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We develop a unified scattering approach to dynamical Casimir problems which can be applied
to both accelerating boundaries, as well as dispersive objects in relative motion. A general (trace)
formula is derived for the radiation from accelerating boundaries. Applications are provided for
objects with different shapes in various dimensions, and undergoing rotational or linear motion.
Within this framework, photon generation is discussed in the context of a modulated optical mirror.
For dispersive objects, we find general results solely in terms of the scattering matrix. Specifically,
we discuss the vacuum friction on a rotating object, and the friction on an atom moving parallel to
a surface.

I. INTRODUCTION

Quantum zero-point fluctuations manifest themselves
in a variety of macroscopic effects. A prominent example
is Casimir’s demonstration that these fluctuations lead
to attraction of two perfectly conducting parallel plates
[1]. Experimental advances in precision measurements
of the Casimir force [2, 3] have revived interest in find-
ing frameworks where one can compute these forces both
numerically [4, 5] and analytically. A particularly suc-
cessful approach in applications to different geometries
and material properties is based on scattering methods
and techniques [6–12]. In this approach, the quantum-
field-theoretic problem is reduced to that of finding the
classical scattering matrix of each object.

Another manifestation of fluctuations appears in the
so-called dynamical Casimir effect: when objects are set
in motion, they interact with the fluctuations of the back-
ground vacuum in a time-dependent fashion which ex-
cites photons and emits radiation. In fact, accelerating
boundaries radiate energy and thus experience friction.
An early example of this phenomenon was discussed by
Moore for a one dimensional cavity [13]. A relativistic
analysis of an accelerating mirror in 1+1 dimension in
Ref. [14] employs techniques from conformal field the-
ory. A perturbative study of the latter confirmed and
generalized its results to higher dimensions [15]. Among
other methods, the fluctuation-dissipation theorem has
been used to compute the frictional force on a moving
sphere in free space [16], a Hamiltonian formalism has
been applied to the problem of photon production in
cavities [17, 18], and a (Euclidean) path-integral formu-
lation is introduced to study the “vacuum” friction for
a rough plate moving laterally [19]. We specially note
that an input-output formalism relating the incoming
and outgoing operators is used to compute, among other
things, the frequency and angular spectrum of radiated
photons [20]. While a substantial literature is devoted
to objects with perfect boundary conditions, dielectric
and dispersive materials have also been studied in some
cases [21]. In fact, dispersive objects exhibit similar ef-
fects even when they move at a constant velocity. For

example, two parallel plates moving laterally with re-
spect to each other experience a (non-contact) frictional
force [22, 23]. Even a single object experiences friction
if put in constant rotation [24, 25], a phenomenon most
intimately related to superradiance first discovered by
Zel’dovich [26]. (Translational motion of a single object
is trivial due to the Lorentz symmetry.) The latter ex-
amples, consisting of dispersive objects moving at a con-
stant rate, are usually treated within the framework of
the fluctuation-dissipation theorem or the closely related
Rytov formalism [27].

Inspection of the literature on the dynamical Casimir
effect leads to the following observations: There are
a plethora of interesting—sometimes counter-intuitive—
phenomena emerging from the motion of a body in an
ambient quantum field [28, 29]. These phenomena span
a number of subfields in physics, and have been treated
by a variety of different formalisms. Even the simplest ex-
amples appear to require rather complex computations.
Only recently experimental realizations—using a SQUID
to mimic the moving boundary of a cavity (transmission
line) [30, 31]—have made precise measurements possible,
raising the hope for an explosion of activity similar to
the post-precision experiment era of static Casimir forces.
This motivates reexamination of theoretical literature on
the subject, aiming for a simple and unifying framework
for analysis.

In this work, we follow two goals. First, inspired by
the success of the scattering-theory methods in (static)
Casimir forces, we attempt at extending these techniques
to dynamical Casimir problems. We find that the clas-
sical scattering matrix is naturally incorporated into the
formalism. However, dynamical configurations provide
new channels where the incoming frequency jumps to dif-
ferent values, hence the scattering matrix should be de-
fined accordingly. Second, we aim for a universal frame-
work which brings the diverse set of problems in dynam-
ical Casimir under the same rubric. Most notably, we
treat accelerating boundaries, modulated optical setups
and moving dispersive objects—usually tackled with dif-
ferent techniques, as explained above—on the same foot-
ing.

In this paper, computations are performed for a scalar
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field theory. The generalization to electromagnetism is
straightforward in principle, while practical computa-
tions are more complicated in the latter. We find scalar
field theory convenient to set the framework for more
realistic applications.

The paper is organized as follows: In Sec. II, start-
ing from a second-quantized formalism, we derive general
formulas for the energy radiation due to the dynamical
Casimir effect. In Sec. III, we consider lossless objects
undergoing non-uniform motion or optical modulation,
and provide a variety of examples to showcase the power
of the scattering approach. Specifically, we find that an
(asymmetrical) spinning object slows down, and further
contrast linear and angular motion. In Sec. IV, we con-
sider dispersive objects moving at a constant rate. We
also generalize to the case of multiple objects in relative
motion where we study, among other things, an “atom”
moving parallel to a dispersive surface.

II. FORMALISM

We start with input-output relations as described in
Ref. [32]. The underlying formalism has been developed
to quantize the electromagnetic field in a lossy or am-
plifying medium [33–35]. (A similar method is also used
to study the dynamical Casimir effect; see, for example,
Refs. [20, 36]. However the more general formalism in
Ref. [32] allows further extensions specially to dispersive
objects.) Within this formalism the operators âin and
âout represent annihilation operators of the incoming or
outgoing waves, respectively, in the vacuum (outside the
object). These operators are then related by [32]

âout
β =

∑
α

Sβα â
in
α +

∑
α

Uβα b̂α , (1)

where b̂ is the operator corresponding to the absorption
within the object, and α and β are quantum numbers. In
this equation, S is the object’s scattering matrix while U
describes its lossy character—the latter is related to the
scattering matrix as shown later. This method treats
field theory in the second quantized picture where quan-
tum (annihilation or creation) operators are introduced.
Equation (1) then relates quantum operators via the clas-
sical scattering matrix. This proves to be useful in ap-
plications to the dynamical Casimir effect.

Equation (1) has its roots in the classical wave equa-
tion. To see this, we first define “in” and “out” wave
functions. The incoming wave can be expanded as

Φin(x) =
∑
α

cinαΦin
α (x), (2)

where cinα is the amplitude of the corresponding wave
function Φin

α . The latter function should be normalized
so that the number of incoming quanta per unit time is
(negative) unity,

1

2i

∮
dΣ ·

[
Φin∗
α ∇Φin

β −∇Φin∗
α Φin

β

]
= −δαβ , (3)

with the integral defined over a closed surface enclosing
the object. The reason for this choice is that we shall as-
sociate the wave function with a quantum operator which
satisfies the canonical commutation relations, and the
normalization should be defined consistently. Similarly
the outgoing wave functions are normalized as

1

2i

∮
dΣ ·

[
Φout∗
α ∇Φout

β −∇Φout∗
α Φout

β

]
= δαβ . (4)

We also designate the solutions to the wave equation in-
side the object as Φobj. Now suppose that there are
sources in two regions in space: at infinity where they
generate the incoming wave, Φin in Eq. (2); and within
the object where they induce a field Φobj =

∑
α dαΦobj

α —
the normalization of these functions does not affect the
scattering matrix and thus is not discussed here. The
incoming wave is scattered by the object while the ob-
ject itself radiates due to the induced field. The resulting
outgoing wave, Φout =

∑
α c

out
α Φout

α , is determined by

cout
β =

∑
α

Sβαc
in
α +

∑
α

Uβαdα, (5)

where the first term is merely the scattering of the in-
coming waves, and the second term captures the radi-
ation of the object itself. The above analysis is based
on a classical wave equation. Equation (1) extends the
last equation to a relation between quantum operators,
i.e. the complex-valued coefficients in Eq. (5) become
quantum operators in Eq. (1) through cin/out → âin/out

and d → b̂ (see also the discussion in Ref. [37] on the
relation between wave mechanics and the classical limit).
From this point on, we shall drop the hat symbol from
quantum operators.

