

+

+
1 + ẑ2

1− ẑ
ln ẑ + (1− ẑ)

]}

, (7)



3

where x̂ = xB/x and ẑ = zh/z and Pqq(x) is the usual spin-averaged quark-to-quark splitting kernel

Pqq(x) = CF

[

1 + x2

(1 − x)+
+

3

2
δ(1 − x)

]

. (8)

Let us now concentrate on the NLO correction to the transverse spin-dependent differential cross section. This will
allow us to study the Ph⊥-weighted Sivers asymmetry, as in Eq. (6), at next-to-leading order. We will start with
the leading order calculation for the transverse spin-dependent cross section. At this order, the final-state hadron is
produced through the hadronization of the quark, which comes from the virtual-photon quark scattering. In order
to obtain a non-vanishing Ph⊥-weighted transverse spin-dependent cross section 〈Ph⊥∆σ(S⊥)〉, we have to include
the final-state multiple interactions, as shown in Fig. 1, to provide the required phase [8]. We work in the covariant

x1p
(x2 − x1)p+ k⊥

x2p + k⊥

pc
q

µ ν

x1p
(x2 − x1)p+ k⊥

x2p + k⊥

pc
q

µ ν

FIG. 1. Leading order Feynman diagrams. Left: gluon to the left of the cut. Right: gluon to the right of the cut.

gauge. For the gluon on the left of the t = ∞ cut, shown in Fig. 1(left), we have the Ph⊥-weighted cross section as

d〈Ph⊥∆σ(S⊥)〉

dxBdydzh

∣

∣

∣

∣

Fig. 1(left)

∝

∫

d2Ph⊥ǫ
αβSα

⊥P
β
h⊥

∫

dzDq→h(z)

∫

dx1dx2d
2k⊥Tq,A(x1, x2, k⊥)

× [−gµνHµν(x1, x2, k⊥)] δ
2 (Ph⊥ − zk⊥) . (9)

Here (and throughout the paper), for simplicity we only consider the so-called metric contribution [29–31]. This means
that we contract our hadronic tensor Hµν with −gµν . The twist-3 correlation function Tq,A(x1, x2, k⊥) is defined as

Tq,A(x1, x2, k⊥) =

∫

dy−1
2π

dy−2
2π

d2y⊥
(2π)2

eix1P
+y

−

1 ei(x2−x1)P
+y

−

2 eik⊥·y⊥
1

2
〈PS|ψ̄q(0)γ

+A+(y−2 , y⊥)ψq(y
−
1 )|PS〉. (10)

One can take advantage of δ2 (Ph⊥ − zk⊥) to integrate out d2Ph⊥, thus P
β
h⊥ = zkβ⊥. We then use kβ⊥ to convert

A+ to the F+β field strength through integration by parts [33]. At the same time, one realizes that the Feynman
diagram with the gluon to the right of the cut (Fig. 1(right)) gives no contribution to the Ph⊥-weighted Sivers
asymmetry. This is because with our choice of frame for this diagram the final-state hadron momentum is given by
Ph = z pc = z(x1p+q), thus Ph⊥ = 0 and then the Ph⊥-weighted spin-dependent cross section 〈Ph⊥∆σ(S⊥)〉 vanishes.
This conclusion also holds true in the virtual diagram calculation.
The required phase to generate a Sivers asymmetry comes from a pole in the propagator, which is represented by

a short-bar in Fig. 1,

1

(pc − (x2 − x1)P )
2
+ iǫ

=
1

2P · pc

1

x1 − x2 + iǫ
→

1

2P · pc
(−iπ)δ(x1 − x2). (11)

With this phase, we have

gs

∫

d2k⊥iǫ
αβSα

⊥k
β
⊥Tq,A(x1, x2, k⊥) =

1

2π
Tq,F (x1, x2), (12)

where Tq,F (x1, x2) is the well-known Qiu-Sterman function, with the following definition:

Tq,F (x1, x2) =

∫

dy−1 dy
−
2

4π
eix1P

+y
−

1
+i(x2−x1)P

+y
−

2
1

2
〈PS|ψ̄q(0)γ

+ǫαβS⊥αF
+
β(y

−
2 )ψq(y

−
1 )|PS〉. (13)

