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We use the canonical Hamiltonian formalism to generalize to spinning point particles the first
law of mechanics established for binary systems of non-spinning point masses moving on circular
orbits [Le Tiec, Blanchet, and Whiting, Phys. Rev. D 85, 064039 (2012)]. We find that the redshift
observable of each particle is related in a very simple manner to the canonical Hamiltonian and,
more generally, to a class of Fokker-type Hamiltonians. Our results are valid through linear order
in the spin of each particle, but hold also for quadratic couplings between the spins of different
particles. The knowledge of spin effects in the Hamiltonian allows us to compute spin-orbit terms in
the redshift variable through 2.5PN order, for circular orbits and spins aligned or anti-aligned with
the orbital angular momentum. To describe extended bodies such as black holes, we supplement
the first law for spinning point-particle binaries with some “constitutive relations” that can be used
for diagnosis of spin measurements in quasi-equilibrium initial data.
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I. INTRODUCTION

The need to develop faithful template waveforms for
the search of gravitational waves from compact-object
binary systems (compact binaries, for short) with cur-
rent interferometric detectors [1, 2] has led, during the
last years, to synergies and unexpected common ground
among previously distinct research areas. The two main
analytical frameworks used to study the relativistic dy-
namics of compact binaries are (i) the post-Newtonian
(PN) approximation [3, 4], which describes the inspiral-
ing motion beyond the Newtonian limit, in the small ve-
locity and weak-field regime (v ≪ c), and (ii) black hole
perturbation theory [5], which describes both the weak-
field and strong-field dynamics in the small mass-ratio
limit (m1 ≪ m2). The other main research area in the
study of the two-body problem is numerical relativity
[6], which aims at describing the strong-field regime by
solving numerically the exact Einstein field equations.
Furthermore, in order to build templates for the search
of gravitational waves, the effective-one-body (EOB) ap-
proach [7, 8] combines the information from those dif-
ferent techniques in a flexible and effective way, and can
provide accurate merger templates for advanced LIGO
and Virgo. As said above, several studies [9–21] at the
interface between those different frameworks have im-
proved our knowledge of the two-body dynamics and
gravitational-wave emission.

Recently, Le Tiec, Blanchet, and Whiting [22] (hence-
forth, Paper I) derived a “First Law of Mechanics” for
binary systems of point particles moving on exact circu-
lar orbits (compatible with an helical Killing symmetry).
Using the first law, the authors found a very simple rela-
tion between the PN binding energy of the binary and De-
tweiler’s redshift observable [11] — which can also be in-
terpreted as the particle’s Killing energy associated with
the helical symmetry. This relation allowed the computa-

tion of previously unknown high-order PN terms in the
circular-orbit binding energy by using the redshift ob-
servable computed numerically within the gravitational
self-force (GSF) formalism [11–13, 23]. Moreover, the
results in Paper I led to the following applications:

1. Reference [19] computed the exact binding energy
and angular momentum of two non-spinning com-
pact objects (modeled as point particles) moving on
circular orbits, at leading order beyond the test-
particle approximation, and recovered the exact
frequency shift of the Schwarzschild innermost sta-
ble circular orbit induced by the conservative piece
of the GSF [24];

2. Reference [20] built upon the works [14, 15, 19, 22]
and derived the exact expressions of the EOB met-
ric components through first order in the (symmet-
ric) mass ratio. Quite interestingly, the results in
Refs. [16, 18, 19] strongly suggest that the domain
of validity of black hole perturbation theory calcu-
lations may extend well beyond the extreme mass-
ratio limit.

