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Abstract

Induced by three gluons symmetry, Mandelstam variables s, t, u symmetric expressions are

widely involved in collider physics, especially in heavy quarkonium physics. In this work we study

general form of s, t, u symmetric polynomials, and find that they can be expressed as polynomials

where the symmetry is manifest. The general form is then used to simplify expressions which

asymptotically reduces the length of original expression to one-sixth. Based on the general form,

we reproduce the exact differential cross section of J/ψ hadron production at leading order in v2

up to four unknown constant numbers by simple analysis. Furthermore, we prove that differential

cross section at higher order in v2 is proportional to that at leading order. This proof explains the

proportion relation at next-to-leading order in v2 found in previous work and generalizes it to all

order.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is currently believed to be the fundamental theory of

the strong interaction. Thanks to asymptotic freedom and factorization [1–6] properties, ap-

plication of QCD to a physical process can be factorized into convolution of non-perturbative,

but universal, long distance matrix elements with perturbative calculable infrared-safe [7]

short distance coefficients. Short distance coefficient at each order in perturbative expansion

can be typically understood as the differential cross section of two partons scattering to pro-

duce n partons. This 2 → n parton level process is conveniently obtained from the process

0 → 2+n through crossing. Although partons can be either gluon or (anti-)quark, in many

cases these 2+n partons are mainly gluons which are the gauge bosons of QCD. Therefore,

the identity property between gluons results in a large symmetry for these processes.

Considering the specific type of processes 0 → g(k1)+ g(k2)+ g(k3)+H(P ), where ki are

momentum of each gluons, P is the total momentum of a “cluster” H which includes one or

more partons. The “cluster” here means differential cross section of the process should be

sensitive only to the total momentum P of the cluster, but insensitive to the detail within

the cluster. Momentum conservation gives

kµ1 + kµ2 + kµ3 + P µ = 0 , (1)

with k2i = 0 and P 2 = M2, where M is the invariant mass of cluster H . The associated

Mandelstam variables are given by

s = (k1 + k2)
2 = (P + k3)

2 , (2a)

t = (k2 − k3)
2 = (P − k1)

2 , (2b)

u = (k3 − k1)
2 = (P − k2)

2 , (2c)

with s+ t+u =M2. Symmetry between the three gluons implies that the following function

is symmetric under the exchange of s, t and u:

F (M2, s, t, u) =
∑

|A|2, (3)

where A is Feynman amplitude of the process and
∑

means summation/average over spin

and color of these three gluons. Before doing any integration, F (M2, s, t, u) is a fraction

polynomial, and both its numerator and denominator are symmetric polynomials. As a
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result, to study the restriction introduced by gluons symmetry, it is equivalent to study the

property of symmetric polynomial.

The above type of processes are widely involved in collider physics. The simplest example

is studying two jets production in hadron colliders and calculation of four gluons scattering

is need, where H is also a gluon. In heavy quarkonium physics, there are a lot of processes

belong to this type, including heavy quarkonium decays to light hadrons [8–13] and heavy

quarkonium production in hadron colliders (see, for example Refs. [14–21] and references

therein), where H is a heavy quark anti-quark pair with a very small relative momentum.

Hopefully, study the property of symmetric polynomial will introduce rigorous restriction

for these processes.

Among others, there is a very interesting finding in heavy quarkonium physics recently

that, at leading order (LO) in αs and in the large transverse momentum pT limit, relativistic

correction term for J/ψ hadron production is proportional to the leading term [17]. The

proportion behavior is nontrivial because there are more than one parameters even in the

large transverse momentum limit. It is likely to have a symmetry to protect this behavior,

which is one of the motivations to study the symmetry property induced by three identical

gluons.

The rest of the paper is organized as follows. We study the general form of a s, t, u

symmetric polynomial in Sec. II. In Sec. IIA we devote to massless case and find the poly-

nomial can be expressed in a form where symmetry is manifest. By explicitly constructing,

we generalize the massless result to include also massive particles in Sec. II B. The general

form is then used to simplify expression in Sec. III. Asymptotically, this simplification can

reduce the length of a expression to one-sixth. In Sec. IV, we use the general form to re-

produce some known results and explain the unexpected proportion behavior of relativistic

correction of J/ψ hadron production [17]. The proportion behavior is also generalized to

all order in v2. Finally, we summarize the results in this work and give a outlook for future

works in Sec. V.