Finally, the Ph⊥-weighted Sivers asymmetry at LO has the following form [5]

d〈Ph⊥∆σ(S⊥)〉

dxBdydzh
= −

zhσ0
2

∑

q

e2q

∫

dx

x

dz

z
Tq,F (x, x)Dq→h(z)δ(1 − x̂)δ(1 − ẑ), (14)
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where we recall that x̂ = xB/x and ẑ = zh/z. Since we will use dimensional regularization for our NLO calculation in
the next section, we also need the LO result in n = 4− 2ǫ dimension. We find that the only change is the appearance
of 1− ǫ in the overall normalization of σ0, i.e. in n = 4− 2ǫ dimension we have σ0 in Eq. (14) defined as

σ0 =
2πα2

em

Q2

1 + (1 − y)2

y
(1− ǫ). (15)

III. TRANSVERSE MOMENTUM-WEIGHTED SIVERS ASYMMETRY AT NLO

In this section we present the NLO pQCD corrections to the transverse spin-dependent differential cross section. We
first give the result for virtual corrections, and then study the real corrections. We then combine the real and virtual
corrections to obtain the final expression. We show that all the soft divergences cancel out between real and virtual
diagrams. The remaining collinear divergence can be absorbed by the redefinition of the unpolarized fragmentation
function, and the twist-3 Qiu-Sterman function. This provides an alternative way to derive the evolution equation
for the Qiu-Sterman function.

A. Virtual corrections

FIG. 2. The generic Feynman diagrams for the virtual corrections to the Ph⊥-weighted cross section.

We first study the virtual corrections. The relevant generic Feynman diagrams are shown in Fig. 2. Here, we only
include the diagrams which have the gluon attached to the left of the cut. This is because the diagrams with the gluon
to the right of the cut, just like in the LO calculation, give no contribution to the Ph⊥-weighted Sivers asymmetry
because of the same δ-function δ2(Ph⊥). The blob in Fig. 2(left) is given by Fig. 3. These diagrams are pretty easy to
compute since they are the same as the usual virtual corrections in the unpolarized cross section. The result is given
by [29]

d〈Ph⊥∆σ(S⊥)〉

dxBdydzh

∣

∣

∣

∣

Fig. 2(left)

= −
zhσ0
2

αs

4π

∑

q

e2q

∫

dx

x

dz

z
Tq,F (x, x)Dq→h(z)δ(1− x̂)δ(1− ẑ)

×CF

(

4πµ2

Q2

)ǫ
1

Γ(1 − ǫ)

[

−
2

ǫ2
−

3

ǫ
− 8

]

(16)

FIG. 3. One-loop virtual corrections for the Ph⊥-weighted cross section: shown here are the corrections to the quark-photon-
quark vertex, corresponding to the blob in Fig. 2(left).

On the other hand, the blob in Fig. 2(right) is much more complicated and the explicit diagrams are given in Fig. 4.
The calculation is lengthy and contains significant amount of tensor reduction and integration. The diagrams contain
three types of color factors: (a) and (e) have color factors CF ; (b), (c) and (f) have color factors −1/2Nc = CF −Nc/2;
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(a) (b) (c) (d)

(e) (f) (g)

FIG. 4. One-loop virtual corrections for the Ph⊥-weighted cross section: shown here are the corrections to the quark-photon-
quark vertex with gluon attachment, corresponding to the blob in Fig. 2(right).

(d) and (g) have color factorsNc/2. We find that the terms associated withNc/2 cancel out and only the color structure
proportional to CF remains. The final result is

d〈Ph⊥∆σ(S⊥)〉

dxBdydzh

∣

∣

∣

∣

Fig. 2(right)

= −
zhσ0
2

αs

4π

∑

q

e2q

∫

dx

x

dz

z
Tq,F (x, x)Dq→h(z)δ(1− x̂)δ(1− ẑ)

×CF

(

4πµ2

Q2

)ǫ
1

Γ(1− ǫ)

[

−
2

ǫ2
−

3

ǫ
− 8

]

(17)

