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Abstract

By studying the color structure of multi-particle production processes in p+A-type (dilute-

dense) collisions, we find that higher-point functions beyond typical dipoles and quadrupoles, e.g.,

sextupoles, octupoles, etc., naturally appear in the cross sections, but are explicitly suppressed

in the large-Nc limit. We evaluate the sextupole in the McLerran-Venugopalan model and find

that, in general, its analytical form cannot be written as combination of dipoles and quadrupoles.

Within the Color Glass Condensate framework, we present a proof that in the large-Nc limit, all

multi-particle production processes in the collision of a dilute system off a dense can, up to all

orders in αs, be described in terms of only dipoles and quadrupoles.
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I. INTRODUCTION

Calculating cross sections for multi-particle (multi-jet) production processes can be the-

oretically challenging when a resummation of multiple interactions is needed, as is the case

in large parton density environments such as the small-x regime accesible in high energy

nuclear collisions. The main complication comes from the fact that partons scatter coher-

ently and cannot be regarded separately. In particular, it is very important to appropriately

consider the color structure of the multi-particle states since color conservation plays an

important role as a source of correlations.

The standard way of calculating such multiple scattering processes is to consider the

small-x gluons as an external field where high-energy probes scatter in an eikonal way, see

Ref. [1]. Under that framework, each parton traversing the field contributes to the scattering

amplitude with a Wilson line in the appropriate representation (fundamental for quarks,

adjoint for gluons) at a fixed transverse coordinate. Provided they are put together in the

correct order, the Wilson lines account for the color flow of the process under consideration.

After averaging (summing) over initial (final) colors at the cross section level, one is left

with a product of traces involving Wilson lines in the fundamental representation and color

matrices which are contracted with adjoint Wilson lines. These adjoint Wilson lines can be

subsequently replaced by two fundamental Wilson lines by means of the identity

W ab(x) = 2Tr
[

taU(x)tbU †(x)
]

, (1)

where W (x) stands for a Wilson line in the adjoint representation at a fixed transverse

coordinate, U(x) is the corresponding Wilson line in the fundamental representation, and

ta are color matrices in the fundamental representation also. The color matrices can be

removed using the Fierz identity taijt
a
kl =

1
2
δilδjk −

1
2Nc

δijδkl. After these manipulations one

is left with a sum of products of traces of Wilson lines in the fundamental representation

only.

In order to calculate measurable observables in this framework, including cross sections for

multi-particle production, it is necessary to take a weighted average over the possible external

field configurations. This averaging process introduces non-trivial correlations between the

fields entering the different Wilson lines, therefore giving rise to the afore mentioned coherent

scattering involving possibly all the partons appearing in the process. The physics encoded

in this field average is inherently non-perturbative and therefore it is necessary to adopt a
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suitable model to be able to obtain quantitative results. Nevertheless, some features of the

averaging process, such as the rapidity dependence in the low-x region, can be appropriately

accounted for by perturbative considerations under the Color Glass Condensate (CGC)

framework [2].

Regardless of the model under consideration for the specific calculation of such field

averages, the complexity of the calculation of higher point correlators increases accordingly

with the number of Wilson lines involved. In the same way, the evolution equations derived

perturbatively become very cumbersome and not well suited for numerical evaluations. The

first step on an attempt to simplify the treatment of such higher point correlators is to

consider the large-Nc limit, in which the average of a product of traces of Wilson lines

reduces to a product of averages involving only one trace at the time. In other words,

correlations involving fields coming from Wilson lines from different traces are suppressed

by factors of Nc.

Now, in this large-Nc limit it becomes necessary to count appropriately the factors of

Nc coming from these multiple scattering terms and keep only the leading terms in such

expansion. Once all the color matrices (fundamental or adjoint) from vertices contributions

have been removed by means of the proper color identities, the power of Nc associated to a

given term is just the number of color traces involved.

In principle, all sorts of correlations involving multiple Wilson lines at various transverse

coordinates can appear when considering the cross section of a multi-particle production

process, but when the large-Nc limit is taken only a few of those contributions are important.

Taking into account the way that powers of Nc appear from the correlators, it is not difficult

to realize that the terms with simpler structure are the ones that contribute the most. For

a given process, the number and identity (quark or gluon) of the particles in the final state

determines the maximum number of Wilson lines present in the multiple scattering terms.

The maximum power of Nc present in such terms will correspond to the configuration in

which all the Wilson lines can be grouped in as many traces as possible, therefore favoring

terms with traces of only a few Wilson lines.

As a first guess, one could suggest that this Nc power counting implies that the leading Nc

contribution always comes from a term which only includes color dipole amplitudes (traces

of two Wilson lines) and therefore has a maximal number of color traces. This guess has been

proven wrong since thorough studies of two-particle production processes [3–5] have shown
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that some processes do not admit a description in terms of only color dipoles, but that in

addition color quadrupoles (traces of four Wilson lines) are involved as well in the large-Nc

limit. This quadrupole amplitude can not in general be written in terms of dipole amplitudes

only and its small-x evolution is determined by an independent equation as shown in [3, 6, 7].

It has also been shown that there is a direct relation between this quadrupole amplitude

and the so-called Weiszäcker-Williams unintegrated gluon distribution function [5].

More complicated correlators naturally arise in the calculation of cross sections of pro-

cesses with more particles in the final state, but they are suppressed by powers of Nc as

compared with terms with only dipole and quadrupole amplitudes. They are nevertheless

independent from the dipole and quadrupole amplitudes and in principle should be evaluated

on their own. A procedure to evaluate higher point correlators, in a Gaussian model in the

large-Nc limit, is described in the Appendix and the explicit example of a correlator of six

Wilson lines is evaluated explicitly. The small-x evolution of such correlators was recently

studied analytically in [8] and numerically in [9], the evaluation shown in the Appendix

provides a suitable initial condition for such equations.

The main purpose of this paper is to show that, in the large-Nc limit, all multi-particle

production processes considered under this framework can be described in terms of only

dipoles and quadrupoles. We first work out explicitly examples with three particles in the

final state before proceeding to prove the general statement by induction in the number of

particles in the final state. The inductive step is greatly simplified by the observation that

it is not necessary to consider all the diagrams contributing to a given process but to find

at least one diagram with a term given only by dipoles and quadrupoles which dominates

in the large-Nc limit.

