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We study the (3+1)-dimensional evolution of non-Abelian plasma instabilities in the presence of
a longitudinally expanding background of hard particles using the discretized hard loop framework.
The free streaming background dynamically generates a momentum-space anisotropic distribution
which is unstable to the rapid growth of chromomagnetic and chromoelectric fields. These fields
produce longitudinal pressure that works to isotropize the system. Extrapolating our results to
energies probed in ultrarelativistic heavy-ion collisions we find, however, that a pressure anisotropy
persists for a few fm/c. In addition, on time scales relevant to heavy-ion collisions we observe
continued growth of plasma instabilities in the strongly non-Abelian regime. Finally, we find that
the longitudinal energy spectrum is well-described by a Boltzmann distribution with increasing
temperature at intermediate time scales.
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I. INTRODUCTION

One of the major outstanding questions in the theo-
retical understanding of ultrarelativistic heavy ion colli-
sions concerns the thermalization and isotropization of
the quark gluon plasma. Empirical evidence in favor of
fast thermalization and isotropization was provided by
ideal relativistic hydrodynamical models. The success
of these models to describe the collective flow observed
at the Relativistic Heavy Ion Collider (RHIC) suggested
that one generated thermal and isotropic matter at time
scales on the order of 0.5 fm/c after the initial nuclear
impact [1–4]. Based on this success there was a con-
certed effort to include corrections due to the finite shear
viscosity of the plasma [5–27]. Second order viscous hy-
drodynamics is now widely used to model collisions at
both RHIC and the Large Hadron Collider (LHC).

In recent years, however, studies have shown that
there is an insensitivity to the assumed momentum space
anisotropy of the plasma, with the data also being con-
sistent with initially large momentum-space anisotropies
[22, 28]. In addition, studies based on the conjectured
anti de Sitter/conformal field theory (AdS/CFT) corre-
spondence have shown that, although viscous hydrody-
namical behavior emerges quickly in the strong coupling
limit, there are still sizable momentum-space anisotropies
present that persist over the entire lifetime of the plasma
[29–31]. Based on this, extensions of viscous hydrody-
namics that can accommodate large momentum-space
anisotropies have been developed [28, 32–39]. Currently
the question of the degree of momentum-space isotropy
of the quark gluon plasma generated in heavy ion colli-
sions is an open question. In this paper we study the role
played by collective unstable modes of the chromomag-
netic and chromoelectric fields in restoring momentum-
space isotropy of an expanding quark gluon plasma
(QGP).

It has been shown using both kinetic theory and dia-
grammatic methods that when the local particle distri-
bution function of a weakly-coupled QGP is anisotropic
in momentum space, the system is unstable to the rapid
growth of soft gauge fields [40–50]. This instability has
been dubbed the chromo-Weibel instability in reference
to the Abelian analogue of this instability first discussed
by Weibel [51]. In the weak-field regime the chromo-
Weibel instability initially causes exponential growth
of transverse chromomagnetic and chromoelectric fields;
however, due to non-Abelian interaction between the
fields, exponentially growing longitudinal chromomag-
netic and chromoelectric fields are induced that grow
at twice the rate of the transverse field configurations.
As a result, one finds strong gauge field self-interaction
at late times due to high-amplitude chromoelectric and
chromomagnetic fields and in order to reach quantitative
conclusions numerical simulations are necessary.

The initial numerical studies of the time evolution of
the chromo-Weibel instability were performed assuming a
static momentum-space anistropic (non-expanding) sys-
tem and utilized discretizations of the gauge-invariant
hard-loop action. The hard-loop action used includes
the self-consistent gauge-invariant modification of all n-
point functions in the hard-loop limit [52]. The resulting
discretized dynamical equations were solved in tempo-
ral axial gauge using a regular lattice to describe space
and either a discrete lattice [53–55] or an expansion in
spherical harmonics [56–60] to describe the velocity space
of the hard particles. From the three-dimensional static
box simulations one found that exponential field growth
ceased when the vector potential amplitude became on
the order of Anon−Abelian ∼ ps/g ∼

√
fhph, where ph is

the characteristic momentum of the hard particles, e.g.
ph ∼ Qs for color glass condensate (CGC) initial con-
ditions, fh is the angle-averaged occupancy at the hard
scale, and ps is the characteristic soft momentum of the
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fields (ps ∼ g
√
fhph). This partial-saturation occurs at a

scale where the chromo-fields are not yet strong enough
to have O(1) effects on the hard particle distribution,
suggesting that isotropization in non-Abelian plasmas is
parametrically slower than in the Abelian case. After
the exponential growth ceased, a slower linear growth of
field energy densities was observed. This linear growth
was associated with a cascade of energy pumped into the
soft modes to higher momentum modes through nonlin-
ear gauge-field self-interactions [56–58]. The resulting
spectrum of soft gauge field excitations was shown to
have a power law spectrum scaling like f ∼ α−1

s p−2
s for

SU(Nc) with Nc ∈ {2, 3, 4, 5} [55, 57, 61]. Studies using
classical-statistical Yang-Mills simulations also found sat-
uration of gauge-field growth with an associated gauge-
field power-law spectrum; however, these studies found
saturation only in a regime where back-reaction on the
hard modes is already strong, with a different scaling

consistent with f ∼ α−1
s p
−4/3
s [67–71].

The presence of instabilities in weakly-coupled
momentum-space anisotropic systems seems to be generic
and independent of the hard-loop approximation, the
gauge group, and, in large part, the type of theory con-
sidered (including, of course, the weak-coupling limit of
supersymmetric gauge theories [62, 63]). They have been
observed in numerical solutions to the full Boltzmann-
Vlasov equations that go beyond the hard-loop approxi-
mation [64–66]. As mentioned previously, analogous in-
stabilities have been observed in numerical simulations
of pure classical-statistical Yang-Mills dynamics [67–71].
As a result, obtaining a detailed understanding of the
chromo-Weibel instability’s effect on the isotropization
and thermalization of the matter created in ultrarelativis-
tic heavy ion collisions is of upmost importance. There
have been many works that have addressed pieces of the
puzzle [47, 61, 72–75]. Recently there has been a highly
impressive effort to parametrically estimate the effect of
plasma instabilities on the quark gluon plasma thermal-
ization time [76, 77]; however, being a parametric esti-
mate it does not yet fully answer the question or lend
itself to extrapolations to realistic couplings.

In order to understand the precise role the chromo-
Weibel instability plays in ultrarelativistic heavy ion col-
lisions it is necessary to include the effect of the strong
longitudinal expansion of the matter, particularly during
its earliest stages. For the first few fm/c of the quark
gluon plasma’s lifetime the longitudinal expansion dom-
inates the transverse expansion which only starts to be-
come important at time scales on the order of 4-5 fm/c.
Therefore, to good approximation, one can understand
the early time dynamics of the quark gluon plasma by
only considering longitudinal dynamics. The first study
to look at the effect of longitudinal expansion was done in
the context of pure Yang-Mills dynamics initialized with
CGC initial conditions onto which small-amplitude ra-
pidity fluctuations were added [78, 79]. The initial small-
amplitude fluctuations result from quantum corrections
to the classical dynamics [80, 81]. Numerical studies have

shown that adding spatial-rapidity fluctuations results
in growth of chromomagnetic and chromoelectric fields
with amplitudes ∼ exp(2m0

D

√
τ/Qs) where m0

D is the
initial Debye screening mass and τ is the proper time.
This growth with exp(

√
τ) was predicted by Arnold et

al. based on the fact that longitudinal expansion dilutes
the density, thereby causing the chromo-Weibel unstable
growth rate decrease in time [47].

Since the pioneering study of Refs. [78, 79] others are
now investigating the evolution of instabilities in classical
Yang-Mills [71, 82] and scalar φ4 [83] including longitu-
dinal expansion. In addition, a parallel effort to incorpo-
rate longitudinal expansion into the hard-loop framework
was begun with the first results being semi-analytic solu-
tions for Abelian theories that also showed the character-
istic exp(

√
τ) growth seen in the earlier classical Yang-

Mills simulations, as well as rather complex early-time
behavior [84]. In the hard-loop framework the longitu-
dinal expansion has thus far been included only in the
limit that the hard particles are free streaming. In this
case it is possible to introduce a set of auxiliary variables
similar to the static hard-loop W fields which account
for the time-evolving momentum-space anisotropy of the
hard particle distribution.

The Abelian semi-analytic solutions of Ref. [84] were
shortly followed by numerical solutions of the resulting
coupled SU(2) Vlasov-Yang-Mills equations in the sim-
plified case that the vector potential A and its conju-
gate momenta Π were homogeneous in the transverse di-
rections [85]. Coupling these transversally-homogeneous
fields to the fully three-dimensional hard-particle velocity
distribution resulted in “1D+3V” simulations of the re-
sulting dynamics.1 This study found that, in the case of
non-Abelian SU(2) fields, one also observed growth with
exp(
√
τ) that was only briefly curtailed when the magni-

tude of the transverse and longitudinal gauge field ener-
gies became of the same order. In addition, the 1D+3V
simulations did not see a Kolmogorov cascade at late
times.

The problem with such dimensionally-reduced studies
is that they can be misleading. In fact, one finds in the
static box case very different late time behavior if one al-
lows for either effective one-dimensional dynamics or fully
three-dimensional dynamics. One is therefore motivated
to determine the full 3D+3V dynamics in the presence
of a longitudinally expanding background. In addition,
since the 1D+3V paper was written it was realized that
the initial conditions used were not sufficiently generic
and that including initial current fluctuations dramat-
ically reduces the previously observed delayed onset of
growth of unstable modes [86]. One would therefore like
to also use this type of initial condition in the full study.

1 Since, in practice, the ultrarelativistic limit |v| → 1 is used,
the three-dimensional velocity space is further reduced to a two-
dimensional space (the surface of a three-sphere).
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In this paper, we present the necessary 3D+3V dynam-
ical equations for so-called hard-expanding-loops (HEL),
discretize them in τ -η-x⊥ coordinates, and solve them
numerically. For this purpose we use anisotropic lattices
with spatial sizes on the order of N2

⊥ ×Nη ∼ 402 × 128.
At each point on the lattice we also have auxiliary fields
W that are discretized on a velocity-lattice with size
Nφ × Nu ∼ 32 × 128 amounting to 4096 auxiliary fields
per lattice site. Needless to say this presents a com-
putational challenge that requires parallelization of the
resulting code. For the initial conditions we use variants
of the initial conditions specified in Ref. [86] in which we
have added the possibility of initializing an adjustable
spectrum of discrete longitudinal fluctuations. As in our
previous studies, the dimensional parameters necessary
to fix the initial conditions such as the gluon number
density etc. are obtained within the CGC framework.

We find that, apart from a delay of the onset of the
unstable mode growth due to transverse dynamics, the
overall behavior of the three-dimensional solutions is very
similar to the one-dimensional case. We find that the
chromo-Weibel instability acts to restore isotropy in the
system by inducing large longitudinal field pressure. In
contrast to the fixed-anisotropy 3D+3V studies, we do
not see a saturation of the instability on time scales rel-
evant for heavy ion collisions. In order to address the
question of the spectrum of the resulting field configura-
tions we study the longitudinal Fourier-modes of the en-
ergy density. We find that the longitudinal energy spec-
trum looks like a Boltzmann distribution while remain-
ing anisotropic in momentum space. Extrapolating to
energies appropriate for LHC collisions, we find that the
momentum-space anisotropy persists for approximately
6 fm/c. We show that the isotropization time is pri-
marily determined by the assumed magnitude of initial
current fluctuations.