Thus, the virtual correction is given by the sum of both diagrams in Fig. 2:

d〈Ph⊥∆σ(S⊥)〉

dxBdydzh

∣

∣

∣

∣

virtual

= −
zhσ0
2

αs

2π

∑

q

e2q

∫

dx

x

dz

z
Tq,F (x, x)Dq→h(z)δ(1− x̂)δ(1 − ẑ)

×CF

(

4πµ2

Q2

)ǫ
1

Γ(1− ǫ)

[

−
2

ǫ2
−

3

ǫ
− 8

]

(18)

B. Real corrections

Let us now study the real corrections. We point out that we only consider contributions associated with twist-3 Qiu-
Sterman function. We do not discuss in the current study contributions entering with a tri-gluon correlation function
[10]. We also ignore contributions of the “axial” twist-three quark-gluon correlation function considered in [32]. Both
contributions lead to additional terms in the evolution of Qiu-Sterman function, as demonstrated already in [18, 21, 23],
but from different approaches. To calculate the real corrections to the transverse spin-dependent cross section, we
need to perform the usual k⊥-expansion (also referred to as collinear expansion). The techniques for k⊥-expansion
are well established in the literature, see e.g. Refs. [8–11]. The Ph⊥-weighted cross section can be written as follows:

d〈Ph⊥∆σ(S⊥)〉

dxBdydzh

∣

∣

∣

∣

Real

∝

∫

d2Ph⊥ǫ
αβSα

⊥P
β
h⊥

∫

dzDq→h(z)

∫

dx1dx2d
2k⊥Tq,A(x1, x2, k⊥)

×kρ⊥
∂

∂kρ⊥
[−gµνHµν(x1, x2, k⊥)] (19)

Again, we need a phase to generate the Sivers asymmetry, which also comes from the pole in the propagators. For
the SIDIS process we can have both soft-pole and hard-pole contributions. Soft-pole contributions come from the
Feynman diagrams shown in Fig. 5, with the soft-pole marked by a short bar in the diagram. For gluon to the left of
the cut, it arises from

1

(pc − (x2 − x1)P − k⊥)
2
+ iǫ

=
1

2P · pc

1

x1 − x2 − v1 · k⊥ + iǫ
→ −

x

û
(−iπ)δ(x1 − x2 + v1 · k⊥), (20)

where the Mandelstam variables are defined as

ŝ = (xP + q)2, t̂ = (pc − q)2, û = (xP − pc)
2. (21)
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Here, pc is the momentum of the final-state quark which fragments into the observed hadron and vµ1 = 2xpµc /û. When
k⊥ → 0, x1 = x2, i.e. the attached gluon momentum becomes zero. This clarifies the name “soft-pole” contribution.

FIG. 5. Feynman diagrams for soft-pole contributions to the Ph⊥-weighted transverse spin-dependent cross section. The short
bars indicate the propagators where the soft pole arises. The “mirror” diagrams (those with gluon attached to the right of the
cut) are not shown, but are included in the calculations.

On the other hand, the hard-pole contributions come from the Feynman diagrams shown in Fig. 6, with the
hard-pole marked by a short-bar in the diagram. For the gluon to the left of the cut, the phase arises as follows:

1

(x1P + q)2 + iǫ
→

1

2P · q

1

x1 − xB + iǫ
→

x

ŝ+Q2
(−iπ)δ(x1 − xB), (22)

which sets x1 = xB = xQ2/(ŝ + Q2). On the other hand, the on-shell condition for the unobserved gluon leads to
another δ-function, δ(x2 − x − v2 · k⊥) with vµ2 = −2xpµc /t̂. Thus when k⊥ → 0, the attached gluon momentum
∼ x2 − x1 = x− xB = xŝ/(ŝ+Q2), which is finite. This clarifies the name “hard-pole” contribution.

FIG. 6. Feynman diagrams for hard-pole contributions to the Ph⊥-weighted transverse spin-dependent cross section. The short
bars indicate the propagators where the hard pole arises. The “mirror” diagrams (those with gluon attached to the right of
the cut) are not shown, but are included in the calculations.

