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Abstract

In the conventional two-measure theory (TMT), the scalar density func-
tion Φ is taken to be Φ ≡ ǫµνρσǫabcd(∂µϕ

a)(∂νϕ
b)(∂ρϕ

c)(∂σϕ
d), where the indices

a, b, c, d = 1, 2, 3, 4 are internal space indices. It is more natural to replace the four
scalars ϕa by a Lorentz-covariant four-vector ϕm with a local Lorentz index
m = (0), (1), (2), (3). We entertain this possibility, and show that the newly-proposed
lagrangian respects not only Lorentz covariance, but also global-scale invariance. The
crucial equation ∂µL = 0 in the conventional TMT also arises in our new formulation,
as the ϕm -field equation.
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1. Introduction

In the conventional two-measure theory (TMT) [1][2], there are four scalars ϕa intro-

duced in the scalar density function Φ ≡ ǫµνρσǫabcd (∂µϕ
a)(∂νϕ

b)(∂ρϕ
c)(∂σϕ

d), carrying the

four internal-space indices a, b, c, d = 1, 2, 3, 4.

In the present paper, we replace the set of four scalar fields ϕa
(a = 1, 2, 3, 4) in the original

TMT [1][2] by a four-vector ϕm, where m = (0), (1), (2), (3) are local four-dimensional (4D)

holonomy indices.4) Accordingly, we introduce the Lorentz connection ωµ
mn for maintaining

local Lorentz symmetry.

2. Total Action

Our field content is (eµ
m, ϕm, ωµ

mn, φ), where eµ
m is the vierbein in 4D, ϕm is the

Lorentz-covariant four vector field of the utmost importance, while φ represents general

matter fields.

Our total action is I ≡
∫

d4xL with the lagrangian

L = + ΦL+ eL′
−

1
4
(1− 2α) e ∗R∗

µνmn(ϕ
t)2P µmP νnL

+ α e ∗R∗
µνmnϕ

mϕrP
µrP νnL+ 1

64
(1− 4α) e ∗R∗

µνmnR
µνmn(ϕr)2(ϕs)2L , (2.1)

where L is a general lagrangian (but not a lagrangian density) in terms of (eµ
m, ωµ

mn, φ) with-

out ϕm, and L′ is another general lagrangian containing only (eµ
m, ωµ

mn, φ), while α is an

arbitrary real constant. The term eL′ is needed for the total system to have ‘two measures’.

The Φ and Pµ
m are defined by5)

Φ ≡ + 1
24

ǫµνρσǫmnrsPµ
mPν

nPρ
rPσ

s = det (Pµ
m) , (2.2a)

Pµ
m
≡ + ∂µϕ

m + ωµ
mnϕn , (2.2b)

while curvature tensors are defined by

∗R∗
µν

mn
≡ + 1

2
e−1ǫµν

ρσ R∗
ρσ

mn
≡ + 1

4
e−1ǫµν

ρσ ǫmn
rsRρσ

rs , (2.3a)

4) We use the parentheses for local Lorentz indices: (0), (1),(2), (3), in order to distinguish them from the
curved ones µ = 0, 1, 2, 3.

5) Compared with the conventional TMT [1][2], we have the front factor 1/24. This is because of the
convenient expression Φ = det (Pµ

m).
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∗Rµν
mn

≡ + 1
2
e−1ǫµν

ρσRρσ
mn , R∗

µν
mn

≡ + 1
2
ǫmn

rsRµν
rs , (2.3b)

Rµν
mn

≡ + 2∂⌊⌈µων⌋⌉
mn + 2ω⌊⌈µ

mtων⌋⌉t
n , Rµ

m
≡ en

νRµν
mn , R ≡ em

µRµ
m , (2.3c)

ωmrs ≡ + 1
2
(Cmrs − Cmsr − Crsm) , Cµν

m
≡ 2∂⌊⌈µeν⌋⌉

m . (2.3d)

In particular, ∗Rµν
mn (or R∗

µν
mn) represents the dual with respect to the first two indices

µν (or the last two indices mn) of Rµν
mn. Since Φ transforms as a scalar density, there

should be no factor of e ≡ det (eµ
m) in front of the first term in (2.1). In our work, we are

working with the 2nd-order formalism for ωµ
mn.