The structure of the paper is as follows: In Section II
we briefly review the expectations one has for unstable
mode growth in an expanding background. In Section
III we review the derivation of the hard-loop equations
of motion in a longitudinally free streaming expanding
background. In Section IV we discuss the method we
used to fix the physical scales in our simulation and dis-
cuss the initial conditions used. In Section V we define
the various observables that we will measure during the
lattice evolution. In Section VI we present our main re-
sults and interpret our findings. In Section VII we con-
clude and give an outlook for the future. In three appen-
dices we collect details concerning the numerical solution
of the lattice equations of motion.

II. GENERAL DISCUSSION

Before proceeding to the presentation of the hard loop
equations of motion and their subsequent numerical solu-
tion, we will quickly review the presence of instabilities in
a momentum-space anisotropic plasma and consider how

0

π/8

π/4

3π/8

π/2

 0  0.2  0.4  0.6  0.8  1  1.2

θ

kz/mD

(a) Γα/mD

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

0

π/8

π/4

3π/8

π/2

 0  0.2  0.4  0.6  0.8  1  1.2

θ

kz/mD

(b) Γ-/mD

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

FIG. 1. (Color online) Unstable mode growth rates (a)
Γα/mD and (b) Γ−/mD for ξ = 10 as a function of kz/mD

and θ = arctan(kT /kz) where mD is the Debye mass at the
proper time τiso.

this changes in an expanding plasma. In a longitudinal
free streaming expansion the soft scale is time-dependent.
Since the density of the free streaming particles drops like
n ∼ 1/τ and m2

D(τ) ∝ n/phard, we have

mD(τ) ∼ mD

(
τ

τiso

)−1/2

, (2.1)

where mD is the “isotropic” Debye mass defined at a time
τ = τiso.

At a given proper time we can quantify the degree of
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plasma anisotropy via ξ

ξ =
1

2

〈p2
T 〉
〈p2
z〉
− 1 , (2.2)

where pT and pz are the transverse and longitudinal
(beamline direction) particle momenta in the local refer-
ence frame. For a longitudinal free streaming expansion
pT is constant while pz ∼ 1/τ and as a result one has
ξf.s. = (τ/τiso)2 − 1. 2

As we will discuss in Section IV, we assume that a
plasma description becomes possible after a finite point
in proper time τ0. The ratio τiso/τ0 then parametrizes the
initial momentum-space anisotropy. If this were equal to
one, the plasma would start out isotropic and become
anisotropic with ξ > 0 at subsequent times. However,
motivated by the results obtained within the CGC frame-
work [87] we consider the case that the plasma already
has a strong oblate (ξ > 0) momentum anisotropy at τ0,
which will be modeled by having τiso � τ0 regardless of
the fact that a plasma description is certainly not possi-
ble at times earlier than τ0. By the same token, mD, the
isotropic Debye mass at the (fictitious) time τiso, is just a
parameter characterizing our free streaming background
of hard plasma particles.

At a given proper time τ , and hence fixed plasma
anisotropy, there is a three-dimensional band of soft un-
stable modes associated with a fluctuation wave vector k.
For an oblate distribution the unstable modes with the
largest growth rate have k ‖ n̂ where n̂ is the anisotropy
direction [46]. The oblate unstable modes can be classi-
fied as either transverse magnetic (α) or mixed (-) modes.
The mixed modes with finite transverse momentum ex-
tend out from the anisotropy direction to a fixed angle of
θ = arctan(kT /kz) = π/4 beyond which they are stable.
The α-modes, on the other hand, are unstable for any
transverse momentum.

In Fig. 1 we show the range of unstable modes for both
types of modes. We show the case of ξ = 10 with the un-
derstanding that the qualitative features are the same
for all ξ > 0. In a longitudinally expanding plasma lon-
gitudinal momenta are redshifted in time, but transverse
momenta are unaffected. As a result, the mixed unsta-
ble modes which have any finite transverse momentum
will eventually become stable. The α-mode growth rate
decreases rapidly as one increases θ, so while they are
technically unstable at all times, the growth rate of any
mode which is not purely longitudinal becomes negligible
at late times. Thus, at late times the system will be dom-
inated by the dynamics of unstable modes with (nearly)

2 The magnitudes of pT and pz stated are the “expected” values
for the transverse and longitudinal momentum of a particle in the

system. These can be be defined formally as pT =
√
〈p2T 〉 niso/n

and pz =
√
〈p2z〉 niso/n where the averages represent integrals

using the one-particle distribution and n is the number density.
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FIG. 2. (Color online) Unstable mode growth rate Γ/mD for
fixed ξ as a function of kz/mD where mD is the Debye mass
at the proper time τiso.

longitudinal wave vectors.3

In order to gain a qualitative understanding of the dy-
namics we can therefore focus our attention on the un-
stable mode spectrum for purely longitudinal modes. In
Fig. 2 we plot the unstable mode growth rate for purely
longitudinal modes for ξ ∈ {100, 101, 102, 103, 104}. From
this figure we can see that there is a band of modes with
positive unstable growth rate for longitudinal momenta
kz ∈ (0, kz,max) and there is a well-defined maximum
growth rate Γ∗ at each value of ξ. As ξ increases kz,max

increases and for ξ >∼ 102 one finds that Γ∗ decreases
monotonically. This means that in an expanding plasma,
more and more modes will become unstable as a function
of proper time, but at the same time their growth rate is
being reduced by the dilution of the plasma due to the
longitudinal expansion.

It is possible to derive asymptotic relations for kz,max

and Γ∗ for large ξ [54]. One finds that

lim
ξ�1

kz,max ∼ mD(1 + ξ)1/4 . (2.3)

Using this we can determine the approximate proper time
dependence of kz,max for a longitudinal free streaming
expansion

lim
τ�τiso

kz,max ∼ mD

(
τ

τiso

)1/2

. (2.4)

Applying the same methodology to Γ∗ one finds

lim
τ�τiso

Γ∗ ∼ mD(τ) ∼ mD

(
τ

τiso

)−1/2

. (2.5)

3 For a more detailed discussion of the dynamics of stable and
unstable modes in an anisotropically expanding plasma see
Ref. [86].



5

As a result, we can estimate the late time unstable growth
by integrating Γ∗ to obtain

N(τ) ∼ exp

(
mD

∫ τ

τ0

dτ ′
(
τ ′

τiso

)−1/2
)
,

∼ exp (2mD
√
ττiso) , (2.6)

where we have suppressed an overall multiplicative con-
stant. We, therefore, see that the primary effect of longi-
tudinal expansion will be to change the late time growth
from being a pure exponential, as was the case in a static
box, to exp(

√
τ). To determine the precise nature of the

dynamics on time scales relevant for heavy ion collisions,
however, requires determining the full time evolution of
all stable and unstable modes and properly taking into
account their interactions. We will now recall the deriva-
tion of the necessary dynamical equations to be solved
numerically.

III. HARD-EXPANDING-LOOP EQUATIONS
OF MOTION

Our study is based upon the hard-loop approximation,
which assumes a separation of scales between the mo-
menta of hard particles ps and the momenta of soft col-
lective fields ps ∼ g

√
fhph � ph by a sufficiently small

gauge coupling g. This separation obviously requires that
fh is parametrically smaller than 1/g2. In an anisotropic
plasma, fh is moreover direction dependent and what
actually enters in the calculation of the parameters at
the soft scale is gradients ∂fh/∂ph. In terms of the
anisotropy parameter ξ this means that at parametrically
large ξ the hard-loop approximation is applicable only as
long as ξ1/2fh is parametrically smaller than 1/g2.

Because we are interested in investigating within the
hard-loop framework the earliest stages of the evolution
of a quark-gluon plasma, which according to the CGC
framework is born with overpopulated distribution func-
tions and with large anisotropy, we shall treat the degree
of anisotropy formally as being of order 1 compared to g,
and fh of order g−2+ε. Eventually, we boldly extrapolate
our results to the very limits of the hard-loop framework
by setting ε = 0 and matching with CGC parameters for
the initial density and a strong coupling g that is nu-
merically even larger than 1.4 This matching to CGC
parameters is specified in Sec. IV; in the following we re-
capitulate the hard-expanding-loop equations, which we
have discussed in detail before in Ref. [85], and make the
resulting equations explicit for the case at hand, the fully
(3+1)-dimensional evolution.

4 In the notation of Ref. [77] where f ∼ α−c
s , τ ∝ α−a

s , ξ1/2 ∼
δ−1 ≡ α−d

s , our framework is located at parametric time a = 0
with parametric occupancy c = 1− ε

2
and parametric anisotropy

d = 0.

A. Longitudinally expanding free streaming
background solution

In the hard-loop approximation, the color neutral
background distribution function f0(p,x, t) for the hard
plasma particles has to satisfy

v · ∂ f0(p,x, t) = 0, vµ = pµ/p0. (3.1)

This is trivially solved by a stationary distribution which
only depends on the momenta. Another solution is ob-
tained by considering a plasma with boost-invariant lon-
gitudinal expansion, which we take as an approximation
for the initial stage of a heavy ion collision where the
transverse extent of the system is taken as sufficiently
large. Assuming isotropy in transverse directions, f0,
which is a Lorentz scalar, can be written as [88, 89]

f0(p, x) = f0(p⊥, p
z, z, t) = f0(p⊥, p

′z, τ) (3.2)

where the Lorentz-boosted longitudinal momentum is

p′z = γ(pz − βp0), β = z/t, γ = t/τ, τ =
√
t2 − z2,

(3.3)

with p0 =
√
p2
⊥ + (pz)2 for ultrarelativistic (massless)

particles.
Switching to comoving coordinates

t = τ cosh η, β = tanh η,

z = τ sinh η, γ = cosh η, (3.4)

we have curvilinear coordinates xα = (xτ , xi, xη) =
(τ, x1, x2, η) where here and elsewhere in the text indices
i, j, . . . correspond to the two transverse spatial directions
while Greek indices from the beginning of the alphabet
refer to the comoving spacetime coordinates. In these
new coordinates the metric reads

ds2 = dτ2 − dx2
⊥ − τ2dη2 = gαβ(τ)dxαdxβ , (3.5)

but we shall continue to write our equations explicitly in
terms of ordinary derivatives and not deal with space-
time covariant derivatives. The gauge covariant deriva-
tive thus always means5 Dα = ∂α − ig[Aα, ·].

The field strength tensor is defined as Fαβ = ∂αAβ −
∂βAα−ig[Aα, Aβ ] also in the comoving coordinates (with
all indices down), in which the non-Abelian Maxwell
equations can be written compactly as

1

τ
Dα(τFαβ) = jβ , (3.6)

where indices have been raised with the inverse of the
metric gαβ(τ) introduced in Eq. (3.5).

5 The relation to 3-vectors is defined by ∂α = ∂/∂xα and Aµ =

(φ, ~A). Thus Aα = (Aτ ,−Ax,−Ay , Aη).
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Similarly to space-time rapidity η, we define momen-
tum space rapidity y for the massless particles according
to

pµ = p⊥(cosh y, cosφ, sinφ, sinh y). (3.7)

In comoving coordinates, this reads

pτ =
√
p2
⊥ + τ2(pη)2

= cosh η p0 − sinh η pz = p⊥ cosh(y − η), (3.8)

pη = −pη/τ2 = (cosh η pz − sinh η p0)/τ

= p′z/τ = p⊥ sinh(y − η)/τ. (3.9)

Instead of the standard light-like vector vµ = pµ/p0

which contains a unit 3-vector and which was introduced
in Eq. (3.1), we shall define

V α =
pα

p⊥
=

(
cosh(y − η), cosφ, sinφ,

1

τ
sinh(y − η)

)
,

(3.10)
normalized such that it has a unit 2-vector in the trans-
verse plane.