The collinear expansion for both soft-pole and hard-pole contributions are straightforward. After such an expansion,
we will have a linear P ρ

h⊥-dependence:

∂

∂kρ⊥
[−gµνHµν(x1, x2, k⊥)] ∝ pρc⊥ =

P ρ
h⊥

z
. (23)

This linear P ρ
h⊥ will combine with P β

h⊥ in Eq. (19) to become P 2
h⊥,

P β
h⊥P

ρ
h⊥ →

1

2(1− ǫ)
P 2
h⊥g

βρ
⊥ , (24)

where gβρ⊥ is the metric tensor in the transverse components. We can further express P 2
h⊥ in terms of Mandelstam

variables,

P 2
h⊥ = z2

ŝt̂û

(ŝ+Q2)2
. (25)
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Finally our result for the real corrections is given by

d〈Ph⊥∆σ(S⊥)〉

dxBdydzh

∣

∣

∣

∣

Real

= −
1

2
σ0

∑

q

e2q

∫

dx

x
dzDq→h(z)

αs

2π

(

4πµ2

Q2

)ǫ
1

Γ(1 − ǫ)

1

1− ǫ
ẑ−ǫ(1− ẑ)−ǫx̂ǫ(1− x̂)−ǫ

×

[

x
d

dx
Tq,F (x, x)D

s
q + Tq,F (x, x)N

s
q + Tq,F (x, xB)N

h
q

]

, (26)

where we have used the expression for the two-body phase space integral in n = 4− 2ǫ dimension

dPS(2) =
dn−1pc

(2π)n−12p0c

dn−1pd
(2π)n−12p0d

(2π)nδn(xP + q − pc − pd),

=
dzh
z

1

8π

(

4π

Q2

)ǫ
1

Γ(1− ǫ)
ẑ−ǫ(1− ẑ)−ǫx̂ǫ(1 − x̂)−ǫ. (27)

The hard-part coefficient functions in Eq. (26) are

Ds
q =

1

2Nc

ŝ

ŝ+Q2

[

(1− ǫ)

(

−
ŝ

t̂
−
t̂

ŝ

)

+
2Q2û

ŝt̂
+ 2ǫ

]

, (28)

Ns
q =

1

2Nc

1

ŝt̂(ŝ+Q2)

[

(ŝ+Q2)3 +Q2(û2 − ŝ2) + ŝ(ŝ+ û)2 − ǫ(Q2 + û)
(

(Q2 + û)(Q2 + ŝ) + 2Q2ŝ
)]

, (29)

Nh
q =

[

û

t̂+ û
CF +

1

2Nc

]

1

ŝt̂(ŝ+Q2)

[

(t̂+ û)3 −Q2û2 + ǫt̂(Q2 + û)(t̂+ û)
]

. (30)

C. Combining the real and virtual corrections

To combine real and virtual corrections and demonstrate how the divergences cancel out, we need to perform the
ǫ-expansion for the real corrections in Eq. (26). To proceed, we realize that

ŝ =
1− x̂

x̂
Q2, t̂ = −

1− ẑ

x̂
Q2, û = −

ẑ

x̂
Q2. (31)

Let us define the following common factor:

I =
1

1− ǫ
ẑ−ǫ(1− ẑ)−ǫx̂ǫ(1− x̂)−ǫ. (32)

We carry out the ǫ-expansion for the I × (Ds
q , N

s
q , N

h
q ) terms. Using the following formulas [29]:

ẑ−ǫ(1− ẑ)−ǫ−1 = −
1

ǫ
δ(1− ẑ) +

1

(1 − ẑ)+
− ǫ

(

ln(1− ẑ

1− ẑ

)

+

− ǫ
ln ẑ

1− ẑ
, (33)

x̂ǫ(1− x̂)−ǫ−1 = −
1

ǫ
δ(1− x̂) +

1

(1− x̂)+
− ǫ

(

ln(1− x̂

1− x̂

)

+

+ ǫ
ln x̂

1− x̂
, (34)

ẑ−ǫ(1− ẑ)−ǫ = 1− ǫ ln ẑ − ǫ ln(1− ẑ), (35)

x̂ǫ(1− x̂)−ǫ = 1 + ǫ ln x̂− ǫ ln(1− x̂), (36)

we present the expanded results for these hard-part coefficient functions. For the so-called derivative term Ds
q we have

I ×Ds
q =

1

2Nc

[

−
1

ǫ
(1 + x̂2)δ(1 − ẑ) + (1− ẑ) +

(1− x̂)2 + 2x̂ẑ

(1− ẑ)+
− (1 + x̂2) ln

x̂

1− x̂
δ(1− ẑ)− 2x̂δ(1− ẑ)

