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We introduce a non-perturbative continuum framework to study the dynamics of quantum field
theory (QFT), applied here to the CP(N-1) model. We show that the ambiguities in perturbation
theory due to infrared renormalons are exactly canceled by corresponding ambiguities in the non-
perturbative sector coming from amplitudes of certain non-perturbative objects: neutral bions and
bion-anti-bions. This provides an explicit weak-coupling interpretation of the IR-renormalons. We
use Écalle’s theory of resurgent trans-series and the physical principle of continuity to continuously
connect QFT to quantum mechanics, while preventing all intervening rapid cross-overs or phase
transitions. The quantum mechanics contains the germ of all non-perturbative data, e.g., mass
gap, of the QFT, all of which are calculable. For CP(N-1), the results obtained at arbitrary N are
consistent with lattice and large-N results. The trans-series expansion, in which perturbative and
non-perturbative effects are intertwined, encapsulates the multi-length-scale nature of the theory,
and eliminates all perturbative and non-perturbative ambiguities under consistent analytic continu-
ation of the coupling. A theorem by Pham et al implies that the mass gap is a resurgent function, for
which resummation of the semi-classical expansion yields finite exact results in the weakly coupled
domain.
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I. INTRODUCTION

The 1970s-80s witnessed an intensive research program on two-dimensional (2D) asymptotically free non-linear
sigma models, motivated by their relevance to antiferromagnetic spin systems and four dimensional (4D) QCD [1–6].
Many results were found in the large-N limit, particularly concerning dynamical mass generation and chiral symmetry
breaking. However, concrete results in finite-N theories remain scarce [7]; and even at large-N the microscopic
mechanism by which a mass gap is generated remains open to date. The inheritance from this époque is a list of deep
problems/puzzles about CPN−1 . A partial list includes:

1. Invalidity of the dilute instanton gas approximation on R2. In a theory in which the instanton has size moduli,
the dilute instanton gas picture is ill-defined, since it assumes that the typical inter-instanton separation is much
larger then instanton size. This is a variant of Coleman’s “infrared embarrassment” problem.

2. Perturbation theory leads to a non-Borel-summable divergent series even after regularization and renormaliza-
tion. Attempts to Borel resum perturbation theory yield a class of ambiguities associated with singularities in
the complex Borel plane [8]. While some such ambiguities are cancelled by non-perturbative ambiguities (asso-
ciated with 2D instanton-anti-instanton events), via a QFT version of the Bogomolny-Zinn-Justin mechanism
[9, 10], there are other (more relevant) ambiguities associated with infrared (IR) renormalons [5, 6, 8, 12], and
there are no known (semi-classical or otherwise) 2D configurations with which these ambiguities may cancel.
Therefore, even Borel resummed perturbation theory by itself is ill-defined, due to the IR renormalons.

3. There is not complete understanding of the microscopic mechanism underlying the large-N mass gap for CPN−1:

mg = Λ = µe−SI/N = µe
− 4π
g2N , where µ and Λ are the renormalization and strong scale.

4. The precise connection between large-N results and the instanton gas approximation is only partially understood
[2–4, 13].

In this paper we propose a new approach to asymptotically free quantum field theories that directly addresses the first
three of these questions. Our approach is based on a mathematical formalism known as resurgent asymptotic analysis
[14], in which physical quantities are expanded in terms of trans-series rather than perturbative series. A trans-series
is an expansion that unifies both perturbative and non-perturbative expansions, in a manner that is self-consistent
under analytic continuation of the various parameters and couplings. Resurgent trans-series have been studied for
quantum mechanics [10] and for some simple quantum field theories and matrix models [15], but here we propose
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an application to the more difficult case of asymptotically free quantum field theories, such as CPN−1 models. More
details can be found in [16], and applications to 4D gauge theories in [17, 18].