Given the relevance of the first law of binary mechan-
ics in enhancing our knowledge of the two-body dynamics
in the comparable-mass case by using information from
the perturbative GSF framework, we generalize it here to
point particles carrying spins. We derive the first law of
mechanics using the canonical Arnowitt, Deser, Misner
(ADM) formalism [25] applied to spinning point particles
[26, 27]. In the PN context, both the ADM formalism
and the harmonic-coordinate approach have been devel-
oped up to high orders in the approximation, in order
to compute the conservative part of the orbital dynam-
ics of compact binaries. For non-spinning point masses,
the Hamiltonian [28–30] and the harmonic-coordinates
equations of motion [31–35] are known through 3PN or-
der. More recently, partial results at 4PN order have
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been reported [36, 37]. The logarithmic contributions to
the conservative dynamics at 4PN and 5PN orders are
also known [13, 22]. High-order spin-orbit effects have
been computed in harmonic coordinates [38–40] and in
the Hamiltonian [26, 41, 42]. See Ref. [43] for a review
of the canonical ADM formalism for spinning point par-
ticles, and its application in PN theory. In this paper we
shall not consider spin-spin couplings or higher-order ef-
fects in the spins. High-order spin-spin effects have been
computed in the Hamiltonian [26, 44–47] and within the
Effective Field Theory (EFT) approach [48–51].

The paper is organized as follows. In Secs. II and III
we review the Lagrangian and Hamiltonian formalisms
for systems of point particles carrying spins. In particu-
lar, we derive a crucial relationship between the redshift
observable and the variation of a general (Fokker-type)
Hamiltonian, valid at linear order in the spins. In Sec. IV
we derive the first law of mechanics for binary systems of
spinning point particles using the canonical ADM formal-
ism, and discuss some mathematical and physical con-
sequences of this law. Then, in Sec. V, we employ the
first law of mechanics and the ADM Hamiltonian to com-
pute the spin-orbit contributions to the redshift observ-
able through the (leading plus sub-leading) 2.5PN order.
We find full agreement between our results and those re-
cently obtained from a direct computation based on the
near-zone PN metric [52]. In Sec. VI we discuss the first
law in the particular case of binary black holes in corota-
tion. Finally, Sec. VII summarizes our main results and
discusses some prospects. Throughout this paper we use
“geometrized units” where G = c = 1.

II. LAGRANGIAN AND HAMILTONIAN OF A

SPINNING POINT PARTICLE

In this Section, we review some necessary material for
constructing a Lagrangian and then a Hamiltonian for a
spinning point particle in curved spacetime. The formal-
ism we shall use derives from the early works [53, 54]. It
has recently been developed in the context of the EFT
framework [48]. Alternatives and variants to this formal-
ism can be found in Refs. [26, 43, 55]. The formalism
yields for the equations of motion of spinning particles
and the precession of the spins the classic results valid in
general relativity [56–63].

Let us consider a single spinning point particle mov-
ing in a given curved “background” metric gµν(x). The
particle follows the worldline rµ(s), with tangent four-
velocity uµ = drµ/ds, where s is a parameter along the
representative worldline. In a first stage we do not require
that the four-velocity be normalized, i.e., s needs not be
the proper time elapsed along the worldline. To describe
some internal degrees of freedom to be associated with
the particle’s spin, we introduce a moving tetrad e µ

α (s)
along the trajectory. The tetrad is orthonormal, in the

sense that gµν e
µ

α e ν
β = ηαβ , and defines a “body-fixed”

frame.1 The rotation tensor Ωµν associated with that
tetrad is defined by

De µ
α

ds
= −Ωµνeαν , (2.1)

where D/ds ≡ uν∇ν is the covariant derivative with re-
spect to the parameter s along the worldline. Equiva-
lently, we have

Ωµν = eαµ
De ν

α

ds
. (2.2)

Because of the normalization of the tetrad the rotation
tensor is antisymmetric: Ωµν = −Ωνµ.