Most importantly, the ordinary derivative ∂µϕ
a in Φ in the conventional TMT [1][2]

is replaced by the Lorentz covariant derivative Dµϕ
m ≡ Pµ

m due to the Lorentz-covariant

four-vector ϕm in our new formulation.

The fact that Φ = det (Pµ
m) in a structure parallel to e ≡ det (eµ

m) also makes our

formulation more natural with the Lorentz-covariant four-vector ϕm instead of the four

scalars ϕa in the original TMT formulations [1][2].

3. The ϕm -Field Equation

The ϕm - field equation out of our action (2.1) is the most crucial one:

δL

δϕm
= Mm

µ ∂µL
.

=0 , (3.1a)

Mm
µ
≡ − e−1 Φ (P−1)m

µ

−

(

α−
1
2

)

e ∗R∗µν
ms(ϕ

t)2Pν
s
− α e ∗R∗µν

rsϕmϕ
rPν

s + α e ∗R∗µν
msϕ

sϕtPν
t. (3.1b)

As will be explained in Appendix, we can multiply (3.1a) by the inverse matrix (M−1)ν
m,

and eventually get

∂νL
.

=0 =⇒ L = const. ≡ M , (3.2)

as in the conventional TMT [1][2]. In other words, our Lorentz-covariant four-vector formu-

lation also yield exactly the same condition L = const. as the conventional TMT [1][2].

4. Concluding Remarks

In this brief report, we have studied the implications of using a Lorentz-covariant four-

vector ϕm instead of the four scalars ϕa in the conventional TMT [1][2]. As is shown in the
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next Appendix, our system yields the important field equation ∂µL
.

=0 and therefore its

solution L
.

=const. breaking global scale symmetry just as in the conventional TMT [1][2].

In eqs. (A3) ∼ (A.9), we have confirmed that the curvature-linear term arising from the

lagrangian term ΦL is cancelled by adding the Rϕ2P 2L -terms in the lagrangian. However,

the latter terms also generate new curvature-bilinear terms, that are cancelled by adding the

R2ϕ4L -terms in the lagrangian. These cancellations are highly non-trivial, necessitating

particular lemmas for unexpected identities holding among various terms arising, as well as

the original possible lagrangian terms.

Interestingly enough, our final lagrangian (2.1) also maintains global scale invariance

under (A.11), as explained in Appendix. This indicates the non-trivial feature of our new

formulation with the four-vector ϕm.

Here we have considered only the 2nd-order formalism for the Lorentz connection ωµ
rs.

However, this does not exclude the possibility of the 1st-order formalism. The price to be

paid is the complication of the usual expression ωmrs = (1/2)(Cmrs − Cmsr − Crsm) by

additional terms. It is interesting to see what effect it will have in the 1st-order formalism.

This work is supported in part by Department of Energy grant # DE-FG02-10ER41693.

Appendix: ϕm -Field Equation, Action Invariance, and Non-Trivial Lemmas

In this Appendix, we describe the detailed process of confirming action invariance, getting

the field equation of ϕm and related non-trivial lemmas.

The ϕm -field equation represents the crucial ingredient in the system. If we blindly

replace as ∂µϕ
a → Dµϕ

m ≡ Pµ
m in Φ in the conventional TMT [1][2], setting up the

action I0 ≡
∫

d4xL0 ≡
∫

d4xΦL, then a curvature-linear term arises:

δL0

δϕm
= −

1
2
ǫµνρσǫmnrs(D⌊⌈µPν⌋⌉

n)Pρ
rPσ

sL−
1
6
ǫµνρσǫmnrsPν

nPρ
rPσ

s∂µL

= −
1
4
ǫµνρσǫmnrsRµν

nuϕuPρ
rPσ

sL+ 4em
⌊⌈µen

νer
ρes

σ⌋⌉Pν
nPρ

rPσ
s∂µL

= − 2e ∗R∗ρσrsϕmPρ
rPσ

sL− 4e ∗R∗ρσmrϕsPρ
rPσ

sL− Φ(P−1)m
µ∂µL

.

=0 . (A.1)
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Here we have used the relationship Φ = det (Pµ
m), while (P−1)m

µPµ
n = δm

n.6) The

last term is like the analogous term in the conventional TMT that yields the key equation

∂µL
.