II. GENERAL CONSIDERATIONS

For definiteness sake, let us be more specific about the scenario which we are explicitly

considering. We are interested in processes where multi-particle production takes place in

the presence of a (strong) background field where a highly energetic initial parton (photon,

quark or gluon) undergoes multiple scatterings. This scenario is particularly well suited

for nuclear deep inelastic scattering (DIS) experiments and forward particle production in

proton-nucleus collisions (using collinear factorization for the proton) where the high density
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(a) Sample diagram (b) Sample diagram in the large-Nc

limit

FIG. 1: Diagram contributing to the process q → qgg. The dotted line represents the

multiple scattering with the target.

effects of the target are encoded in the background field. For this particular case the situation

simplifies even more since the coherence times of the produced particles are long compared

with the length of the target nucleus and therefore the multiple interaction with the dense

system can be considered as instantaneous. The process is then regarded as an incoming high

energy parton which splits several times into a given final multi-particle state, interacting at

given time with the target which induces a color rotation in the whole multi-particle system

(see Fig. 1a). Of course, one has to consider the scattering with the target happening at all

possible stages of the splitting process and sum all these contributions, but for the counting

of powers of Nc, which is of our interest, this does not make a difference.

The Nc power counting can only be done at the level of the cross section after one has

already averaged (summed) over initial (final) colors. Nevertheless, one can make some

general observations at the level of the amplitude based on color conservation. For a fixed

process, with a specific parton in the initial state and a definite particle content in the final

state, it is possible to determine what is the maximum number of color traces one can have

in the description of the process in the leading order. Take a diagram for such a process at

tree level in the large-Nc limit replacing all gluon lines with double quark-antiquark lines

which make the color flow explicit, as in Fig. 1b. As a consequence of color conservation

each of the external fermion lines must be connected to another and, since we are considering

only tree level diagrams for the moment, there are no closed loops. From this observation
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x1 x2

x3 x4

(a) q → qg

x1 x2

x3 x4

(b) q → qg in the large-Nc limit

FIG. 2: Diagrams with the amplitude and conjugate amplitude for the process q → qg

we can see immediately that the maximal number of color traces at tree level is given by the

total number of external fermion lines divided by two (with each external gluon contributing

two fermion lines). Furthermore, one can see that this maximal number of traces is realized

when one considers the square of a given diagram, while interference terms involving different

diagrams on the amplitude and conjugate amplitude can possibly have less color traces.

It is also illustrated in Fig. 1b that each fermion line appears at most twice at the moment

of the multiple scattering, regardless of the exact position of the scattering with respect to

the splittings. As a consequence, at most two fundamental Wilson lines are color connected

at the amplitude level and therefore, when considering the amplitude squared, the respective

color traces in the cross section would have only two Wilson lines (dipoles) or four Wilson

lines (quadrupoles). The same will be true for any term with the maximal number of traces.

Diagrams like those in Fig. 1 are useful for visualizing the branching of the initial parton

into the multi-particle final state but do not contain all the information needed to resolve

the color structure of the different contributions to the cross section. For that purpose it is

necessary to consider diagrams including the amplitude and the conjugate amplitude where

one can perform the necessary color sums and averages. As an example, let us consider

the simple process of a quark splitting into a quark and a gluon which then scatters with a

background field. Putting the amplitude and the conjugate amplitude in the same diagram

we obtain Fig. 2a where the dotted lines represent the moment of the scattering in both

the amplitude and conjugate amplitude and the dashed line in the middle represents the

final state at t = ∞. Since the approach employed here makes explicit use of the eikonal

approximation to account for the multiple scattering with the external field, it is necessary

to consider these diagrams in a coordinate representation where each particle has a definite

transverse coordinate. All particles in the final state which are to be detected, and therefore
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FIG. 3: Alternative representation for the q → qg.

=
1

2
−

1

2Nc

FIG. 4: Graphical representation of the Fierz identity.

would have a fixed transverse momentum, have different transverse coordinates on each side

of the cut at t = ∞. When considered in the large-Nc limit, one can see in Fig. 2b how

some of the fermion lines close into loops, which will contribute one color trace to the cross

section, while other lines remain open due to the fact that they contain particles in the

initial state. These particles in the initial state should be color connected on both sides of

the diagram since one averages over initial colors at the level of the cross section but such

connection is not explicit in this kind of diagram.

If one is interested in the color structure only, then it is more convenient to draw one

fermion loop for each color trace and gluon lines for each adjoint index contraction (including

adjoint Wilson lines too). This can be achieved easily by folding on itself the corresponding

diagram with the amplitude and conjugate amplitude in such a way that the color connec-

tions of the initial state are made explicit. Also, in order to be able to visualize in the

diagram which are the Wilson lines entering the expression of the cross section, we will

stretch the lines involved in the scattering (both in the amplitude and conjugate amplitude)

in the horizontal direction and use the other lines only to illustrate the color connections.

For example, the diagram corresponding to Fig. 2a is shown in the left hand side of Fig.

3. One can go one step further and replace all the gluon lines by double fermion lines using

the corresponding color identity, which has the graphical representation depicted in Fig. 4,

in which case the example above takes the form shown in the right hand side of Fig. 3. Let
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(a) Dipole amplitude (b) Quadrupole amplitude

FIG. 5: Graphical representation of the two amplitudes to be used along the paper.

(a) Interference term

= 1
2 − 1

2Nc

(b) Color structure

FIG. 6: Diagrams for the interference term with interaction after the splitting in the

amplitude and before the splitting in the conjugate amplitude.

us focus on the first term, which is the one surviving in the large-Nc limit, where one can

identify right away two pieces which are color disconnected, each contributing a color trace

to the cross section. One involves two Wilson lines, and therefore is a dipole, while the other

involves four, and therefore is a quadrupole.

The example above shows how this graphic approach allows us to recognize easily which

kinds of correlators come in the expression for the cross section of a given process. One can

also recognize that the combination of Wilson lines describing such multiple scattering is

given by

Tr
[

U3U
†
4 t

atb
]

W ac
1 W †cb

2 =
1

2
Tr

[

U1U
†
2U3U

†
4

]

Tr
[

U †
1U2

]

−
1

2Nc

Tr
[

U3U
†
4

]

, (2)

where Fierz identities were used to reach the right hand side. For more complicated processes

the color algebra can be very cumbersome and we will rely heavily in the graphic approach

to be able to identify the leading Nc piece of the diagrams involved. In particular it will

be crucial to identify the pieces corresponding to dipoles and quadrupoles which we show

separately on Fig. 5.

It was also mentioned earlier that one should sum over all the possibilities for the multiple

interaction to take place in the amplitude and the conjugate amplitude. Consider the process
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in the example above but with the multiple interaction occurring in the conjugate amplitude

before the splitting. Fig. 6 illustrates how the different diagrams explained above look for

this variation of the same process. For this particular case it is clear that the contribution

to the cross section can be written in terms of two dipoles. This example illustrates a very

important fact that will allow us to concentrate on a smaller number of diagrams: changing

the position of the multiple scattering might change the number of Wilson lines appearing

in the corresponding term in the cross section but it does not change the number of color

traces. It might happen that for some particular cases a color trace is left with no Wilson

lines inside, giving a trivial factor of Nc, but what is important is that the counting of powers

of Nc is the same for a given process regardless of the position of the multiple scattering

with respect to the splittings.