A. Lagrangian formulation

Following [48, 53], we look for an action for the spin-
ning particle that is at once: (i) a covariant scalar, (ii)
an internal Lorentz scalar, and (iii) reparametrization-
invariant (i.e., its form must be independent of the pa-
rameter used to follow the particle’s worldline). We shall
assume that the dynamical degrees of freedom are the
particle’s position rµ and the tetrad e µ

α . We restrict
ourselves to a Lagrangian depending only on the four-
velocity uµ, the rotation tensor Ωµν , and the metric gµν .
In particular, this confines the formalism we are using
to a pole-dipole model and to terms linear in the spins.2

Thus, the postulated “particle” action is of the type

Spart [r
µ, e µ

α ] =

∫

ds L̂part (u
µ,Ωµν , gµν) . (2.3)

We cover the Lagrangian L̂part with a hat in order to
distinguish it from the usual definition of the Lagrangian,
Lpart = L̂part ds/dt (with t the coordinate time), that we
shall use later.
As it is written, depending only on Lorentz scalars,

L̂part is automatically a Lorentz scalar. By performing an
infinitesimal coordinate transformation, one easily sees
that the requirement that the Lagrangian be a covariant
scalar specifies its dependence on the metric as being (see
e.g. Ref. [54])

2
∂L̂part

∂gµν
= pµuν + Sµ

ρΩ
νρ , (2.4)

1 Here ηαβ = diag(−1, 1, 1, 1) denotes the Minkowski metric. The
indices µ, ν, · · · are the usual spacetime covariant indices, while
α, β, · · · are the internal Lorentz indices. The inverse (or dual)

tetrad eαµ, defined by e µ
α eαν = δµν , satisfies ηαβ eαµe

β
ν = gµν .

We have also the completeness relation e µ
α eβµ = δβα.

2 Such a model is “universal” in the sense that it can be used
for black holes as well as neutrons stars. Indeed, the internal
structure of the spinning body appears only at the next O(S2),
e.g. through the rotationally induced quadrupole moment.
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where we have defined the conjugate linear momentum
pµ and the antisymmetric spin tensor Sµν as

pµ ≡
∂L̂part

∂uµ

∣

∣

∣

∣

Ω,g

, (2.5a)

Sµν ≡ 2
∂L̂part

∂Ωµν

∣

∣

∣

∣

u,g

. (2.5b)

Note that the right-hand side (RHS) of Eq. (2.4) is nec-
essarily symmetric by exchange of the indices µ and ν.
Finally, imposing the invariance of the action (2.3) by
reparametrization of the worldline, we find that the La-
grangian must be a homogeneous function of degree one
in the velocities uµ and Ωµν . Applying Euler’s theorem
to the function L̂part(u

µ,Ωµν) immediately gives

L̂part = pµu
µ +

1

2
SµνΩ

µν , (2.6)

where the functions pµ(u
ρ,Ωρσ) and Sµν(u

ρ,Ωρσ) must
be reparametrization invariant. Note that, at this stage,
their explicit expressions are not known. They will be
specified only once a spin supplementary condition (SSC)
is imposed, as discussed in Sec. II C below.
We now investigate the unconstrained variations of the

action (2.3) with respect to e µ
α , rµ, and gµν . First, we

vary it with respect to the tetrad e µ
α while keeping the

position rµ fixed. We must have a way to distinguish
intrinsic variations of the tetrad from those which are
induced by a change of the metric gµν . This is done by
decomposing the variation δe ν

α according to

δe ν
α = eαµ

(

δθµν +
1

2
δgµν

)

, (2.7)

in which we have introduced the antisymmetric tensor

δθµν ≡ eα[µδe
ν]

α , and where the corresponding symmet-
ric part is simply given by the variation of the metric,

i.e. eα(µδe
ν)

α = 1
2δg

µν . Then we can consider the inde-
pendent variations δθµν and δgµν . Varying with respect
to δθµν , but holding the metric fixed, gives the equation
of spin precession which is found to be

DSµν

ds
= Ω ρ

µ Sνρ − Ω ρ
ν Sµρ , (2.8)

or, alternatively, using the fact that the RHS of Eq. (2.4)
is symmetric,

DSµν

ds
= pµuν − pνuµ . (2.9)

We next vary with respect to the particle’s position rµ

while holding the tetrad e µ
α fixed. Operationally, this

means that we have to parallel-transport the tetrad along
the displacement vector, i.e., we have to impose

δrν∇νe
µ

α = 0 . (2.10)

A simple way to derive the result is to use locally inertial
coordinates, such that Γµ