II. GENERAL FORM OF s, t, u SYMMETRIC POLYNOMIAL

In this section, we study the general form of a polynomial Fn(M
2, s, t, u) which is sym-

metric under the exchange of s, t and u. Because all terms in Fn(M
2, s, t, u) should have
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the same mass dimensions, a explicit subscript n is attached to denote the mass dimensions

2n. Define three symmetric combinations

S1 :=s+ t+ u , (4a)

S2 :=− st− tu− us , (4b)

S3 :=stu . (4c)

We will find that Fn(M
2, s, t, u) can be expressed as a polynomial F̂n(S1, S2, S3). This result

is not hard to be understood because the relation s + t + u = M2 has already suggested

that only three variables are independent in Fn. What is not clear is that whether F̂n is a

polynomial. In fact, s, t, u symmetric variables has been used for specific processes for a

long time [22–24], but a general proof is still missing. In the following, we first study the

case where M = 0. Then the extension to massive case is straightforward. Main results in

this section are Eqs. (18) and (19).

A. Massless case: s+ t+ u = 0

Define

fn(s, t, u) := Fn(0, s, t, u) , (5)

which is a symmetric homogeneous polynomial. The general expression of fn(s, t, u) is

fn(s, t, u) =

n+1
2

∑

i=0

xi
[

sn−i(ti + ui) + tn−i(ui + si) + un−i(si + ti)
]

+ stu f̃n−3(s, t, u) , (6)

where xi are independent of s, t and u, f̃n−3(s, t, u) is a symmetric polynomial with power

n − 3 (obviously, f̃n−3(s, t, u) = 0 if n < 3). Therefore, we need only prove the following

function is a polynomial in S2 and S3:

f̄n(s, t, u) =

n+1
2

∑

i=0

xi
[

sn−i(ti + ui) + tn−i(ui + si) + un−i(si + ti)
]

. (7)

We prove it recursively.

• n = 0 or 1 is trivial.
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• n = 2:

f̄2(s, t, u) = 2x0(s
2 + t2 + u2) + 2x1(st + tu+ us) = 2(2x0 − x1)S2 . (8)

• n ≥ 3 and n ∈ 2N + 1:

In this case, we will show that f̄n(s, t, u) ∝ s, and then using symmetry we can get

f̄n(s, t, u) ∝ stu, that is f̄n(s, t, u) = S3fn−3(s, t, u). Setting s = 0, one has t = −u,
thus

f̄n(0,−u, u) =
n+1
2

∑

i=0

xi
[

tn−iui + un−iti
]

=

n+1
2

∑

i=0

xi
[

(−1)n−i + (−1)i
]

un = 0 . (9)

Recall the general expression of f̄n(s, t, u) in Eq. (7), the above result means

f̄n(s, t, u) ∝ s.

• n ≥ 3 and n ∈ 2N , but n 6∈ 6N :

In this case, we will show that f̄n(s, t, u) ∝ S2. Solutions of










S1 = 0 ,

S2 = 0 ,
(10)

is










s = e±i
2π
3 u ,

t = e∓i
2π
3 u .

(11)

Thus, equivalently, we need to show that f̄n(s, t, u) vanishes for solutions in Eq. (11):

f̄n(e
±i 2π

3 u, e∓i
2π
3 u, u)

=un

n
2

∑

j=0

xj

[

e±i
2(n−j)π

3 (e∓i
2jπ
3 + 1) + e∓i

2(n−j)π
3 (e±i

2jπ
3 + 1) + (e±i

2jπ
3 + e∓i

2jπ
3 )

]

=un

n
2

∑

j=0

xj

[

e±i
2(n−2j)π

3 + e±i
2(n−j)π

3 + e±i
2jπ
3 + c.c.

]

=2un

n
2

∑

j=0

xj

[

cos
2(n− 2j)π

3
+ cos

2(n− j)π

3
+ cos

2jπ

3

]

.

(12)

Because cos 2jπ
3

= 1 if j ∈ 3N and cos 2jπ
3

= −1
2
if j 6∈ 3N , cos 2(n−2j)π

3
+ cos 2(n−j)π

3
+

cos 2jπ
3

= 0 for all j, that is f̄n(e
±i 2π

3 u, e∓i
2π
3 u, u) = 0.

5



• n ≥ 3 and n ∈ 6N :

Define

Gi(s, t, u) := sn−i(ti + ui) + tn−i(ui + si) + un−i(si + ti) . (13)

It is easy to find that










Gj(0,−u, u) = 2(−1)jun ,

Gj(e
±i 2π

3 u, e∓i
2π
3 u, u) = 6ei

2jπ
3 un .