Since

pτ∂τpη(x)
∣∣∣
y,p⊥

= −p2
⊥ sinh(y − η) cosh(y − η) ,

= −pη∂ηpη(x)
∣∣∣
y,p⊥

, (3.11)

this can be solved by f0(p,x, t) = f0(p⊥, pη(x)) =
f0(p⊥,−p′z(x)τ(x)). For the case of longitudinal free
streaming which is isotropic at the particular proper time
τ = τiso one can write f0 in the form

f0(p, x) = fiso

(√
p2
⊥ + (

p′zτ

τiso
)2

)
= fiso

(√
p2
⊥ + p2

η/τ
2
iso

)
.

(3.12)
Note that f0 above falls into the general Romatschke-
Strickland form for momentum-space anisotropic distri-
bution functions [46].

B. Gauge-covariant Boltzmann-Vlasov equations in
a longitudinally expanding plasma

In comoving coordinates the gauge-covariant
Boltzmann-Vlasov equations for colored perturbations
δfa of a neutral collisionless plasma with boost-invariant
background distribution f0 read

V ·D δfa
∣∣
pµ

= gV αF aαβ∂
β
(p)f0(p⊥, pη). (3.13)

Here the derivative on the left-hand side has to be
taken at fixed Cartesian pµ rather than fixed comov-
ing pα. Notice also that only derivatives of f0(p⊥, pη)

with ∂β(p) where the 4-index is up do not introduce ex-

plicit τ dependence so that one still has p · ∂ (∂β(p)f0)|p =

p · ∂ (∂β(p)f0)|p = 0.

Eq. (3.13) can be solved in terms of an auxiliary field
Wβ(x;φ, y) that does not depend on the hard scale p0

and which is defined by

δf(x; p) = −gWβ(x;φ, y)∂β(p)f0(p⊥, pη), (3.14)

if it satisfies

V ·DWβ

∣∣
φ,y

= V αFβα . (3.15)

Since the fluctuations δfa give the induced current in

DµF
µν
a = jνa = g tR

∫
d3p

(2π)3

pµ

2p0
δfa(p,x, t), (3.16)

j can be expressed in terms of integrals over the W fields.
(Here tR is a suitably normalized group factor, while the
total number of degrees of freedom of the hard parti-
cles is contained in the normalization of the distribution
function f0.)

With (3.12) we have

∂β(p)f0 = f ′0∂
β
(p)

√
p2
⊥ + p2

η/τ
2
iso

= f ′0

(
0,− cosφ,− sinφ,− τ

τ2
iso

sinh(y − η)
)

√
1 + τ2

τ2
iso

sinh2(y − η)
,

(3.17)

which yields

jα = −m
2
D

2

∫ 2π

0

dφ

2π

∫ ∞
−∞

dy V α

×
(

1 +
τ2

τ2
iso

sinh2(y − η)

)−2

W(x;φ, y) , (3.18)

where

W = V iWi −
1

τ2
iso

VηWη,

V i = (cosφ, sinφ) , Vη = −τ sinh(y − η) , (3.19)

and

m2
D = −g2tR

∫ ∞
0

dp p2

(2π)2
f ′iso(p) . (3.20)

The (constant) mass parameter mD equals the Debye
mass at the proper time τiso.

The combination W introduced above satisfies

V ·DW =

(
V iFiτ +

τ2

τ2
iso

V ηFητ

)
V τ

+V iV ηFiη

(
1− τ2

τ2
iso

)
. (3.21)

This single equation forW in combination with the Yang-
Mills equations and the integral giving j in terms of W
closes our equations of motion. To solve them numer-
ically, we adopt the comoving temporal gauge Aτ = 0
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and introduce canonical conjugate field momenta for the
remaining gauge fields according to

Πi = τ∂τAi = −τ∂τAi = −Πi , (3.22)

and

Πη =
1

τ
∂τAη . (3.23)

In terms of fields and conjugate momenta, the Yang-
Mills equations take the form

τ∂τΠη = jη −DiF
i
η , (3.24)

τ−1∂τΠi = ji −DjF
ji −DηF

ηi , (3.25)

while the Gauss law constraint takes the form

τjτ = DηΠη +DiΠi . (3.26)

In temporal gauge, where Fiτ = Πi/τ and Fητ =
−τΠη, the field equation for W, Eq. (3.21), becomes

∂τW(τ,x⊥, η;φ, y) = − 1

cosh(ȳ)

[
viDiW +

sinh(ȳ)

τ
DηW

]
+

1

τ
viΠi −

τ2 sinh(ȳ)

τ2
iso

Πη

+
tanh(ȳ)

τ

(
1− τ2

τ2
iso

)
viFiη , (3.27)

with ȳ ≡ y − η.

In the limit that all fields are independent of the trans-
verse spatial directions Eqs. (3.24)–(3.27) reduce to the
1D+3V equations of Ref. [85].

We can recast (3.27) into a form which is more conve-
nient for computing the currents in Eq. (3.18) by defining

W(τ,x⊥, η;φ, y) ≡ f̄(τ, τiso, ȳ)W(τ,x⊥, η;φ, ȳ) , (3.28)

with

f̄(τ, τiso, ȳ) =

(
1 +

τ2

τ2
iso

sinh2 ȳ

)2

. (3.29)

We also replaced y by ȳ ≡ y−η as argument ofW because
the auxiliary fields turn out to be peaked around y ∼ η.

Now using

∂τW = f̄ ∂τW +
∂f̄

∂τ
W (3.30)

DηW(τ,x⊥, η;φ, y) = (Dη − ∂ȳ)
[
f̄W(τ,x⊥, η;φ, ȳ)

]
= f̄ (Dη − ∂ȳ)W − ∂f̄

∂ȳ
W (3.31)

DiW = f̄DiW , (3.32)

together with

tanh ȳ
∂f̄

∂ȳ
=
∂f̄

∂τ
,

we obtain

∂τW(τ,x⊥, η;φ, ȳ) = − 1

cosh ȳ

[
viDiW

+
sinh ȳ

τ

(
DηW − ∂ȳW

)]
+

1

f̄(τ, τiso, ȳ)

[
1

τ
viΠi −

τ2sinh ȳ

τ2
iso

Πη

+
tanh ȳ

τ

(
1− τ2

τ2
iso

)
viFiη

]
. (3.33)

In terms of W(τ,x⊥, η;φ, ȳ) the expression for the cur-
rent (3.18) simplifies to

jα(τ,x⊥, η) =

− m2
D

2

∫ 2π

0

dφ

2π

∫ ∞
−∞

dȳ V αW(τ,x⊥, η;φ, ȳ) . (3.34)

The equations of motion listed above are numerically
solved by discretizing them in space and velocity space
(hence the designation 3D+3V). The gauge fields live on
the 3-dimensional space parametrized by space-time ra-
pidity η and two transverse coordinates x⊥. The W
field lives additionally in velocity space, which because
of the masslessness of the hard particles is, in the end,
2-dimensional, parametrized by ȳ and φ.

For the details of the lattice discretizations used we
refer the reader to Appendix A.

IV. INITIAL CONDITIONS

A. Matching of the Debye mass with CGC
parameters

As in our 1D+3V simulations [85], we evolve from an
initial time τ0 ' Q−1

s and fix the density of our initial
plasma such that it matches estimates obtained from the
CGC framework.

According to Ref. [90], the initial hard-gluon density
can be written as

n(τ0) = c
NgQ

3
s

4π2Ncαs(Qsτ0)
, (4.1)

with c being the gluon liberation factor, which following
an analytical estimate by Kovchegov [91] we choose as
c = 2 ln 2 ≈ 1.386. While being significantly higher than
the original estimates c ' 0.5 of Ref. [92, 93], this value
is in fact rather close to the most recent numerical result
c ' 1.1 by Lappi [94].

In our effective field equations, the initial hard-gluon
density enters only through the mass parameter mD,
which is defined as the Debye mass at the proper time
τiso. In the glasma phase of the CGC framework, the
pressure at early times is strongly anisotropic, with the
longitudinal pressure starting out even with negative val-
ues. To model this approximately, we formally choose
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τiso � τ0, so that our initial particle distribution has ini-
tial pressure PL � PT . Sticking to our previous choice
in Ref. [85] we take τiso = 0.1 τ0. The correspondingly
oblate distribution function is taken to be obtained from
fiso(p) = N (2Ng)/(e

p/T − 1), where Ng = N2
c − 1 is

the number of gluons, since in CGC calculations an ap-
proximately thermal distribution was obtained for the
gluon distribution in transverse directions. Following
Ref. [95] we set this transverse temperature T = Qs/d
with d−1 ' 0.47. Eq. (4.1) then fixes the normalization
factor N through

n(τ0)
τ0
τiso

= n(τiso) =
2ζ(3)

π2
NNgT 3. (4.2)

In a plasma containing only gluons with distribution
function fiso, the Debye mass is given by

m2
D(τiso) = N 4παsNcT

2

3
. (4.3)

With Nc = 3 and the above values for c and d we thus
obtain

m2
D(τiso)τ2

0 (Qsτ0)−1 =
πcd

6ζ(3)

τ0
τiso
≈ 1.285

τ0
τiso

. (4.4)

In our previous studies of a stationary anisotropic plasma
we have observed little difference between simulations us-
ing gauge group SU(2) versus SU(3) provided the same
value of mD was used [54, 55], so we adopt the value (4.4)
for our simulations with gauge group SU(2).

Notice that in the above matching which involved an
overpopulated distribution function n(τ0) ∝ α−1

s the
gauge coupling dropped out in the mass parameter m2

D.
As discussed in Section III, this means that we are ex-
trapolating the hard loop framework, which assumes a
parametric separation of hard and soft scales, to its very
limits. In the following we shall compare hard and soft
contributions to the pressure and find that the soft field
contributions are small compared to the hard particle
contributions even after plasma instabilities have grown
nonperturbatively strong. As long as this is the case, we
assume that the hard loop framework is still applicable.

In order to compare soft and hard contributions, we
finally have to fix the gauge coupling. For that purpose
we shall choose αs = 0.3 or g = 1.94 as a representative
value.

B. Initial field fluctuations

In order to have seed fields for the unstable modes in
an anisotropic plasma with oblate anisotropy, initial fluc-
tuations that break perfect boost invariance are required.
Fluctuations in the sources of heavy-ion collisions as well
as vacuum fluctuations in all fields are inevitable, and
by “natural selection” those fluctuations which lead to
the most rapid onset of growth will dominate all later
dynamics.

In previous hard-loop lattice simulations with fixed
anisotropy the question of which initial conditions to
choose was rather unimportant as long as unstable modes
were excited. Seed fields in chromo-fields or in W fields
were considered on the basis of convenience.