νρ = 0 along the particle’s world-
line rµ(s). Then, Eq. (2.10) yields δe µ

α = δrν∂νe
µ

α =

−δrνΓµ
νρe

ρ
α = 0, and the variation gives the well-known

Mathisson-Papapetrou [58–60] equation of motion

Dpµ
ds

= −1

2
uνRµνρσS

ρσ . (2.11)

With more work, the equation (2.11) can also be derived
using an arbitrary coordinate system.
Finally, varying with respect to the metric (while keep-

ing δθµν = 0) gives the stress-energy tensor of the spin-
ning particle. We must take into account the scalarity of
the action, as imposed by Eq. (2.4), and we obtain the
standard result [56–63]

T µν
part =

∫

ds p(µ uν) δ
(4)(x− r)√−g

−∇ρ

∫

ds Sρ(µ uν) δ
(4)(x − r)√−g , (2.12)

where δ(4)(x−r) denotes the four-dimensional Dirac func-
tion, such that

∫

d4x δ(4)(x) = 1. It can easily be checked
that ∇νT

µν
part = 0 as a consequence of the equation of mo-

tion (2.11) and the equation of spin precession (2.9).

B. Hamiltonian formulation

We now want to define a Hamiltonian associated with
the Lagrangian (2.6). Because of the reparametrization-
invariance condition, performing a Legendre transforma-
tion with respect to the variables uµ and Ωµν yields a
vanishing result. Different routes are possible. One may
add in the action a mass-shell constraint with a Lagrange
multiplier and vary the action keeping the momentum pµ
as an independent variable. Through various changes of
variables and gauge fixings, the action is transformed into
an action which possesses Euler-Lagrange equations of
the form of Hamilton’s equations, such that the canonical
(ADM) Hamiltonian can be read off from these equations
(see Ref. [43] for a review).
A different strategy, that we shall follow here, is closer

to the usual procedure of classical mechanics. It consists
of using as internal dynamical variables the six rotational
degrees of freedom of Lorentz matrices, and to define the
Hamiltonian by means of a 3 + 1 split, with a preferred
time coordinate, with the usual Legendre transformation
[55]. The tetrad e µ

α is decomposed into the product of

an internal Lorentz transformation Λβ
α and a reference

orthonormal tetrad field ǫ µ
α (x), which is associated to

the background metric gµν(x) and is evaluated at the
particle’s position, xµ = rµ(s).3 The point is that us-
ing as dynamical variables the six internal angles φa of

3 Such decomposition was already implicit in the variation of the
tetrad we performed to derive the spin precession equation (2.9).
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Lorentz matrices Λβ
α allows to have usual-looking Euler-

Lagrange equations. We thus write4

e µ
α (φ, r) = Λβ

α(φ) ǫ
µ

β (r) . (2.13)

Next, we perform a 3+1 decomposition of all the fields.
In particular, we split the particle’s position and coordi-
nate velocity according to rµ = (t, r) and vµ = (1,v),
where v ≡ dr/dt and boldface letters denote ordinary
spatial vectors (often also denoted with spatial indices i,
j, · · · = 1, 2, 3). We choose for the parameter s along
the worldline the proper time τ and define the so-called
redshift variable z by [11, 22]

z ≡ dτ

dt
=

[

−gµν(t, r) vµvν
]1/2

. (2.14)

Then the ordinary Lagrangian Lpart ≡ zL̂part, such that
Spart =

∫

dt Lpart, becomes a function of the variables

t, r, v, φa, and the ordinary derivative φ̇a ≡ dφa/dt,
with the dependence in t and r entering only through
the background metric or, rather, through the reference
tetrad evaluated at the particle’s location:

Lpart = Lpart

[

v, φa, φ̇a; ǫ µ
α (t, r)

]

. (2.15)