]

. (37)

For the first divergent piece we further perform integration by parts to convert x d
dx
Tq,F (x, x) to the function Tq,F (x, x)

itself:

1

2Nc

∫ 1

xB

dx

x
x
d

dx
Tq,F (x, x)(1 + x̂2) =

1

2Nc

∫ 1

xB

dx

x
Tq,F (x, x)

[

2x̂2 − 2δ(1− x̂)
]

. (38)
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Thus, the term associated with Ds
q leads to the following expression:

∫

dx

x

(

−
1

ǫ

)

δ(1− ẑ)Tq,F (x, x)
1

2Nc

[

2x̂2 − 2δ(1− x̂)
]

+x
dx

x
Tq,F (x, x)

1

2Nc

[

(1 − ẑ) +
(1− x̂)2 + 2x̂ẑ

(1− ẑ)+
− (1 + x̂2) ln

x̂

1− x̂
δ(1 − ẑ)− 2x̂δ(1− ẑ)

]

. (39)

Likewise, we have

I ×Ns
q =

1

2Nc

{

−
2

ǫ2
δ(1− x̂)δ(1 − ẑ)−

2

ǫ
δ(1 − x̂)δ(1 − ẑ) +

1

ǫ

1 + ẑ2

(1− ẑ)+
δ(1− x̂)

−
1

ǫ

2x̂3 − 3x̂2 − 1

(1− x̂)+
δ(1− ẑ)− 2δ(1− x̂)δ(1− ẑ)

+δ(1− ẑ)

[

−(1− x̂)(1 + 2x̂) ln
x̂

1− x̂
− 2

(

ln(1 − x̂)

1− x̂

)

+

+
2

(1− x̂)+
− 2(1− x̂) + 2

ln x̂

1− x̂

]

+δ(1− x̂)

[

(1 + ẑ) ln ẑ(1− ẑ)− 2

(

ln(1− ẑ)

1− ẑ

)

+

+
2ẑ

(1− ẑ)+
− 2

ln ẑ

1− ẑ

]

+
2x̂3 − 3x̂2 − 1

(1− x̂)+(1− ẑ)+
+

1 + ẑ

(1 − x̂)+
− 2(1− x̂)

}

, (40)

I ×Nh
q =

[

ẑCF +
1

2Nc

]

{

2

ǫ2
δ(1− x̂)δ(1− ẑ) +

2

ǫ
δ(1− x̂)δ(1 − ẑ)−

1

ǫ

1 + ẑ2

(1 − ẑ)+
δ(1 − x̂)

−
1

ǫ

1 + x̂

(1 − x̂)+
δ(1 − ẑ) + 2δ(1− x̂)δ(1 − ẑ) +

1 + x̂ẑ2

(1− x̂)+(1− ẑ)+

+δ(1− ẑ)

[

ln
x̂

1− x̂
+ 2

(

ln(1 − x̂)

1− x̂

)

+

− 2
ln x̂

1− x̂
−

1 + x̂

(1 − x̂)+

]

+δ(1− x̂)

[

−(1 + ẑ) ln ẑ(1− ẑ) + 2

(

ln(1− ẑ)

1− ẑ

)

+

+ 2
ln ẑ

1− ẑ
−

2ẑ

(1− ẑ)+

]}

. (41)

Now let us combine the results for the real corrections in Eqs. (39), (40), and (41) with the virtual correction in
Eq. (18). First, for the double-pole 1/ǫ2 term, which represents a soft-collinear divergence, we find that they cancel
out between real and virtual diagrams. Specifically, the term ∼ 1/2Nc in the soft-pole contribution Ns

q cancel the

corresponding term in the hard-pole contribution Nh
q , which leaves the remaining 1/ǫ2 term in Nh

q with a color factor

CF . This remaining term exactly cancels the 1/ǫ2 term in the virtual diagrams.