For objects in motion, scattering can also change the
frequency of the incoming wave. We make the depen-
dence on frequency explicit while reserving α for other
quantum numbers; the sum in Eq. (1) is replaced by∑

α

∫ ∞
−∞

dω

2π
.

Most importantly, the scattering matrix may mix posi-
tive and negative frequencies, in which case an outgoing
operator of positive frequency is related to an incoming
operator of negative frequency via Eq. (1). Note that an
operator aωα with negative ω should be interpreted as a

creation operator; more precisely, aωα = a†−ω ᾱ where ᾱ
is related to α by time reversal.

We assume that the environment is at a temperature
Tenv while the object is at a (possibly different) temper-
ature T . The distribution of the incoming modes (before
scattering) is solely characterized by Tenv,

〈ain†
ω′βa

in
ωα〉 = sgn(ω)n(ω, Tenv) δ(ω − ω′) δαβ , (6)

where n(ω, T ) = 1
exp(~ω/kT )−1 is the Bose-Einstein factor.

Note that this equation holds for both positive and neg-
ative values of frequency; an operator aωα (a†ωα) defined
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at a negative frequency, ω, is interpreted as a creation
(annihilation) operator of a positive-frequency mode.

On the other hand, the occupation number for the op-
erators b, localized on the object, is determined by T ,
the object’s temperature. But we should keep in mind
that the object could be moving, so the frequency defined
from the point of view of a reference system (co)moving
with the object is different from that of an observer in the
vacuum, or the lab, frame. For a partial wave (ω, α) in
the lab frame, we define ω̃α as the frequency according to
the comoving reference frame. The occupation number
is then1

〈b†ω′βbωα〉 = sgn(ω̃α)n(ω̃α, T )
∂ω̃α
∂ω

δ(ω − ω′) δαβ . (7)

From the distribution of the incoming and localized oper-
ators, Eqs. (6) and (7), we can evaluate the distribution
for an outgoing mode (ω′, β),

〈aout†
ω′β a

out
ω′β〉 =

∫ ∞
−∞

dω

2π
sgn(ω)n(ω, Tenv)

∑
α

|Sω′β,ωα|2

+
∑
α

∫ ∞
−∞

dω̃α
2π

sgn(ω̃α)n(ω̃α, T ) |Uω′β,ωα|2 . (8)

To find the flux of field quanta to the environment, one
should compute the difference of outgoing and incoming
flux. To study Eq. (8) in some detail, we consider two
different situations.

Accelerating objects—First we assume that the ob-
ject is non-lossy so that the second term on the RHS of
Eqs. (1) and (8) is absent. For the sake of simplicity, we
choose to work at zero temperature2, i.e. Tenv = 0; the
generalization to finite temperatures is straightforward.
From Eq. (8), we find

〈aout†
ω′β a

out
ω′β〉 =

∫ 0

−∞

dω

2π

∑
α

|Sω′β,ωα|2 . (9)

We have used the fact that the Bose-Einstein distribution
at T = 0 is different from zero only for negative frequen-
cies. Loosely speaking, this means that, in the vacuum
state, all single-particle states with negative energy are
occupied while those of positive energy are empty. The
rate of energy radiation is obtained as an integral over the
outgoing flux in Eq. (9) multiplied by the quanta energy

P =

∫ ∞
0

dω′

2π
~ω′

∫ 0

−∞

dω

2π

∑
α,β

|Sω′β,ωα|2 . (10)

1 The change of basis from the frequency in the moving frame to
that of the lab frame gives rise to the Jacobian. The partial
derivative is positive on physical grounds.

2 In the absence of loss, the object’s temperature does not play a
role.

The choice of basis α is a matter of convenience, as in a
basis-independent notation Eq. (10) is cast as

P =

∫ ∞
0

dω′

2π
~ω′

∫ 0

−∞

dω

2π
Tr
(
Sω′,ωS†ω′,ω

)
, (11)

where S is the basis-free scattering matrix. A similar
expression is derived in Ref. [36] for the radiation from a
vibrating cavity. These equations provide a simple and
compact formulation which serve as the starting point
for studying accelerating boundaries and modulated
optical devices in Sec. III.

Stationary motion—Next we consider objects in
stationary, linear or rotational, motion. Although the
objects are moving, the boundaries do not change their
shape or orientation. One such example is two infinite
plates moving parallel to their surface. Despite the mo-
tion, the relative configuration of the two plates does not
change in time.

This type of dynamical problem is not explicitly time
dependent, nevertheless the relative motion leads to dissi-
pative effects. In other words, such systems respect time
translation but break time-reversal symmetry, and thus
allow for dissipation. Because of the stationary charac-
ter of the setup, however, the scattering matrix S as well
as the matrix U are diagonal in frequency, and we indi-
cate this by a single frequency dependence as Sβα(ω) and
Uβα(ω).

For a lossy object, the scattering matrix cannot be uni-
tary as part of the incoming wave is lost inside the object.
Interestingly, unitarity alone, sufficiently constrains the
matrix U for our purposes [32]. There is a large body of
literature on quantization in an absorbing (or amplifying)
medium, covering a variety of approaches. The method
of input-output relations [32–34] starts by formulating
canonical commutation relations for the incoming and
outgoing operators,

[aout/in
ωα , a

out/in†
ω′β ] = sgn(ω)δ(ω − ω′) δαβ . (12)

We extend this method to moving systems by demanding
that the operators b (localized on the object) satisfy the
commutation relations in the rest frame of the object,

[bωα, b
†
ω′β ] = sgn(ω̃α)

∂ω̃α
∂ω

δ(ω − ω′) δαβ , (13)

with ω̃α defined above. This set of relations along with
Eq. (1) lead to

sgn(ω) (1−
∑
α

|Sβα(ω)|2) =
∑
α

sgn(ω̃α)
∂ω̃α
∂ω
|Uβα(ω)|2 .

(14)
In the comoving frame, the object is momentarily at rest,
and thus the frequency according to this frame does not
change, i.e. ω̃α = ω̃β if Uβα 6= 0. Therefore, Eq. (14) can
be recast as

sgn(ω) (1−
∑
α

|Sβα(ω)|2) = sgn(ω̃β)
∂ω̃β
∂ω

∑
α

|Uβα(ω)|2 ,

(15)
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or in a matrix notation,

sgn(ω) (I− SS†)ββ = sgn(ω̃β)
∂ω̃β
∂ω

(UU†)ββ , (16)

which constrains the matrix U in terms of the scattering
matrix, S. In the limit of static objects, one recovers the
(basis-free) relation [32]

I− SS† = UU†. (17)

This equation is interpreted by Beenakker as a
“fluctuation-dissipation” relation with the LHS giving
the dissipation due to the classical scattering from a lossy
material, and the RHS accounting for field fluctuations
due to spontaneous absorption or emission (in an ampli-
fying medium) of field quanta.

Equation (15) for a moving object can be inserted in
Eq. (8) to obtain the flux due to the outgoing quanta.
We are interested in the total flux,

dN
dω

=
∑
β

〈aout†
ωβ aout

ωβ 〉 − 〈a
in†
ωβa

in
ωβ〉. (18)

The total radiation is obtained as the latter quantity mul-
tiplied by ~ω integrated over frequency. Using Eqs. (8)
and (15), one obtains the radiated energy per unit time
as

P =

∫ ∞
0

dω

2π
~ω
∑
α,β

(n(ω̃α, T )− n(ω, Tenv))
(
δβα − |Sβα(ω)|2

)
.