We have ordinary Euler-Lagrange equations for the gen-
eralized coordinates (r, φa) of the spinning particle (spa-
tial vectors ranging over 3 components i = 1, 2, 3 while
the rotation label runs over a = 1, · · · , 6):

dPi

dt
=

∂Lpart

∂ri
, (2.16a)

dPφa

dt
=

∂Lpart

∂φa
, (2.16b)

where the conjugate momenta are defined in the usual
way by Pi ≡ ∂Lpart/∂v

i and Pφa
≡ ∂Lpart/∂φ̇

a. They
explicitly read

Pi = pi +
1

2
Sµν ǫ

αµ∇iǫ
ν

α , (2.17a)

Pφa
=

1

2
Sαβ Λ

γβ
∂Λ α

γ

∂φa
, (2.17b)

where Sαβ = e µ
α e ν

β Sµν denote the tetrad components
of the spin tensor in the “body-fixed” frame. The Euler-
Lagrange equations (2.16a) and (2.16b) are equivalent
to the equations of motion (2.11) and spin precession
(2.9), respectively [55]. In particular, the spin precession
equation is recovered in this formalism as the natural fact
that the spin components remain constant in the frame
attached to the body:

dSαβ

dτ
= 0 . (2.18)

4 The indices a, b = 1, · · · , 6 label the internal angles φa of Lorentz
matrices satisfying ηγδ Λ

γ
αΛ

δ
β = ηαβ . Since ǫ µ

α is a tetrad we

have gµν ǫ µ
α ǫ ν

β
= ηαβ and, of course, still gµν e µ

α e ν
β

= ηαβ .

Finally, the Hamiltonian is simply given in this ap-
proach by the Legendre transformation as

Hpart = Pi v
i + Pφa

φ̇a − Lpart , (2.19)

and Hamilton’s equations yield Eqs. (2.11) and (2.9), or
equivalently (2.18) [55]. The Hamiltonian is a function
of conjugate variables and again depends on the position
rµ only through the background tetrad:

Hpart = Hpart

[

Pi, φ
a, Pφa

; ǫ µ
α (t, r)

]

. (2.20)

An explicit computation of the Hamiltonian (2.19) with
the help of Eqs. (2.6) and (2.17) yields [55]

Hpart = −pt −
1

2
Sµν ǫ

αµ∇tǫ
ν

α . (2.21)

Both terms should be understood as being functions of
the conjugate variables, like in Eq. (2.20). As in ordi-
nary classical mechanics, this is obtained by inverting
Eqs. (2.17) to obtain vi and φ̇a as functions of ri, Pi, φ

a

and Pφa
. However, here we need an additional relation

to express pt as a function of the conjugate variables; this
is provided by Eq. (2.6) which, in the 3 + 1 split, gives
pt = Lpart − vipi − z

2SµνΩ
µν .

C. Relating the Hamiltonian to the redshift

In this Section we shall relate the Lagrangian Lpart and
the HamiltonianHpart to the redshift variable z. To do so
we must introduce a realistic physical model for the spin
of the point particle in the pole-dipole approximation.

Up to now we have considered unconstrained variations
of the action (2.3), which describes the particle’s inter-
nal degrees of freedom by the 6 independent components
of the tetrad e µ

α — a 4 × 4 matrix subject to the 10

constraints gµν e
µ

α e ν
β = ηαβ — or equivalently by the 6

internal angles φa. To correctly account for the number
of degrees of freedom associated with the spin, we must
impose 3 SSC. In this Section, we adopt the Tulczyjew
covariant conditions [56, 57]

Sµνpν = 0 . (2.22)

It would be possible to specify the Lagrangian in (2.3) so
that the constraints (2.22) are directly the consequence of
the equations derived from that Lagrangian [53]. Alter-
natively, one could also introduce Lagrange multipliers
into the action to enforce these constraints [43]. Here,
for the sake of simplicity, we shall rather impose the con-
straints (2.22) directly in the space of solutions. Fur-
thermore, by contracting Eq. (2.9) with pν and using the
equation of motion (2.11), one obtains the relation link-
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ing the four-momentum pµ to the four-velocity uµ as5

pµ(pu) +m2uµ =
1

2
uλRν

λρσS
ρσSµν , (2.23)