(14)

Thus










(−1)j1Gj1(0,−u, u)− (−1)j2Gj2(0,−u, u) = 0 ,

e−i
2j1π
3 Gj1(e

±i 2π
3 u, e∓i

2π
3 u, u)− e−i

2j2π
3 Gj2(e

±i 2π
3 u, e∓i

2π
3 u, u) = 0 ,

(15)

which means










(−1)j1Gj1(s, t, u)− (−1)j2Gj2(s, t, u) ∝ S3 ,

e−i
2j1π
3 Gj1(s, t, u)− e−i

2j2π
3 Gj2(s, t, u) ∝ S2 .

(16)

For any j1, there exists a j2 which guarantees the coefficient matrix of Eq. (16) to be

non-zero. Therefore, solution of Eq. (16) gives

Gj(s, t, u) = S2Aj(s, t, u) + S3Bj(s, t, u) , (17)

where Aj(s, t, u) and Bj(s, t, u) are symmetric polynomial. Specifically, taking advan-

tage of results in previous cases, we find Aj(s, t, u) ∝ S2
2 and Bj(s, t, u) ∝ S3. Using

this argument recursively, one gets that Gj(s, t, u) is a polynomial in S3
2 and S2

3 . As a

result, f̄n(s, t, u) is a polynomial in S3
2 and S2

3 .

Combine all possible cases above, we indeed proved that fn(s, t, u) is a polynomial in S2

and S3 for any n. More precisely, we find

fn(s, t, u) = f̂n(S2, S3) =



































































Xn
6
(S3

2 , S
2
3), n ∈ 6N ,

S2
2S3Xn−7

6
(S3

2 , S
2
3), n ∈ 6N + 1 ,

S2Xn−2
6
(S3

2 , S
2
3), n ∈ 6N + 2 ,

S3Xn−3
6
(S3

2 , S
2
3), n ∈ 6N + 3 ,

S2
2Xn−4

6
(S3

2 , S
2
3), n ∈ 6N + 4 ,

S2S3Xn−5
6
(S3

2 , S
2
3), n ∈ 6N + 5 ,

(18)
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where Xi(x, y) is an arbitrary homogeneous polynomial in x and y with power i. Specially,

Xi(x, y) = 0 if i < 0.

B. Massive case: s+ t+ u =M2

When S1 =M2 6= 0, we will show that Fn(M
2, s, t, u) can be expressed as:

Fn(M
2, s, t, u) = F̂n(S1, S2, S3) =

n
∑

i=0

Si1f̂n−i(S2, S3) , (19)

where general form of f̂n−i(S2, S3) is explicit in Eq. (18). We prove Eq. (19) by construction.

First, i = 0 term in Eq. (19) can be obtained by setting S1 = M2 = 0 in Fn(M
2, s, t, u)

using the method discussed in Sec. IIA. Then we find Fn(M
2, s, t, u)− f̂n(S2, S3) is zero if

one sets S1 = 0, that is Fn(M
2, s, t, u)− f̂n(S2, S3) ∝ S1. Considering that Fn(M

2, s, t, u),

f̂n(S2, S3) and S1 are symmetric polynomials,

Fn−1(M
2, s, t, u) =

Fn(M
2, s, t, u)− f̂n(S2, S3)

S1
(20)

is also a symmetric polynomial. Applying this method repeatedly, result of Eq. (19) can be

achieved.

III. SIMPLIFY EXPRESSIONS

General forms in the last section can be used to simplify expressions that are symmetric

polynomials in s, t and u by expressing them in terms of manifest symmetric form. In large

n limit, one finds from Eq. (18) that the symmetric form is a polynomial with power n
6
,

therefore, asymptotically this method can reduce the length of original expression to one-

sixth. Also, the method can be easily realized in terms computer program. Here, we give

two examples.

The first example is an ideal expression

f42 :=
42
∑

i=1

si(t42−i + u42−i) + ti(u42−i + s42−i) + ui(s42−i + t42−i) , (21)
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with s+ t + u = 0. Its explicit expression in terms of t and u is

f42 = 2(t2 + tu+ u2)3
[

t36 + 18t35u+ 342t34u2 + 4029t33u3 + 34542t32u4 + 229536t31u5

+ 1229611t30u6 + 5455041t29u7 + 20431896t28u8 + 65541187t27u9 + 182032158t26u10

+ 441440337t25u11 + 940899497t24u12 + 1771715799t23u13 + 2959077438t22u14

+ 4396930001t21u15 + 5825638020t20u16 + 6892901679t19u17 + 7289748245t18u18

+ 6892901679t17u19 + 5825638020t16u20 + 4396930001t15u21 + 2959077438t14u22

+ 1771715799t13u23 + 940899497t12u24 + 441440337t11u25 + 182032158t10u26

+ 65541187t9u27 + 20431896t8u28 + 5455041t7u29 + 1229611t6u30 + 229536t5u31

+ 34542t4u32 + 4029t3u33 + 342t2u34 + 18tu35 + u36
]

.