The last consideration to be done before starting with the detailed explanation of par-

ticular cases is the effect of integrating out particles in the final state. In order to consider

inclusive processes it is sometimes necessary to integrate over the momenta of outgoing

particles that are not explicitly measured. This happens at the leading order for processes

in which one produces an additional fermion in the final state without its corresponding

antiparticle, as for example in single inclusive deep inelastic scattering where the incoming

photon splits into a quark-antiquark pair but only one of them is measured in the final state.

For all other processes this effect comes in at next to leading order and will be fundamental

if we want our proof to be complete to all orders.

Under the eikonal approximation at work in this formalism, the multiple scattering terms

take the form of simple Wilson lines in the appropriate representation only when considering

the process in transverse coordinate space. The momenta of the particles of the final state

enters then through a Fourier transform of the respective coordinate in the amplitude and

conjugate amplitude. Therefore integrating over the transverse momentum of a particle in

the final state gives a delta function which identifies the transverse coordinate of the particle

in the amplitude with the one in the conjugate amplitude. Given the unitarity of the Wilson

lines, this sort of manipulation will likely reduce the number of Wilson lines appearing in

the corresponding contribution to the cross section of any particular diagram. The sum over

color indices in the final state guaranties that if a final state particle participates in the

multiple scattering both in the amplitude and the conjugate amplitude, both Wilson lines

appear next to each other in the contribution to the cross section, and if they are placed
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at the same transverse coordinate then they exactly cancel out. This sort of cancellation

between real and virtual contributions for final state interactions has been studied before

and it is well known to be an immediate consequence of unitarity [10], the only place where

interactions with the unmeasured particle come in is in the interference terms between initial

and final state interactions.

From the point of view of the correlators we are interested in, it is clear that the ones

entering the cross sections of these more inclusive processes are either the same or simpler

than the ones involved in the expression for the full exclusive process where all particles in

the final state are detected. This observation allows us to focus our attention to the fully

exclusive processes only.

III. KNOWN CASES: ONE AND TWO PARTICLES IN THE FINAL STATE

Since our goal is to prove by induction an statement that will be valid for all multi-

particle production processes in the previously described setup, it is necessary to start our

analysis with the simplest cases available. All of these cases have been previously studied in

the literature, here we comment in the results and emphasize the features of the derivations

which will be useful for the development of the argument for general cases.

We start with processes with one particle in the final state even though their color struc-

ture is better understood in the context of processes with two particles in the final state.

The reason for this is that the non-trivial contributions to these processes are obtained after

integrating out one of the particles in the final state. As explained in the previous section,

this yields procedure gives way to simpler expressions where the correlators appearing in the

cross section have less Wilson lines than the corresponding correlators for the processes with

two final state particles. The choice to present first the one-particle processes follows the

thread of the main idea where we intend to organize the processes in terms of the number

of particles in the final state, from there on the emphasis will be put on fully exclusive pro-

cesses with less exclusive processes already accounted for by the observations of the previous

section.
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A. SIDIS

Semi-inclusive deep inelastic scattering (SIDIS) has been widely studied in the literature

since it has been recognized to give access to transverse momentum dependent parton dis-

tribution functions. In the context of saturation physics, several studies have cemented the

foundations of the formalism to treat deep inelastic scattering processes where the focus was

mainly on the total cross section and form factors. Most of these studies are based on the

dipole model approach [11], which shows directly a clear relation between the total cross

section and the forward amplitude of a color dipole going through a background color field,

but the same conclusions can be found from the setup explained in the previous sections

after one integrates out all the particles in the final state. For the particular case of SIDIS, it

was explicitly shown in [12–14] that the only correlator needed in the expression of the cross

section is the dipole amplitude, and in [15] a direct connection to the transverse momentum

dependent quark distributions was made.

The lowest order calculation of this process is very simple from the point of view of the

multiple scattering, as we are interested in here. It can be shown that for a DIS process,

in which one considers a virtual photon splitting into a quark-antiquark pair, the multiple

scattering term at the amplitude level always appears as 1− U(x1)U
†(x2), where x1 and x2

are the transverse positions of the quark and antiquark respectively. Clearly, the square of

this amplitude will have terms with traces of either zero, two, or four Wilson lines, but since

one integrates over the momentum of one of the particles, two of the Wilson lines are at the

same transverse coordinate and therefore cancel out in the term with four Wilson lines.

We note that, by swapping the initial state photon and the quark (or antiquark) in the

final state whose momentum is integrated out, the SIDIS process turns into photon+hadron

production in p+A collisions (whether the photon is measured or not doesn’t matter because

it does not multiply scatter with the gluons of the target). Therefore the only correlator

needed to express of that cross section is also the dipole amplitude.

B. Single hadron production in pA

This process is of particular importance in the context of the study of cold nuclear matter

effects. One of the first measurements to show deviations from the purely additive scheme
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where a nucleus is considered as an uncorrelated ensemble of nucleons was the p⊥-spectrum

of produced hadrons in a proton(deuteron)-nucleus collision. Several measurements of the

nuclear modification factor for inclusive hadron production were performed showing a clear

enhancement at mid-rapidities and suppression at forward rapidities [16, 17], which cannot

be understood without coherent scattering involving several participants in the nucleus.

In the framework described in this paper, the lowest order contribution to this process is

straightforward to calculate as the convolution of a quark distribution for the projectile with

a dipole amplitude formed by the Wilson lines corresponding to the quark in the amplitude

and the conjugate amplitude. At the partonic level this is simply transverse momentum

broadening of a quark going through a nucleus [18]. This level of the calculation has been

proven to not be enough to describe the available data and therefore it is necessary to

consider additional contributions to the cross section coming mainly from gluon emissions,

with the additional complication of having more particles in the final state. As a first

attempt, it was shown in [19, 20] that one can easily calculate the soft gluon limit where the

longitudinal momentum of the gluon is much smaller than that of the original quark and,

therefore, the parent quark does not feel any recoil effect after the emission. This no-recoil

condition is present in the transverse coordinate space formalism in the form of the parent

quark having the same transverse coordinate before and after the emission of the gluon,

allowing an easy way to rewrite the interference terms between scattering before and after

the splitting in a convenient way in terms of only gluon dipoles [1, 21, 22]. The details

of how this manipulation works out in the Wilson line language will be postponed to the

section on di-jet production.

