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Double parton scattering is sensitive to correlations between the two partons in the hadron,
including correlations in flavor, spin, color, momentum fractions and transverse separation. We
obtain a first estimate of the size of these correlations by calculating the corresponding double
parton distribution functions in a bag model of the proton. We find significant correlations between
momentum fractions, spin and flavor, but negligible correlations with transverse separation. The
model estimates of the relative importance of these correlations will help experimental studies
disentangle them.

I. INTRODUCTION

High energy scattering processes such as Drell-Yan pro-
duction, pp → ℓ+ℓ−, are described by the scattering of
two incoming partons, and the cross section is given by
the convolution of a partonic scattering cross section σ̂
and parton distribution functions (PDFs). Sometimes
two hard partonic collisions take place within a single
hadronic collision, a process which is known as double
parton scattering (DPS). DPS is higher twist, i.e. it is
suppressed by a power of Λ2

QCD/Q
2, where Q is the par-

tonic center-of-mass energy of the collision. Despite this
power suppression, the DPS scattering rate is still large
enough that it has become a background for new physics
searches at the LHC. For example, DPS contributes to
same-sign WW and same-sign dilepton production [1–
4], and is a background for Higgs studies in the channel
pp → WH → ℓνbb̄ [5–8]. DPS has been observed at the
LHC; a preliminary study using 33 pb−1 of data found
that 16% of the W + 2 jet events were due to DPS [9].
In the original work on DPS, the cross section was

written as [10]

dσ =
1

S

∑

i,j,k,l

∫
d2z⊥ Fij(x1, x2, z⊥, µ)Fkl(x3, x4, z⊥, µ)

× σ̂ik(x1x3

√
s, µ)σ̂jl(x2x4

√
s, µ) . (1)

The double parton distribution function (dPDF)
Fij(x1, x2, z⊥) describes the probability of finding two
partons with flavors i, j = g, u, ū, d, . . . , longitudinal mo-
mentum fractions x1, x2 and transverse separation z⊥ in-
side the hadron. The partonic cross sections σ̂ describe
the short distance processes, and S is a symmetry fac-
tor that arises for identical particles in the final state.
Eq. (1) ignores additional contributions that are sensi-
tive to diparton correlations in flavor, spin and color, as
well as parton-exchange interference contributions [11–
14]. These correlations are present in QCD, and one of
our goals is to estimate the size of these effects.
It is commonly assumed in DPS studies that the depen-

dence on the transverse separation is uncorrelated with
the momentum fractions or parton flavors,

Fij(x1, x2, z⊥, µ) = Fij(x1, x2, µ)G(z⊥, µ) . (2)

In addition, a factorized ansatz is often made

Fij(x1, x2, µ) = fi(x1, µ)fj(x2, µ) θ(1−x1−x2)(1−x1−x2)
n ,

(3)
where f denotes the usual (single) PDF. The factor
θ(1− x1 − x2)(1− x1 − x2)

n smoothly imposes the kine-
matic constraint x1 + x2 ≤ 1, and different values of the
parameter n > 0 have been considered.
The dPDF is a nonperturbative function, but once it is

known at a certain scale µ, its renormalization group evo-
lution can be used to evaluate it at a different scale. The
evolution of Fij(x1, x2, µ) was determined a long time
ago [15, 16]. It has recently been extended to include
the z⊥ dependence and describe correlation and interfer-
ence dPDFs [12–14, 17]. The color-correlated and inter-
ference dPDFs are all Sudakov suppressed at high ener-
gies [14, 18] and will therefore not be considered.
Eventually the dPDFs will be determined by fitting to

experimental data, just as for the usual PDFs. Ref. [19]
goes a step in this direction, showing how angular cor-
relations in double Drell-Yan production may be used to
study spin correlations in dPDFs. In this paper, we de-
termine the dPDFs at a low scale µ ∼ ΛQCD using a bag
model for the proton [20]. This model calculation pro-
vides an estimate of the importance of various diparton
correlations, which can be used to guide the experimen-
tal analysis. It also provides an estimate of dPDF distri-
butions in the absence of more accurate determinations
directly from experiment.
We follow some of the existing structure function cal-