(22)

As f42 is symmetric under exchanging of s, t and u, we can express it in terms of S2 and S3.

Specifically, we find result for terms within brackets of Eq. (22) is
[

· · ·
]

= S18
2 + 171S15

2 S
2
3 + 3060S12

2 S
4
3 + 12376S9

2S
6
3 + 12870S6

2S
8
3 + 3003S3

2S
10
3 + 91S12

3 ,

(23)

which is much simpler than the original expression. Result in Eq. (23) has two meanings.

Firstly, it tests the proof in Sec. IIA to be true by explicit calculation. Secondly, it shows

the asymptotic behavior that our method can reduce the length of original expression to

one-sixth.

The second example is a massive one. We take the equation (A5d) of Ref. [15]

∑

|A(gg → cc̄[3P
[8]
0 ]g)|2 = 5(4παs)

3

12M3
[

sz2(s−M2)4(sM2 + z2)4
]

{

+ s2z4(s2 − z2)4 +M2sz2(s2 − z2)2(3s2 − 2z2)(2s4 − 6s2z2 + 3z4)

+M4
[

9s12 − 84s10z2 + 265s8z4 − 382s6z6 + 276s4z8 − 88s2z10 + 9z12
]

−M6s
[

54s10 − 357s8z2 + 844s6z4 − 898s4z6 + 439s2z8 − 81z10
]

+M8
[

153s10 − 798s8z2 + 1415s6z4 − 1041s4z6 + 301s2z8 − 18z10
]

−M10s
[

270s8 − 1089s6z2 + 1365s4z4 − 616s2z6 + 87z8
]

+M12
[

324s8 − 951s6z2 + 769s4z4 − 189s2z6 + 9z8
]

− 9M14s(6s2 − z2)(5s4 − 9s2z2 + 3z4)3M16s2(51s4 − 59s2z2 + 12z4)

− 27M18s3(2s2 − z2) + 9M20s4
}

,

(24)

8



which is the squared amplitude of 3P
[8]
0 channel for J/ψ hadron production via gluon-gluon

fusion. Even a new variable z :=
√
tu is introduced, the expression is still very long. Using

our method, it can be expressed in a much compact form. Terms within braces of Eq. (24)

can be expressed as

{

· · ·
}

= S4
2S

2
3 + S1S

2
2S3

(

6S3
2 − S2

3

)

+ S2
1

(

9S6
2 + 4S3

2S
2
3 + 5S4

3

)

+ S3
1S2S3

(

27S3
2 − 11S2

3

)

2S4
1S

2
2

(

9S3
2 − 16S2

3

)

− S5
1S3

(

3S3
2 + 13S2

3

)

+ 9S6
1S2

(

S3
2 − 2S2

3

)

− 9S7
1S

2
2S3 .

(25)

More compactly, ordering it according to the power of S3, we have

{

· · ·
}

= 9S2
1S

4
2

(

S2
1 + S2

)2 − 3S1S
2
2S3

(

3S6
1 + S4

1S2 − 9S2
1S

2
2 − 2S3

2

)

− S2S
2
3

(

18S6
1 + 32S4

1S2 − 4S2
1S

2
2 − S3

2

)

− S1S
3
3

(

13S4
1 + 11S2

1S2 + S2
2

)

+ 5S2
1S

4
3 .

(26)

Note although that the simplification in this example is not so significant as the previous

one, which is because the power here is smaller.

IV. J/ψ HADRON PRODUCTION

A. J/ψ hadron production at leading order in v2

A well known result in heavy quarkonium physics is the J/ψ hadron production in color-

singlet model[25–28], one out of six Feynman diagrams at leading order in αs is shown in

Fig. 1. Based on results in Sec. II, we will reproduce the behavior of the exact result by

simple analysis.

FIG. 1: One out of six Feynman diagrams for g + g → cc̄[3S
[1]
1 ] + g, where all momentum are

outgoing. The other five diagrams can be obtained by permutating the three gluons.