(19)

In the absence of motion (ω̃α = ω), this equation cor-
rectly reproduces the thermal radiation from an object
out of equilibrium from the environment [32, 38]. Inter-
estingly, the moving object radiates energy even when
the temperature is zero both in the object and the en-
vironment. In this limit, the energy radiation takes the
form

P =

∫ ∞
0

dω

2π
~ω
∑
α,β

Θ(−ω̃α)
(
|Sβα(ω)|2 − δβα

)
, (20)

where Θ is the Heaviside step function. Therefore, spon-
taneous emission takes place for a process whose fre-
quency ω is positive in the lab frame while, from the
point of view of the moving observer, the corresponding
frequency ω̃α is negative. This mixing between negative
and positive frequencies is at the heart of the dynamical
Casimir effect [29].

In Sec. IV, we employ Eq. (20) to find the spontaneous
emission due to a rotating object. Furthermore, we study
the configuration of multiple objects in relative motion
where we generalize the results presented in this section.
In the process, we find that Eqs. (16) and (17) need to
be modified for evanescent waves.

In summary, Eqs. (10) and (20) express the energy
radiation for an accelerating lossless body and a lossy

moving object, respectively. In both cases, the radiated
energy density is related to the off-diagonal part of the
scattering matrix in |S|2. Hence, they have a characteris-
tic “Fermi-Golden-Rule” structure. In fact, to the lowest
order, one can think of the off-diagonal S-matrix as a
potential due to the boundary condition or the object’s
material, akin to the Fermi Golden Rule.

In the following sections, we provide a variety of exam-
ples where we discuss applications of the general formulas
presented above.

III. LOSSLESS ACCELERATING OBJECTS

In this section, we consider lossless objects with differ-
ent shapes in various dimensions undergoing rotational
or translational motion or oscillation. In the process,
we reproduce some existing results in the literature, and
also present many novel applications. Equation (10) is
the central formula according to which we compute and
discuss these results.

A. A Dirichlet point in 1+1d

The prototype of dynamical Casimir phenomena is the
motion of a point-like mirror in one dimension [14, 15].
For simplicity, we assume that the ambient vacuum con-
sists of a scalar field, Φ, subject to Dirichlet boundary
conditions on the mirror

Φ(t, q(t)) = 0, (21)

where q(t) is the trajectory of the mirror in time. We use
a perturbative scheme [15] where we expand Eq. (21) for
small q(t) to obtain

Φ(t, 0) + q(t)∂zΦ(t, 0) + · · · = 0 . (22)

The scattering solution can be formally expanded in pow-
ers of q,

Φ = Φ0 + Φ1 + · · · . (23)

The boundary condition, to the first order, takes the form

Φ1(t, 0) = −q(t)∂zΦ0(t, 0). (24)

The incoming and outgoing modes are defined as

Φin/out
ω =

√
c

|ω|
exp[−iω(t± z/c)]. (25)

Note that the normalization is chosen in accordance with
Eqs. (3) and (4). In the zeroth order, i.e. for a static
mirror, we have

Φ0 = Φin
ω − Φout

ω . (26)

We can compute Φ1 by solving the free field equation
(�Φ = 0) in the vacuum subject to its time-dependent
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value at the origin (z = 0) as given by Eq. (24). We leave
the details to Appendix A 1; the scattering matrix (from
either side of the point) is obtained as

Sω+Ω,ω = −2i q̃(Ω)

c

√
|(ω + Ω)ω| , (27)

where q̃(Ω) is the Fourier transform of q(t). (Note that,
here and in the following, we only write the off-diagonal
correction to the scattering matrix.) One can then com-
pute the radiation according to Eq. (10). For a Fourier
mode Ω, the integral in the latter equation contributes
in the window of 0 < −ω < Ω. Putting all the pieces
together, and multiplying by a factor of two accounting
for the scattering from both sides, we find

P =
8~
c2

∫ ∞
0

dΩ

2π
|q̃(Ω)|2

∫ 0

−Ω

dω

2π
(ω + Ω)2 |ω|

=
~

3πc2

∫ ∞
0

dΩ

2π
|q̃(Ω)|2Ω4

=
~

6πc2

∫
dt q̈2. (28)

In the last line, the radiation is expressed as an integral
over time. From Eq. (28), one can infer the dissipative
component of the force

f(t) =
~

6πc2
...
q , (29)

in complete agreement with Ref. [15].

B. Modulated reflectivity in 1+1d

For moving bodies, the dynamical Casimir radiation
is difficult to detect experimentally since it requires the
objects to move at very high frequencies. An alternative
approach is suggested by modulating optical properties
of a resonant cavity [39–41]. In fact, any linear time-
dependent process can lead to similar dynamical Casimir
effects. Modulated reflectivity, for example, generates
photons and gives rise to radiation [28, 42]. The latter
can be studied within the same framework that we devel-
oped for non-lossy objects3. In this section, we consider
a point particle in one spatial dimension, but, unlike the
model in the previous (sub)section, a linear coupling of
(time-dependent) strength ε is introduced at the position
of the particle. The field equation then reads(

1

c2
∂2
t − ∂2

z

)
Φ(t, z) + ε(t)δ(z)Φ(t, 0) = 0. (30)

We recover a perfectly reflecting object for ε → ∞. An
imperfect mirror undergoing arbitrary motion is studied

3 In treating the dynamical Casimir effect in the absence of loss,
we did not assume that the objects are actually moving.

in Ref. [43]. Note that in our model the particle is at
rest at the origin while the coupling is modulated. The
S-matrix can be computed by techniques similar to quan-
tum mechanical scattering in a one-dimensional delta po-
tential. For simplicity, we take ε(t) = ε0+εΩ cos(Ωt) with
ε0 � εΩ. We note that there are new scattering chan-
nels with incoming waves from one side transmitted to
the other side of the object. A scattering ansatz with
incoming waves from the RHS is given by

Φ ≈

{
ΦR in
ω + rΦR out

ω + r±ΦR out
ω±Ω , z > 0,

tΦL out
ω + t±ΦL out

ω±Ω , z < 0,
(31)

where summation is made over both signs, and the wave-
functions denoted by R(L) are defined on the right (left)
side. Obviously, the two sets of definitions are related
by reversing the sign of the coordinate z. In the above
ansatz, we have exploited the smallness of the oscillatory
part of ε by truncating the sum at the lowest harmonics.
One can obtain the scattering amplitudes by matching
the functions on the two sides of the mirror while setting
the difference in their first derivative to εΦ(t, 0). We find

r± = t± =
iεΩ
√
|ω(ω ± Ω)|/c

(ε0 − 2iω/c)(ε0 − 2i(ω ± Ω)/c)
. (32)

This equation can be further simplified by assuming ε0 �
Ω/c. In this limit, the energy radiation (per unit time)
is, according to Eq. (10),

P =
~Ω4ε2Ω
6πc2ε40

. (33)

For a general ε(t) slowly varying around a mean value of
ε0, the total energy radiation is given by

P =
~

3πc2ε40

∫
dt ε̈(t)

2
. (34)

C. A Dirichlet line in 2+1d

Now consider a line extended along the x axis in two
spatial dimensions. In this geometry, the incoming and
outgoing waves are described by

Φ
in/out
ω kx

=
1√
k⊥

exp(−iωt+ ikxx∓ ik⊥z) , (35)

where kx is the wavevector along the line, and k⊥ is
the perpendicular component, k⊥(ω, kx) =

√
ω2/c2 − k2

x.
We assume that the line undergoes a rigid but time-
dependent motion, q(t), normal to the x axis. One then
finds

Sω+Ωkx, ωkx = −2i q̃(Ω)
√
k⊥(ω, kx) k⊥(ω + Ω, kx) ;

(36)
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see Appendix A 1. The scattering matrix is diagonal in
kx due to translational symmetry along the x-axis. Note
that Eq. (36) is computed only for propagating modes—
evanescent waves fall off rapidly with the distance from
the surface and do not contribute to radiation at infin-
ity. The sum over all partial waves in Eq. (10) becomes∫
Ldkx