culations in the bag model [21–23]. There are obvious
limitations to this approach, just as for bag model cal-
culations of the usual PDFs. First of all, the bag model
only describes valence quarks. Bag model calculations
are only meaningful when the fields in the dPDF act
inside the bag, which restricts the momentum fractions
x >∼ 1/(2MR) ∼ 0.1, where M is the proton mass and R
is the bag radius. Finally, the bag was treated as rigid
in the early literature, Ref. [21]. A consequence is that
momentum is not conserved, and parton distributions do
not vanish outside the physical region (x > 1). Alterna-
tive treatments of the bag were proposed to alleviate this
problem [22–24]. We emphasize that we are not attempt-
ing to use the most sophisticated bag model description
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of the proton. Rather, we simply want to provide a first
estimate of the size of the various correlation effects. Bag
model PDFs are usually chosen as the initial value of
PDFs at a low scale µ ∼ ΛQCD, which are then evolved
to higher scales using their QCD evolution. Since in the
bag model the valence quarks carry all the momentum,
this initial scale µ needs to be taken quite low [22].
We also investigate Eqs. (2) and (3) in this paper, us-

ing our bag model results. We find that Eq. (2) holds
reasonably well, but Eq. (3) is badly violated. Problems
with Eq. (3) have already been pointed out in Ref. [25],
using sum-rules and the evolution of the dPDF. (Though
Eq. (3) may still be approximately true when one of the
momentum fractions xi is small, see e.g. Ref. [26].) In the
simplest bag models of the type we consider, the color-
correlated dPDFs FT are given by −2/3 times the color-
direct dPDFs F 1, since diquarks are in a 3 representation
of color.

II. CALCULATION

We briefly summarize the ingredients of the bag
model [20] that are needed to calculate the dPDFs. The
bag model wave functions are the solutions of the mass-
less Dirac equation in a spherical cavity of radius R. We
only need the ground state, which is given by

Ψm(r, t) = N

(
j0(Ω|r|/R) χm

i r̂·σ j1(Ω|r|/R) χm

)
e−iΩt/R , (4)

for a bag centered at the origin. Here Ω = ER, with E
the energy of the particle,

N2 =
1

R3

Ω4

Ω2 − sin2 Ω
, χm =

1√
4π

(
δm,↑

δm,↓

)
, (5)

ji are spherical Bessel functions, and m =↑, ↓. The con-
dition that the color current does not flow through the
boundary rµΨγµT

AΨ||r|=R = 0 leads to

j0(Ω) = j1(Ω) ⇒ Ω ≈ 2.043 , (6)

and we will take R = 1.6 fm in our numerical analysis.
The quark field is expanded in terms of bag wave func-

tions, quark creation and annihilation operators ai(a),

a†i (a) and antiquark creation and annihilation operators

bi(a), b
†
i (a). These operators create or annihilate quarks

and antiquarks in a bag centered at r = a [see Eq. (14)].
We only need the operators for the ground state wave
functions in Eq. (4) with m =↑, ↓.
The spin-up proton wave function is given in terms of

the standard quark model wave functions as

1√
6
|uud〉 (2|↑↑↓〉 − |↑↓↑〉 − |↓↑↑〉) . (7)

As usual, the color indices are suppressed, and the wave
function has to be symmetrized over permutations. Ig-
noring color, one can also write the wave function in

terms of bosonic [27] creation operators,

|P ↑, r = a〉 = 1√
3

[
a†u↑(a)a

†
u↑(a)a

†
d↓(a)

− a†u↑(a)a
†
u↓(a)a

†
d↑(a)

]
|0, r = a〉 . (8)

Here |P ↑, r = a〉 and |0, r = a〉 are the proton and empty
bag state, respectively, both at position a. The a†qm(a)
denotes the creation operator for a quark of flavor q with
spin m in a bag at position a.
An important difference between various calculations

in the literature is the treatment of the overlap between
empty bags at different positions,

〈0, r = a|0, r = b〉 = δ3(a− b) in Ref. [21] ,

〈0, r = a|0, r = b〉 = 1 in Refs. [22, 23] . (9)

These opposite limits treat the bags as either completely
rigid or fully flexible, and the latter will be our default.
We will return to the rigid bag in Sec. IID. To account
for the displacement between bags, we follow Ref. [22] in
taking

{ai(a), a†j(b)} = δij

∫
d3xΨ†

j(x− b)Ψi(x− a) . (10)

For the rigid bag these are replaced by the familiar anti-
commutation relations

{ai, a†j} = δij , (11)

where we only need the relation when a and a† are at the
same bag position, because of Eq. (9).