As it turns out, more care is needed in the expand-
ing case. In [84], where the formalism of hard expand-
ing loops was introduced and studied semi-analytically
in the (1+1)-dimensional Abelian case, only initial con-
ditions formulated in terms of transverse electric fields
were considered. Likewise, only seed fields in transverse
chromo-fields were subsequently employed in the numer-
ical 1D+3V non-Abelian lattice study of Ref. [85], which
in the weak-field regime reproduced the earlier semi-
analytical results, and thus also the original finding of a
(with regard to heavy-ion collisions) uncomfortably long
delay of the onset of growth of plasma instabilities. (The
generalization considered in Ref. [85], namely to also in-
tialize magnetic fields did not change this conclusion.)

In Ref. [86] the semi-analytical treatment of Ref. [84]
was generalized to the much more complex case of
generic (3+1)-dimensional Abelian modes in an expand-
ing plasma, and at this occasion also the most general
initial conditions were considered, involving both elec-
tric and magnetic fields as well as the auxiliary W fields
which describe fluctuations in the induced currents. Sur-
prisingly enough, initial fluctuations in the W fields lead
to a drastic (order-of-magnitude) reduction of the initial
delay of the onset of growth. Evidently, initial condi-
tions in the electric and magnetic fields predominantly
give stable plasmon modes and less strongly excite the
unstable modes. The latter are instead more easily trig-
gered by fluctuations in the induced currents described
by the W fields.

The simplest initial conditions that provide seed fields
for Weibel instabilities while having initial vanishing
charge density are φ and y-independent fluctuations of
the component fields Wi(x;φ, y) and Wη(x;φ, y). The
former induce transverse currents which are most directly
related to the α modes, whereas a φ and y-independent
Wη seeds longitudinal currents that are less important
for the plasma instabilities. Because of their subdomi-
nant effect, we have mostly omitted Wη seeds and only
kept Wi(x;φ, y) when assembling the initial W field.

Another point to consider is the spectrum of initial
fluctuations. Because we are using highly anisotropic
lattices with particularly fine resolution in the longitu-
dinal direction, initializing with white noise fluctuations
would correspond to very high UV noise in longitudinal
wave numbers. We have therefore implemented an ad-
justable mode number cutoff, Λν , in wave numbers ν dual
to the rapidity variable η and populate all modes ∝ eiνη
equally below this cutoff, with white noise in transverse
directions. Because the “natural selection” of plasma in-
stabilities quickly picks out the most strongly growing
modes, we have refrained from attempts to model the
initial spectrum other than ensuring that a good range
of seeds is available.
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V. OBSERVABLES

Here we list the quantities which we will present in the
results section. We present only the continuum formulae.
For the details of the lattice discretizations used we refer
the reader to Appendix A. Note that in most of the
results presented we have averaged observables over a set
of runs in order to account for variations in the random
initial conditions employed.

A. Field energy densities and pressures

The transverse/longitudinal electric and magnetic
components of the field energy density are given by

E = ET + EL = EBT + EET + EBL + EEL
= tr

[
τ−2F 2

ηi + τ−2Π2
i + F 2

xy + (Πη)
2
]
,

(5.1)

and the Hamiltonian density is given by H = τE . The
transverse and longitudinal field pressures are obtained
via

Pfield
L = ET − EL , (5.2)

Pfield
T = EL . (5.3)

Note that from the above one has at all times 2Pfield
T +

Pfield
L = E such that the energy momentum tensor is

traceless.

B. Particle Pressures

In a comoving frame, the energy density and pressure
components of the hard particle background can be de-
termined by evaluating

Tαβpart. = (2π)−3

∫
d2pT dy p

αpβf0 , (5.4)

which yields

Epart.(τ) = T ττpart.

=
1

2

[
1

τ̄2
+

arcsin
√

1− τ̄−2

√
τ̄2 − 1

]
Eiso, (5.5)

Ppart.
T (τ) =

1

2
T iipart.

=
1

4(τ̄2 − 1)

[
1 +

τ̄2 − 2√
τ̄2 − 1

arcsin
√

1− τ̄−2

]
Eiso,

(5.6)

Ppart.
L (τ) = −T ηpart.η

=
1

2(τ̄2 − 1)

[
− 1

τ̄2
+

arcsin
√

1− τ̄−2

√
τ̄2 − 1

]
Eiso, (5.7)

where Eiso = Epart.(τiso), τ̄ ≡ τ/τiso and we have assumed
τ̄ ≥ 1.

In the results section as a measure of isotropization we
will present plots of the ratio

PL
PT

=
Pfield
L + Ppart.

L

Pfield
T + Ppart.

T

. (5.8)

If this quantity is less that one, then the system possesses
an overall oblate momentum-space anisotropy and if it is
greater than one, then it possesses a prolate momentum-
space anisotropy.

C. Energy spectra

In order extract spectral information about the field
configurations, the canonical way to proceed is to gauge
fix to a spatially smooth gauge such as Coulomb gauge
and then extract mode occupation numbers from either
the electric or magnetic fields [58, 96, 97]. However, such
a method is not free from ambiguity in the infrared due
to the lingering problem of large gauge transformations
(aka Gribov copies).

Here we follow a different method introduced by
Fukushima and Gelis [82] in which we extract the elec-
tric and magnetic fields at a given proper time from the
lattice simulation using

Ei(xT , η) = τ−1Πi ,

EL(xT , η) = Πη ,

Bx(xT , η) = Fηy '
2

igaητ
tr[ta(1− Uηy)] ,

By(xT , η) = Fηx '
2

igaητ
tr[ta(1− Uηx)] ,

BL(xT , η) = Fxy '
2

ig
tr[ta(1− Uxy)] . (5.9)

We then perform a three-dimensional Fourier transform
of each field component, e.g.

Ei(kT, ν) =

∫
d2xT
(2π)2

dη

2π
Ei(xT, η)eikT ·xT eiνη . (5.10)

Since we are primarily interested in the longitudinal spec-
tra, we integrate over the transverse wavevectors to ob-
tain, e.g.

Ei(ν) =

∫
d2kT
(2π)2

Ei(kT, ν) .

Having obtained the field components we can decom-
pose the energy density in terms of the longitudinal
wavenumber

EE =

∫
dν

2π
EE(ν) =

∫
dν

2π
[EEL(ν) + EET (ν)] ,

EB =

∫
dν

2π
EB(ν) =

∫
dν

2π
[EBL(ν) + EBT (ν)] ,

(5.11)
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where we have the energy density at each longitudinal
wavenumber

EEL(ν) = tr[EL(−ν)EL(ν)] = tr|EL|2 ,
EET (ν) =

∑
i∈{x,y}

tr[Ei(−ν)Ei(ν)] =
∑

i∈{x,y}

tr|Ei|2 ,

EBL(ν) = tr[BL(−ν)BL(ν)] = tr|BL|2 ,
EBT (ν) =

∑
i∈{x,y}

tr[Bi(−ν)Bi(ν)] =
∑

i∈{x,y}

tr|Bi|2 ,

(5.12)

where the traces are color traces. The total longitudinal
energy spectra are obtained by summing all components

E(ν) = EEL(ν) + EET (ν) + EBL(ν) + EBT (ν) . (5.13)

The spectral decomposition (5.12) is not gauge invari-
ant; gauge transformations could in principle still redis-
tribute the energy distribution in ν, but this redistri-
bution is limited by the fact that the integrals (5.11) is
gauge invariant. We thus expect that the degree of gauge
dependence is much milder than in bare mode occupation
numbers of the gauge fields before they are made maxi-
mally smooth by going to Coulomb gauge.

Note that one can compute the total energy density via
Eq. (5.1) and Eq. (5.11) and compare as a crosscheck of
the spectra calculation. Numerically we find very good
agreement between the two methods. We have also per-
formed a Fourier analysis of the spatial distribution of
the (gauge-invariant) chromo-field energy on the lattice.
Besides the expected peak at zero momentum, we found
that the remaining spatial fluctuations reflect closely the
spectral decomposition defined through Eqs. (5.12).

VI. RESULTS

In this section we present the results of our numer-
ical simulations for SU(2) gauge fields which include:
real-time gauge field energy densities, particle and field
pressures, energy spectra, and fit to the energy spec-
tra. For all results shown in this section we initialize
current fluctuations (via W fields) with an amplitude ∆
as described in Section IV and Appendix C. In order
to generate occupation numbers ∼ 1/2 consistent with
those expected from initial quantum-mechanical rapidity
fluctuations [80] one should choose ∆ ∼ 1.6. Unfortu-
nately, due to numerical limitations stemming from the
fact that we simulate compact gauge groups, we are un-
able to use such a large value of ∆. Instead in the main
plots shown below we use an initial current fluctuation
amplitude of ∆ = 0.8 which can be expected to result in
longer isotropization times than one would obtain with
the larger seed values necessary. In order to assess the
dependence of our results on ∆ we present the variation
of the energy density and pressure ratio. In the conclu-
sions we will discuss the extrapolation of our result to
realistic values of ∆.
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FIG. 3. (Color online) Chromoelectric, chromomagnetic, and
total energy densities (5.1) as a function of proper time from
averaging over our standard set of runs. Proper time is nor-
malized such that when using Qs = 2 GeV each unit of ∆τ̃ is
1 fm/c. See text for simulation parameters used.

For all results shown the lattice spatial size was N2
T ×

Nη = 402 × 128 with transverse lattice spacing of a =
Q−1
s and longitudinal lattice spacing of aη = 0.025. The

lattice size in velocity space was Nu×Nφ = 128×32. The
longitudinal spectral cutoff for the current-based rapidity
fluctuations was taken to be Λννmin = 8νmin ≈ 15.7.
The initial time was taken to be τ0 = Q−1

s and we used
τiso/τ0 = 0.1. For the temporal time step we use ε =
10−2τ0. For details of the lattice discretizations used for
the equations of motion we refer the reader to Appendix
A. When plotting observables as a function of time we
will plot them as a function of τ̃ ≡ Qsτ/10. For LHC
one has Qs ' 2 GeV = (0.1 fm)−1 and for RHIC one has
Qs ' 1.4 GeV = (0.14 fm)−1. The division by a factor of
10 makes it so that when considering LHC energies each
interval of ∆τ̃ = 1 is 1 fm/c. At RHIC each interval of
∆τ̃ = 1 is 1.4 fm/c.

For numerical tests such as varying the lattice spacing,
lattice size, spectral cutoffs, and velocity resolution we
refer the reader to App. D. The lattice equations of mo-
tion are written in terms of rescaled dimensionless fields.
When comparing pressures in soft fields with pressures
from hard particles, we have assumed a value of g = 1.94
consistent with αs = 0.3 which is in the right ball park for
RHIC and LHC heavy ion collisions. Note that formally
our results are only trustable in the weak-coupling limit
and we are making a bold extrapolation when we assume
αs = 0.3. Nevertheless, we do this in order to obtain a
rough estimate of the isotropization time associated with
the chromo-Weibel instability in a background which is
undergoing longitudinal free-streaming expansion.
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FIG. 4. (Color online) Total field energy density for different
initial current fluctuation magnitudes ∆ ∈ {0.1, 0.2, 0.4, 0.8}.
See text for simulation parameters used.

A. Energy densities

In Fig. 3 we show the chromoelectric, chromomagnetic,
and total energy densities (5.1) as a function of proper
time. The results shown are averaged over 50 runs which
will serve as our standard set of runs for most observ-
ables in this section.6 From Fig. 3 we see that for the
first τ̃ <∼ 1.2 the soft fields are depleted by the longi-
tudinal expansion. After this time the unstable modes
present in the initial condition begin to show appreciable
growth. Initially all components of the chromofield start
out with approximately equal energy density, but at this
time the system begins to be dominated by transverse
chromomagnetic fields. However, due to the large ampli-
tude of the initial current fluctuations we quickly see the
development of large transverse chromelectric fields fol-
lowed by rapid growth in the longitudinal chromoelectric
and chromomagnetic fields.