2π with L being the extent of the line; the integra-
tion is over propagating waves only, i.e. c|kx| < |ω| and
c|kx| < ω+Ω. Finally, an integration over the frequency,
ω, gives

P =
~L

128c3

∫ ∞
0

dΩ

2π
|q̃(Ω)|2Ω5. (37)

In order to write this equation in the time domain, we
extend the integral to (−∞,∞) and recast the integrand
as Ω |q̃(Ω)|2 Imχ(Ω). The function χ is the (normal-
ized) response function whose imaginary part is pro-
portional to the energy dissipation to the environment,
Imχ(Ω) = 1

2Ω4sgn(Ω). Because of causality, the full re-
sponse function can be obtained via Kramers-Kronig re-
lations. In the time domain, we find this function as

χ(t) =
24

π
Θ(t) P

1

t5
, (38)

with P being the principal part. In this context, the
response function relates the force to the object’s dis-
placement. So the force acting on the object at time t is
given by

f(t) =
3~L

16πc3

∫ t

−∞
dt′ P

1

(t− t′)5
q(t′) . (39)

The force is manifestly causal, i.e. it depends on q at ear-
lier times. However, Eq. (39) is possibly divergent near
the upper bound of the integral unless a short-time cutoff
is introduced to replace this bound by t−τ . This does not
affect the dissipative component of the force but regular-
izes the inertial force which sensitively depends on the
large-frequency physics. In fact, in deriving Eq. (39), we
have used the small-frequency behavior of the response
function, so this equation should be valid only for large
times. Interestingly, the force does not vanish even when
the object no longer moves. We find that the force, long
after the object comes to a full stop, falls as

f(t) =
3~L

16c3t5

∫
dt′ q(t′) =

3~L
16c3t5

q̃(0) , (40)

where the integral is over the displacement of the object
for the duration of the motion (which is assumed to be
much smaller than t), and q̃(0) is the integrated displace-
ment.

D. A Dirichlet segment in a waveguide in 2+1d

Next we consider a finite segment of size L along
the x-axis confined between two infinite Dirichlet lines

Figure 1. A segment in a waveguide. The arrows indicate the
direction along which the segment oscillates. Below a certain
frequency, ωmin = 2ω0, the motion is frictionless.

(a waveguide) in two spatial dimensions; see Fig. 1.
Dirichlet boundary conditions are assumed on all sur-
faces. The segment undergoes a rigid motion q(t) parallel
to the infinite lines. The only difference compared to the
previous (sub)section is that the modes along the x-axis
are quantized. Therefore the integral over kx is replaced
by a sum over n where kn = nπ

L . The radiation takes the
form (cf. Eq. (37))

P =
~

128c2

∫ ∞
0

dΩ

2π
|q̃(Ω)|2Ω4 g (ΩL/c) , (41)

where the function g is defined as

g(ν) =
512

π

bν/2πc∑
n=1∫ 1−πnν

πn
ν

dz (1− z)
√

(z2 − π2n2

ν2
)((1− z)2 − π2n2

ν2
) . (42)

For large L, g(ν) → ν, and we recover the results of
the previous (sub)section. However, this function van-
ishes below ν = 2π; a low-frequency motion does not
dissipate energy since propagating waves inside a waveg-
uide have no support in the range (−ω0, ω0) with ω0

being the lowest eigenmode of the waveguide, hence
ωmin = 2ω0 = 2πc/L. Close to this frequency, the func-
tion g vanishes quadratically,

g(ν) ∼ 8

π2
(ν − 2π)2, ν & 2π. (43)

Similar to the previous (sub)section, one can use
Kramers-Kronig relations to obtain the response func-
tion. Specifically, we are interested in the long-time limit
after the object comes to a full stop. The dependence on
large t can be inferred from the short-frequency response
(Eq. (43)) as

f(t) = − ~
2πcL t3

Re (e−i2ω0t q̃(2ω0)), (44)

with ω0 = πc/L as defined before. Note that the force
now falls as 1/t3 while its amplitude undergoes periodic
oscillations at frequency 2ω0, twice the lowest natural
frequency of the waveguide.

E. A Dirichlet plate in 3+1d

In this section, we consider a (two-dimensional) plate
in three dimensions subject to the same (Dirichlet)
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boundary conditions. Again we assume that the plate
undergoes a rigid motion q(t) normal to its surface, and
find the scattering matrix as

Sω+Ωk‖, ωk‖ = −2i q̃(Ω)
√
k⊥(ω,k‖) k⊥(ω + Ω,k‖) ;

(45)
see Appendix A 1. In order to compute the radiation,
one should integrate over propagating modes only (both
for incoming and outgoing waves), i.e. c|k‖| < |ω| and
c|k‖| < ω + Ω. Equation (10) then gives

P =
~L2

180π2c4

∫ ∞
0

dΩ

2π
|q̃(Ω)|2Ω6

=
~L2

360π2c4

∫
dt

...
q 2, (46)

where L2 is the area of the plate. The resulting (dissipa-
tive component of the) force is then

f(t) = − ~L2

360π2c4
q(5), (47)

again in agreement with Ref. [15].
We also note the difference between odd and even di-

mensions. In 2 dimensions, the force displays long-time
tails, while in 1 and 3 dimensions it is an (almost) in-
stantaneous function of the displacement.

F. A Dirichlet corrugated plate in 3+1d

We can generalize the results in the previous
(sub)section by considering a corrugated plate. For cor-
rugations of wavevector K, the scattering matrix is given
by (cf. Eq. (45))

Sω+Ωk‖+K, ωk‖ =

−2i q̃(Ω,K)
√
k⊥(ω,k‖) k⊥(ω + Ω,k‖ + K) . (48)

where q, the displacement from the x − y plane, is a
function of both ω and K; see Appendix A 1. The con-
dition for propagating waves is modified as c|k‖| < |ω|
and c|k‖ + K| < ω + Ω. The radiation formula should
be modified accordingly to ensure that only the prop-
agating modes are integrated. While this integral can
be computed explicitly, we use a trick as follows: For
Ω > c|K|, we Lorentz-transform to a frame in which
the scattering matrix is diagonal in the wavevector k‖;

the velocity of this frame is v = c2K
Ω . The scatter-

ing matrix, the integral measure, as well as the con-
dition for propagating waves are invariant under such
a transformation. But the frequency (~ω′ in Eq. (10))

picks up a factor of γ(v) = 1/
√

1− v2/c2, while the
lower bound of the integral over ω changes from −Ω to
−γ(v)(Ω − v · K) = −Ω/γ(v) which, through compar-
ison with the first line of Eq. (46), contributes a factor

of 1/γ6. Hence, the radiated energy density in Ω and K
becomes

P (Ω,K) =
~

360π2c4
|q̃(Ω,K)|2Ω(Ω2 − c2K2)5/2, (49)

consistent with Ref. [19]. Note that the difference of a
factor of two in comparison with Eq. (46) is in harmony
with the setup in Ref. [19] where the plate occupies a
half-space. Similar results can be obtained for Neumann
boundary conditions [44].