The proton state with momentum p is constructed us-
ing the Peierls-Yoccoz (PY) projection [28],

|P,p〉 = 1

φ3(p)

∫
d3a eia·p |P, r = a〉 , (12)

where φ3(p) fixes the (non-relativistic) normalization of
the state. The functions φn(p) are given by

|φn(p)|2 =

∫
da e−ip·a

[ ∫
dxΨ†(x− a)Ψ(x)

]n
, (13)

which we will need for n = 1, 2, 3.
The final ingredient is the expression for quark fields

acting in the bag. The field for a u-quark relative to a
bag at a is given by [22]

u(x, t) =
∑

m=↑,↓

aum(a)Ψm(x− a)e−iΩt/R + . . . . (14)

Here “. . . ” denotes contributions from other bag states
that will not be needed1. The expression for d-quarks is
similar.

1 We will not consider the so-called z-graph or four-quark inter-
mediate state contribution [21, 23], where the field creates an
antiquark. This only contributes at small x and is thus outside
the range of validity of the calculation.
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A. Single PDF

We first summarize the well-known calculation of the
(single) PDF in the bag model. The light-cone vectors

are

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1) , (15)

and we assume the light-cone gauge n ·A = 0. In the
proton rest frame, where pµ = (M,0),2

q(x) = 2M

∫
dz+

4π
e−ixMz+/2

〈
P,p = 0

∣∣∣q̄
(
z+

n̄

2

) n̄/
2
q(0)

∣∣∣P,p = 0
〉

=
∑

m1,m2=↑,↓

〈
P, r = 0

∣∣a†qm1
(0)aqm2

(0)
∣∣P, r = 0

〉
× 2M

∫
dz+

4π

dk1

(2π)3
dk2

(2π)3
dk3

(2π)3
e−i(xM−Ω

R
+k1z)z

+/2

× (2π)3δ(k1 − k3)(2π)
3δ(k2 − k3)

¯̃
Ψm1

(k1)
n̄/

2
Ψ̃m2

(k2)
|φ2(k3)|2
|φ3(0)|2

=
∑

m1,m2=↑,↓

〈
P, r = 0

∣∣a†qm1
(0)aqm2

(0)
∣∣P, r = 0

〉
2M

∫
dk

(2π)3
¯̃
Ψm1

(k)
n̄/

2
Ψ̃m2

(k)
|φ2(k)|2
|φ3(0)|2

δ
(
xM − Ω

R
+ kz

)

=
∑

m1,m2=↑,↓

〈
P, r = 0

∣∣a†qm1
(0)aqm2

(0)
∣∣P, r = 0

〉 2M

(2π)2

∫ ∞

|Ω/R−xM |

d|k| |k| ¯̃Ψm(k)
n̄/

2
Ψ̃m(k)

|φ2(k)|2
|φ3(0)|2

. (16)

Here z+ = n · z, Ψ̃ denotes the Fourier transform of Ψ,
and φ2 is given by Eq. (13). The overall factor of 2M
is due to the nonrelativistic normalization of states. The
delta function on the fourth line sets

kz =
Ω

R
− xM , (17)

implying that the peak of the PDF is at x = Ω/(MR),
independent of the quark flavor. This disagreement with
experimental measurements of u and d may be alleviated
by refining the bag model, see e.g. Ref. [29]. We will re-
strict ourselves to the simplest bag models in this paper,
so its limitations should be kept in mind while using the
results.
In using Eq. (14) we assumed that the field q̄ acts at

the position of the bag of the left state and q at the
position of the bag of the right state [22]. The matrix
element of Eq. (16) contains all the dependence on the
spin-flavor wave function of Eq. (7), which is connected
with the spin of the bag wave functions through the sum
on m1,2. For the unpolarized single PDF only m1 = m2

contributes, and the matrix element simply counts the
number of quarks of a given flavor q in the proton,

nq =
∑

m=↑,↓

〈
P, r = 0

∣∣a†qm(0)aqm(0)
∣∣P, r = 0

〉
. (18)