All field components become approximately the same
magnitude at a time of τ̃ ∼ 3.5 when ∆ = 0.8. We will
refer to the point in time at which all components of the
field energy density give approximately the same contri-
bution as the “non-Abelian point”. From this point on, in
contrast to the fixed-anisotropy simulations, one does not
see a saturation of the exponential growth, just a mod-
erate reduction of the growth rate. Instead we see that,
similar to the 1D+3V simulations, the transverse chro-
moelectric and chromomagnetic fields begin to dominate
the energy density and do so for the rest of the simula-
tion. As we will see below, by the end of the simulation

6 In App. D Fig. 12(a) we plot the total field energy density re-
sulting from all 50 runs for comparison.
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FIG. 5. (Color online) Hard particle and field pressures scaled
by τ30 τ as a function of proper time. The data were taken from
the same set of runs as Fig. 3.

a large portion of the energy is in ultraviolet longitudi-
nal lattice modes and one starts to see lattice artifacts;
however, up to this point we see no sign of saturation of
the roughly exponential growth in the chromofields.

In Fig. 4 we show the total field energy density
for different initial current fluctuation amplitudes ∆ ∈
{0.1, 0.2, 0.4, 0.8}. As can be seen from this figure, apart
from a slight reduction in unstable mode growth when
the fields reach the non-Abelian point (which moves to
large times for smaller ∆), the behavior is qualitatively
independent of the assumed amplitude. We note that
there is a fundamental limit on how large one can make
∆ without violating the assumptions of the hard-loop ef-
fective theory we employ. In practice, this limit is set by
the physical requirement that the majority of the energy
density should still be contained in the hard particle dis-
tribution function. We note that for ∆ = 0.8 we are still
safely below this bound with the initially induced soft
fields only carrying only ∼ 1.5% of the total energy with
the vast majority of the energy coming from the hard
sector.

B. Pressures

In Fig. 5 we show the hard particle and field pressures
scaled by τ3

0 τ as a function of proper time. The data were
taken from the same set of runs as Fig. 3 and the pres-
sures were computed using Eq. (5.3). The scaling chosen
in this figure renders the vertical axis dimensionless and
has the added benefit of making the scaled hard particle
transverse pressure constant for better visualization.

As can be seen from Fig. 5 the system is initially highly
anisotropic with the transverse particle pressure domi-
nating all other contributions. The τ -scaled longitudi-
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FIG. 6. (Color online) Total longitudinal pressure over the
total transverse pressure as a function of proper time. The
data were taken from the same set of runs as Fig. 3.

nal particle pressure drops like 1/τ2. Note that at early
times the field component of the longitudinal pressure
can become negative as evidenced by Fig. 5. This is con-
sistent with the finding of others [82] and is a result of
coherent field modes. Without the unstable field growth,
the system would continue to become more and more
anisotropic as time progresses and continue to experience
positive and negative pressure oscillations. However, as
Fig. 5 demonstrates, unstable field modes begin to gen-
erate a growing longitudinal field pressure that at late
times dominates all other pressure components.

It should be noted, however, that by the time the lon-
gitudinal field pressure becomes of the same magnitude
as the transverse particle pressure one already expects
to see a significant amount of backreaction of the hard
particles on the unstable chromofields. Physically this
should result in a saturation of the field pressure growth
due to energy conservation. In addition, the back reac-
tion would serve to isotropize the particle sector. Such a
physical saturation is, unfortunately, not describable in
the hard-loop framework since in this framework the hard
particles act as an energy reservoir that can continue to
pump energy into the soft sector indefinitely. Sans this
caveat, we believe that this result shows evidence that
the chromo-Weibel instability can restore isotropy on the
fm/c time scale.

In Fig. 6 we show the total longitudinal pressure over
the total transverse pressure (5.8) as a function of proper
time. The data were taken from the same set of runs as
Fig. 3. This plot condenses the information seen in the
previous plot allowing one to easily see the point at which
the plasma becomes isotropic in momentum space. As
can be seen from this figure this occurs at approximately
τ̃ = 6.5; however, the system continues to evolve beyond
this point with the total longitudinal pressure then ex-
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FIG. 7. (Color online) Total longitudinal pressure over
the total transverse pressure as a function of proper time
for different initial current fluctuation magnitudes ∆ ∈
{0.1, 0.2, 0.4, 0.8}. The data were taken from the same runs
as shown in Fig. 4.

ceeding the total transverse pressure. This is most def-
initely an artifact due to the lack of the back reaction
of the hard particles on the chromofields. Therefore, we
are only fully confident in the results we obtain at earlier
times.

In Fig. 7 we show the total longitudinal pressure over
the total transverse pressure (5.8) as a function of proper
time for different initial current fluctuation magnitudes
∆ ∈ {0.1, 0.2, 0.4, 0.8}. The data were taken from the
same runs as shown in Fig. 4. The purpose of this figure
is to show that the variable which has the biggest effect
on the isotropization time is our assumed magnitude of
the initial current fluctuations, ∆. From this figure we see
that the isotropization time scale depends roughly loga-
rithmically on ∆. In the limit of parametrically small ∆,
where the evolution is dominated by the Abelian behav-
ior, one can infer from the analytical results of Ref. [84]
that the square root of the apparent isotropization time
depends linearly on log ∆−1 (which would lead to the
estimate of (log g−1)2 for the parametric dependence of
isotropization time on g in the limit of weak coupling).

C. Energy spectra

In Fig. 8 we show the run-averaged longitudinal en-
ergy spectra obtained via (5.13) at different proper times
as a function of (a) the longitudinal wavenumber ν and
(b) the longitudinal momentum kz = ν/τ . The data for
both plots were taken from the same set of runs as Fig. 3.
In both figures the vertical axis is logarithmic while the
horizontal axis is linear. From Fig. 8 (a) we see the rapid
emergence of an exponential distribution of longitudinal
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FIG. 8. (Color online) The longitudinal energy spectra at
various proper times as a function of (a) ν and (b) kz = ν/τ .
Data taken from the averaged runs shown in Fig. 3.

energy. The exponential spectra persist during the entire
evolution. In Fig. 8 (b) we show the spectra as function
of the physical momentum so that one can now see the
effect of the red-shifting of the longitudinal momentum
with time. In addition, from this figure we can easily
determine a kind of effective longitudinal temperature
which can be extracted from the slopes of the curves.
Below we will define a fit function and extract the longi-
tudinal temperature as a function of proper time.

Note that the emergence of this exponential spectrum
is not solely due to the widening unstable mode band.
Instead having nonlinear mode-mode coupling is vitally
important in order to populate high momentum modes
which are rapidly becoming unstable as time progresses.
In order to illustrate this point in Fig. 9 we show the
corresponding spectra from Abelian runs. The lattice size
for these Abelian runs were exactly the same as for the
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FIG. 9. (Color online) The longitudinal energy spectra at
various proper times as a function of ν for Abelian runs. For
this figure the spectra from 40 runs were averaged.

corresponding non-Abelian run shown in Fig. 8; however,
we chose a smaller value of ∆ in order to eliminate the
possibility of artificial nonlinearities due to the fact that
we are simulating compact U(1). As we can see from
this figure, only modes present in the initial conditions
are amplified in the Abelian case, hence demonstrating
that the emergence of an exponential longitudinal energy
spectrum is intrinsically non-Abelian (nonlinear).

At first sight our exponential distribution of longitu-
dinal energy seems to be different than the result ob-
tained by Fukushima and Gelis who saw the emergence
of a power-law spectrum in Yang-Mills solutions in an ex-
panding QGP [82]; however, we note, importantly, that
they saw the emergence of a power-law longitudinal en-
ergy spectrum only at extremely late times correspond-
ing to τ̃ >∼ 150. At early times, their spectra also appear
consistent with an exponential distribution of longitudi-
nal energy. Since we do not include the back reaction,
we are unable to comment on the asymptotic behavior
of the spectra since we currently see no evidence of soft-
scale saturation of the unstable mode growth. In addi-
tion, power law scaling usually emerges in the infrared
and, in that sense, we are limited due to small lattices.

In Fig. 10 we show fits to spectra shown in Fig. 8 (b)
at several different proper times. For the fit function
we assumed that the spectra corresponded to the energy
density obtained from a massless Boltzmann distribution
that has been integrated over transverse momenta

E ∝
∫
dkzd

2kT

√
k2
T + k2

z exp

(
−
√
k2
T + k2

z/T

)
,

∝
∫
dkz

(
k2
z + 2|kz|T + 2T 2

)
exp (−|kz|/T ) . (6.1)

The integrand in the above expression was taken as our
fit function

Efit(kz) = A
(
k2
z + 2|kz|T + 2T 2

)
exp (−|kz|/T ) , (6.2)
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FIG. 10. (Color online) Comparison of the longitudinal spectra data from Fig. 8 with fits using the fit function (6.2) at six
different proper times.
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FIG. 11. (Color online) The time dependent longitudinal tem-
perature extracted from the data contained in Fig. 8 using the
fit function (6.2).

where we have allowed for an overall multiplicative con-
stant A. At each proper time we fit the two parameters
A and T ; however, at early times we manually exclude
regions of the spectra that are part of the “noisy plateau”
at high longitudinal momenta, e.g. kz >∼ 8Qs from the
τ̃ = 0.3 panel shown in Fig. 10 are excluded from the fit
data.

As can be seen from Fig. 10 we see evidence of a
very rapid emergence of a Boltzmann longitudinal en-
ergy spectrum. At τ̃ = 0.3 the fit is already working
quite well with the bumps seen in the spectra being non-
linear resonance “copies” of the initial theta-function-like

distribution of longitudinal energy. By τ̃ = 2.3 virtually
all information about the initial condition is gone and by
τ̃ = 3.3 the system seems to exhibit an exceptional degree
of longitudinal thermalization with all information about
the initial condition lost. We only show six specific times
in Fig. 10, however, at all simulation times τ̃ >∼ 0.3 the
fits seem to work remarkably well. We note, importantly,
that although the spectra shown in Fig. 10 are averaged
over runs, one sees the emergence of such a Boltzmann
spectrum on a run-by-run basis. We have averaged over
runs in order to remove statistical noise and improve the
quality of the fits.

In Fig. 11 we show the extracted fit temperatures us-
ing (6.2) as a function of proper-time. We see from this
figure that at early times the soft sector cools down due
to longitudinal expansion, but once the instability be-
gins to grow, the soft sector begins to heat up. We
note in this context that the hard particle distribution
is highly anisotropic, making it hard to associate a tem-
perature with. The transverse temperature given by
phard ∼ Qs is a constant for longitudinal free streaming;
however, one can associate a kind of isotropic temper-
ature by computing the fourth root of the energy den-
sity E = R(ξ)Eiso(phard) [34]. One finds at late times
(τ � τiso) that E ∼ τ−1 so that Teff,hard ∼ E1/4 ∼ τ−1/4

which decreases less quickly than ideal hydrodynami-
cal behavior for which one has T ∼ τ−1/3. Since the
hard particles still dominate the energy density, the com-
bined soft plus hard effective temperature still decreases
in time.
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VII. CONCLUSIONS

In this paper we have studied the dynamics of the
chromo-Weibel plasma instability in a longitudinally ex-
panding plasma by numerically solving the full 3D+3V
realtime evolution of the hard-loop equations of motion.
We utilized current fluctuations as the initial condition so
that the initial fields were self-consistently triggered by
the hard particles. We had three important findings: (1)
there is no saturation of the chromo-Weibel instability
at the “soft-scale” on timescales relevant for heavy-ion
collisions, (2) the dominant transverse chromomagnetic
fields generate a rapidly growing longitudinal pressure
that works to isotropize the system on timescales relevant
for heavy-ion collisions, and (3) in the process of evolu-
tion the longitudinal energy spectrum shows no signs of a
power-law spectrum associated with Kolmogorov turbu-
lence, but instead shows evidence for rapid longitudinal
thermalization of the gauge fields.