The soft gluon approximation implies a large rapidity gap between the measured hadron

and the remnants of the proton in the forward region. In order to extend the region where

the calculation is applicable, and in particular include hadrons in the forward region where

the effects of saturation are expected to be stronger, it is necessary to consider the full

vertex and allow the parent quark to have different transverse positions before and after

the emission. This was first done in [23] where the emission vertex is treated exactly but

only the divergent pieces are kept after integrating over the momentum of one of the final

state particles. These divergent pieces are shown to be absorbed by the parton distribution

functions and fragmentation functions attached to the initial and final state partons by

considering the fully DGLAP evolved distributions. In Ref. [24], an additional contribution
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to the cross-section, formally of next-to-leading order but nevertheless important to restore

the correct high−pT limit, was calculated. The complete NLO calculation, including the

calculation of all virtual terms and also the finite terms after integration over one of the

outgoing momenta, was recently done in [25]. In all cases it can be seen that, in the large-

Nc limit, only dipole amplitudes are needed in the full expression for the cross section. In

terms of the small-x evolution at NLO, the same conclusion also holds [26]. In additional,

it has been demonstrated in Ref. [26] that the dipole formalism employed in this calculation

holds at next-to-leading order accuracy.

As a matter of fact, one can use induction to prove that, for any single inclusive processes

in terms of any order in αs, the scattering amplitudes only contain dipole amplitudes in the

large Nc limit. As discussed earlier, the above conclusion holds up to LO and NLO for

pA collisions. To obtain the contribution at NNLO, one just needs to add one more gluon

with one single coordinate among the dipoles at the previous order (NLO). Using the Fierz

identity, one can easily prove that all the relevant graphs can be reduced to products of dipole

amplitudes at NNLO in the large Nc limit. The proof for single inclusive DIS productions

is identical. Therefore, we can conclude that all single inclusive processes can be universally

described by the dipole amplitudes at the large Nc limit. From the universality point of view,

the large Nc limit plays an important and indispensable role for the factorization proof. As

shown in Refs [25], higher point functions, which are new objects, contribute to the cross

sections as large Nc corrections. Without the large Nc limit, there is no universality, hence

no factorization for single inclusive processes.

C. Di-jet production in DIS

The process of di-jet production in DIS is of particular interest to us since it is the

simplest process where the quadrupole is needed for an accurate description of the multiple

scattering factors entering the expression for the cross section. It was carefully studied in

[5, 27] where it was also emphasized its direct relation to the Weizsäcker-Williams gluon

distribution function.

It was already mentioned in Section IIIA and previously in [5, 27, 28] that, to leading

order at the amplitude level, the corresponding multiple scattering factor for a process in-

cluding a photon splitting into a quark-antiquark pair is given by 1 − U(x1)U
†(x2), where
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(a) Amplitude squared
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2

x′
1

(b) Color structure

FIG. 7: Diagrams for the quadrupole term in the di-jet production in DIS. The photon is

omitted in (b) since we are interested only in the color structure.

x1 and x2 are the transverse positions of the quark and antiquark respectively. Since for the

di-jet process one is interested in keeping explicit the momentum variables for both parti-

cles, the transverse coordinates in the amplitude and conjugate amplitude are different and

therefore there is a term with four Wilson lines in the expression for the cross section. This

quadrupole term takes the form
〈

Tr
[

U(x1)U
†(x2)U(x′

2)U
†(x′

1)
]〉

and clearly corresponds to

the contribution from the diagram where the interaction with the background field occurs

after the splitting both in the amplitude and conjugate amplitude. Fig. 7 shows the two

ways of graphically representing this process as indicated in Section II.

D. Di-jet production in pA

Processes with two particles in the final state of a proton-nucleus collision have become

increasingly important in the last few years given the availability of new data and the unique

character of the physics that can be probed through these particular sort of measurement.

By constraining the kinematics of the two outgoing particles, one can, at leading order,

separately fix the longitudinal momentum fractions carried by the incoming partons (up

to the additional fragmentation integrals involved in the case of di-hadron production),

something that cannot be achieved by one-particle measurements. This advantage makes

this kind of process very attractive to try to measure high-density effects characteristic of the

small-x part of the target wave function, and in fact the RHIC measurement of di-hadron

correlations in the forward region [29, 30] is considered as the strongest evidence to date of

saturation.
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= 1
2

− 1
2Nc

FIG. 8: Color structure of g → qq̄ process with interaction after the splitting.

Several studies concerning this kind of process are available in the literature, those include

the role of quark distributions [31], general descriptions on how to calculate the cross sec-

tions in the presence of background fields [3, 4, 32, 33], more phenomenological applications

including small-x evolution which make direct contact with data [34–36], and factorization

studies where a direct relationship is established between these observables and unintegrated

gluon distributions [5]. Here we will just present a summary of the correlators appearing in

the cross section for each of these processes and the specific form they take in the large-Nc

limit.

The first case to be considered is the quark initiated process where a quark from the

projectile splits into a quark and a gluon which are both detected in the final state. This

is precisely the process chosen in Section II as illustration of the sort of analysis to be

performed throughout this paper. There it was shown how all the terms entering the cross

section for that process at leading order in the large-Nc limit involve only the dipole and

quadrupole correlators.

Now we turn our attention to processes with gluons in the initial state. The first one to be

considered is the case where an initial gluon from the projectile splits into a quark-antiquark

pair. The color algebra for this process in the large-Nc limit is particularly simple since the

cross section can be written in terms of only dipole correlators, nevertheless, it is important

to look closely at some of the aspects of this process since it will allow us to draw general

conclusions about any process with quark-antiquark pairs in the final state. The key aspect

here is that the splitting does not introduce any additional color flow in the large-Nc limit,

in the double line notation introduced for the large-Nc limit the only effect of such vertex

is to separate the two lines and allow for different transverse coordinates for the quark and

the antiquark. Such separation has no consequences in the trace structure of the leading

part of the diagram when written entirely in terms of fundamental Wilson lines.
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The observation above can be easily illustrated when one compares the different contri-

butions to the g → qq̄ process arising from having the multiple scattering before or after

the splitting. For definiteness, consider first the case where the scattering occurs after the

splitting both in the amplitude and in the conjugate amplitude. The partons involved in

the scattering are therefore two quark-antiquark pairs as indicated on the left hand side of

Fig. 8. This multiple scattering term is written in terms of Wilson lines (after averaging

over the initial color of the gluon) as Tr
[

U1t
aU †

2U3t
aU †

4

]

. Using the Fierz identity to get rid

of the color matrices one obtains

Tr
[

U1t
aU †

2U3t
aU †

4

]

=
1

2
Tr

[

U1U
†
4

]

Tr
[

U †
2U3

]

−
1

2Nc

Tr
[

U1U
†
2U3U

†
4

]

. (3)

This relation is represented graphically in Fig. 8. Now consider the case where the inter-

action occurs after the splitting in the amplitude and before the splitting in the conjugate

amplitude. Then, the partons involved in the scattering are a quark-antiquark pair and a

gluon and the multiple scattering factor, in terms of the corresponding Wilson lines, is

Tr
[

U1t
aU †

2 t
b
]

W ba
3 =

1

2
Tr

[

U1U
†
3

]

Tr
[

U †
2U3

]

−
1

2Nc

Tr
[

U1U
†
2

]

. (4)

It is easy to see that the graphical representation of the color structure of this process is

topologically equivalent to that shown in Fig. 6b. As previously anticipated, the message

to take from here is that the color flow structure present in this process is the same for

both cases presented above for the leading part in the large-Nc limit. Moreover, this is the

same structure we see when only two gluons are present in the multiple scattering, always

the product of two fundamental dipoles. As opposed to processes where gluons are emitted,

no extra color charge is created at the vertex and therefore the color structure remains

unchanged, the same is also true for processes with a quark-antiquark pair merging into a

gluon which might be important for higher order contributions.