G. A Dirichlet sphere in 3+1d

In this section, we consider a sphere subject to Dirich-
let boundary conditions linearly oscillating in three di-
mensions. The oscillation amplitude, q(t), is small com-
pared to the radius of the sphere, R. We choose the z
axis parallel to the motion and passing through the cen-
ter of the sphere. The incoming and outgoing waves for
a spherical geometry are defined as

Φ
in/out
ωlm =

√
|ω|
c
e−iωt h

(1,2)
l

(ωr
c

)
Ylm(θ, φ), (50)

where h
(1,2)
l are spherical Hankel functions, and Ylm is

the usual spherical harmonic function. Due to azimuthal
symmetry, the scattering matrix is diagonal in the index
m but possibly mixes different ls. The scattering from
an oscillating sphere can be computed by using Green’s
theorem; see Appendix A 2 for more details. We find the
(off-diagonal) scattering matrix as

Sω+Ωl′m,ωlm =
2iq̃(Ω)

c
dll′m

×
√
|(ω + Ω)ω|Fl

(
ωR

c

)
Fl′

(
(ω + Ω)R

c

)
, (51)

where dll′m as defined in Appendix A 2 is nonzero only
for l′ = l ± 1, and the function F is defined as

Fl(x) =
1

xh
(1)
l (x)

. (52)

Using Eq. (10), the radiated energy density is given by

P (Ω) =
8~|q̃(Ω)|2

3c2

∫ 0

−Ω

dω

2π
(ω + Ω)2ω

×
∞∑
l=0

(l + 1)

∣∣∣∣Fl(ωRc
)
Fl+1

(
(ω + Ω)R

c

)∣∣∣∣2 . (53)

We consider two different limits:
a) ΩR/c� 1. For a slowly oscillating object, we need

only consider the lowest partial wave, i.e. the l = 0 term
in Eq. (53). One then finds the radiated energy density
in frequency as

P (Ω) =
~Ω6R2

30πc4
|q̃(Ω)|2. (54)
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b) ΩR/c � 1. In this case, one should include all
partial waves up to lmax ≈ ΩR/c � 1. Below we closely
follow the line of argument in Ref. [16]. For large l, we
have

|Fl(x)| ≈ (1− l2/x2)1/4, 1� l < x. (55)

The sum over all partial waves can then be recast as an
integral over l yielding (through the change of variables
σ = l/(ΩR/c) and x = |ω|/Ω)

P (Ω) =
4~R2Ω6|q̃(Ω)|2

3πc4

∫ 1/2

0

dσσ

∫ 1−σ

σ

dx (1− x)x2

[
1− σ2

x2

]1/2 [
1− σ2

(1− x)2

]1/2

=
~Ω6R2

270πc4
|q̃(Ω)|2 . (56)

This equation reproduces the contribution of the TE
modes to the electromagnetic version of a perfectly re-
flecting sphere; see Eq. (4.20) in Ref. [16].4 Indeed one
finds a similar correspondence for a perfectly reflecting
plate, that is the radiation due to the TE modes is equal
to that of the Dirichlet plate [20].

Finally we note that the radiation due to the oscillatory
motion can be computed for a variety of other geometries
such as cylinders, ellipsoids, etc.

H. A spinning object in 2+1d

Heretofore, we studied examples where the object is
accelerated by an external force. In this section, we con-
sider an object rotating at a constant angular velocity
Ω. We further assume that the object is not rotationally
symmetric, as illustrated in Fig. 2. As usual, we assume

Figure 2. An (asymmetrical) spinning object. The object
slows down as it emits “photons”.

a scalar field subject to Dirichlet boundary conditions on
the object’s surface, and limit ourselves to 2+1 dimen-
sions.

Since the orientation changes with time, waves imping-
ing on the object are partially scattered at a shifted fre-
quency determined by Ω. The scattering matrix is more
conveniently computed by going to the object’s reference
frame.

4 There are however mixed terms between the two polarizations
which vanish in this limit, see Ref. [16].

We start with the field equations in the laboratory
(static) frame. The wave equation, �Φ = 0, in polar
coordinates is[

1

c2
∂2
t −

1

r
∂rr∂r −

1

r2
∂2
φ

]
Φ(t, r, φ) = 0. (57)

The incoming and outgoing waves are defined as

Φin/out
ωm (t, r, φ) = e−iωteimφH(1,2)

m

(ωr
c

)
, (58)

where H is the Hankel function. (We have dropped an ir-
relevant constant in the definition of the these functions.)
The rotating frame is described by

t′ = t, r′ = r, φ′ = φ− Ωt. (59)

The field equation in the latter frame takes the form[
1

c2
(∂t − Ω∂φ′)2 − 1

r
∂rr∂r −

1

r2
∂2
φ′

]
Φ′(t, r, φ′) = 0.

(60)
Note that Φ′(t, r, φ′) = Φ(t, r, φ). Specifically, in the
new coordinate system, the functions Φωm as defined in
Eq. (58) become

Φ′ω−Ωmm(t, r, φ′) = e−i(ω−Ωm)teimφ
′
H(1,2)
m

(ωr
c

)
. (61)

The rotating frame is more convenient to write the scat-
tering ansatz as the object does not move in this frame,
and thus the time dependence drops out as a phase fac-
tor. In the latter frame, the boundary conditions take
the form[

eimφ
′
H(2)
m

(ωr
c

)
+
∑
m′

Sm′,me
im′φ′

H
(1)
m′

(
(ω − Ω(m−m′))r

c

)]
Σ

= 0, (62)

where Σ denotes the boundary. One can see that this
equation indeed satisfies Eq. (60) once the time depen-
dence, e−i(ω−Ωm)t, is restored. The scattering matrix
sends the frequency ω to ω − Ω(m−m′) from the point
of view of an observer in the lab frame. To obtain an
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analytical expression for the scattering matrix, we con-
sider the non-relativistic limit where the object’s (lin-
ear) velocity is small compared to c. It then suffices
to compute the scattering matrix for the lowest partial
waves. As a specific example we consider an ellipse close
to a circle of radius R with δ being the difference of
the two semiaxes, i.e., in polar coordinates, defined as
r(φ) = R + cos(2φ)δ/2. The scattering matrix to the
lowest order in δ is then obtained as

Sω+2Ω 2, ω 0 =
iπ(ω + 2Ω)2Rδ

8c2 log(|ω|R/c)
,

Sω+2Ω 0, ω−2 =
iπω2Rδ

8c2 log((ω + 2Ω)R/c)
. (63)

The energy radiation per unit time, according to Eq. (10),
is

P ≈ π~R2δ2Ω6

10c4 log(ΩR/c)2
. (64)

Therefore, an (asymmetrical) object which is spinning,
even at a constant rate, slows down due to quantum dis-
sipation. Note that the torque (due to the back-reaction)
is simply the radiation rate divided by the frequency Ω.

I. A Dirichlet disk in 2+1 dimensions: linear vs
angular motion

Now consider a circular disk of radius R subject to
Dirichlet boundary conditions in two spatial dimensions.
Below we contrast two different types of motion, see
Fig. 3. First we consider a linear oscillation, q(t) =

Figure 3. Linear vs angular motion; the radiated energy is
comparable in the two cases.

δ cos Ωt (with δ being the amplitude of the oscillation)
along the x-axis. The scattering from an oscillating disk
can be obtained by using Green’s theorem; see Appendix
A 3 for more details. We obtain the scattering matrix as

Sω+Ωm±1,ωm =
2i δ

πR
Mm

(
ωR

c

)
Mm±1

(
(ω + Ω)R

c

)
,

(65)
where the function M is

Mm(x) =
1

H
(1)
m (x)

. (66)

At low frequency, ΩR/c � 1, the scattering matrix for
the lowest partial waves is obtained as

Sω+Ω±1,ω 0 = ∓ iπ(ω + Ω)δ

4c log(ωR/c)
. (67)

The energy radiation (per unit time) can be computed
from Eq. (10); for a linearly oscillating disk, we find

Pl =
π~ δ2Ω4

64c2 log(ΩR/c)2
. (68)

Next we consider the same disk undergoing orbital mo-
tion. The latter can be thought as a rotation around a
point off the center of the disk. Specifically, we assume
that the disk’s center undergoes a trajectory (r, φ) =
(δ,Ωt) in polar coordinates, i.e. the center is at a fixed
radius δ while orbiting around the origin at frequency Ω.
The scattering process can be examined by techniques
similar to the previous (sub)section where we considered
a spinning object. We must assume ΩR/c� 1 as well as
δ � R—similar to the linear motion. The latter allows
us to compute the scattering matrix only for the lowest
partial waves, as

Sω+Ω 1,ω 0 = − iπ(ω + Ω)δ

2c log(|ω|R/c)
,

Sω+Ω 0,ω−1 =
iπωδ

2c log((ω + Ω)R/c)
. (69)

Note the similarity between Eqs. (67) and (69). The
radiated energy by a revolving disk can then be computed
according to Eq. (10), as

P◦ =
π~δ2Ω4

24c2 log(ΩR/c)2
. (70)

It is interesting to compare Eqs. (68) and (70) where
linear and angular motion have been considered, respec-
tively. We notice that, apart form a proportionality con-
stant, the analytical form of the dissipated energy is iden-
tical in the two cases.