Resurgent trans-series are physically important because they make perturbation theory consistent for problems with
degenerate classical vacua. For example, in quantum mechanical models with degenerate classical vacua, perturbation
theory leads to a divergent and non-alternating series [10]. This leads to two immediate problems: (i) analysis of
these divergent series (for example, by Borel summation) leads to imaginary contributions to observables (such as the
energy) that should be real; (ii) this Borel summation procedure is actually ambiguous, with the ambiguity manifest
in the sign of the imaginary non-perturbative contributions. Resurgent trans-series analysis produces an expression
for the observable (such as the energy) that unifies the perturbative series with a sum over all non-perturbative
contributions. The various terms in this trans-series are inter-related by an infinite ladder of intricate relations, in
such a way that the full expression is unique, unambiguous and real. For example, the ambiguous imaginary term
arising from a Borel analysis of the perturbative series is exactly cancelled by an identical term coming from the
instanton/anti-instanton interaction, which lives in the non-perturbative part of the trans-series. “Resurgence” states
that these cancellations occur to all orders, producing a consistent, real and unambiguous result.

This Bogomolny-Zinn-Justin (BZJ) mechanism of cancellation of ambiguities between the non-Borel-summable
perturbative expansion and the non-perturbative multi-instanton sector has been explored in some detail for quantum
mechanics (QM) problems with degenerate vacua [9–11], but in fact the resurgent structure is a general property
of perturbation theory that should also be relevant for quantum field theory (QFT), particularly when there are
degenerate vacua. For example, in asymptotically free quantum field theories such as 4D SU(N) gauge theory or
2D CPN−1 theories, there are infrared renormalons that lead to non-Borel summability of perturbation theory. This
is a serious problem, because it means that perturbation theory on its own is ill-defined and incomplete, just as
is the case for the QM problems with degenerate vacua. But the naive analog of the quantum mechanical BZJ
cancellation mechanism does not resolve this problem in the QFT case, for the following reason. The infrared (IR)
renormalons lead to non-perturbative exponential factors exp [−2Sinst/β0], where the exponent involves twice the
instanton action (as in QM), but divided by the one-loop beta function, which scales like N . But there are no such
semi-classical non-perturbative objects in these theories defined on R4 or R2, respectively. Instanton-like configurations
have non-perturbative factors of the form exp [−Sinst], without the 1/N factor in the exponent, and so are sub-leading.
Therefore, there are no non-perturbative semi-classical amplitudes that can cancel the ambiguous non-perturbative
terms arising due to these IR renormalons. This is the puzzle.

Our proposed resolution of this puzzle is motivated by the fact that the instanton gas analysis of the non-perturbative
sector is also ill-defined on R4 or R2, respectively, because the classical scale invariance implies that instantons of any
size have the same action, leading to an infrared divergence in the instanton gas picture. A regularization of the QFT
by spatial compactification leads to twisted boundary conditions that produce fractionalized instantons, which are
associated with non-perturbative factors of the form exp [−Sinst/N ], appropriate for canceling the ambiguities from
the IR renormalon poles. For 4D gauge theory, the dependence is parametrically correct [17, 18], while here we show
that for CPN−1 the N dependence matches perfectly the expected N dependence coming from the IR renormalons; for
more details see [16]. In Section II we introduce a new order parameter for the spatially compactified CPN−1 model,
and show that this spatial compactification is stable and provides a consistent weak-coupling semi-classical window
into the confined regime, in contrast to what happens for thermal compactification. In Section III we discuss the
fractionalized semi-classical instanton and bion (instanton/anti-instanton molecule) configurations, and show that
neutral bion amplitudes have non-perturbative ambiguities. In Section IV we show explicitly (see equation (10)) that
the ambiguities in neutral bion amplitudes cancel precisely against the ambiguities coming from IR renormalons, and
we compute the non-perturbative mass gap from a microscopic Hamiltonian. In the Conclusions we summarize and
comment on outstanding questions.

II. NEW ORDER PARAMETER OF THE CPN−1 MODEL ON R× S1
L

The CPN−1 model is described by a quantum field n(x) in the coset space U(N)
U(N−1)×U(1) . The action is

S =

∫
d2x

[
2

g2
(Dµn)

†
Dµn−

iΘ

2π
εµν(Dµn)†Dνn

]
(1)

where Dµ = ∂µ + iAµ, Aµ is an auxiliary field, and Θ is the topological angle. We consider the CPN−1 model on
a spatially compactified cylinder R × S1L. The CPN−1 model has a global U(N) symmetry, and a local U(1) gauge

redundancy, n→ eiα(x)n. We parametrize CPN−1 by locally splitting the n-field into a phase and modulus, ni = eiϕiri,

involving (N − 1) phase fields {ϕ1, . . . , ϕN},
∑N
i=1 ϕi = 0 mod(2π) by U(1) gauge redundancy, and (N − 1) modulus
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fields {r1, . . . , rN},
∑N
i=1 r