The extension of Eq. (16) to longitudinal and transversely

polarized quark distributions is given by replacing n̄/
2 by

2 We also use the notation q for the PDF fq , and qq, q∆q, . . . for
the dPDFs Fqq , Fq∆q , . . ..

n̄/
2 γ5 for ∆q and n̄/

2 γ
µ
⊥γ5 for δq. ∆q and δq only contribute

in processes involving longitudinally and transversely po-
larized protons, respectively. The matrix elements re-
quired are evaluated in Sec. II C. To aid the evaluation
of the remaining integral in Eq. (16), convenient expres-
sions for the functions φi and the bag wave function in
momentum space are given in Appendix A. The resulting
PDFs are compared in Fig. 1.
The spatial distribution of partons inside the nucleon

are also probed by the electromagnetic form factors,
which are independent of the renormalization scale. They
have been calculated within the bag model that we are us-
ing, showing reasonable agreement with experiment [31].
Calculations of form factors for more sophisticated bag
models can for example be found in Refs. [32–34].

0. 0.2 0.4 0.6 0.8 1.
0

1

2

3

4

5

x

u
Du
∆u

FIG. 1. The proton PDFs u (solid red), ∆u (dashed blue)
and δu (dotted green).
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B. Double PDF

We calculate the double PDF using the definitions in
Ref. [14]. We will not consider color correlated or inter-

ference double PDF, since these are Sudakov suppressed.
The spin-averaged dPDF Fq1q2(x1, x2, z⊥) is defined as

Fq1q2(x1, x2,k⊥) = −8πM2

∫
dz+1
4π

dz+2
4π

dz+3
4π

e−ix1Mz+
1 /2 e−ix2Mz+

2 /2 eix1Mz+
3 /2

×
〈
P,p = 0

∣∣∣
[
q1

(
z+1

n̄

2

) n̄/
2

]

c

[
q2

(
z+2

n̄

2
+ z⊥

) n̄/
2

]

d
q1,c

(
z+3

n̄

2
+ z⊥

)
q2,d(0)

∣∣∣P,p = 0
〉
. (19)

It is convenient to work in terms of the Fourier-transformed distribution Fq1q2(x1, x2,k⊥). Evaluated in the bag
model,

Fq1q2(x1, x2,k⊥) =

∫
d2z⊥ eiz⊥·k⊥Fq1q2(x1, x2, z⊥) (20)

=
∑

m1,m2,m3,m4

〈
P, r = 0

∣∣a†q1m1
(0)a†q2m2

(0)aq2m4
(0)aq1m3

(0)
∣∣P, r = 0

〉

× 8πM2

∫
dk1

(2π)3
dk2

(2π)3
dk3

(2π)3
δ
(
x1M − Ω

R
+ k1z

)
δ
(
x2M − Ω

R
+ k2z

)
δ
(
x1M − Ω

R
+ k3z

)

× (2π)2δ2(k1⊥ − k3⊥ − k⊥)
¯̃
Ψm1

(k1)
n̄/

2
Ψ̃m3

(k3)
¯̃
Ψm2

(k2)
n̄/

2
Ψ̃m4

(k1 + k2 − k3)
|φ1(k1 + k2)|2

|φ3(0)|2
,

where φ1 is given by Eq. (13). Results for the matrix ele-
ments on the second line of Eq. (20) are given in Sec. II C.
The remaining integrals were numerically performed us-
ing the expressions in Appendix A and the CUBA inte-
gration package [30].

C. Spin Correlations

The computation of spin-correlated dPDFs is almost

identical to Eq. (20). For F (x1, x2, z⊥) the spinors
n̄/
2 ⊗

n̄/
2

in Eq. (19) are replaced by [12–14]

F∆q1∆q2
n̄/
2 γ5 ⊗ n̄/

2 γ5
Fδq1δq2

n̄/
2 γ

µ
⊥γ5 ⊗

n̄/
2 γ

⊥
µ γ5

Fq1δq2 − 1
Mz2

⊥

n̄/
2 ⊗ n̄/

2 γµ
⊥ǫµνz

ν
⊥γ5

F∆q1δq2 − 1
Mz2

⊥

n̄/
2 γ5 ⊗ n̄/

2 z/⊥γ5

F t
δq1δq2

2
M2|z⊥|4 (z

µ
⊥z

ν
⊥ + 1

2z
2
⊥g

µν
⊥ ) n̄/2 γµγ5 ⊗

n̄/
2 γνγ5

As in Eq. (20), we switch to momentum space, for which
it is convenient to modify some of the spin structures:

Fq1δq2
iM
k2
⊥

n̄/
2 ⊗ n̄/

2 γµ
⊥ǫµνk

ν
⊥γ5

F∆q1δq2
iM
k2
⊥

n̄/
2 γ5 ⊗ n̄/

2 k/⊥γ5

F t
δq1δq2

2M2

|k⊥|4 (k
µ
⊥k

ν
⊥ + 1

2k
2
⊥g

µν
⊥ ) n̄/2 γµγ5 ⊗

n̄/
2 γνγ5

We will always use these momentum-space spin struc-
tures in plots. The relationship between F and F is not

simply a Fourier transform, and is given in Appendix B.
The additional factors of −i in Fq1δq2 and F∆q1δq2 ensure
that these dPDFs are real. The spin structure ∆q1δq2
vanishes in our calculation. Assuming for simplicity that
k is along the x direction, this follows from the reflection
k1y → −k1y, k2y → −k2y, under which the integrand is
odd. Though this is due to the form of the bag model ma-
trix elements, it suggests that the spin structure ∆q1δq2
is likely smaller than the others.

We now evaluate the spin-flavor matrix elements that
enter in the single and double PDFs. Since we suppressed
the antisymmetric color wave function of the proton,
the creation and annihilation operators essentially satisfy
commutation relations. For the unpolarized and longitu-
dinally polarized single PDF only m1 = m2 contributes,
and we find the weighting:

q m
〈
P ↑
∣∣a†qmaqm

∣∣P ↑
〉

u ↑ 5/3

u ↓ 1/3

d ↑ 1/3

d ↓ 2/3

For δq we need a transversely polarized proton

|P →〉 = 1√
2
(|P ↑〉+ |P ↓〉) . (21)
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The non-vanishing matrix elements are

q m1 m2

〈
P →

∣∣a†qm1
aqm2

∣∣P →
〉

u ↑ ↓ 2/3

u ↓ ↑ 2/3

d ↑ ↓ -1/6

d ↓ ↑ -1/6

The dPDFs we consider are invariant under spin flip
(they are only sensitive to diparton spin correlations), so
we can simply use a spin-up proton. The dPDF for dd
in all spin combinations vanishes in the bag model since
there is only one valance d quark in the proton. The
nonvanishing matrix elements are

q1 q2 m1 m2 m3 m4

〈
P ↑
∣∣a†q1m1

a†q2m2
aq2m4

aq1m3

∣∣P ↑
〉

u u ↑ ↑ ↑ ↑ 4/3

u u ↑ ↓ ↑ ↓ 1/3

u u ↓ ↑ ↓ ↑ 1/3

u u ↑ ↓ ↓ ↑ 1/3

u u ↓ ↑ ↑ ↓ 1/3

u d ↑ ↑ ↑ ↑ 1/3

u d ↑ ↓ ↑ ↓ 4/3

u d ↓ ↑ ↓ ↑ 1/3

u d ↑ ↓ ↓ ↑ -2/3

u d ↓ ↑ ↑ ↓ -2/3

Note that due to these spin-flavor correlations, the dPDF
for uu and ud do not simply differ by an overall factor,
as is the case for the single PDF.

D. Rigid Bag

For a rigid bag, the overlap of empty bag states is

〈0, r = a|0, r = b〉 = δ3(a− b) . (22)

The only change to the single PDF in Eq. (16) is that
it removes the PY factor |φ2(k)|2/|φ3(0)|2. This factor
suppresses the “leakage” of the PDF into the unphysical
regions x < 0 and x > 1, without affecting the integral
over all x, see Sec. II E. The PY factor is plotted in
Fig. 2, and the PDF with and without the PY factor is
shown in Fig. 3.
Similarly, the rigid bag overlap in Eq. (22) removes

the factor |φ1(k)|2/|φ3(0)|2 (also plotted in Fig. 2) from
the double PDF in Eq. (20). In this case the dPDF fac-
tors and there are no correlations between the momen-
tum fractions x1 and x2, which is a clear shortcoming of
treating the bag as rigid. At k⊥ = 0 the rigid bag dPDF
takes a particularly simple form

Fq1q2(x1, x2,k⊥ = 0) =
cq1q2
nq1nq2

q1(x1)q2(x2) , (23)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Κ=ÈkÈR

ÈΦ1HΚL�Φ3H0L
2

ÈΦ2HΚL�Φ3H0L
2

FIG. 2. Plot of the PY factors which enter the calculation
of the single PDF (dotted blue) and double PDF (solid red).
They suppress the PDFs in the unphysical regions x > 1 and
x < 0.