where we have defined m2 ≡ −gµνpµpν . The parameter
m is the mass of the particle, and it can be checked us-
ing Eqs. (2.22) and (2.23) that it is constant along the
trajectory, that is dm/dτ = 0.
Henceforth we restrict our attention to spin-orbit (SO)

interactions, which are linear in the spins. Neglecting
quadratic spin-spin (SS) and higher-order interactions,
the linear momentum is simply proportional to the four-
velocity: pµ = muµ + O(S2). To linear order, Eq. (2.9)
reduces to the equation of parallel transport for the spin
tensor, DSµν/dτ = O(S2), and the corresponding stress-
energy tensor reads

T µν
part = m

vµvν

z

δ(3)(x− r)√−g

−∇ρ

(

Sρ(µvν)
δ(3)(x− r)√−g

)

+O(S2) , (2.24)

where δ(3)(x−r) is the three-dimensional Dirac function,
such that

∫

d3x δ(3)(x) = 1, and we use the parametriza-
tion by the proper time τ and the notation (2.14), with
vµ = z uµ. Furthermore, thanks to (2.6) the Lagrangian
at linear order in the spin reads

Lpart = z

(

−m+
1

2
SµνΩ

µν

)

+O(S2) . (2.25)

We now want to compute from Eq. (2.25) the partial
derivative of the Lagrangian with respect to the mass
m of the particle, while holding the dynamical degrees
of freedom r, v, φa, and φ̇a fixed. The first term in
(2.25) will contribute in an obvious way; however we must
also control the partial derivative of the spin tensor Sµν ,
which is the conjugate of the rotation tensor Ωµν , with
respect to the mass. Let us show that, in fact, the second
term in Eq. (2.25) will not contribute to the result at the
required O(S).
To show this we choose the time-like tetrad vector to

agree with the four-momentum rescaled by the mass, i.e.
e µ
0 = pµ/m. Then, using Eq. (2.1) and the equation of
motion (2.11) we get Ωµνpν = 1

2u
νRµ

νρσS
ρσ. Compar-

ing with the SSC (2.22) and using pµ = muµ + O(S2),
we infer that Sµν and Ωµν must be proportional, up to
a small curvature coupling to the spin and some higher-
order spin terms: Sµν ∝ Ωµν− 1

2mRµνρσS
ρσ+O(S3). For

instance, such proportionality relation is verified in mod-
els for the relativistic spherical top [48, 53], and the con-
stant of proportionality is associated with the moment of

5 We denote (pu) ≡ pνuν . By further contracting Eq. (2.23) with
uµ we obtain an explicit expression for (pu), which can then be
substituted back into (2.23).

inertia, say I, of the spherical top. The previous relation
can be solved iteratively, yielding an expression for Sµν

as a function of m, I, Rµνρσ, and Ωµν , which schemati-

cally reads S ∼ I
[

Ω− I
2mRΩ +

(

I
2m

)2
RRΩ + · · ·

]

. The
functional dependence on m is explicit in this expression.
Taking a partial derivative with respect to the mass, and
replacing back Ωµν in terms of the spin, we deduce that
∂Sµν/∂m = O(S). Since the rotation tensor is alsoO(S),
we finally get Ωµν∂Sµν/∂m = O(S2). We thus conclude
that the second term in Eq. (2.25) will not contribute at
linear order in the spin. Thus, we have proven within the
covariant SSC (2.22) that

∂Lpart

∂m
= −z +O(S2) . (2.26)

Using the properties of the Legendre transformation
(2.19), we readily find that the partial derivative of the
Hamiltonian with respect to the mass, holding the con-
jugate variables r, Pi, φ

a, and Pφa
fixed, is

∂Hpart

∂m
= z +O(S2) . (2.27)

The latter result will be central to the derivation of the
first law of mechanics for binary systems of spinning par-
ticles in Sec. IV. For the moment we note that it has
been proven only for a single spinning particle moving in
a given curved “background” spacetime.