It is easy to find that denominator of the amplitude in Fig. 1 is proportional

to (s − M2)(u − M2), thus the summation of all six diagrams is proportional to
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[(s−M2)(t−M2)(u−M2)]
−1
. In Feynman gauge, squaring the summed amplitude and

summing/average over polarization, we get

F (3S
[1]
1 ) ∝ F6(M

2, s, t, u)

[(s−M2)(t−M2)(u−M2)]2
. (27)

Note that, an additional dimensionless factor 〈OJ/ψ(3S
[1]
1 )〉/M3 and a flux factor 1/2s are

necessary to get the cross section of J/ψ production, but for our purpose it does not matter

and we will neglect them. Before further discussion, we will prove that the behavior of

this process to the differential cross section is dσ
dp2

T

∝ M4/p8T in large pT limit, namely

s, t, u ≫ M2. Note that, to demonstrate it, we will choose gauge other than Feynman

gauge.

We begin with the amplitude in Fig. 1 (we label it with a ”1” to denote that it is the

first diagram. The other five diagrams will be labeled with 2, · · · , 6.)

A1 = Tr

[

(−
/P

2
+m)γα(

/P

2
+m)(−igT a3γµ3) i(

/k3 +
/P
2
+m)

(k3 +
P
2
)2 −m2

(−igT a1γµ1)

i(−/k2 − /P
2
+m)

(−k2 − P
2
)2 −m2

(−igT a2γµ2)
]

= −i2g3mTr [T a1T a2T a3 ] Tr

[

γα(
/P

2
+m)γµ3

/k3 +
/P
2
+m

k3 · P
γµ1

−/k2 − /P
2
+m

k2 · P
γµ2

]

,

(28)

where µi (ai) is the spin index (color index) of the gluon with momentum ki, α is the spin

index of the pair cc̄[3S
[1]
1 ] and m = M/2 is the mass of the charm quark. To get the above

result, P 2 = 4m2 and P α = 0 1 have been used. Notice that, if one sets m = 0, trace

of the gamma chain in the last line in Eq. (28) vanishes because there are odd number of

gamma matrixes then, which implies A1 ∝ M2. Therefore, squaring the summation of all

six amplitudes and contracting with summations of polarizations, we will get dσ
dp2

T

∝M4/p8T

if all denominators do not vanish when M → 0. The only possible vanishing denominator

comes from the summation of spin polarization of cc̄[3S
[1]
1 ]: −gαα′

+ PαPα′

M2 , where the second

term violates the above argument. Thus, we should prove that contracting with PαPα′

M2 will

at most give contributions at O(M4).

1 This is possible because we will contract A1 with the summation of polariztion −gαα′

+ P
α

P
α
′

M2 .
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Contracting the trace of the gamma chain in the last line in Eq. (28) with Pα

M
, we get

Ā1 =
1

M
Tr

[

/P (
/P

2
+m)γµ3

/k3 +
/P
2
+m

k3 · P
γµ1

−/k2 − /P
2
+m

k2 · P
γµ2

]

= 2 Tr

[

/Pγµ3
/k3 +

/P
2

2k3 · P
γµ1

−/k2 − /P
2

2k2 · P
γµ2

]

+O(M2) .

(29)

It is convenient to choose a axial gauge so that P · ǫ(ki) = 0 (i = 1, 2, 3), where ǫ(ki) is the

polarization vector of gluon with momentum ki. This choice of gauge does not change our

argument in the last paragraph because it does not introduce small denominators. In this

gauge, terms more than two /P in Eq. (29) contribute to higher order in M2, thus

Ā1 = −2 Tr

[

/Pγµ3
/k3

2k3 · P
γµ1

/k2
2k2 · P

γµ2
]

+O(M2)

= Tr

[

γµ3γµ1
/k2

2k2 · P
γµ2

]

+ Tr

[

γµ3
/k3

2k3 · P
γµ1γµ2

]

+O(M2)

= Tr

[

γµ3γµ1
/k2
u
γµ2

]

+ Tr

[

γµ3
/k3
s
γµ1γµ2

]

+O(M2) .