0. 0.2 0.4 0.6 0.8 1.
0.

1.

2.

3.

4.

5.

x

uH
xL

With PY
Without PY

FIG. 3. Plot of the bag model proton PDF u(x) with (solid
red) and without (dotted blue) PY factors.

where the coefficient cq1q2 is fixed by the spin-flavor wave
function

cq1q2 =
∑

m1=m3
m2=m4

〈
P, r = 0

∣∣a†q1m1
(0)a†q2m2

(0)aq2m4
(0)aq1m3

(0)
∣∣P, r = 0

〉
.

(24)

From the tables in Sec. II C, we find that cuu = cud = 2.

E. Normalization

The normalization of the single PDF and dPDF is
given by integrating over all x, including unphysical re-
gions. Both treatments of the bag in Eq. (9) will be
considered. The single PDF in a rigid bag gives
∫
dx q(x) = nq

∫
dx

2M

(2π)2

∫ ∞

|xM−Ω/R|

d|k| |k| ¯̃Ψm(k)
n̄/

2
Ψ̃m(k)

= 2nq

∫
d3k

(2π)3
Ψ̃†(k)

n/n̄/

4
Ψ̃(k)
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FIG. 4. The double PDF uu(x1, x2,k⊥) as a function of x1 and |k⊥| for fixed x2 = 0.4. The right panel tests the ansatz in
Eq. (2) that xi and k⊥ are uncorrelated. This holds reasonably well, since the different |k⊥| curves are nearly identical.
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FIG. 5. The double PDF uu(x1, x2,k⊥) as a function of x1 and x2 for fixed k⊥ = 0. In the right panel we divide by u(x2) to
test the often-used assumption in Eq. (3) that the xi are uncorrelated. This clearly fails, since the ratio depends strongly on
x2.

= nq

∫
d3y |Ψ(y)|2

= nq . (25)

Here we used that

γ0 n̄/

2
=

n/n̄/

4
,

n/n̄/

4
+

n̄/n/

4
= 1 . (26)

This second equation and the symmetry between n and
n̄ implies that we could replace n/n̄//4 → 1/2 in Eq. (25).
The corresponding calculation with a flexible bag, i.e.
including the PY factor, is
∫
dx q(x)

=
2Mnq

(2π)2

∫
dx

∫ ∞

|xM−Ω/R|

d|k| |k| ¯̃Ψm(k)
n̄/

2
Ψ̃m(k)

|φ2(k)|2
|φ3(0)|2

=
2nq

|φ3(0)|2
∫

d3k

(2π)3
Ψ̃†

m(k)
n/n̄/

4
Ψ̃m(k) |φ2(k)|2

=
nq

|φ3(0)|2
∫

d3k

(2π)3

∫
d3x1 d

3y1 e
ik·x1 Ψ†(y1−x1)Ψ(y1)

×
∫

d3x2 e
−ik·x2

[ ∫
dy2 Ψ

†(y2 − x2)Ψ(y2)
]2

= nq , (27)

and has the same normalization. However, the PY factor
reduces the PDF at unphysical x. Specifically, 2% of
the contribution to the integral in Eq. (27) is from the
unphysical region, compared to 11% in Eq. (25).
For the dPDF, the normalization for the rigid bag fol-

lows from Eqs. (23) and (25)

∫
dx1 dx2 dz⊥Fq1q2(x1, x2, z⊥)

=
cq1q2
nq1nq2

∫
dx1 dx2 q1(x1)q2(x2)

= cq1q2 , (28)

where the coefficient cq1q2 is given in Eq. (24). The cal-
culation including the PY factor is similar to Eq. (27)

∫
dx1 dx2 d

2z⊥Fqq(x1, x2, z⊥)
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= 4cq1q2

∫
d3k1

(2π)3
d3k2

(2π)3
Ψ̃†(k1)

n/n̄/

4
Ψ̃(k1)