2
i = 1. We also consider adding Nf species of Dirac fermions, although here we mostly deal

with the bosonic Nf = 0 theory.
Each −∂µϕi ≡ Aµ,i transforms as a “gauge” connection, Aµ,i −→ Aµ,i − ∂µα, and we refer to it as the “σ-

connection”. With spatial compactification on R×S1L, we define a new order parameter, the “σ-connection holonomy”,
making a circuit around the compact direction:

(LΩ)j(x1) := ei
∫ L
0
dx2 A2,j = ei(ϕj(x1,0)−ϕj(x1,L))

LΩ(x1) := Diag
[
(LΩ)1(x1), . . . , (LΩ)N (x1)

]
(2)

Under an aperiodic global gauge rotation, the line operator LΩ(x1) → ei
2πk
N LΩ(x1), k = 1, . . . , N , reflecting the

theory’s global ZN center-symmetry. (The fact that it is not U(1) follows from the constraint,
∑N
i=1 ϕi = 0 mod(2π),

i.e., detL Ω(x1) = 1.) The matrix-valued gauge invariant σ-holonomy, LΩ(x1), plays an analogous role to the Wilson
line in non-abelian SU(N) gauge theory. Crucially, this operator contains more refined data than the familiar U(1)

Wilson line in the CPN−1 model: W = ei
∫ L
0
dx2A2 .

A typical classical background of the σ-connection holonomy is LΩb = Diag
[
e2πiµ1 , e2πiµ2 , . . . , e2πiµN

]
. Classically,

this background is equivalent to imposing twisted boundary conditions for the CPN−1 fields, of the form n(x1, x2 +
L) = LΩbn(x1, x2) [19, 20]. Undoing the twist by a field redefinition is equivalent to the substitution, ∂µ →
∂µ + i δµ2

2π
L Diag

[
µ1, µ2, . . . , µN

]
, analogous to turning on a Wilson line in compactified SU(N) gauge theory (and

further reason to call −∂µϕi = Aµ,i σ-connection). In the small-L weak coupling regime, the quantum mechanical
stability of a given background can be determined via a one-loop analysis of the potential for the holonomy (2), similar
to gauge theory. Integrating out weakly coupled Kaluza-Klein modes, we find

V±[LΩ] =
2

πL2

∞∑
n=1

1

n2
(−1 +Nf (±1)n) (|tr LΩn| − 1)

where − (+) refers to thermal (spatial) compactification, where fermions have anti-periodic (periodic) boundary

conditions. For Nf ≥ 0, the N -fold degenerate minima in the thermal case are LΩthermal
0 = ei

2πk
N 1N , k = 1, . . . N , a

clumped configuration of holonomy eigenvalues. In sharp contradistinction, for Nf ≥ 1 and in the spatial case, the

minimum is unique, LΩspatial
0 = Diag

(
1, ei

2π
N , . . . , ei

2π(N−1)
N

)
, a non-degenerate, ZN -symmetric holonomy, similar to

QCD(adj) [21, 22]. The Nf = 1 case follows from non-perturbative effects [16].
Since there are no phase transitions (for finite-N) on R × S1L, one may wonder what qualitative differences these

two different backgrounds entail. In the thermal case, the potential at the minimum is the free energy density of the

hot CPN−1 model, F = V−[LΩthermal
0 ] = −(2N − 2)π6

(
1 +

Nf
2

)
T 2 ∼ O(N1), the Stefan-Boltzmann result; whereas

in the cold regime, F ∼ O(N0), because the spectral density of physical states is O(N0). There is a rapid cross-over
from a hot deconfined regime to the cold confined regime at the strong scale at finite-N , which becomes a sharp phase
transition at N =∞. With spatial compactification, the “free energy” density at small-L is F ∼ O(N0), just like the
cold regime of the thermal theory. Therefore, there is no intervening rapid crossover (finite-N) or phase transition
(N =∞) as one dials the radius from large to small. This is the reason that the spatially compactified theory provides,
in the small L regime, a weak-coupling semi-classical window into the confined regime [21, 22], whereas the thermally
compactified theory provides, at small β, a weak coupling semi-classical window of the deconfined regime [4].