(30)

By circulating the three gluons, we get two other amplitudes which are proportional to

Tr [T a1T a2T a3 ], with

Ā2 = Tr

[

γµ1γµ2
/k3
s
γµ3

]

+ Tr

[

γµ1
/k1
t
γµ2γµ3

]

+O(M2) , (31a)

Ā3 = Tr

[

γµ2γµ3
/k1
t
γµ1

]

+ Tr

[

γµ2
/k2
u
γµ3γµ1

]

+O(M2) . (31b)

Hence, using relation {/ǫ(ki), /ki} = 0, we have Ā1+ Ā2+ Ā3 = O(M2). Considering that the

summation of the other three amplitudes has the same behavior, we find contracting with

PαPα′

M2 will give contributions at O(M6). Finally, we complete the proof that dσ
dp2

T

∝M4/p8T .

As dσ
dp2

T

∝ M4/p8T at large pT limit, F (3S
[1]
1 ) and F6(M

2, s, t, u) in Eq. (27) must be

proportional to M4. Using results in Sec. II, we get the general form

F6(M
2, s, t, u) =M4F4(M

2, s, t, u) = S2
1(x0S

2
2 + x1S1S3 + x2S

2
1S2 + x4S

4
1) , (32)

where xi (i = 0, 1, 2, 4) are dimensionless numbers. The above simple analysis indeed repro-

duced the behavior of exact result (e.g. one can find it in [17]), which expressed in our form

is

F (3S
[1]
1 ) ∝ S2

1 (S
2
2 − S1S3)

[(s−M2)(t−M2)(u−M2)]2
. (33)
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B. Relativistic corrections for J/ψ hadron production

A more interesting application of results in Sec. II is to understand the relativistic cor-

rection behavior of J/ψ hadron production in large pT limit. We will study in the limit

s, t, u≫M2, where result at leading order in v2 as shown in Sec. IVA is

F (3S
[1]
1 ) ∝ S2

1S
2
2

S2
3

. (34)

We will demonstrate that, in large pT limit, relativistic correction does not change this

behavior, therefore, relativistic correction term is proportional to the leading term. The

proof includes two steps. Firstly, we show that the denominator of summed amplitude

is not changed by relativistic correction. Secondly, we show that the large pT behavior

dσ
dp2

T

∝ M4/p8T is also not changed by relativistic correction. Combining these two points

and using the general form in Sec. II, it is straightforward to find that relativistic correction

term is proportional to
S2
1S

2
2

S2
3
.

Before two steps arguments, we briefly introduce the relativistic correction. In Sec. IVA,

we use the color-singlet model to calculate the J/ψ hadron production, where a charm (anti-

) quark pair with definite quantum number (cc̄[3S
[1]
1 ]) is produced in hard collision. Further

more, we did the non-relativistic approximation that relative momentum between cc̄ pair is

zero there. The relativistic corrections in this paper refer to corrections by expanding the

relative momentum to higher power. For definiteness, we denote the momentum of c and c̄

as










pc =
P
2
+ q ,

pc̄ =
P
2
− q ,

(35)

where P is the total momentum of cc̄ pair and q is half of the relative momentum. As

the J/ψ is a S-wave quarkonium, only terms with even power of relative momentum in

amplitude level contribute. In additional, projecting amplitude to S-wave is equivalent to

contract coefficients of relative momentum with terms like −gµν + PµP ν

M2 .

Now, we are ready for the first step. The only possible source that may change the denom-

inator of summed amplitude is the expansion of relative momentum for denominator with

finite relative momentum. As an example, we study the expansion of upper denominator in

12



Fig. 1

1

(k3 +
P
2
+ q)2 −m2

=
1

k3 · P
− 2kµ3

(k3 · P )2
qµ + · · · . (36)

When contracting kµ3 with −gµν+ PµP ν

M2 to get S-wave, P
µP ν

M2 gives leading contribution while

−gµν is suppressed asM → 0. Notice that contracting kµ3 with PµP ν

M2 cancels the denominator

(k3 ·P )−2 by one power exactly, therefore, we find that expanding this denominator to higher

order in q does not change the denominator at large pT limit. This argument can be easily

extended to any denominator that expanding to any power of q. Thus the first step is

achieved.

Let’s then argue that the large pT behavior dσ
dp2

T

∝M4/p8T holds to all order of relativistic

corrections, that is, terms of order M2/p6T vanish at the cross section level. For a finite

relative momentum, the amplitude in Fig. 1 is

A1 = Tr

[

(−
/P

2
+ /q +m)γα(

/P

2
+ /q +m)Π(P, q,m)

]

, (37)

with

Π(P, q,m) = (−igT a3γµ3)
i(/k3 +

/P
2
+ /q +m)

(k3 +
P
2
+ q)2 −m2

(−igT a1γµ1)
i(−/k2 − /P

2
+ /q +m)

(−k2 − P
2
+ q)2 −m2

(−igT a2γµ2) .