× Ψ̃†(k2)
n/n̄/

4
Ψ̃(k2)

|φ1(k1 + k2)|2
|φ3(0)|2

= cq1q2 [1 +O(< 1%)] . (29)

The small correction with respect to Eq. (28) arises be-
cause we can no longer replace n/n̄//4 → 1/2. Specifically,
Eq. (A1) implies

Ψ̃†(k)
n/n̄/

4
Ψ̃(k) =

πR3Ω2

2(Ω2 − sin2 Ω)
(s21 + 2s1s2k̂z + s22) ,

Ψ̃†(k)Ψ̃(k) =
πR3Ω2

(Ω2 − sin2 Ω)
(s21 + s22) (30)

Since the momenta k1z and k2z become correlated
through φ1(k1 + k2), this implies that 〈k1zk2z〉 6=
〈k1z〉〈k2z〉 = 0.

III. PARTON CORRELATIONS

We are now ready to investigate the size of the var-
ious diparton correlation effects using the bag model
dPDFs. We start by studying the dependence of the
dPDF uu(x1, x2,k⊥) on x1 and |k⊥|, keeping x2 = 0.4
fixed for simplicity. As the left panel of Fig. 4 shows,
the dPDF reduces significantly with increasing |k⊥|. In
the right panel we test the ansatz in Eq. (2) that the
dependence on xi and k⊥ is uncorrelated, by dividing by
uu(0.4, 0.4,k⊥). If the ansatz holds, the universal trans-
verse function G(k⊥) should drop out in this ratio, mak-
ing the result independent of k⊥. As the plot shows, this
seems to holds quite well. It only breaks down for the
largest values of |k⊥|, where the dPDF is orders of mag-
nitude smaller than at |k⊥| = 0. We also note that there

FIG. 6. The correlation between the momentum fractions of
two u quarks in the proton is shown by plotting the ratio
of the double PDF uu(x1, x2,k⊥ = 0) to the product of two
single PDFs u(x1)u(x2).

is some leakage into the unphysical region x1 + x2 > 1,
as was the case for the single PDF in Fig. 3, though this
effect is reasonably small.
Next we explore the x1, x2 dependence of dPDF

uu(x1, x2,k⊥) for k⊥ = 0, which is shown in Fig. 5. As
x2 is increased, the peak of the x1-distribution moves to
smaller x1, responding to the reduced momentum avail-
able. The peak height reduces as well, though not for
small x2 since the bag model only describes the valence
quarks. To test the factorization ansatz in Eq. (3) for
n = 0, we divide by u(x2) in the right panel. Since the
resulting distributions clearly still depend on x2, corre-
lations between x1 and x2 are important. Inclusion of
the factor of (1−x1−x2)

n does not alter this conclusion.
The correlations can also be seen in the three-dimensional
plot of Fig. 6. We remind the reader that this conclusion
depends on the treatment of the bag, since x1 and x2

would be uncorrelated if a rigid bag was assumed (see
Sec. IID).
The relative size of the various spin structures in

Sec. II C are studied in Fig. 7. They are shown as a
function of x1 (top row) and |k⊥| (bottom row), keep-
ing all other variables fixed. All spin structures show a
similar dependence on x1 and k⊥, though there is a hi-
erarchy between their sizes. Fig. 7 also illustrates the
differences between the uu (left column) and ud (right
column) dPDF. Unlike the single PDF, where the dif-
ference between u and d was simply an overall factor of
nu/nd = 2, the dPDF has more flavor dependence. This
arises through the spin dependence and the correlations
in the spin-flavor wave function. As Fig. 7 shows, the
difference between uu and ud is fairly small. However,
the spin correlations are about twice as big for ud than
for uu.
The shape of the |k⊥| dependence is reasonably well

described by a Gaussian,

G(k⊥) ≈
1

2πσ2
e−k2

⊥
/(2σ2) . (31)

The width σ depends slightly on the spin structure:

uu ∆u∆u δuδu uδu δuδut

σ (GeV) 0.25 0.27 0.32 0.25 0.29

ud ∆u∆d δuδd uδd δuδdt

σ (GeV) 0.22 0.27 0.22 0.25 0.26

Note that in the bag model uδd = dδu.