In the pure bosonic theory (Nf = 0) in which there is no distinction between the thermal and spatial compactifi-
cation, a ZN -symmetric background is unstable. However, one can define a deformed bosonic CPN−1 (analogous to
deformed YM) by introducing heavy fermions m� Λ, so that the theory at distances larger than m−1 emulates the
pure bosonic theory. Then, render the KK-modes sufficiently high such that the heavy fermions appear light with
respect to the KK-modes, i.e., m . 2π

LN . Thus, from the point of view of the one-loop potential, we can use the result

of the massless theory, and at the same time, at distances larger than m−1, the theory is the bosonic CPN−1 model
on a stable ZN -symmetric background.

III. KINK-INSTANTONS AND BIONS IN CPN−1 ON R× S1
L

In CP1, in the small-L regime, the Lagrangian associated with the zero mode of the KK-tower is (ξ ≡ 2π
N L ):

Szero =
L

2g2

∫
R
(∂tθ)

2 + sin2 θ(∂tφ)2 + ξ2 sin2 θ, (3)
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where the kinetic term describes a particle on S2 ∼ CP1, and the potential follows from the Z2 stable background.
This action has a semi-classical kink-instanton solution, which we call K1, interpolating from θ = 0 to θ = π, and
with action S1 = L

g2 (2ξ) = 4π
g2 × (µ2 − µ1) = SI

2 . Its topological charge is Q = 1
2 . There is also an independent

kink-instanton, K2, with action S2 = SI
2 , interpolating from θ = π to θ = 0, also with topological charge Q = 1

2 . It is

important to note that K2 is not the anti-kink K1, which has Q = − 1
2 . The kink-instanton K2 is associated with the

affine root of the SU(2) algebra [19, 20].
This construction generalizes to CPN−1 : there are N types of kinks, associated with the extended root system of

the SU(N) algebra, each of which carries a topological charge Q = 1
N . The amplitude of Ki has a non-perturbative

factor

Ki : e−S0 = e
− 4π
g2N = e−

4π
λ ∼ e−

SI
N , i = 1, . . . , N (4)

It is crucial to note the appearance of the ’t Hooft coupling, g2N ≡ λ, in the amplitude. Thus, the kink-instantons

are exponentially more relevant than the 2D instanton: e
− 4π
g2N � e

− 4π
g2 .

At second order in the semiclassical expansion, there are self-dual and non-self-dual configurations. The non-self-
dual topological molecules are in one-to-one correspondence with the non-vanishing elements of the extended Cartan

matrix Âij of SU(N). For each entry Âij < 0 of the extended Cartan matrix, there exists a charged bion, Bij ∼ [KiKj ],
which plays a crucial role in the mass gap of the theory with Nf ≥ 1, similar to the magnetic bion in QCD(adj) on

R3 × S1 [22]. For each diagonal entry, Âii > 0, there exists a neutral bion, Bii ∼ [KiKi], with zero topological charge,

C̃�

C̃+

g2

FIG. 1: Defining left (right) Borel sum Bθ=0± , and left (right) neutral bion amplitude [Bii]θ=0± . The g2 > 0 line is a Stokes
ray, the mathematical reason underlying the divergence of perturbation theory.

and indistinguishable from the perturbative vacuum [17, 18]. The Bii generate a repulsion among the eigenvalues
of the holonomy (2). For g2 > 0, the constituents of the neutral bion interact attractively at short distances and
the quasi-zero mode integral yields an amplitude which is naively meaningless. However, this is actually a mirror
reflection of the “Stokes phenomenon” as will be discussed. We can evaluate, in the Nf = 0 theory, the neutral bion
amplitude as shown in Fig. 1. First, take g2 → −g2, where the neutral bion amplitude is well-defined. Then, analytic
continuation along C̃± to θ = 0± yields left and right amplitudes

[KiKi]θ=0± =Re [KiKi] + i Im [KiKi]θ=0±

=

(
log

(
g2N

8π

)
− γ
)

16

g2N
e
− 8π
g2 N ± i 16π

g2N
e
− 8π
g2 N (5)

The absence of a well-defined θ → 0 limit means that the semi-classical expansion by itself is also ill-defined. Écalle’s
resurgent approach is to simultaneously apply this analytic continuation to the Borel summation of the perturbative
sector and to the non-perturbative sector, in such a way that all ambiguities cancel, yielding an unambiguous and
exact “trans-series” result. This mathematical technique has only been partially explored in QFT [15, 18], as most
semi-classical studies only capture the first order. In quantum mechanics, this effect is studied in [9, 10]. Surprisingly,
in QFT there appears to be universal behavior for the jump in the amplitude of neutral topological defects, arising
from analytic continuation of the quasi-zero-mode integrals [16–18, 23].