The observations above allows us to neglect, from the point of view of the color structure

of the process in the large-Nc limit, all the vertices involving a gluon splitting into a quark-

antiquark pair and focus our attention in processes where all the vertices involve a quark

emitting a gluon or a gluon splitting into two gluons. The four-gluon vertex can also be

ignored since its color structure is equivalent to a combination of three-gluon vertices.

Up until now, the large-Nc limit has been mainly invoked to be able to regard color traces

as separate entities, even after one takes the average over the background color field, arguing
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that correlations between fields entering Wilson lines in different color traces are suppressed

by factors of 1/N2
c . The multiple scattering factors of the processes considered so far, when

expressed in terms of fundamental Wilson lines only, can all be expressed in terms of products

of traces of either two or four Wilson lines in the fundamental representation. This will not

be the case from now on when we start to consider more complicated processes, starting

with the case of an initial gluon splitting into two gluons which fragment independently.

This process will have contributions from diagrams with three and four gluons present at

the moment of the multiple scattering which will lead to traces of six and eight fundamental

Wilson lines.

Let us consider first the case where the multiple scattering occurs after the splitting in

the amplitude and before the splitting in the conjugate amplitude. It is easy to see that

there are three gluons involved in the multiple scattering, each one contributing one adjoint

Wilson lines to the multiple scattering factor, and that they are connected before and after

the scattering by three-gluon vertices. Following Ref. [5], we can evaluate the relevant

scattering matrices which yield

fadeW
db
1 W ec

2 ffbcW
af
3

=
1

2
Tr

[

U1U
†
3

]

Tr
[

U3U
†
2

]

Tr
[

U2U
†
1

]

+
1

2
Tr

[

U2U
†
3

]

Tr
[

U1U
†
2

]

Tr
[

U3U
†
1

]

−
1

2
Tr

[

U3U
†
2U1U

†
3U2U

†
1

]

−
1

2
Tr

[

U1U
†
2U3U

†
1U2U

†
3

]

. (5)

The corresponding graphical representation is shown in Fig. 9. Finding the correct graphical

representation, in terms of fermion lines only, without performing explicitly the algebra

shown in Eq. (5) is possible as long as one knows how to represent two consecutive three-

gluon vertices in the double line representation. The identity to be used is illustrated in Fig.

10.

Both Eq. (5) and Fig. 9 show that the term with a trace of six Wilson lines (sextupole) is

suppressed in the large-Nc limit. On one hand, the terms with a product of three color traces

are proportional to N3
c while the terms with only one trace are of order Nc. On the other

hand, the graphical representation clearly shows that the term with the sextupole comes

from a nonplanar diagram and therefore is suppressed with respect to planar diagrams by

at least a factor of 1/N2
c .

The case where the multiple scattering occurs after the splitting, both in the amplitude

and the conjugate amplitude, is treated similarly. Now, there is an extra gluon present in
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FIG. 9: The graphs on the right side the equation should also include their Hermitian

conjugates which can be obtained by just simply reversing all the arrows. Here all the

correlators are assumed to be real, therefore the 1
2
factor is cancelled.

=
1

2
−

1

2

FIG. 10: Double line representation of the gluon vertex. Here we should include the

Hermitian conjugates of the graphs on the right hand side of the equation.

the multiple scattering, contributing an extra adjoint Wilson line, and the two three-gluon

vertices are placed before the scattering. The color connections after the scattering are given

by identifying the corresponding gluons from the amplitude and the conjugate amplitude.

In summary, the relevant multiple scattering term, in terms of adjoint Wilson lines, as well

as fundamental Wilson lines, is

fade

(

W1W
†
2

)db

fabc

(

W3W
†
4

)ec

=
1

2
Tr

[

U2U
†
1

]

Tr
[

U3U
†
4

]

Tr
[

U1U
†
2U4U

†
3

]

+
1

2
Tr

[

U4U
†
3

]

Tr
[

U1U
†
2

]

Tr
[

U3U
†
4U2U

†
1

]

−
1

2
Tr

[

U2U
†
1U3U

†
4U1U

†
2U4U

†
3

]

−
1

2
Tr

[

U1U
†
2U3U

†
4U2U

†
1U4U

†
3

]

. (6)

Its graphical representation is given in Fig. 11, where once again we made use of the identity

illustrated in Fig. 10. Similarly to the previous case, it is easy to see that the term with

three color traces is the one that dominates in the large-Nc limit, and the term with a trace

of eight Wilson lines (octupole) is subleading. We can then safely state that, for all the cases

considered in this section, the leading contribution to the multiple scattering term in the

large-Nc limit can always be written in terms of dipole and quadrupoles correlators only.
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FIG. 11: The graphs on the right side the equation should also include their Hermitian

conjugates which can be obtained by just simply reversing all the arrows. Here all the

correlators are assumed to be real, therefore the 1
2
factor is cancelled.

= − 1
2Nc

1
2

FIG. 12: qq̄g production in DIS.

IV. THREE PARTICLES IN THE FINAL STATE

The aim of this section is to show with explicit examples how the color structure of a given

process is affected by the inclusion of additional gluons in the final state. At the end of the

previous section it was seen already that when the complexity of the problem increases, as

well as the number of colored particles participating in the multiple scattering, it is natural

that new higher point correlations have to be included in the full description of the process.

It was also seen that these higher point correlations appear always suppressed by inverse

powers of Nc when the multiple scattering factor is expressed in terms of only fundamental

Wilson lines. The same will be observed in the examples shown in this section, higher point

correlations keep appearing but the leading term in the large-Nc limit can always be written

in terms of dipole and quadrupole amplitudes.

Let us start with one of the simplest cases at this level, which at the same time will show

us a general feature of further inclusion of gluons. Consider the process of production of a

quark-antiquark pair and a gluon in DIS. As was observed in previous cases, it is sufficient

to consider the case where the maximum number of particles participate in the multiple

scattering since any other combination would yield simpler correlators. The process is then

described by a photon splitting into a quark-antiquark pair, which emits a gluon before
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(a) (b)

FIG. 13: q → qgg

undergoing multiple scatterings with the target field both in the amplitude and conjugate

amplitude. The multiple scattering term includes therefore two quark-antiquark pairs and

two gluons with the color connections as shown in Fig. 12, and which can be written as

Tr
[

U †
1 t

aU2U
†
4 t

bU3

] (

W5W
†
6

)ab

=
1

2
Tr

[

U2U
†
4U6U

†
5

]

Tr
[

U3U
†
1U5U

†
6

]

−
1

2Nc

Tr
[

U3U
†
1U2U

†
4

]

, (7)

Both graphically and algebraically it is easy to see that the effect of adding a new gluon

to the process studied in Section IIIC can be understood in terms of the Fierz identity.