The above results can be compared with the previous
(sub)section. In the former case, the setup is symmet-
ric under inversion with respect to the origin while the
latter is not. Thus, in the lowest order, scattering of
waves changes the angular momentum by two units for
a spinning ellipse and by one unit for a disk in (linear
or circular) motion; cf. Eqs. (63), (67) and (69). Conse-
quently, the energy radiation in the former case, Eq. (64),
is suppressed by two orders of magnitude in comparison
with Eqs. (68) and (70) for a disk.

IV. STATIONARY MOTION OF LOSSY
OBJECTS

In this section, we consider lossy objects but limit
ourselves to constant (linear or angular) speed. Among
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other results, we reproduce existing formulas in the liter-
ature with significantly less labor. Our starting point is
Eq. (20) in application to rotating objects. We then gen-
eralize to the case of multiple objects in relative motion.

A. Rotating object

Let us consider a solid of revolution spinning around
its axis of symmetry at frequency Ω. We choose polar
coordinates (r, φ, z) where the z direction is along the
axis of symmetry. The latter coordinates describe the
lab frame in which the object is rotating. The rotating
(or comoving) frame is defined by the coordinate trans-
formation

t′ = t, r′ = r, φ′ = φ− Ωt, z′ = z. (71)

A partial wave defined by frequency ω and azimuthal
indexm in the lab frame is characterized by the frequency

ω̃m = ω − Ωm (72)

from the perspective of the rotating frame; see Ref. [25]
for a detailed discussion. In harmony with the discussion
in Sec. II, the object spontaneously emits energy when
ω > 0 and ω̃m < 0, i.e. in the frequency window

0 < ω < Ωm, (73)

or the so-called superradiating regime first introduced by
Zel’dovich [26]. Therefore, the energy radiation per unit
time from a rotating object to the environment at zero
temperature is given by

P =

∫ ∞
0

dω

2π
~ωTr

[
Θ(Ω l̂z − ω)

(
S(ω)S(ω)† − I

)]
,

(74)

where l̂z is the z-component of the angular momentum
operator in units of ~. Note that the scattering matrix is
diagonal in frequency, ω, since the object is undergoing a
stationary motion with its shape and orientation fixed in
time. Equation (74) indeed gives the spontaneous emis-
sion by a rotating object consistent with Ref. [25] where
the Rytov formalism is used through an involved anal-
ysis. For a small object, only the lowest partial waves
contribute to the radiation, and we recover the results of
Ref. [24]. Note that in deriving Eq. (74) we did not use
any approximations regarding the velocity of the rotating
object.

For the sake of generalization to multiple objects, we
point out that Eq. (1) can be interpreted in a simple way
to arrive at the same results. According to this equa-
tion, the probability amplitude for spontaneous emission
is given by

Am(ω) = Um(ω), (75)

where we have suppressed all quantum numbers other
than ω and m, and used the fact that the amplitude

is diagonal in m due to the rotational symmetry of the
object. The rate of this process is

Nm(ω) = |Um(ω)|2 = |Sm(ω)|2 − 1, (76)

where, in the last equality, we have used Eq. (15) in the
superradiating regime, i.e. for 0 < ω < Ωm. Note that,
in this regime, |Sm(ω)| > 1, hence superradiance. The
integral of N multiplied by ~ω (over superradiating fre-
quencies) reproduces the energy radiation as given by
Eq. (74).

B. Moving plates

A system comprising two lossy parallel plates under-
going relative lateral motion is the canonical example of
non-contact friction. In the following, we sketch a simple
derivation of this friction based on Eqs. (1) and (17).5 We
first note that Eq. (17) can be interpreted via a classical
argument. One can denote the RHS of this equation as
the rate of “photon” absorption in a dispersive medium.
Current conservation implies that the latter should be
equal to the influx of the field quanta outside the body.
Let us consider a classical wave scattered from the object
as

Φ = Φin
α +

∑
β

SβαΦout
β , (77)

where we have suppressed the frequency, ω. The
current density going into the body is given by
−1
2i [Φ∗∇Φ−∇Φ∗Φ]. Since Φα and Φβ are properly nor-

malized (see Eqs. (3) and (4) and the explanation there-
after), the total influx of field quanta is

i

2

∮
dΣ · [Φ∗∇Φ−∇Φ∗ Φ] = 1−

∑
β

|Sβα|2. (78)

But this is exactly the LHS of Eq. (17).
To study moving plates we need to extend Eq. (17) to

evanescent waves which arise in non-compact geometries
(plates, cylinders, etc.), but are absent for a compact ge-
ometry. Since such waves are not propagating, “incom-
ing” and “outgoing” wave functions lose their straight-
forward interpretation. In other words, they do not carry
currents∮

dΣ ·
[
Φout/in∗
α ∇Φ

out/in
β −∇Φout/in∗

α Φ
out/in
β

]
= 0,

(79)

but satisfy a different relation (after proper normaliza-
tion)

1

2

∮
dΣ ·

[
Φin∗
α ∇Φout

β −∇Φin∗
α Φout

β

]
= δαβ . (80)

5 For a uniform translational motion, one can Lorentz-transform
Eq. (17) to the moving frame.
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Therefore an incoming wave scattered from the object,
Φ = Φin

α +
∑
β SβαΦout

β , carries an influx of “photons”
given by

i

2

∮
dΣ · [Φ∗∇Φ−∇Φ∗Φ] = 2 ImSαα, (81)

where Eqs. (79) and (80) are used. Then the conservation
of current dictates

(UU†)αα = 2 Im (S)αα . (82)

Equations (17) and (82) define the matrix U in terms of
the scattering (or reflection) matrix for propagating and
evanescent waves, respectively.

We can now compute the friction between two “dielec-
tric” plates moving in parallel. We assume that the first
plate is at rest while the other plate, separated from the
first by a distance d, moves at a constant velocity v along
the x axis. Because of translational symmetry, all matri-
ces are diagonal in the frequency ω and the wavevector
k‖ parallel to the surface. Here, Eq. (1) finds a two-fold
application. On one hand, it allows for spontaneous emis-
sion from an object, while on the other hand, it describes
the reflection and absorption of waves by a second object.

1) Spontaneous emission: the source fluctuations in the
first plate give rise to outgoing wave fluctuations. The
amplitude of the spontaneous emission is given by

A1 = U1, (83)

where the dependence of the matrix U on ω and k‖ is
implicit. Note that incoming waves do not contribute to
spontaneous emission.