Now we turn our attention to the 1/ǫ term. By adding the corresponding terms in real and virtual diagrams, we
end up with the following expression:

ẑ

(

−
1

ǫ

)

[δ(1 − x̂)Tq,F (x, x)Pqq(ẑ) + δ(1 − ẑ)Pqg→qg ⊗ Tq,F (x, xx̂)] , (42)

where Pqq(ẑ) is the usual quark-to-quark splitting kernel, as in Eq. (8). Thus, the first term, the part containing ẑ,

is just the collinear QCD correction to the bare leading order fragmentation function D
(0)
q→h(zh) (after including the

pre-factor (4πµ2/Q2)ǫ/Γ[1− ǫ]):

Dq→h(zh) = D
(0)
q→h(zh) +

αs

2π

∫ 1

zh

dz

z

(

−
1

ǫ̂

)

Dq→h(z)Pqq(ẑ), (43)

where we have adopted MS-scheme, and

1

ǫ̂
=

1

ǫ
− γE + ln 4π. (44)
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On the other hand, the second term − 1
ǫ
Pqg→qg ⊗ Tq,F (x, xx̂) is given by

(

−
1

ǫ

)

Pqg→qg ⊗ Tq,F (x, xx̂) =

(

−
1

ǫ

)

{

Tq,F (x, x)CF

[

1 + x̂2

(1− x̂)+
+

3

2
δ(1− x̂)

]

−Ncδ(1− x̂)Tq,F (x, x)

+
Nc

2

[

1 + x̂

(1− x̂)+
Tq,F (x, xx̂)−

1 + x̂2

(1 − x̂)+
Tq,F (x, x)

]

}

, (45)

from which we immediately obtain the collinear QCD correction to the leading order bare Qiu-Sterman function

T
(0)
q,F (xB , xB) as follows:

Tq,F (xB, xB) = T
(0)
q,F (xB , xB) +

αs

2π

∫ 1

xB

dx

x

(

−
1

ǫ̂

)

{

Tq,F (x, x)CF

[

1 + x̂2

(1 − x̂)+
+

3

2
δ(1 − x̂)

]

−Ncδ(1− x̂)Tq,F (x, x)

+
Nc

2

[

1 + x̂

(1− x̂)+
Tq,F (x, xx̂)−

1 + x̂2

(1− x̂)+
Tq,F (x, x)

]

}

. (46)

From this equation, we can obtain the evolution equation for the twist-3 Qiu-Sterman function as follows

∂

∂ lnµ2
Tq,F (xB , xB, µ

2) =
αs

2π

∫ 1

xB

dx

x

{

Tq,F (x, x, µ
2)CF

[

1 + x̂2

(1− x̂)+
+

3

2
δ(1− x̂)

]

−Ncδ(1− x̂)Tq,F (x, x, µ
2)

+
Nc

2

[

1 + x̂

(1− x̂)+
Tq,F (x, xx̂, µ

2)−
1 + x̂2

(1 − x̂)+
Tq,F (x, x, µ

2)

]

}

. (47)

This result agrees with earlier findings from different approaches [21, 23–25]. In particular, we are able to reproduce
the term −NcTq,F (x, x, µ

2), which was missing in some early works [18–20]. This piece arises as follows: there is a
boundary term ∝ 2

ǫ
1

2Nc
δ(1− x̂) from Ds

q , as in Eqs. (38) and (39), and this term cancels the same term with opposite

sign in Ns
q in Eq. (40). On the other hand, the hard-pole contribution Nh

q contains the following term:

[

ẑCF +
1

2Nc

]

2

ǫ
δ(1− x̂)δ(1− ẑ) =

(

CF +
1

2Nc

)

2

ǫ
δ(1− x̂)δ(1− ẑ) =

(

−
1

ǫ

)

[−Ncδ(1− x̂)δ(1 − ẑ)] , (48)

which gives exactly the −NcTq,F (x, x, µ
2) term to the evolution of the Qiu-Sterman function Tq,F (x, x, µ

2).