IV. CANCELLATION OF AMBIGUITIES BETWEEN IR RENORMALONS AND THE
NON-PERTURBATIVE SECTOR

The low energy Hamiltonian for (3), dropping φ-angle states in the Born-Oppenheimer approximation, is

Hzero = −1

2

d2

dθ2
+

ξ2

4g2
[1− cos(2gθ)] (6)



5

The asymptotic form of the ground state energy, E0(g2), at large-orders in perturbation theory is evaluated in [24],
using methods developed by Bender and Wu [25]:

E0(g2) ≡ E0ξ
−1 =

∞∑
q=0

a0,q(g
2)
q
, a0,q ∼ −

2

π

(
1

4ξ

)q
q! (7)

The series is “Gevrey-1” [14], non-alternating, and hence non-Borel summable; a manifestation of the fact that
we are expanding the ground state energy along a Stokes ray in the complex-g2 plane. The Borel transform is

given by BE(t) = − 2
π

∑∞
q=0

(
t
4ξ

)q
= − 2

π
1

1− t
4ξ

, and has a pole singularity on the positive real axis R+ (i.e., non-

Borel summability or ambiguity of the sum). However, the series is right- and left- Borel resummable, given by

S0±E(g2) = 1
g2

∫
C±

dt BE(t) e−t/g
2

, where the contours C± pass above (below) the singularity. Equivalently, taking

g2 → −g2, the series (7) becomes Borel summable. Analytically continuing the sum back along C̃± yields the two
“lateral” Borel sums:

S0±E(g2) = ReB0 ∓ i
16π

g2N
e
− 8π
g2N (8)

where the imaginary part is the leading non-perturbative ambiguity of resummed perturbation theory, which is

O(e−S[KiKi]) ∼ e−2S0 ∼ e−2SI/N , and ReB0 ∼ O(1) is the unambiguous real part.
We now come to the crux of the matter: the resummed vacuum energy has an imaginary part, but it is not associated

with the Dyson instability, or decay of the vacuum. Rather, this ambiguous imaginary part is a direct reflection of
the fact that (resummed) perturbation theory by itself is ill-defined. Furthermore, the ambiguity that we find for
CPN−1 on R × S1L is parametrically the same as that of the elusive IR-renormalons. Therefore, what was viewed as
a problem, in fact becomes a blessing in disguise: consider the Θ-independent part of the vacuum energy density in
a trans-series expansion (combining perturbative and non-perturbative terms), and collect unambiguous terms and
ambiguous terms together:

E0,transseries(g2) =

∞∑
q=0

a0,q(g
2)
q

+ [Bii]
∞∑
q=0

a2,q(g
2)
q

+ . . . (formal)

−→ B0,θ=0± + [Bii]θ=0±B2,θ=0± + . . . (BE− resummation)

= ReB0 + Re [Bii]ReB2 + i[ImB0,θ=0± + ReB2Im [Bii]θ=0± ]

= ReB0 + Re [Bii]ReB2, up to e−4S0 (9)

In our explicit computation, we have taken B2 = a2,0 +O(g2), and kept only a2,0 for consistency because we are also
only accounting for the leading large orders asymptotics in (7). The sum of the left (right) Borel resummation of
perturbation theory and non-perturbative left (right) neutral bion amplitude is unambiguous at order e−2S0 = e−2SI/N ,
as encoded in our perturbative-non-perturbative “confluence equation” in (9):

ImB0,θ=0± + ReB2Im [Bii]θ=0± = 0, up to e−4S0 (10)

The passage from θ = 0− to θ = 0+ is accompanied by a “Stokes jump” for the Borel resummation (8), which is
mirrored by a jump in the neutral bion amplitude in the opposite direction (5) such that the sum of the two gives
a unique result, with a smooth limit up to ambiguities at order e−4S0 . Eq.(10) is conjectured to hold in (deformed)
Yang-Mills in [17, 18], and here we verify it by explicit computation for CPN−1 . Confluence equations are crucial for

giving a non-perturbative continuum definition of QFT. We refer to the procedure in (9) as Borel-Écalle resummation,

after Écalle’s seminal work [14], which formalized asymptotic expansions with exponentially small terms (trans-series)
and generalized Borel resummation to account for the Stokes phenomenon.