2) Reflection: These outgoing waves propagate to
the second plate and get a factor of eik⊥d with k⊥ =√
ω2/c2 − k2

‖; a phase factor for propagating waves while

exponentially decaying for evanescent waves. There they
are partly reflected and partly absorbed by the second
plate. The amplitude for “photons” spontaneously emit-
ted by the first plate and then absorbed by the second
one is

A2←1 = eik⊥dU2U1. (84)

Equivalently, the rate of the latter process is given by

N 1st

2←1 = |A2←1|2 n1 =
∣∣eik⊥d∣∣2 |U2|2|U1|2 n1, (85)

where n1 = n(ω, T1) is the Bose-Einstein occupation
number defined at temperature T1. The superscript 1st

indicates that Eq. (85) is computed within the first re-
flection. One can similarly compute N1←2, the current
from the second to the first plate. But in the latter case,
n2(ω,k‖) is centered at ω−vkx, i.e. n2 = n(ω−vkx, T2),
because the thermal fluctuations are defined with respect
to the comoving frame.6 The total flux from the first to

6 For relativistic velocities, one should also include the Lorentz
factor γ(v) = 1/

√
1 − v2/c2.

the second plate, within the first reflection, is then

N 1st

2←1 −N 1st

1←2 =
∣∣eik⊥d∣∣2 |U2|2|U1|2 (n1 − n2). (86)

One can easily sum the contributions from multiple re-
flections,

Atot
2←1 =

∞∑
n=0

eik⊥dU2

(
e2ik⊥dR1R2

)n
U1

=
eik⊥dU2U1

1− e2ik⊥dR1R2
, (87)

where R1 and R2 are the reflection matrices. Note that
the n-th term in the last equation is the amplitude for a
“photon” spontaneously emitted by the first plate (U1),
reflected n times from the two plates ((e2ik⊥dR1R2)n)
before finally getting absorbed by the second plate (U2).
The amplitude Atot

1←2 is obtained similarly. The total rate
then becomes

N2←1 −N1←2 =

∣∣eik⊥d∣∣2 |U2|2|U1|2

|1− e2ik⊥dR1R2|2
(n1 − n2). (88)

Also note that, from Eqs. (17) and (82), we have

|Ui|2 =

{
1− |Ri|2, for propagating waves,

2 ImRi , for evanescent waves.
(89)

Finally friction is the rate of (lateral-)momentum transfer
integrated over all partial waves,

f =

∫ ∞
0

dω

2π

∫
L2dk‖

(2π)2
~kx

∣∣eik⊥d∣∣2 |U2|2|U1|2

|1− e2ik⊥dR1R2|2
(n1 − n2).

(90)
We should emphasize that the reflection matrix for the
second plate should be computed in its rest-frame, and
then transformed to the lab frame according to Lorentz
transformations. The last equation is the analog of the
results in Refs. [22, 23] for the scalar field.

To be more concrete, we consider a scalar model that
is described by a free field equation in empty space while
inside the object a “dielectric” (or, a response) function
ε is assumed which characterizes the object’s dispersive
properties. The field equation for this model reads(

ε(ω,x)ω2 +∇2
)

Φ(ω,x) = 0, (91)

with ε being 1 in the vacuum, and a frequency-dependent
constant inside the object.

For a semi-infinite plate, the reflection matrix R is
given by

Rωk‖ = −

√
ε ω2/c2 − k2

‖ −
√
ω2/c2 − k2

‖√
ε ω2/c2 − k2

‖ +
√
ω2/c2 − k2

‖

. (92)

This is easily obtained by solving the field equations in-
side and outside the plate and demanding the continuity
of the field and its first derivative along the boundary. In
a moving frame, the frequency and the wavevector should
be properly Lorentz-transformed.

These reflection matrices can then be inserted in
Eq. (90) to compute the frictional force.
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C. An atom moving parallel to a plate

In this section, we consider a small spherical object,
an atom, moving parallel to a plate. In the non-retarded
limit, an electrostatic computation is done in Ref. [45] for
a similar setup. For our purposes, it is more convenient
to consider the rest frame of the “atom” in which the
plate moves laterally. This is another example of station-
ary motion where the geometrical configuration does not
change even though the objects are undergoing relative
motion. We assume a small spherical object of radius
a (much smaller than the separation distance d), such
that the first-reflection approximation suffices. Similar to
the previous (sub)section, we first consider spontaneous
emission by each object. The plate (denoted by sub-
index 2) emits “photons” of frequency ω and wavevector
k‖ with a probability amplitude

A2(ω,k‖) = U2(ω,k‖). (93)

Then, these waves propagate to and reflect from the
“atom.” Planar waves pick up a factor eik⊥d upon travel-
ing a distance d. To find the scattering off of the spherical
object, we must change to a basis of spherical waves. A
planar wave can be expressed as a superposition of spher-
ical waves as

eik·x = 4π
∑
lm

iljl(ωr/c)Ylm(x̂)Y ∗lm(k̂), (94)

where x̂ and k̂ are the unit vectors parallel to the vectors
x and k, respectively. A planar wave, Φωk‖ , defined with
respect to a reference point on the plate’s surface below
the sphere’s center is related to spherical waves, Φωlm,
centered around the “atom” as

Φout
ωk‖

=
∑
lm

2πileik⊥dY ∗lm(k̂)√
k⊥ω/c

(
Φin
ωlm + Φout

ωlm

)
; (95)

see Appendix A for the definition of planar and spherical
waves. Then the amplitude for “photons” spontaneously
emitted by the plate and then absorbed by the sphere is

A1←2 =
2πileik⊥dY ∗lm(k̂)√

k⊥ω/c
U1 lm(ω)U2(ω,k‖), (96)

where U1 characterizes the loss due to the “atom.” Sim-
ilarly, we can compute the amplitude A2←1 for the in-
verse process where the spontaneous emission due to the
“atom” is absorbed by the plate. One can then obtain
the rate of energy or momentum transfer between the
objects. An analysis similar to the previous (sub)section
gives the force within the first reflection,

f =

∫ ∞
0

dω

2π

∫
dk‖

(2π)2
~kx (n1 − n2)

×
∑
l,m

∣∣eik⊥d∣∣2 |Ylm(k̂)|2|U1 lm(ω)|2|U2(ω,k‖)|2

|k⊥|ω/4π2c
, (97)

where n1(ω) = n(ω, T1) and n2(ω,k) = n(ω − vkx, T2)
are the Bose-Einstein factors for the “atom” at temper-
ature T1 and the plate at temperature T2, respectively.
Note that we have only considered the first reflection as
the “atom” is small compared to the separation distance.
The matrix U2 is given as in Eq. (89) while, for the spher-
ical object, there is no evanescent wave and thus the ma-
trix U1 is constrained by

|U1 lm(ω)|2 = 1− |Slm(ω)|2, (98)

with Slm(ω) being the scattering matrix of the “atom.”
This equation indicates that a frictional force (or en-
ergy transfer) arises only if the “atom” is lossy, i.e.
|Slm(ω)| < 1. For the scalar model introduced in the
previous (sub)section, the sphere’s scattering matrix is

Slm(ω) = −
h

(2)
l (ωa/c)∂ajl(nωa/c)− ∂ah(2)

l (ωa/c) jl(nωa/c)

h
(1)
l (ωa/c)∂ajl(nωa/c)− ∂ah(1)

l (ωa/c) jl(nωa/c)
,

(99)

where a is the sphere’s radius, and n(ω) =
√
εS(ω) with

εS being the “dielectric” function of the spherical object.
To the lowest order in a/d, we shall limit ourselves to the
low-frequency scattering of the partial wave l = m = 0.7

Within this approximation, the friction at zero tempera-
ture takes the form

f ≈ 4~a3

3π2c2

∫
kx>0

dk‖

∫ vkx

0

dω
e−2|k‖|dkxω

2 Im εS(ω) ImRω′k′
‖

|k‖|
.

(100)
The reflection matrix R can be obtained from Eq. (92)
via Lorentz transformation. Similarly, one can consider
the frictional force between a rotating sphere and a sta-
tionary plate [46]. With our scalar model, the scattering
matrix for a rotating sphere is obtained from Eq. (99)
by changing the argument of the Bessel functions to
n(ω̃m)ω̃ma/c where ω̃m = ω − Ωm. Having the scat-
tering matrices of a moving plate and a rotating sphere,
one can compute the friction when both objects are set
in motion.

V. SUMMARY AND OUTLOOK

In this work, we have developed a unified scattering
approach to the dynamical Casimir effect. We have ob-
tained general formulas for the radiation from moving ob-
jects for accelerating boundaries and modulated optical
devices without loss, as well as lossy bodies in uniform
motion. We provided and studied numerous examples,
many of which are novel, to better illustrate the techni-
cal power and conceptual elegance of the scattering ap-
proach.

7 One should note that in the case of electrodynamics there are no
monopole fluctuations and thus the leading contribution to the
friction comes from l = 1 [45].
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Extensions to more realistic boundary conditions and
field theories should be of both theoretical and practi-
cal interest. A superfluid liquid, for example, presents
a natural framework to study the effects of motion in a
quantum vacuum. Indeed, similar effects such as radia-
tion and spontaneous emission have been discussed for a
superfluid [47].