The finding that there is no soft-scale saturation of
the plasma instability is important since this means that
on the time scales relevant for heavy ion collisions the
back reaction of the hard degrees of freedom could be
important. This suggests that it will be of the upmost
importance to make an in depth study of the dynamics of
an unstable expanding plasma using classical Yang-Mills
and Boltzmann-Vlasov simulations. However, care will
have to be taken to make sure that these simulations can
properly describe the soft collective modes of the system
consistent with hard-loop dynamics in the high temper-
ature limit. The fact that we do not witness soft-scale
saturation of the chromo-Weibel instability is consistent
with previous analyses of plasmas possessing a fixed high-
magnitude momentum-space anisotropy [59, 60]. In the
case of HEL, the red shifting of the longitudinal momen-
tum causes transverse unstable modes to become more
and more stable as a function of time, while purely lon-
gitudinal modes continue to grow. We cannot rule out a
very late time saturation on timescales far beyond what
we have studied; however, such large time scales are prob-
ably not relevant to understanding thermalization of a
QGP generated in heavy ion collisions.

Our second finding concerned plasma isotropization.
Extrapolating our results to conditions expected for
heavy-ion collisions at the LHC, we found that for the
assumed magnitude of current fluctuations, ∆ = 0.8,
isotropization within our framework occurs at ∼ 6.5
fm/c. Further extrapolating our numerical results to
∆ = 1.6 which is required in order to achieve occupa-
tion numbers consistent with quantum fluctuations, one
finds isotropization times on the order of 5 fm/c. How-
ever, it should be noted that we have not included the
back-reaction of the hard particles on the soft background
field. It is likely that the back-reaction slows down the
process of isotropization at late times and, therefore, the
numbers quoted above should perhaps be taken as a lower
bound on the time of complete isotropization.

We note that although the early indications from ideal

hydrodynamics would imply that this time scale is much
too long, in recent years it has emerged that there is
very little experimental constraint on the degree of local
momentum-space anisotropy in the quark gluon plasma.
In HEL the precise time scale for isotropization depends
on the choice of the amplitude of the initial current fluc-
tuations and as a consequence the amplitude of the soft
gauge fields at early times. We have chosen the magni-
tude of these fluctuations based on studies of the breaking
of boost invariance in the glasma by quantum fluctua-
tions. Of course, one can shorten the isotropization time
by increasing the magnitude of the initial fluctuations
used; however, within the hard-expanding loop frame-
work one runs the risk of violating the assumption that
the energy of the system is dominated by the hard de-
grees of freedom. Once again this imposes a limit on what
can be achieved through hard-loop simulations and calls
for more comprehensive methods to tackle the problem
which can properly include the back-reaction.

Our final finding concerned the induced spectrum of
the unstable soft modes. We found a Boltzmann distri-
bution of longitudinal energies instead of a power law
distribution as was found in static simulations. Extrapo-
lating to RHIC and LHC conditions, this result seems to
imply that one can achieve longitudinal thermalization of
the quark gluon plasma on time scales of 1 fm/c. Early
color glass condensate simulations demonstrated that the
initial gauge field configurations were transversally ther-
mal [98] and our results indicate that the system also
quickly becomes thermal in the longitudinal direction.

The longitudinal thermalization we see is particular to
non-Abelian gauge theories. In general, there are two
effects occurring: (1) mode amplification due to plasma
instability and (2) mode-mode coupling due to nonlinear
interactions. In an Abelian plasma only mode amplifica-
tion occurs and one does not see the emergence of a lon-
gitudinally thermalized spectrum. One needs the mode-
mode coupling to spread the deposited energy across
large ranges of momenta quickly. In the non-Abelian
case, we have checked different lattice sizes, lattice spac-
ing, etc. and the rapid emergence of a longitudinally ther-
malized spectrum seems to be quite robust.

We note that our finding of an exponential longitudi-
nal energy spectrum is not in contradiction with the pure
Yang-Mills simulations of Ref. [82] which found the emer-
gence of a power-law spectrum, since the power-law spec-
trum observed therein only emerged at quite late times,
τ >∼ 150 fm/c. At early times Ref. [82] also found what
appears to be an exponential distribution in the longi-
tudinal energy spectrum. We also note that usually one
sees power law spectra energy in the infrared. Due to
having to use many auxiliary fields we were limited to
402 × 128 lattices. In the future we plan runs on larger
lattices in order to more carefully determine the infrared
part of the spectrum.

Our study, however, is not without caveats. In order
to have a tractable way to treat the time-dependent hard
particles, we approximated them as a longitudinally free
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streaming ensemble. This is an extreme assumption that
should be relaxed, if possible, in the future. Some work
along this direction has been started in Ref. [99] where
the authors were able to derive an evolution equation
for a stable uniform chromoelectric field in an arbitrary
time-evolving anisotropic background. It would be very
interesting to see if the method employed in Ref. [99] can
be extended to the entire stable and unstable mode spec-
trum. This caveat aside, it’s interesting that even with
such an extreme particle pressure anisotropy being devel-
oped, the chromo-Weibel instability is able to isotropize
the system on time scales relevant for heavy-ion colli-
sions.

The second important caveat is that we did not in-
clude the effect of the back reaction of the hard particles
on the unstable soft gauge fields. Our results seem to
indicate that the fields grow unabated until there will be
a significant backreaction. Of course, as soon as the field
amplitudes become large enough for any back reaction to
occur, it is possible that this could reduce the anisotropy
of the hard-particles and reduce the rate of growth of the
unstable soft modes.

In the context of our numerical results, the observation
of continued unstable mode growth places an upper limit
on the amount of time over which we can trust our hard-
loop simulations; however, we find that assuming that
the initial fraction of the energy carried by soft fields is
small compared to the hard scale there is a window of
time over which we can reliably simulate the dynamics.
Our results indicate a very fast path to isotropization
within this window of reliability. Addressing the ques-
tion of the late time dynamics of the system is not pos-
sible within this framework;7 however, our study might
serve as a benchmark for future simulations that include
backreaction in an expanding plasma.

In the future one might use hard-loop simulations to
study the early time dynamics of the quark gluon plasma
and the role unstable modes play. One can address in-
teresting phenomenological questions such as measuring
the shear viscosity due to plasma instabilities and study-
ing particle transport properties such as energy loss and
momentum-space diffusion. In addition, the momentum-
space anisotropy dependence of many important heavy-
ion collision observables such as jet energy loss, pho-
ton production, dilepton production, heavy quark energy
loss, heavy quarkonium suppression etc. have been com-
puted [66, 100–115]. It would, therefore, be interesting
to study the effect of our time-dependent evolution on
these observables as a possible signature of the plasma
instability in heavy ion collisions.

7 In this paper, we have concentrated on the phenomenology of
unstable modes in a longitudinally free streaming background.
For an in-depth analysis of the path to isotropy in the asymp-
totically small coupling limit, including late time dynamics, we
refer the reader to Refs. [76, 77] where parametric estimates have
been made.

We note that there are now many groups studying the
thermalization, isotropization, and anisotropic signatures
of the quark gluon plasma in the strong coupling limit
using the AdS/CFT correspondence [29–31, 116–128]. It
would be interesting to compare and contrast the pre-
dictions for experimental observables coming from the
weakly-coupled and strongly-coupled frameworks.

Finally, there have also been some recent studies that
have suggested that there is an inverse particle number
cascade leading to Bose-Einstein condensation of soft-
gauge fields [129–131]. How a long-lived condensate
can emerge in a non-Abelian gauge is an open question.
Based on our results it is hard to judge whether this pos-
sibility is borne out, since we do not directly obtain the
particle number spectra but instead the energy spectra.
Determining the nature of the low momentum number
spectra is complicated by gauge invariance issues; how-
ever, measurements of this spectra in fixed-anisotropy
hard-loop simulations [55, 57, 61] and pure Yang Mills
with high occupancy [131–133] have so far shown no evi-
dence of occupation numbers exceeding f ∼ 1/αs at late
times. That being said it would be interesting to see if a
time-evolving condensate, perhaps in the form of an over-
populated condensate of plasmons (chromoelectric oscil-
lations), could play a role in QGP thermalization and
isotropization.
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Appendix A: Lattice equations of motion

In this appendix we introduce the dimensionless lat-
tice variables we use in simulating the dynamics of the
soft color fields. We then explicitly write the discretized
equations of motion and initial conditions used in the
main body of the paper. In this paper we consider the
non-Abelian SU(2) group; however, the equations below
are independent of the gauge group considered.

1. Lattice variables

We begin by defining dimensionless lattice variables
which will be used in the simulation. We introduce three
lattice spacings: a which is the dimensionful transverse
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spatial lattice spacing, ε which is the dimensionful tem-
poral lattice spacing, and aη which is the dimensionless
lattice spacing in the η direction. We rescale space and
time

x̂ = x/a , ŷ = y/a , η̂ = η ,

τ̂ = τ/a , ε̂ = ε/a , (A1)

With these definitions we can rescale the field variables,
conjugate momenta, and currents and introduce lattice
variables with “hats”

Âi = gaAi , Âη = gAη ,

Π̂i = gaΠi , Π̂η = ga2Πη , (A2)

and

Ŵ = aW , ĵτ = a3jτ ,

ĵi = a3ji , ĵη = a4jη . (A3)

Finally, we rescale the isotropic Debye mass via m̂D =
amD. Performing this transformation on the Hamilto-
nian density we find

H =
τ̂

g2a3
tr

[
1

τ̂2
F̂ 2
ηi +

1

τ̂2
Π̂2
i + F̂ 2

xy +
(

Π̂η
)2
]
. (A4)

In the following subsections we will drop the “hats” on
symbols. From this point on in this appendix, all vari-
ables can be assumed to be dimensionless lattice vari-
ables.