Now, let us turn to the finite NLO corrections to the hard-part coefficient function. After MS subtraction of the
collinear divergences into the fragmentation function Dq→h(z, µ

2) and the twist-3 Qiu-Sterman function Tq,F (x, x, µ
2),

we obtain the NLO correction for both soft-pole and hard-pole contributions to the Ph⊥-weighted transverse spin-
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dependent cross section:

d〈Ph⊥∆σ(S⊥)〉

dxBdydzh
= −

zhσ0
2

∑

q

e2q

∫ 1

xB

dx

x

∫ 1

zh

dz

z
Tq,F (x, x, µ

2)Dq→h(z, µ
2)δ(1− x̂)δ(1− ẑ)

−
zhσ0
2

αs

2π

∑

q

e2q

∫ 1

xB

dx

x

∫ 1

zh

dz

z
Dq→h(z, µ

2)

{

ln

(

Q2

µ2

)

[

δ(1 − x̂)Tq,F (x, x, µ
2)Pqq(ẑ)

+δ(1− ẑ)Pqg→qg ⊗ Tq,F (x, xx̂, µ
2)
]

+x
d

dx
Tq,F (x, x, µ

2)
1

2Nc

[

1− ẑ

ẑ
+

(1− x̂)2 + 2x̂ẑ

ẑ(1− ẑ)+
− δ(1 − ẑ)

(

(1 + x̂2) ln
x̂

1− x̂
+ 2x̂

)]

+Tq,F (x, x, µ
2)δ(1− ẑ)

1

2Nc

[

(2x̂2 − x̂− 1) ln
x̂

1− x̂
− 2

(

ln(1− x̂)

1− x̂

)

+

+
2x̂(2 − x̂)

(1 − x̂)+
+ 2

ln x̂

1− x̂

]

+Tq,F (x, x, µ
2)δ(1− x̂)CF

[

−(1 + ẑ) ln ẑ(1− ẑ) + 2

(

ln(1− ẑ)

1− ẑ

)

+

−
2ẑ

(1− ẑ)+
+ 2

ln ẑ

1− ẑ

]

+Tq,F (x, x, µ
2)

1

2Ncẑ

[

2x̂3 − 3x̂2 − 1

(1− x̂)+(1− ẑ)+
+

1 + ẑ

(1− x̂)+
− 2(1− x̂)

]

+Tq,F (x, xx̂, µ
2)δ(1 − ẑ)

Nc

2

[

ln
x̂

1− x̂
+ 2

(

ln(1 − x̂)

1− x̂

)

+

− 2
ln x̂

1− x̂
−

1 + x̂

(1 − x̂)+

]

+Tq,F (x, xx̂, µ
2)

1 + x̂ẑ2

(1 − x̂)+(1 − ẑ)+

(

CF +
1

2Ncẑ

)

− Tq,F (x, x, µ
2)6CF δ(1− x̂)δ(1 − ẑ)

}

(49)

Just like the NLO correction to the spin-averaged cross section in Eq. (7), the logarithms containing the factorization
scale together with the splitting functions determine the evolution of the twist-3 Qiu-Sterman function and the usual
unpolarized quark-to-hadron fragmentation function. Eq. (49) is the main result of our paper: once combined with
the NLO spin-averaged cross section in Eq. (7), one will be able to compute the Ph⊥-weighted Sivers asymmetry as
defined in Eq. (6).

IV. CONCLUSIONS

We calculated the next-to-leading order perturbative QCD corrections to the transverse momentum-weighted Sivers
asymmetry in semi-inclusive hadron production in lepton-proton deep inelastic scattering. Specifically, we demon-
strated in detail how to evaluate at NLO the Ph⊥-weighted transverse spin-dependent differential cross section. We
found that the result can be written as a convolution of a twist-3 quark-gluon correlation function (often referred as
Qiu-Sterman function), the usual unpolarized fragmentation function and the hard coefficient function. In the course
of this calculation we showed that the soft divergences cancel out between real and virtual contributions, and that
the collinear divergences can be absorbed into the NLO twist-3 Qiu-Sterman function of the transversely polarized
proton and the unpolarized quark-to-hadron fragmentation function. Such a procedure also provides an alternative
way to identify the evolution equation for the twist-3 Qiu-Sterman function. We found that our evolution equation
agrees with those derived previously from different approaches. Using our NLO results for both the spin-averaged and
Ph⊥-weighted transverse spin-dependent differential cross section, we plan to study in the future the Ph⊥-weighted
Sivers asymmetry. We anticipate that our findings will have important phenomenological applications relevant to the
experimental programs at HERMES, COMPASS, and Jefferson Lab.
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