Here we choose to interpret the result in terms of the graphical representation. The extra

gluon can be removed from the diagram by the rule depicted in Fig. 4, regardless of it being

involved in the multiple interaction. For this particular case, the first term in the right hand

side of Fig. 4 cuts in two the already existing quadrupole, giving as a result a term with

two color traces which will clearly dominate in the large-Nc limit as compared to the second

term which does not introduce any new traces and has an extra factor of 1/Nc in front. Here

the original quadrupole is split into two quadrupoles, but it is easy to see that for slightly

different cases, as for example if one considers the term with scattering before the emission

of the gluon in the conjugate amplitude, one can end up with a quadrupole and a dipole.

These small variations of the same process can be seen as attaching the gluon to different

places of the original quadrupole. At the end of the day the result is always the same, the

leading term in the large-Nc limit will be given by the term that splits the original color

trace into two different color traces.

Next, we switch our attention to processes present in pA collisions. First consider the
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FIG. 14: Illustration of the effect of the extra gluon in the leading piece for one diagram

contributing to the q → qgg process.

quark initiated process with one quark and two gluons in the final state. The relevant

diagrams can all be obtained by considering all possible ways of attaching one extra gluon

to the diagrams contributing to the q → qg process. As an illustration, consider the diagrams

corresponding to the square of the processes where the additional gluon is emitted either by

the final quark or by the first gluon and all three particles participate in the interaction with

the background field. The color structure is given by the diagrams of Fig. 13. 1 It is easy to

see that for the case where the second gluon is emitted from the quark the color structure can

be resolved by a straightforward application of the Fierz identity, leading to the conclusion

that the leading term in the large-Nc limit is given by one dipole and two quadrupoles.

Instead of getting into the algebraic details of this computation, we choose the graphical

approach here to show how the additional gluon modifies the structure of the correlator.

Consider the diagram in the first term of the right hand side of Fig. 3, representing the

leading piece of the q → qg process, and include the additional gluon as shown in Fig. 14.

Since the gluon is only attached to the quadrupole part one can momentarily forget about

the dipole part, it is clear that when one uses the Fierz identity to remove the gluon from

the diagram one obtains that the dominant piece of the diagram is the one in which the

quadrupole is split into two quadrupoles.

For the case just described, there was no other choice but to attach the additional gluon

to the quadrupole from the leading piece of the q → qg process. When one considers other

diagrams, as the one already described where the second gluon is emitted from the first gluon,

there are other ways of attaching this new gluon to the dominant part of the diagram. In

general one can consider all possible ways of attaching the two legs of the new gluon and

1 Here we are only interested in the planar diagrams, in which gluon lines do not cross each others. The

non-planar diagrams are large Nc suppressed, and thus are always discarded.
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quickly realize that the pieces which will survive in the large-Nc limit are the ones coming

from attaching both legs of the new gluon to the same fermion loop. As an illustration, let

us consider the algebraic expression of the scattering term for the diagram in Fig. 13(b),

Tr
[

U †
5 t

ata
′

U6

]

fade

(

W1W
†
2

)db

fa′bc

(

W3W
†
4

)ec

=
1

4
Tr

[

U1U
†
2U4U

†
3

]

Tr
[

U6U
†
5U3U

†
4

]

Tr
[

U2U
†
1

]

+
1

4
Tr

[

U3U
†
4U2U

†
1

]

Tr
[

U6U
†
5U1U

†
2

]

Tr
[

U4U
†
3

]

−
1

4
Tr

[

U6U
†
5U1U

†
2U4U

†
3U2U

†
1U3U

†
4

]

−
1

4
Tr

[

U6U
†
5U3U

†
4U2U

†
1U4U

†
3U1U

†
2

]

. (8)

One can clearly see that the two first terms come from attaching the two legs of the new

gluon to the same preexisting fermion loop while the last two terms come from attaching

the two legs of the new gluon to different fermion loops. Higher point correlators appear in

this expression but always suppressed by a power of 1/N2
c as compared to the terms with

only dipoles and quadrupoles.

For the gluon initiated processes the situation is very similar. Even though the explicit

calculations are more intricate and tedious, one can easily recognize that the leading terms

for large-Nc for the process g → ggg consist of a combination of two dipoles and two

quadrupoles. One can perform a similar analysis to the one performed above for the q → qgg

process starting with the leading piece of the g → gg process and adding an extra gluon.

Again, the terms that survive in the large-Nc limit will be the ones coming from attaching

both legs of the new gluon to only one of the preexisting fermion loops, in this case two

dipoles and one quadrupole, creating therefore one extra quadrupole (in the case where all

produce particles participate in the multiple scattering both in the amplitude and conjugate

amplitude).

V. PROOF OF THE GENERAL CASE

The argument used in the previous section to go from processes with two particles in

the final state to processes with three particles in the final state can be generalized in a

straightforward manner to an arbitrary number of particles in the final state. In order to do

so in a consistent matter we will show by induction that adding a new particle to the final
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state does not change the fact that the leading terms in the large-Nc limit are given in terms

of only dipoles and quadrupoles. We find it convenient to focus first on the leading order

for a given number of particles, then we show how the argument can be further generalized

to include also all order contributions.

A. Leading order

Before getting into the details of the inductive step of the proof, let us summarize some

of the observations that have been done through the paper which will be useful for the

argument presented in this section.

1. In the large-Nc limit, the Nc power counting is most easily done when scattering factors

are expressed fully in terms of fundamental Wilson lines, where each trace contributes

with a factor of Nc.

2. Changing the moment of the multiple interaction does not change the Nc power count-

ing. The case where all the final state particles participate in the multiple interaction

is where the most complicated correlators can possibly be found and therefore these

will be the only cases under study in this section.

3. A gluon splitting into a quark-antiquark pair does not add any color charge to the

process and therefore leaves its color structure unchanged. For the argument presented

here one can neglect any new contributions from processes with extra quark-antiquark

pairs in the final state and always assume that the additional particles are gluons.

4. From the point of view of the color structure only, a four-gluon vertex can always

be represented by the sum of different ways of combining two three-gluon vertices.

Because of this, processes with four-gluon vertices are not considered since its color

structure is already accounted for by a proper treatment of the three-gluon vertices.