Quantum electrodynamics requires a further treatment
due to its vector nature. An obvious complication arises
since electromagnetic waves are polarized, enlarging the
scattering matrix, and complicating practical computa-
tions. Realistic materials also include loss. In Sec. III,
we considered accelerating objects with perfect boundary
conditions. Extensions to lossy objects require a general-
ization of the formalism presented in Sec. II. An expres-
sion solely in terms of the scattering matrix is desired in
the latter case when object’s acceleration and dispersive
properties interplay in a rather complex fashion. One can
anticipate that the computation of the scattering matrix
will be more complicated in this case. It is also worth-
while to consider configurations of multiple objects in
arbitrary motion. We have partially tackled this prob-
lem in the context of stationary motion in Sec. IV, while
extensions to accelerating objects will present new chal-
lenges and provide further insights. Specifically, one can
ask how the (inertial as well as dissipative) forces be-
tween two objects change as the result of their motion or
acceleration.

The formulation of the dynamical Casimir effect in
terms of the scattering matrix should also provide an effi-
cient prescription for numerical computations. The scat-
tering matrix is purely a classical quantity, and presum-
ably can be numerically computed with high precision.
This is particularly important if the motion cannot be
treated perturbatively—when the speed, the amplitude
of oscillations, or the corrugations of boundaries are not
small. Even in these cases, the scattering formalism is
applicable, and numerical methods should prove useful.

In the light of recent experiments on dynamical
Casimir effect, precise computations of the effect of ge-
ometry and motion are needed. We believe that our for-
malism provides an efficient analytical, and possibly even
numerical, computational tool.
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and H. Reid. This work is supported by the U.S. Depart-
ment of Energy under cooperative research agreement
Contract Number DE-FG02-05ER41360 (MFM) and the
National Science Foundation under Grants No. DMR12-
06323 (MK) and NSF PHY11-25915 (RG and MK).

Appendix A: Scattering matrices

In this Appendix, we derive the scattering matrix for
specific geometries. The Dirichlet boundary conditions
are assumed throughout this section.

1. Plate

The perturbative scheme introduced in Sec. III A can
be generalized to d dimensions. We designate the coor-
dinates spanning the surface by x‖ and the normal co-
ordinate by z. The incoming and outgoing waves are
identified as

Φ
in/out
ωk‖

(t,x) =
1√
k⊥

exp(−iωt+ ik‖ · x‖ ∓ ik⊥z) , (A1)

where k‖ is a (d − 1)-component wavevector parallel to

the surface of the plate, and k⊥(ω,k‖) =
√
ω2/c2 − k2

‖.

Consider Φ0 as the solution to the Dirichlet boundary
problem for a static mirror,

Φ0(t,x) = Φin
ωk‖

(t,x)− Φout
ωk‖

(t,x) . (A2)

The scattering matrix can be computed perturbatively by
organizing the field as Φ = Φ0 + Φ1 + · · · . The Dirichlet
boundary condition, Φ(t,x‖, z+ q(t,x‖)) = 0, to the first
order is given by

Φ1(t,x‖, 0) = −q(t,x‖)∂zΦ0(t,x‖, 0), (A3)

where q(t,x‖) is the boundary displacement as a function
of time and position on the surface. Given the (time-
dependent) value of the field Φ1 on the boundary as given
by Eq. (A3), one can compute the latter field everywhere
in the space by using Green’s theorem,

Φ(x) =

∫
Σ

dΣµΦ(x′) ∂µGD(x, x′) (A4)

where x and x′ are spacetime coordinates, and GD is a
Green’s function satisfying Dirichlet boundary conditions
on the plate. The integral in the last equation is over a
closed surface including x in its interior. The Green’s
function, GD, is, in Fourier space, given by

GD(ω,k‖, z, z
′) =

i

2k⊥
eik⊥z>(e−ik⊥z< − eik⊥z<). (A5)

Using Eqs. (A4) and (A5), one obtains Φ1, which in turn
gives the scattering matrix as

Sω+Ωk‖+K, ωk‖ = −2i q̃(Ω,K)
√
k⊥(ω,k‖) k⊥(ω + Ω,k‖ + K) .

(A6)
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2. Sphere

In spherical coordinates, the normalized incoming and
outgoing waves are defined as

Φ
in/out
ωlm =

√
|ω|
c
e−iωt h

(1,2)
l

(ωr
c

)
Ylm(θ, φ). (A7)

The Dirichlet boundary condition for a spherical object
in motion is

Φ(t, Rr̂ + ~q) = 0. (A8)

In this equation, R is the radius of the sphere, r̂ is the
unit vector along the radius, and ~q is the displacement as
a function of time and position on the sphere’s surface.
For simplicity, we assume that the sphere undergoes a
linear (but time-dependent) motion. Equation (A8) can
be expanded in powers of q. To the first order, we have

Φ1(t, Rr̂) = −q(t) cos θ∂rΦ0(t, rr̂)|r=R, (A9)

where the zeroth-order solution is

Φ0(ω,x) = Φin
ωlm + Sl(ω)Φout

ωlm, (A10)

with Sl(ω) = −h
(2)
l (ωR/c)

h
(1)
l (ωR/c)

being the scattering matrix of a

static sphere. The Green’s function satisfying the Dirich-
let boundary conditions on the sphere can be written as

GD(ω,x,x′) =
iω

2c

∑
lm

(
h

(2)
l (ωr</c) + Sl(ω)h

(1)
l (ωr</c)

)
× h(1)

l (ωr>/c)Ylm(θ, φ)Y ∗lm(θ′, φ′) . (A11)

Green’s theorem can then be applied to compute Φ1, or
equivalently the scattering matrix as

Sω+Ωl′m,ωlm =
2iq̃(Ω)

c
dll′m

×
√

(ω + Ω)ω Fl

(
ωR

c

)
Fl′

(
(ω + Ω)R

c

)
, (A12)

with F defined as

Fl(x) =
1

xh
(1)
l (x)

. (A13)

The constants dl′lm are nonzero only for l′ = l ± 1,

dl+1 lm =

√
(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3)
,

dl−1 lm = dl l−1m . (A14)

3. Disk (cylinder in 2d)

In polar coordinates, the normalized incoming and out-
going waves are defined as (up to an irrelevant constant)

Φ
in/out
0 (ω,x) = e−iωtH(1,2)(ωr/c)eimφ. (A15)

The boundary condition for a circular disk in motion
is described similarly to Eq. (A8) with ~r being a two-
dimensional radial vector. Again we make the as-
sumption that the object undergoes a linear (but time-
dependent) motion along the x-axis. Equation (A8) can
be expanded as

Φ1(t, Rr̂) = −q(t) cosφ∂rΦ0(t, rr̂)|r=R, (A16)

with φ being the angle from the x axis. The zeroth order
solution, Φ0, is given by

Φ0(ω,x) = Φin
ωm + Sm(ω)Φout

ωm, (A17)

where Sm(ω) = −H
(2)
m (ωR/c)

H
(1)
m (ωR/c)

is the scattering matrix of

a static disk. The Green’s function subject to Dirichlet
boundary conditions on the disk is

GD(ω,x,x′) =
i

4

∑
m

(
H(2)
m (ωr</c) + Sm(ω)H(1)

m (ωr</c)
)

×H(1)
m (ωr>/c) e

im(φ−φ′) . (A18)

With the knowledge of the field on the boundary,
Eq. (A16), one can apply Green’s theorem to obtain the
field elsewhere in space. One then finds the scattering
matrix

Sω+Ωm±1,ωm =
2i q̃(Ω)

πR
Mm

(
ωR

c

)
Mm±1

(
(ω + Ω)R

c

)
,

(A19)
where M is defined as

Mm(x) =
1

H
(1)
m (x)

. (A20)
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