2. Plaquettes and Staples

We can translate the continuum equations of motion
into gauge-invariant lattice equations of motion by using
standard plaquette and staple operators. For the trans-
verse coordinate-rapidity plaquettes we have

(Fkη)a =
iNc
aη

tr
[
τaU�,kη

]
, (A5)

where k ∈ {x, y}, a is a color algebra index, a ∈
{1, · · · , N2

c − 1}, and U�,µν(x) = Uµ(x)Uν(x+ µ)U†µ(x+

ν)U†ν (x) is a standard lattice plaquette variable with Uµ
being a parallel transporter in µ direction

Ui = exp(−iAi) , (A6)

Uη = exp(iaηAη) . (A7)

Products like F 2
µν which appear in the energy density

can also be expressed in terms of plaquette variables. For
this application we need two different combinations, F 2

ηi

and F 2
xy. These are

trF 2
ηi =

2

a2
η

(
1− 1

Nc
tr[ReU�,ηi]

)
, (A8)

trF 2
xy = 2

(
1− 1

Nc
tr[ReU�,xy]

)
. (A9)

Finally, we can rewrite the necessary covariant deriva-
tives acting on the field strength tensor as

(DjFjk)a = iNc tr

[
τaUk(τ, x)

∑
|j|6=k

S†kj(τ, x)

]
,

(A10)

(DηFηj)
a =

iNc
a2
η

tr

[
τaUj(τ, x)

∑
|η|6=j

S†jη(τ, x)

]
,

(A11)

(DjFjη)a =
iNc
aη

tr

[
τaUη(τ, x)

∑
|j|6=η

S†ηj(τ, x)

]
,

(A12)

where S is the gauge link staple

S†µν(τ, x) = Uν(τ, x+ µ)U†µ(τ, x+ ν)U†ν (τ, x) . (A13)

Note that the sums in (A12) run over both positive and
negative directions.

3. Transformation of the W fields to a compact
domain

In order to better describeW in the ȳ (shifted rapidity)
direction we introduce a velocity-like variable u, −1 <
u < 1, defined by

ȳ ≡ atanh(u) , dȳ =
1

1− u2
du. (A14)

This has the effect of giving more lattice points around
ȳ = 0, where the W functions are rapidly varying.

Using sinh2(ȳ) = u2/(1− u2) and cosh2(ȳ) =
1/(1− u2) we can rewrite (3.33) as

∂τW(τ,x, η;φ, u) = −
√

1− u2 viDiW

−u
τ

(
DηW − (1− u2)∂uW

)
+

1

f̄(τ, τiso, u)

[
1

τ
viΠi −

τ2

τ2
iso

u√
1− u2

Πη +
u

τ

(
1− τ2

τ2
iso

)
viFiη

]
, (A15)

where

f̄(τ, τiso, u) =

(
1 +

τ2

τ2
iso

u2

1− u2

)2

. (A16)
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The currents are then given by

jτ = −m
2
D

2

∫ 2π

0

dφ

2π

∫ 1

−1

du (1− u2)−
3
2 W(τ,x, η;φ, u) ,

(A17)

ji = −m
2
D

2

∫ 2π

0

dφ

2π

∫ 1

−1

du vi (1− u2)−1W(τ,x, η;φ, u) ,

(A18)

jη = −m
2
D

2τ

∫ 2π

0

dφ

2π

∫ 1

−1

duu (1− u2)−
3
2 W(τ,x, η;φ, u) ,

(A19)

where, as usual, vi = (cosφ, sinφ) with i ∈ {x, y}.

4. Lattice equations of motion

We will express the equations of motion in terms of
gauge links U and chromoelectric fields Π. Both U ’s and

Π’s live on links (between sites) so all of their spatial ar-
guments have an implicit +1/2 shift. In some cases this
1/2 is made explicit for maximum clarity. Temporally
Π’s also live between sites. The link variables U , how-
ever, temporally live on sites. The W’s and j’s live on
sites both spatially and temporally. We use a lattice with
N⊥ sites in the x and y directions and Nη sites in the η
direction. The fields are assumed to be periodic in all di-
rections. We use a leapfrog algorithm in which the conju-
gate momenta are updated first using fixed links/currents
and then the link variables andW-fields are evolved using
the updated conjugate momenta [134–138].

The resulting Yang-Mills update equations are

Πi(τ +
ε

2
,x, η) = Πi(τ −

ε

2
,x, η) + τε

(
jiavg(τ,x, η) +DjFji(τ,x, η) +

1

τ2
DηFηi(τ,x, η)

)
, (A20)

Πη(τ +
ε

2
,x, η) = Πη(τ − ε

2
,x, η)− ε

τ

(
τ2jηavg(τ,x, η) +DiFiη(τ,x, η)

)
, (A21)

Ui(τ + ε,x, η) = exp
(
− i ε τ−1 Πi(τ +

ε

2
,x, η)

)
Ui(τ,x, η) , (A22)

Uη(τ + ε,x, η) = exp
(

+ i ε τ aη Πη(τ +
ε

2
,x, η)

)
Uη(τ,x, η) , (A23)

where

jiavg(τ,x, η) ≡ 1

2

[
ji(τ,x, η) + U†i (τ,x, η)ji(τ,x + êi, η)Ui(τ,x, η)

]
, (A24)

jηavg(τ,x, η) ≡ 1

2

[
jη(τ,x, η) + U†η(τ,x, η)jη(τ,x, η + 1)Uη(τ,x, η)

]
. (A25)

To discretize the W fields we use a rectangular lattice in φ-u space of size Nφ ×Nu and

φn = 2πn/Nφ , (A26)

um = −1 + (2m+ 1)/Nu , (A27)

where n ∈ {0, · · · , Nφ − 1} and m ∈ {0, · · · , Nu − 1}.

The update equations for the W fields then take the
form

W(τ + ε,x, η;φ, u) =

W(τ − ε,x, η;φ, u) + 2ε

{
−
√

1− u2 viDS
i W

−u
τ

(
DS
ηW − (1− u2)∂SuW

)
+

1

f̄(τ, τiso, u)

[
1

τ
viΠavg

i − τ2

τ2
iso

u√
1− u2

Πη
avg

+
u

τ

(
1− τ2

τ2
iso

)
viFiη

]}
, (A28)

where Fiη is computed using plaquettes via Eq. (A5),
DS
i and DS

η are symmetric covariant derivatives in the
transverse and rapidity directions, respectively

DS
ηϕ(η) ≡ 1

2aη

(
U†η(η)ϕ(η + 1)Uη(η)

−Uη(η − 1)ϕ(η − 1)U†η(η − 1)

)
,

(A29)
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DS
i ϕ(xi) ≡

1

2

(
U†i (xi)ϕ(xi + 1)Ui(xi)

−Ui(xi − 1)ϕ(xi − 1)U†i (xi − 1)

)
,

(A30)

and ∂Su is a symmetric derivative in u space

∂Sϕ(um) ≡ ϕ(um+1)− ϕ(um−1)

2∆u
, (A31)

where ∆u = 2/Nu. The averaged conjugate momenta,
Πavg
i and Πη

avg, appearing in (A28) are averaged both
spatially and temporally

Πavg
i (τ,x, η)=

1

16

∑
σx=±1

∑
σy=±1

∑
ση=±1

∑
στ=±1

PT Πi

(
τ +

στ
2
, x+

σx
2
, y +

σy
2
, η +

ση
2

)
, (A32)

Πη
avg(τ,x, η)=

1

16

∑
σx=±1

∑
σy=±1

∑
ση=±1

∑
στ=±1

PT Πη
(
τ +

στ
2
, x+

σx
2
, y +

σy
2
, η +

ση
2

)
, (A33)

where we have indicated explicitly the fact that the Π’s
live on links (halfway between sites) for clarity and PT
stands for the parallel transporter necessary to bring the
conjugate momenta to the same site.

The currents are computed from the W fields via

jτ (τ,x, η) = − m2
D

NφNu

∑
n,m

(1− u2)−
3
2 W(τ,x, η;φ, u) ,

(A34)

ji(τ,x, η) = − m2
D

NφNu

∑
n,m

vi (1− u2)−1W(τ,x, η;φ, u) ,

(A35)

jη(τ,x, η) = − m2
D

τNφNu

∑
n,m

u (1− u2)−
3
2 W(τ,x, η;φ, u) ,

(A36)

and we monitor Gauss’ Law by periodically checking

tr

[
1

N2
⊥Nη

∑
x,η

τjτ (τ,x, η) +DS
ηΠη

avg(τ,x, η)

−DS
i Πavg

i (τ,x, η)

]2

. (A37)

We compute the discretized transverse and longitudinal
contributions to the field energy density E via

ET =
1

N2
⊥Nη

∑
x,η

tr
[
τ−2F 2

ηi + τ−2Π2
i

]
, (A38)

EL =
1

N2
⊥Nη

∑
x,η

tr
[
F 2
xy + (Πη)

2
]
, (A39)

where trF 2
ηi and trF 2

xy are computed using Eqs. (A8)
and (A9).

Appendix B: Choice of lattice parameters

In this appendix we detail the constraints which should
be obeyed in order for our simulations to properly de-
scribe the soft gauge field dynamics. Since the soft scale
is time dependent, we have to choose parameters which
allow for a faithful representation of the infrared and ul-
traviolet physics during the entirety of the simulation.

The physical (dimensionful) parameter m2
D is the De-

bye mass at time τiso. In terms of the gluon liberation
factor c which is O(1) (' 1.1 according to Lappi [94],
c = 2 ln 2 ≈ 1.386 according to Kovchegov [91]) one has

m2
Dτisoτ0 ≈ 0.93 c (Qsτ0) . (B1)

In the text we use Qsτ0 = 1 and c = 2 ln 2 from
Kovchegov [91]. This gives m2

Dτisoτ0 = 1.285. For large
anisotropy one finds

m2
∞(τ) ' π

4
m2
Dτiso/τ, (B2)

which can be taken as the typical (time-dependent) soft
momentum scale. With our choice of c = 2 ln 2, we
have m∞(τ) ≈ 1.0 (τ0τ)−1/2. For RHIC energies one has
τ−1
0 = Qs ∼ 1.4 GeV and at current LHC energies one

has Qs ∼ 2 GeV. At RHIC and LHC energies τ0 = Q−1
s

corresponds to 0.14 fm/c and 0.1 fm/c, respectively.
On a lattice with periodic boundary conditions, the

size of the lattice determines the infrared cutoff in full
wavelengths and the lattice spacing determines the ul-
traviolet cutoff via the smallest half-wavelength. In our
expanding system, the transverse UV cutoff is constant
in time and given by π/a, whereas the soft momentum
scale is decreasing in time. It is therefore sufficient to
ensure

kmax =
π

a
� m∞(τ0) , (B3)
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so that we should demand a <∼ 1 τ0.
In longitudinal direction, the effective UV cutoff is de-

creasing in time according to π/(τaη). We may choose
for example

τmax

2
aη ∼ a , (B4)

to have comparable transverse and longitudinal UV cut-
offs in an average sense. More importantly, the maximal
longitudinal wave number of unstable modes increases in
time, so νmax should be a large number,

νmax =
π

aη
� 30 . (B5)

Since the hard-expanding-loop framework is designed
to treat the soft sector of the dynamics, it is somewhat
more important to properly treat the infrared scale. In
the longitudinal direction νmin = 2π/(Nηaη) should be
made as low as possible. There are no important unstable
modes with ν much smaller than 5, but νmin also sets the
spacing between mode numbers. We should therefore aim
at

νmin =
2π

Nηaη
� 5 . (B6)

In the transverse direction, the semianalytic results [84,
86] suggest that we should have

kmin =
2π

N⊥a
� 0.2 τ−1

0 . (B7)

As our canonical set of parameters in the results sec-
tion we use NT = 40, Nη = 128, aη = 0.025, a = Q−1

s ,
and τ0 = Q−1

s . Checking the transverse infrared cutoff
one finds kmin = 0.157Qs < 0.2Qs as required. Check-
ing the transverse ultraviolet cutoff one finds kmax =
πQs > 1.005Qs as required. Checking the longitudi-
nal infrared cutoff one finds νmin = 1.96 < 5 as required.
Finally, checking the longitudinal ultraviolet cutoff one
finds νmax = 125.7 > 30.