(38)

As we study the large pT limit, both P and q have been boosted to a similar direction, say

P̂ , thus they have the following decomposition










P µ = P̂ µ + λP µ
⊥ + λ2

P 2−P 2
⊥

2P+ nµ ,

qµ = ζ
2
P̂ µ + λqµ⊥ + λ2

q2−q2
⊥

2q+
nµ ,

(39)

where ζ = 2q+

P+ = 2q·n
P ·n

, n is a light like momentum which satisfies (P · n)2/(n0)2 ≫ P 2, and

λ is used to denote the power counting of corresponding term, that is, term proportional to

λi behaviors as O(M i). Using the on-shell relations
(

±P
2
+ q

)2
= m2 and the fact that

(±
/P

2
+ /q +m)/n(±

/P

2
+ /q +m) = (±1 + ζ)P+(±

/P

2
+ /q +m) , (40)

we can rewrite A1 as

A1 =
−1

(1− ζ2)P+2
Tr

[

(−
/P

2
+ /q +m)/n1(−

/P

2
+ /q +m)γα(

/P

2
+ /q +m)1/n(

/P

2
+ /q +m)Π(P, q,m)

]

,

(41)
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where we also inserted two unit matrixes. Doing the Fierz transformation

1ij1kl =
1

4

∑

λ

ΓλilΓλ,kj , (42)

with Γλ = 1, γ5, γµ, γ5γµ, σµν/
√
2 and Γλ = Γλ†, A1 becomes

A1 =
−1

4(1− ζ2)P+2

∑

λ

Tr

[

Γλ(−
/P

2
+ /q +m)γα(

/P

2
+ /q +m)

]

× Tr

[

(−
/P

2
+ /q +m)/nΓλ/n(

/P

2
+ /q +m)Π(P, q,m)

]

=
−1

2(1− ζ2)P+2

∑

λ=1,2,3

Tr

[

Γ̂λ(−
/P

2
+ /q +m)γα(

/P

2
+ /q +m)

]

× Tr

[

(−
/P

2
+ /q +m)Γ̂λ(

/P

2
+ /q +m)Π(P, q,m)

]

,

(43)

where relations

Γλ ⊗ /nΓλ/n = 0 , 0 , 2/n⊗ /n , 2γ5/n⊗ γ5/n , 2γµ⊥/n⊗ γµ⊥/n ,

have been used, and Γ̂1 = /n , Γ̂2 = γ5/n , Γ̂3 = γµ⊥/n. Note that we can think

Tr
[

Γ̂λ(− /P
2
+ /q +m)γα( /P

2
+ /q +m)

]

to be O(M) effectively because squaring it will give

a O(M2) result, thus we do leading power approximation for other terms and gives

A1 =
1

8P+2

∑

λ=1,2,3

Tr

[

Γ̂λ(−
/P

2
+ /q +m)γα(

/P

2
+ /q +m)

]

Tr

[

/̂P Γ̂λ /̂PΠ(P̂ ,
ζ

2
P̂ , 0)

]

+O(M2) ,

(44)

with

Π(P̂ ,
ζ

2
P̂ , 0) = (−igT a3γµ3) i(

/k3 +
1+ζ
2
/̂P )

(k3 +
1+ζ
2
P̂ )2

(−igT a1γµ1) i(−
/k2 − 1−ζ

2
/̂P )

(−k2 − 1−ζ
2
P̂ )2

(−igT a2γµ2) . (45)

Similar as Sec. IVA, we choose a axial gauge so that P̂ · ǫ(ki) = 0, then some terms in

Π(P̂ , ζ
2
P̂ , 0) do not contribute because there is a /̂P on its either side. Thus,

Π(P̂ ,
ζ

2
P̂ , 0) ∼(−igT a3γµ3) i/k3

(k3 +
1+ζ
2
P̂ )2

(−igT a1γµ1) −i/k2
(−k2 − 1−ζ

2
P̂ )2

(−igT a2γµ2)

=− ig3
4

1− ζ2
T a3T a1T a2γµ3

/k3

(k3 + P̂ )2
γµ1

−/k2
(k2 + P̂ )2

γµ2 ,

(46)
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and

A1 =
−ig3

2(1− ζ2)P+2
Tr [T a1T a2T a3 ]

∑

λ=1,2,3

Tr

[

Γ̂λ(−
/P

2
+ /q +m)γα(

/P

2
+ /q +m)