=0 [1][2] even in the Lorentz-covariant formalism. However, the problem is in the first

R -linear term in (A.1) that should be cancelled by a specific counter-term.

Such a counter-term can be produced by new lagrangian terms of the type Rϕ2P 2L. How-

ever, such new terms themselves in turn generate other new terms of the type R2ϕ3L, because

of the term R(DP )ϕ2L generated out of the partial integration of Dµ in Rϕ2[D(δϕ)]PL.

To cancel these secondary new terms, we need additional new lagrangian terms of the type

R2ϕ4L. Fortunately, these two sorts of new terms turn out to be enough to cancel all un-

wanted terms with curvature tensors. The terms containing ∂µL do not pose any problem,

because they serve only as ‘correction’ terms to the conventional TMT formulation [1][2]

that also yields ∂µL
.

=0 as the ϕa -field equation.

After these considerations, the resulting candidate lagrangian is taken to be

L = + ΦL+ a1 e
∗R∗

µνmn(ϕ
t)2P µmP νnL+ a2 e

∗R∗
µνmnϕ

mϕrP
µrP νnL

+ b1 e
∗R∗

µνmnR
µνnu(ϕr)2ϕmϕuL+ b2 e

∗R∗
µνmnR

µνmn(ϕr)2(ϕs)2L , (A.2)

where a1, a2, b1, and b2 are unknown real coefficients. Even though the two terms with

b1 and b2 look independent of each other, they are actually proportional to each other, as

the lemma (A.8) will show. For this reason, we put b1 = 0 for simplicity sake.

By varying ϕm in L in (A.2), we generate three different categories of terms: (i)

Rϕ2P 2 -terms, (ii) R2ϕ3L -terms, and (iii) ∂L -terms. We now study these terms in turn:

(i) Rϕ2P 2L -Terms: These terms arise from the ΦL, a1 and a2 -terms. The cancellation

condition we get is

+ 2a1 − a2 = −
1
2

. (A.3)

(ii) R2ϕ3L -Terms: There actually is only one term of this sort, due to the lemma (A.8)

shown below. The coefficient of such terms are combined to yield another condition, i.e.,

+ 1
4
a1 +

1
8
a2 + 4b2 = 0 . (A.4)

6) We have implicitly assumed the existence of the inverse matrix P−1, as a natural assumption.
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(iii) ∂L -Terms: There arises no condition on the unknown coefficients a1, a2 and b2,

because they are supposed to result in L = const, as shown in (3.2) in a way parallel to the

conventional TMT [1][2].

In order to reach (3.2), however, we have to confirm the existence of the inverse matrix

(M−1)m
µ. The existence of the inverse matrix (M−1)m

µ is confirmed as follows. If we regard

all the R -dependent terms as ‘correction terms’ to the very first leading term (M0)m
µ ≡

−e−1Φ(P−1)m
µ which has its inverse matrix (M−1

0 )µ
m = −eΦ−1Pµ

m, then it is legitimate

to assume the existence of the inverse matrix M−1 such that (M−1)µ
mMm

ν = δµ
ν . To be

more rigorous, suppose the matrix M is expressed as

M = M0 +X = M0 (I +M−1
0 X) ≡ M0 (I + Y ) . (A.5)

Here Y ≡ M−1
0 X , and M0 is guaranteed have its inverse matrix M−1

0 . Then the inverse

matrix of the total M is formally

M−1 = (I + Y )−1M−1
0 = (I − Y + Y 2

− · · ·)M−1
0 . (A.6)

Hence, the multiplication of (3.1a) by (M−1)ν
m yields the key equation L = const. (3.2),

as in the conventional TMT [1][2].

There are only two conditions (A.3) and (A.4) for three unknown coefficients a1, a2 and

b2, so that one degree of freedom is left over. We can choose a2 to be arbitrary, and set

a2 ≡ α (α ∈ IR), so that the solutions are

a1 =
1
2
α−

1
4

, a2 = α , b2 = −
1
16

α + 1
64

(α ∈ IR : arbitrary) . (A.7)

Substituting these into (A.2), we get our aforementioned result (2.1). The simplest choice is

to put α = 0, so that only three simplest terms (1st, 2nd and 4-th terms) survive in (2.1).