As an application, we calculate a physically interesting non-perturbative quantity. The mass gap is the energy
required to excite the system from the ground state to the first excited state. For CP1, in the standard notation for

Mathieu functions, the pair of states cen(θ, q) and sen+1(θ, q) (q = ξ2

4g4 ), n = 0, 1, 2, . . ., become degenerate to all

orders in perturbation theory: their asymptotic expansions are identical. As g2 → 0, the splitting E(bn+1)− E(an) is
purely non-perturbative. The mass gap is defined as mg = E(b1)− E(a0) and is given by

mg =
8π

g

(
1− 7g2

16π
+O(g4)

)
e
− 2π
g2 ∼ e−SI/2 (11)
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This also justifies the Born-Oppenheimer approximation, because low-lying states are non-perturbatively split, whereas
their separation from the higher states is an order one gap: mg � E(a1) − E(b1) ∼ ∆Eφ, where ∆Eφ is the gap in

the φ-sector in (3). For CPN−1 , generalizing the above discussion, we find mg ∼ 1√
g2N

e
− 4π
g2 N ∼ e−SI/N , which is

a kink-instanton effect (4). We are not aware of any previous microscopic derivation in CPN−1 of the all-important
non-perturbative mass gap ∼ e−SI/N . The gap at small-L may be considered as the germ of the mass gap for the
theory on R2. At large-N , this agrees with the mass gap obtained by the master field method [1].

V. CONCLUSIONS

We have shown that for the CPN−1 model defined on R×S1L, the Borel singularities due to infrared renormalons occur
at precisely the same location as the singularities corresponding to certain non-perturbative objects: neutral bions
and bion-anti-bions. We have demonstrated the cancellation of the two ambiguities, from the perturbative and non-
perturbative sector, leaving an unambiguous answer. This is the first explicit demonstration of the BZJ mechanism
in a non-trivial asymptotically free quantum field theory. We have argued that the spatial compactification leads
to a continuity by which this result obtained in the small L regime can be continued smoothly, without any phase
transition or rapid crossover, to the large L regime. If this latter claim could be rigorously proven, then we would
have a simple and elegant resolution of the first two problems listed in the introduction: the failure of the instanton
gas picture for CPN−1 , and the ambiguities arising from the non-Borel-summability of perturbation theory due to
infrared renormalons. This QFT result is in both qualitative and quantitative agreement with lattice and large-N
results.

We have also given an explicit microscopic computation of the mass gap. Notice that in our mass gap result
(11) there is a perturbative series multiplying the kink-instanton amplitude, which is itself a divergent asymptotic
(non-Borel-summable) series. One can ask what this means. This question has been answered in the mathematics

literature, and is the essence of resurgence. An important result by Pham et al, and Delabaere [26], using Écalle’s
theory of resurgence [14], proves that the semi-classical expansions for the energy levels of the QM double-well and
periodic potentials are indeed resurgent functions, resummable to finite, unambiguous, exact results. In the small
L regime this is precisely the result we need to argue that these cancellations occur to all orders. Our primary
contribution here is that we have found the conditions under which a non-trivial QFT, such as the asymptotically free
CPN−1 model, is connected to QM without any rapid cross-over or phase transition; i.e., by guaranteeing continuity.
This permits us to derive the germ of all non-perturbative observables in the QFT in the small-S1 domain using
these rigorous QM results of Pham et al. Furthermore, introducing the Θ dependence leads to a ‘grading’ of the
resurgent trans-series structure [16]. We hope that this remarkable connection between QFT and QM may be used to
explore other non-perturbative properties of general QFTs, and eventually lead to a fully consistent non-perturbative
definition of non-trivial QFTs in the continuum.
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