Appendix C: Initial Conditions

In this appendix we collect details of the initial condi-
tions used in the simulations and some information about
lattice initial conditions in general.

1. Gaussian random variables

We now discuss the scalings necessary when sampling
lattice variables from Gaussian distributions. For com-
pleteness we list all possible types of initial conditions;
however, in the body of the text we use exclusively ini-
tial conditions based on current fluctuations. We then
give some more details about the precise implementation

Case Std. Dev. (σ)

Transverse Vector Potential (Ai) g∆/a
1/2
η

Longitudinal Vector Potential (Aη) g∆/(aa
1/2
η )

Transverse Conjugate Momentum (Πi) g∆/a
1/2
η

Longitudinal Conjugate Momentum (Πη) ga∆/a
1/2
η

Current fluctuations (W) ∆/a
1/2
η

TABLE I. Transverse and longitudinal lattice spacing scaling
for a variety of different initial condition types.

of the current fluctuation initial conditions used in the
body of the text.

It is common to use uncorrelated Gaussian random
noise as the initial condition for either fields or current
fluctuations. In the case of uncorrelated transverse vector
potentials, for example, one assumes that in the contin-
uum limit

〈Aai (τ0,x1, η1)Abj(τ0,x2, η2)〉 =

∆2δabδijδ
(2)(x1 − x2)δ(η1 − η2) , (C1)

where x⊥ ≡ (x, y) is a purely transverse two-vector. In
order to translate this statement into something useful
for the lattice initial conditions we should convert to di-
mensionless variables on the left and right hand sides.
In doing so we make use of the rescalings specified in
Eqs. (A1) and (A2) and the Dirac delta function iden-
tity δ(ax) = δ(x)/|a| to obtain (in terms of the lattice
variables introduced in Eqs. (A2) and (A3))

〈Aai (τ0,x
⊥
1 , η1)Abj(τ0,x

⊥
2 , η2)〉 =

g2∆2

aη
δabδijδx⊥

1 x
⊥
2
δη1η2 .

(C2)

In practice, this means that the Ai variables should be
Gaussian random numbers with a standard deviation of
σ = g∆/a

1/2
η .

Using similar arguments we can derive the following
lattice correlation functions in the case that we initialize
longitudinal vector potentials

〈Aaη(τ0,x
⊥
1 , η1)Abη(τ0,x

⊥
2 , η2)〉 =

g2∆2

a2aη
δabδx⊥

1 x
⊥
2
δη1η2 ,

(C3)

or transverse momenta

〈Πa
i (τ0,x

⊥
1 , η1)Πb

j(τ0,x
⊥
2 , η2)〉 =

g2∆2

aη
δabδijδx⊥

1 x
⊥
2
δη1η2 ,

(C4)

or longitudinal momenta

〈Πa
η(τ0,x

⊥
1 , η1)Πb

η(τ0,x
⊥
2 , η2)〉 =

g2a2∆2

aη
δabδx1x2δη1η2 ,

(C5)
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or auxiliary fields

〈W aα(τ0,x
⊥
1 , η1;φ1, y1)W bβ(τ0,x

⊥
2 , η2;φ2, y2)〉 =

∆2

aη
δabδαβδx⊥

1 x
⊥
2
δy1y2δη1η2δφ1φ2

. (C6)

To summarize, when using Gaussian random initial con-
ditions on anisotropic lattices, one should choose the
standard deviations shown in Table I. Moreover, unless
initial fluctuations are only set up for the gauge fields Aai
and Aaη, a projection to satisfy the Gauss law constraint
(3.26) is needed. In our simulations we have however
used a different setup which we now discuss.

2. Initial Condition Setup

The analytic study of collective modes in anisotrop-
ically expanding ultarelativistic plasmas [86] has found
that the initial fluctuations in (only) induced currents
versus only initial fluctuations in collective fields reduces
considerably the delay of the onset of the plasma instabil-
ities. As discussed in Sect. IV, this means that such ini-
tial conditions dominate over all other possibilities, and
it is therefore sufficient to concentrate on initial fluctua-
tions in the W fields which directly encode the induced
currents.

a. Longitudinal Current Initial Conditions

For oblate anisotropy, fluctuations in longitudinal cur-
rents give rise to stable plasmon modes, and in the
Abelian case they do not lead to any plasma instabili-
ties. We have used this to test our code for unphysical
instabilities (see App. D).

The simplest initial fluctuations consistent with Gauss’
law which achieve this are fluctuations in only the W aη

components that are independent of φ and y (thereby
ensuring that initially jτ = 0) but nothing else

〈W aη(τ0,x
⊥
1 , η1;φ1, y1)W bη(τ0,x

⊥
2 , η2;φ2, y2)〉 =

∆2

aη
δabδx⊥

1 x
⊥
2
δη1η2 ,

W ai = 0, Us+ 1
2

= 1Nc , Πi,s = Πη,s = 0.

(C7)

b. Transversal Current Initial Conditions

In order to provide seed fields for Weibel instabilities,
longitudinal current fluctuations do not play an impor-
tant role (for oblate anisotropies). For simplicity we have
therefore only considered transverse current fluctuations
by only initializing W ai fields. Because we have used
rather fine lattices in the η direction, Gaussian random

noise would correspond to very high UV noise in longi-
tudinal wave numbers even beyond the scale which sepa-
rates soft and hard modes, while hard modes are already
integrated out. We have therefore introduced a mode
number cutoff Λν such that νmax = Λννmin with νmin =
2π/(Nηaη). Again, the simplest initial fluctuations con-
sistent with the Gauss law are obtained by requiring that
the W ai components are independent of φ and y, and
thus initially jτ = 0, while setting all other fields to zero
initially. This is now done in terms of the Fourier compo-
nents W̃ ai withW ai(. . . , η, . . .) =

∑
ν W̃

ai(. . . , ν, . . .)eiνη

according to

〈W̃ ai(τ0,x
⊥
1 , ν1;φ1, y1)W̃ bj(τ0,x

⊥
2 , ν2;φ2, y2)〉 =

∆2δabδijδx⊥
1 x

⊥
2
δν1,−ν2θ(νmax − |ν1|),

W aη = 0, Us+ 1
2

= 1Nc , Πi,s = Πη,s = 0.

(C8)

Appendix D: Numerical Tests

In this section we collect various numerical tests such
as varying the lattice spacing, lattice size, spectral cut-
offs, and velocity-space resolution. In Fig. 12 we collect
six different tests. The variation with the random seed
used for generating the necessary pseudorandom num-
bers used in the initial conditions is shown in Fig.12(a).
As we can see from this figure there is a fair amount of
variation with the random seed used; however, the results
are all qualitatively the same. In the results section our
main results are averaged over the set of runs shown in
Fig.12(a).

The variation with the ultraviolet longitudinal mode
cutoff used for initializing the initial current fluctuations
via the auxiliary W fields is shown in Fig.12(b). As can
be seen from this figure there is a rapid convergence as
the ultraviolet cutoff, Λννmin, is increased. The set of
runs shown in the main body of the text uses Λν = 8.

The variation with the transverse lattice spacing while
holding the transverse lattice size fixed is shown in
Fig.12(c). This represents a test of the approach to
the continuum as the transverse lattice resolution is in-
creased. In the transverse plane we sample Gaussian
random numbers which means as the lattice spacing de-
creases the transverse configurations will be dominated
by the high transverse momentum part of the fluctua-
tions. This is evidenced by the fact that the initial en-
ergy density deposited in the fields by the current fluctu-
ations increases rapidly as one approaches the transverse
continuum limit. One could remove this artifact by im-
plementing a transverse mode cutoff on the lattice, but
at this point in time we have not yet done so. In the
results section our standard set of runs uses NT = 40.

The variation with the transverse lattice size while
holding the transverse lattice spacing fixed is shown in
Fig.12(d). In this case we see a rather large effect. In the
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(a) Variation of the initial random seed used for the current
fluctuations. All parameters are the same as in Fig. 3.
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(b) Variation of the longitudinal cutoff, Λννmin with
νmin = 1.96, for the current fluctuation initial conditions. All
parameters except Λν are the same as in Fig. 3.
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(c) Variation of the transverse lattice spacing, a, while
keeping the transverse lattice size, LT = NT a, fixed. All
parameters except a and NT are the same as in Fig. 3.
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(d) Variation of the transverse lattice size, LT = NT a, while
keeping the transverse lattice spacing, a, fixed. All
parameters except NT are the same as in Fig. 3.
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(e) Variation of the longitudinal lattice spacing, aη , while
keeping the longitudinal lattice size, Lη = Nη aη , fixed. All
parameters except aη and Nη are the same as in Fig. 3.
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(f) Variation of the longitudinal lattice size, Lη = Nη aη ,
while keeping the longitudinal lattice spacing, aη , fixed. All
parameters except Nη and ∆ are the same as in Fig. 3.

FIG. 12. (Color online) Collected numerical tests of unstable mode growth. Each subpanel shows the chromofield total energy
density evolution subject to variation of various parameters. The subcaptions contain a description of the parameters which
are varied.
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limit that NT → 1 while holding a fixed, one approaches
a one-dimensional system which exhibits a faster growth
rate due to less mode competition. We have verified that
in this limit we reproduce our previously obtained re-
sults from Ref. [85]. The faster growth seen compared
to Ref. [85] is due to the use of the more general initial
conditions which include current fluctuations [86]. In the
results section our standard set of runs uses NT = 40.
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FIG. 13. (Color online) Evolution of a stable configuration ini-
tialized with Abelian longitudinal currents for different sized
velocity lattices.

The variation with the longitudinal lattice spacing
while holding the longitudinal lattice size fixed is shown
in Fig.12(e). Due to the fact that we have implemented
an ultraviolet cutoff on fluctuations in the η-direction,
we see a very nice convergence as the lattice resolution

in the η direction is increased. In the results section our
standard set of runs uses NT = 40. In the results section
our standard set of runs uses Nη = 128.

The variation with the longitudinal lattice size while
holding the longitudinal lattice spacing fixed is shown in
Fig.12(f). (Here ∆ has been adjusted to correct for the
different initial spectrum which starts at smaller νmin

with larger Nη, leading to different initial energy den-
sities.) Once again we see only small variation with the
assumed longitudinal lattice size, with the late-time vari-
ations being consistent with those coming from random
seed variation. In the results section our standard set of
runs uses Nη = 128.

Finally, in Fig. 13 we show the evolution of a stable
Abelian configuration initialized with Abelian longitudi-
nal currents for various different velocity lattice resolu-
tions Nu ×Nφ ∈ {64× 16, 128× 16, 128× 32, 128× 48}.
For this simulation the lattice spatial size was N2

T ×Nη =
322×32 with transverse lattice spacing of a = 0.1 fm and
longitudinal lattice spacing of aη =0.025. The initial time
was taken to be τ0 = 0.1 fm/c and we used τiso = 0.01
fm/c. For the temporal time step we use ε = 10−3 fm/c.
With these initial conditions, the field energy should de-
cay steadily after the initial peak. This test turns out to
be very sensitive to the velocity-space resolution, i.e. the
number of W fields. If this resolution is too crude, the
field energy even grows at late times. Fig. 13 shows that
with a velocity lattice size of Nu×Nφ = 128×32 there is
already good convergence to the correct time evolution
of the system. Unstable modes are in fact less sensitive
to the velocity resolution in the φ direction; however,
being cautious we have performed all simulations using
Nu ×Nφ = 128× 32.
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