Amongst the R2ϕ4L -type lagrangian terms, there is an identity7)

∗R∗
µνmnR

µνnu(ϕt)2ϕmϕu ≡ −
1
4

∗R∗
µνrsR

µνrs(ϕt)2(ϕu)2 . (A.8)

This identity gives the latter term in (A.8) as the only possible independent term of the

R2ϕ4L -type in the lagrangian.

7) Actually, this identity is the sufficient condition of the next lemma (A.9).
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Similarly, among R2ϕ3L -terms in δL/δϕm, there are two non-trivial identities

∗R∗
µνmnR

µνnu(ϕt)2ϕu ≡
∗R∗

µνtnR
µνnuϕmϕ

tϕu ≡ −
1
4

∗R∗
µνrsR

µνrsϕm(ϕ
t)2 . (A.9)

The confirmation of (A.9) goes as follows:

[ LHS of (A.9) ] ≡ e ∗R∗
µνmnR

µνnu(ϕt)2ϕu = −
1
4
ǫmnrsǫ

nuvwRµνrs ∗R∗
µνvw(ϕ

t)2ϕu

= −
3
2
eRµν

rs ∗R∗µν
⌊⌈mr|(ϕ

t)2ϕ|s⌋⌉

= − eRµν
rs ∗R∗µν

mr(ϕ
t)2ϕs −

1
2
eRµν

rs ∗R∗µν
rs(ϕ

t)2ϕm

= − e ∗R∗
µνmrR

µνrs(ϕt)2ϕs −
1
2
e ∗R∗

µνrsR
µνrsϕm(ϕ

t)2

= − [ LHS of (A.9) ] + 2 [ RHS of (A.9) ] . (A.10)

As desired, this yields [ LHS of (A.9) ] = [ RHS of (A.9) ]. Essentially, this proof follows

from the duality status of the two R’s.

Similar confirmation holds with the middle-hand side (MHS), i.e., [MHS of (A.9) ] =

[ RHS of (A.9) ], but since the pattern is the same, its confirmation is skipped here. The

lemma (A.8) can be interpreted as a corollary of (A.9), if the latter is multiplied by ϕm.

The identities in (A.9) drastically simply the computation for the R2ϕ3L -terms arising in

the ϕ -field equation.

We mention the global scale invariance of our action. Even though our new system with

local Lorentz invariance is more sophisticated than the conventional TMT [1][2], our system

still respects global scale invariance under

eµ
m

→ eΛeµ
m , ϕm

→ eΛϕm , e → e4Λ e , Pµ
m

→ eΛ Pµ
m , Φ → e4ΛΦ ,

Rµν
mn

→ Rµν
mn , ∗R∗

µν
mn

→
∗R∗

µν
mn , L → e−4ΛL , (A.11)

where Λ is a finite real-number global-scale transformation parameter: ∂µΛ = 0. The matter

lagrangian L is required to transform such that the lagrangian term ΦL is invariant. We

can re-express (A.11) in terms of scaling weights as w(eµ
m) = +1, w(ϕm) = +1, w(e) =

+4, w(Φ) = +4, w(Rµν
mn) = 0, w(∗R∗

µν
mn) = 0, w(L) = −4. Compared with the original

TMT [1][2], the difference in our transformation rule (A.11) is that ϕm transforms with a
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common factor eΛϕm instead of the matrix form Λm
nϕ

n. This is because in our formulation

the index m on both eµ
m and ϕm transform in a parallel way under global scale

transformations.

These lead to, e.g., w(P µm) = w(gµνPν
m) = −2 + 1 = −1. It is then straightforward to

see that each term in (2.1) is invariant under (A.11), e.g., w[ e ∗R∗
µνmnR

µνmn(ϕr)2(ϕs)2L ] =

+4+0− 2− 2+ 1× 2+ 1× 2− 4 = 0. Note that the second, third and fourth terms in (2.1)

all have the common factor e in front.

It is analogous to the conventional TMT [1][2] that our field equation ∂µL
.

=0 contains

the solution L = const. with the global-scale symmetry breaking, due to w(L) = −4. In

other words, our formulation of TMT induces the breaking of global-scale invariance, as in

the conventional TMT [1][2].

The sophisticated global scale-invariance structure of the new terms in (2.1) provides

additional evidence for the non-trivial feature of our new formulation with the Lorentz-

covariant four-vector ϕm.
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