These observations reduce significantly the number of cases we have to consider to show

that the inductive step in our proof indeed works. Suppose that all the correlators needed

to describe all processes with k particles in the final state in the large-Nc limit are dipoles

and quadrupoles. Now consider a planar diagram for a process with k + 1 particles in the

final state, remove one gluon and consider the representation of the leading Nc piece of the
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remaining diagram in terms of only fundamental Wilson lines. Since it is a planar diagram

corresponding to a process with k particles in the final state its representation in terms of

only fundamental Wilson lines is expressed in terms of dipoles and quadrupoles only. Now

reattach the gluon removed in the previous step, there are two possibilities: either both of

its legs are attached to the same fermion loop, or, each leg is attached to a different fermion

loop. In the first case, one can see from the examples in Section IV that the insertion of

the new gluon splits the corresponding fermion loop, either dipole or quadrupole, creating

a new quadrupole (when the new dipole interacts both in the amplitude and the conjugate

amplitude, as was pointed out any other case would lead to simpler correlators). The second

case can be easily seen to be suppressed by a factor of 1/N2
c with respect to the first case.

The two terms one obtains after applying the Fierz identity to a gluon joining two separate

fermion loop have one power of Nc less as compared to the diagram without the extra gluon,

one of them has one loop less while the other has an explicit factor of 1/Nc. This is to be

compared to the first case where one additional fermion loop is created, and therefore one

extra power of Nc is present.

We can therefore conclude that for any multiple-jet graphs, under the framework of

saturation physics, the dipole and quadrupole are the only objects appear in a physical

multiple-jet production process in the large Nc limit. One should note that so far, our proof

does not apply to multi-particle production processes with large rapidity intervals or gaps

between the measured particles (all jets are produced in the same rapidity region). For such

situations, one needs to consider higher orders diagrams (and at least re-sum those that

contain a logarithmic enhancement). In the following section, we explain that our proof

holds to all orders in αs, which encompasses those situations where particles are emitted

with large rapidity differences.

B. Higher order αs corrections

As briefly mentioned earlier, within the framework of the dilute-dense factorization, the

next-to-leading order αs corrections of the single-inclusive production cross sections [25] in

the large Nc limit does not involve higher point functions. Here we would like to generalize

this conclusion up to all order. There are two classes of graphs at higher order, namely, the

virtual graphs and real graphs. In terms of color structure in the coordinate space, these
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FIG. 15: Higher order αs contribution to the qq̄ dijet

two classes of graphs are actually similar. They both introduce an additional gluon at a new

coordinate. The only difference is that the additional gluon in the real graphs goes through

cut and is produced in the final state. For the real graphs, we can follow the above discussion

on the multiple-jet productions, and integrate over arbitrary number of final state jets, and

arrive at the conclusion that all real graphs in the large Nc limit can only involve dipoles and

quadrupoles. For the virtual graphs, we can easily see that the large Nc limit requires the

additional gluon within a dipole or a quadrupole, thus higher order virtual graphs can only

generate more dipoles. Let us take the DIS dijet as an example, where we add one-gluon

loop in both of the amplitude and complex conjugate amplitude as shown in Fig. 15. Using

the Fierz identity, it is obvious that the addition of the virtual gluons in the dijet processes

does not introduce higher point functions in the large Nc limit.

We have shown that, to all orders in αs, all multi-particle production processes in dilute-

dense collisions are expressible in terms of dipoles and quadrupoles only in the large-Nc

limit. In particular, this includes the case where particles are emitted with a large rapidity

difference, along with un-tagged emissions or gaps in between. We would like to point

out that, in the case of strongly-ordered gluon emissions, this result was first obtained in

Ref. [37]. Our derivation extends the result to the general case of non-eikonal, gluon, quark

or antiquark emissions.

VI. CONCLUSION

In conclusion, we find that in the large Nc limit, all multi-particle production processes

in p+A-type collisions up to all orders in αs can be described in terms of only dipoles and
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quadrupoles under the CGC framework, excluding cases with large rapidity intervals or gaps

between the measured particles. This conclusion can very possibly lead us to an effective

kt factorization at small-x for multiple-jet production processes in high energy scatterings

within a dilute-dense system. This effective kt factorization involves two fundamental ob-

jects, namely, the dipole and quadrupole, and it can only work in the large Nc limit. Only

in the large Nc limit, can one get rid of all the higher point functions which are presumably

new objects. Provided we understand both dipoles and quadrupoles well, we will be able

to predict any multiple-jet production processes up to corrections of order 1
N2

c
by using this

effective kt factorization.
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Appendix A: Large-Nc evaluation of correlators in the McLerran-Venugopalan

model

In this Appendix we show how one can compute general n-point correlators under the

framework of the McLerran-Venugopalan model[38] in the large-Nc limit. The formalism

we will employ is the one introduced in Refs. [39, 40] which has been successfully used to

compute the full finite-Nc expressions for several correlators also in [5, 41–43].

The general strategy consists on expanding the Wilson lines and then take advantage

of the fact that the only non-trivial correlation is the average of two gauge fields by using

Wick’s theorem. The elementary correlator of two fields takes the form

g2S〈A
−
c (z

+, x)A−
d (z

′+, y)〉xg
= δcdδ(z

+ − z′+)µ2
xg
(z+)Lxy, (A1)
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where Lxy can be written in terms of a two-dimensional massless propagator (see Ref. [5]).

In order to be able to resum these two-point contractions it is necessary to pay close at-

tention to the color algebra. Only overall singlet states need to be considered, one can

therefore calculate the matrix indicating the possible transitions between such states and

then diagonalize it.

This was done explicitly for correlators involving four fundamental Wilson lines (two

quark-antiquark pairs) in [5, 40, 41] where only two overall singlet states are available and

the corresponding transition matrix takes the following form

M =





CF (Lx1x2
+ Lx′

2
x′

1
) + 1

2Nc
F (x1, x2; x

′
2, x

′
1) −1

2
F (x1, x

′
1; x

′
2, x2)

−1
2
F (x1, x2; x

′
2, x

′
1) CF (Lx1x

′

1
+ Lx′

2
x2
) + 1

2Nc
F (x1, x

′
1; x

′
2, x2)



 ,

(A2)

with F (x1, x2; x
′
2, x

′
1) = Lx1x

′

2
− Lx1x

′

1
+ Lx2x

′

1
− Lx2x

′

2
.

If one naively takes the large-Nc limit the matrix becomes diagonal, which is consistent

with the fact that each color transition is suppressed by a factor of 1/N2
c . For correlators

where the singlet structure is not the same at both ends of the longitudinal extent it is not

appropriate to take the large-Nc limit at the level of the transition matrix, since different sin-

glet states receive different weights in the final calculation. For example, for the quadrupole

calculation in [5] one can see that the relevant combination of matrix elements for the nth

order term of the expansion takes the form (Mn)11 + Nc(M
n)21, where the non-diagonal

component appears multiplied by a factor of Nc.