IV. CONCLUSIONS

We have computed the dPDFs using a bag model for
the proton. The bag model results should be treated as
the dPDFs at a low scale, which can then be evolved
to higher energy using the known QCD evolution equa-
tions [14, 17]. We find substantial diparton correlations
in the proton in spin, flavor, and momentum fraction,
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FIG. 7. Comparison of the double PDF spin structures as functions of x1 or |k⊥|, keeping the other variables fixed. The left
panels show the uu double PDFs, and the right panels show the ud double PDFs. The uδu, δuδu, δuδut, ∆u∆d, uδd and δuδdt

distributions are negative, and we have changed their sign in these plots. Note that ud and δuδd are almost indistinguishable.

which have traditionally been ignored in analyses of dou-
ble parton scattering, but only a small correlation with
the transverse momentum k⊥. The uu and ud dPDFs are
not simply related to each other, or to the single PDFs u
and d, because of the spin-flavor correlations in the pro-
ton quark model wave function in Eq. (7). The results in
this paper provide quantitative results for these diparton
correlations, which will help in the experimental analysis
of double parton scattering at the LHC.
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Appendix A

We collect simplified expressions for the bag model
wave function in momentum space and the functions φn

needed for the PY projection. Several of these results
were already obtained in Ref. [23]. The Fourier trans-

form of the wave function is

Ψ̃m(k) =

∫
d3x eik·x Ψm(x)

=
2πΩR3/2

√
Ω2 − sin2 Ω

(
s1(κ)χm

s2(κ) k̂·σ χm

)
, (A1)

where κ = |k|R and

s1(κ) =
1

κ

[ sin(κ− Ω)

κ− Ω
− sin(κ+Ω)

κ+Ω

]
,

s2(κ) = 2j0(Ω)j1(κ)−
κ

Ω
s1(κ) , (A2)

and χm is defined in Eq. (5). For the unpolarized and
longitudinally polarized single PDFs this leads to

¯̃
Ψm

n̄/

2
Ψ̃m =

πR3Ω2

2(Ω2 − sin2 Ω)
(s21 + s22 + 2s1s2k̂z) ,

¯̃
Ψm

n̄/

2
γ5Ψ̃m = (−1)m+3/2 πR3Ω2

2(Ω2 − sin2 Ω)

× [s21+s22(1− 2k̂2
⊥)+2s1s2k̂z] . (A3)
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For the transversely polarized PDF we need

¯̃
Ψ↑

n̄/

2
γ1
⊥γ5Ψ̃↓ +

¯̃
Ψ↓

n̄/

2
γ1
⊥γ5Ψ̃↑

=
πR3Ω2

Ω2 − sin2 Ω
[s21+s22(1− 2k̂2x)+2s1s2k̂z] . (A4)

The functions φn, used in the PY projection, are

|φn(p)|2 =
24−nπR3Ωn−2

κ(Ω2 − sin2 Ω)n

∫ Ω

0

dv

vn−1
sin

2κv

Ω
Tn(v) ,

(A5)

with

T (v) =
(
Ω− 1− cos 2Ω

2Ω
−v
)
sin 2v −

(1
2
+
sin 2Ω

2Ω

)
cos 2v

+
1

2
+

sin 2Ω

2Ω
− 1− cos 2Ω

2Ω2
v2 . (A6)

Appendix B

The relationship between the dPDFs F and F defined
in Sec. II C is

Fq1δq2(x1, x2,k⊥) = − iM2

k2
⊥

∫
dz⊥e

ik⊥·z⊥(k⊥ ·z⊥)

× Fq1δq2(x1, x2, z⊥) ,

F∆q1δq2(x1, x2,k⊥) = − iM2

k2
⊥

∫
dz⊥e

ik⊥·z⊥(k⊥ ·z⊥)

× F∆q1δq2(x1, x2, z⊥) ,

F t
δq1δq2(x1, x2,k⊥) =

M4

|k⊥|4
∫
dz⊥e

ik⊥·z⊥ [2(k⊥ ·z⊥)2−k2
⊥z

2
⊥]

× F t
δq1δq2(x1, x2, z⊥) . (B1)

The factors of k·z arise because q1δq2 and ∆q1δq2 have ⊥
angular momentum one, and δq1δq

t
2 has ⊥ angular mo-

mentum two. The other spin structures are not affected
when switching to momentum space, so Fq1q2(x1, x2,k⊥)
is the Fourier transform of Fq1q2(x1, x2, z⊥), etc.
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