]

× Tr

[

/̂P Γ̂λ /̂Pγµ3
/k3

(k3 + P̂ )2
γµ1

−/k2
(k2 + P̂ )2

γµ2

]

+O(M2) ,

(47)

Observing that λ = 3 does not contribute because there are odd number of Dirac matrixes

in the last trace; λ = 2 does not contribute because Tr
[

Γ̂2(− /P
2
+ /q +m)γα( /P

2
+ /q +m)

]

∝
ǫnPqα thus A1 is odd in in q. As a result, we get

A1 =
−ig3

2(1− ζ2)P+2
Tr [T a1T a2T a3 ] Tr

[

/n(−
/P

2
+ /q +m)γα(

/P

2
+ /q +m)

]

× Tr

[

/̂P /n /̂Pγµ3
/k3

(k3 + P̂ )2
γµ1

−/k2
(k2 + P̂ )2

γµ2

]

+O(M2)

=
−ig3

2(1− ζ2)P+
Tr [T a1T a2T a3 ] Tr

[

/n(−
/P

2
+ /q +m)γα(

/P

2
+ /q +m)

]

×
{

Tr

[

γµ3γµ1
/k2
u
γµ2

]

+ Tr

[

γµ3
/k3
s
γµ1γµ2

]}

+O(M2) .

(48)

Comparing it with Eq. (30) and using similar argument, we find A1 + A2 + A3 = O(M2)

and that dσ
dp2

T

∝M4/p8T holds.

Combining the above two points, we know that, in large pT limit, the denominator is S−2
3

and the numerator has a factor S2
1 . The rest numerator, as it is symmetric in s, t and u and

has mass dimension of [M ]8, must be proportional to S2
2 using the general form in Sec. II.

Finally, we find that relativistic correction term is proportional to
S2
1S

2
2

S2
3
, which is the same

as term at LO in v2. This behavior for next-to-leading order (NLO) relativistic correction

has been found in Ref. [17], but the generalization to all order in this work is new.

We conclude this section by explaining the logic to prove dσ
dp2

T

∝ M4/p8T . After the Fierz

transformation, we in fact factorize the amplitude to soft parts (with scales of O(M)) and

hard parts (with scales of O(pT )). This factorized form is equivalent to double parton

fragmentation formula in Ref. [6], which give contribution of O(M2) at cross section level.

Factorized terms are then shown to vanish at large pT limit. Therefore, remained terms can

only give contribution at O(M4).
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V. SUMMARY AND OUTLOOK

In heavy quarkonium physics, many processes involve three gluons, which result in s, t,

u symmetric cross sections or decay widths. In this work we study general form of s, t, u

symmetric polynomials, and find that they can be expressed as polynomials of S1, S2 and

S3 where the symmetry is manifest. For massless case the general form is summarized in

Eq. (18), and for massive case the general form is summarized in Eq. (19). These general

forms can be used to simplify expressions that are symmetric in s, t and u. Asymptotically,

this method can reduce the length of original expression to one-sixth. Based on these

general forms, one can also predict many interesting results by simple analysis. We give two

examples regarding J/ψ hadron production in this work. In the first example we work within

the color-singlet model at LO in v2. By only arguing that the differential cross section has the

behavior dσ
dp2

T

∝ M4/p8T in large pT limit, namely s, t, u ≫ M2, we successfully reproduce

the exact differential cross section up to four unknown constant numbers. In the second

example, we consider relativistic corrections for color-singlet model in large pT limit. By

showing that, in large pT limit, relativistic corrections do not change denominator and the

behavior dσ
dp2

T

∝ M4/p8T , we prove that differential cross section proportional to
S2
1S

2
2

S2
3

holds

to all order in v2. This proof not only explains the proportion relation at NLO in v2 found

in Ref. [17], but also generalizes it to all order.

Calculations of O(v2) and O(αs) corrections to heavy-quarkonium production and decay

observables usually yield very lengthy expressions. In view of that the s, t, u symmetry can

give so many constraints, it is possible to use our systematic method to simplify these lengthy

expressions and to exhibit their symmetry. It will be also interesting to study symmetry

induced by four or even more gluons.

Proportion relations at NLO in v2 are also found for color-octet channel [18]. However,

since differential cross sections for color-octet channel have the behavior dσ
dp2

T

∝ M2/p6T or

dσ
dp2

T

∝ 1/p4T , proportion relations for them can not be constrained by only s, t, u symmetry.

We will study this problem in a forthcoming work [29].
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