One can see from the explicit expression for the matrix M that M11 and M22 have one

additional factor of Nc when compared to M12 and M21. When taking the leading Nc term

of the elements of Mn it is easy to see that (Mn)11 = Mn
11 and (Mn)22 = Mn

22 while (Mn)21

includes only terms with one factor of M21 and n−1 factors of M11 or M22 which is the same

as taking M12 = 0 right from the beginning (M11 and M22 can be replaced by their large-Nc

versions also). The fact that the non-diagonal element enters only once signals that there

was only one color transition.

One can easily see that

(Mn)21 = M21

n−1
∑

k=0

Mk
11M

n−k−1
22 ,

= M21
Mn

11 −Mn
22

M11 −M22
. (A3)
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FIG. 16: Graphical representation of the six topologies involved in the calculation. The

power of Nc associated to each configuration is equal to the number of fermion loops.

One must perform an ordered integral of the longitudinal coordinates and then sum over

n. Since in a MV-like Gaussian model the longitudinal dependence of the correlations factors

out, the ordered integral is equal to 1
n!

times the full integral. From there it is easy to see

that the nth powers appearing above become exponentials and the large-Nc formula for the

quadrupole is recovered.

This way of taking the large-Nc limit at the matrix level can be generalized to more

complicated correlators with similar results. One can find an ordering of the singlet states

such that all the necessary information to find the large-Nc version of the correlator is in a

lower diagonal matrix organized in blocks in which going away from the diagonal lowers the

power of Nc of the corresponding matrix element. Here we describe this procedure for the

case of the six-point correlator of the form 1
Nc
〈Tr(U1U

†
2U3U

†
4U5U

†
6)〉.

For such a system of three quarks and three antiquarks there are 6 singlet states available

corresponding to the 6 ways of pairing quarks with antiquarks. The proper way to organize

the states in the matrix representation is according to the power of Nc of the overlap with

the final singlet state. In terms of the graphical representation introduced in [40], the six

singlet states correspond, in that particular order, to the topologies shown in Fig. 16 where

29



the number of fermion loops gives the power of Nc associated to the overlap.

In the large-Nc limit only transitions to states corresponding to a higher power of Nc are

allowed, which, thanks to the specific order chosen for the singlet states, means that one can

divide the corresponding transition matrix into blocks and all the blocks above the diagonal

can be neglected. The corresponding transition matrix M takes then the following form

M =











M1 0 0

M4 M2 0

0 M5 M3











, (A4)

where the matrices along the diagonal are diagonal, and the off-diagonal matrices have one

power of Nc less than the ones along the diagonal. It is not difficult to calculate the nth

power of this matrix

Mn =











Mn
1 0 0

∑n−1
i=0 M i

2M4M
n−i−1
1 Mn

2 0
∑n−2

i=0

∑n−i−2
j=0 M i

3M5M
j
2M4M

n−i−j−2
1

∑n−1
i=0 M i

3M5M
n−i−1
2 Mn

3











. (A5)

One can easily see that the relevant matrix elements for the evaluation of the desired corre-

lator are of the form

(

1 1 Nc Nc Nc N2
c

)

Mn



























1

0

0

0

0

0



























. (A6)

This singles out the first column of Mn. Since M1 and M2 are diagonal matrices it is easy

to see that the elements of M in the second column never enter the expressions for the

elements of Mn in the first column. Following this observation, we drop completely all

contributions from the second column (and second row) which correspond to the second

topology proportional to Nc.
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As a 5x5 matrix, M has the form

M =





















m11 0 0 0 0

m21 m22 0 0 0

m31 0 m33 0 0

m41 0 0 m44 0

0 m52 m53 m54 m55





















. (A7)

The first column of its nth power is























mn
11

m21

∑n−1
i=0 mi

11m
n−i−1
22

m31

∑n−1
i=0 mi

11m
n−i−1
33

m41

∑n−1
i=0 mi

11m
n−i−1
44

∑4
k=2m5kmk1

[

∑n−2
i=0

∑n−i−2
j=0 mi

11m
j
kkm

n−i−j−2
55

]























, (A8)

which can be rewritten as























mn
11

m21

m11−m22

[mn
11 −mn

22]

m31

m11−m33
[mn

11 −mn
33]

m41

m11−m44
[mn

11 −mn
44]

∑4
k=2m5kmk1

[

mn
11

(m11−mkk)(m11−m55)
+

mn
kk

(mkk−m11)(mkk−m55)
+

mn
55

(m55−mkk)(m55−m11)

]























. (A9)

Now, as in the previous case, these expressions appear in the final result summed over n

with a factor of 1
n!

due to the ordering in the longitudinal coordinate. Therefore the nth

powers become exponentials.

One can easily calculate explicitly the relevant leading-Nc piece of the transition matrix
for the case of interest. This reduced version of the transition matrix then takes the form

M =
1

2





















Nc(L12 + L34 + L56) 0 0 0 0

F1243 Nc(L14 + L32 + L56) 0 0 0

F1265 0 Nc(L16 + L34 + L52) 0 0

F3465 0 0 Nc(L12 + L36 + L54) 0

0 F1465 F2534 F1263 Nc(L16 + L32 + L54)





















(A10)

where Fijkl = Lik − Ljk + Ljl − Lil. Plugging these matrix elements back into the above

equations, transforming the nth powers into exponentials, and including the tadpole contri-
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butions one gets

1

Nc

〈

Tr
[

U1U
†
2U3U

†
4U5U

†
6

]〉

= e−Γ12−Γ34−Γ56 −
F1234

F1324

[

e−Γ12−Γ34 − e−Γ14−Γ32

]

e−Γ56

−
F1256

F1526

[

e−Γ12−Γ56 − e−Γ16−Γ52

]

e−Γ34 −
F3456

F3546

[

e−Γ34−Γ56 − e−Γ36−Γ54

]

e−Γ12

+F1234F1456

[

e−Γ12−Γ34−Γ56

F1324G
−

e−Γ14−Γ32−Γ56

F1324F1546

+
e−Γ16−Γ32−Γ54

F1546G

]

+F1256F2543

[

e−Γ12−Γ34−Γ56

F1526G
−

e−Γ16−Γ34−Γ52

F1526F2453

+
e−Γ16−Γ32−Γ54

F2453G

]

+F3456F1236

[

e−Γ12−Γ34−Γ56

F3546G
−

e−Γ12−Γ36−Γ54

F3546F1326
+

e−Γ16−Γ32−Γ54

F1326G

]

, (A11)

where Γij = µ2(Lii + Ljj − 2Lij) and G = L12 + L34 + L56 − L16 − L32 − L54.

In this expression one can easily recognize three different type of contributions depending

on the number of transition between the singlet states. The first term clearly comes from

the first row in (A9) and corresponds to the totally elastic part with no color transitions, the

following three terms come from the second, third, and fourth rows of (A9) and correspond

to terms with only one transition, while the rest of the terms come from the last row of (A9)

and are associated with terms which have two transitions between singlet states.
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