III. LAGRANGIAN AND HAMILTONIAN OF

INTERACTING SPINNING PARTICLES

In this Section, we consider a self-gravitating matter
system consisting ofN spinning point particles, which we
shall label by A,B = 1, · · · , N . The Lagrangian for each
particle is of the form (2.15) in a given metric, so the sys-
tem of N particles (interacting only through gravitation)
is described by the matter Lagrangian

Lmat =

N
∑

A=1

Lpart

[

vA, φ
a
A, φ̇

a
A,mA; ǫ

µ
α (rA)

]

. (3.1)

Here we have added for later convenience the depen-
dence on the mass mA = (−pAµ pµA)

1/2. Neglecting terms
quadratic or higher order in the spins, this Lagrangian
reduces to

Lmat =
N
∑

A=1

zA

[

−mA +
1

2
SA
µνΩ

µν
A +O(S2

A)

]

. (3.2)

In the above equation, the spins SA
µν should be seen as

functions of rA, vA, φ
a
A, and φ̇a

A through their relations
to the rotation tensors Ωµν

A , as discussed in the previous
Section. Next, we add the usual Einstein-Hilbert term
for gravitation, LEH = 1

16π

∫

d3x
√−gR, and obtain the
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total Lagrangian describing the “matter + gravitation”
system as

L = Lmat

[

vA, φ
a
A, φ̇

a
A,mA; ǫ

µ
α (rA)

]

+ LEH

[

gµν
]

, (3.3)

in which the spacetime metric reads gµν = ǫαµ ǫ
α
ν , and

the brackets refer, with obvious notations, to a func-
tional dependence. Varying the Lagrangian (3.3) with
respect to the tetrad ǫ µ

α we get the Einstein field equa-
tions Gµν = 8π T µν

mat, where the matter tensor is a sum
of terms of the type (2.24), one for each particle.

A. Fokker Lagrangian

We shall define the Fokker Lagrangian [64] by for-
mally solving the Einstein field equations and eliminat-
ing the gravitational field degrees of freedom in Eq. (3.3).
Writing the metric as gµν = ηµν + hµν , the field equa-
tions are solved perturbatively in powers of hµν by us-
ing the graviton propagator. As usual we discard in the
Einstein-Hilbert action a total derivative and consider
instead the Landau-Lifshitz Lagrangian, which involves
only first-order derivatives of the metric; symbolically
LLL = 1

16π

∫

d3x
√−g ΓΓ. Furthermore, we need to spec-

ify a coordinate system to solve the field equations; this
is done by adding some gauge-fixing terms to the action.
Choosing the harmonic coordinate system, this yields the
“harmonic-gauge-relaxed” Lagrangian Lharm

LL which con-
tains at quadratic order the graviton propagator Pµνρσ,
say Lharm

LL = − 1
2

∫

d3x [hP−1h+O(h3)] (see e.g. App. A
of Ref. [65]). We thus consider

Lharm = Lmat

[

vA, φ
a
A, φ̇

a
A,mA; ǫ

µ
α (rA)

]

+ Lharm
LL

[

gµν
]

.

(3.4)

Next, we perturbatively solve the harmonic-gauge Ein-
stein field equations and we formally re-expand the solu-
tion in a PN approximation. Expanding the retardations
of retarded integrals in a PN scheme yields accelerations
and time derivative of accelerations. It will also generate
higher time derivatives of the spin variables. The solu-
tion, valid at any point xµ in the near-zone, is a function
of all the source parameters,

ǭ µ
α (x) ≡ ǭ µ

α

[

x; rB,vB , aB, φ
a
B , φ̇

a
B, φ̈

a
B ,mB

]

, (3.5)

where we collectively denote the higher time derivatives
by aB = (dvB/dt, d

2vB/dt
2, · · · ) and symbolically by φ̈a

B

for the spin variables. Then the near-zone metric solution
is ḡµν = ǭαµ ǭ

α
ν . Thus, by construction the solution (3.5)

satisfies

δLharm

δǭ µ
α
≡ δLmat

δǫ µ
α

[

vA, φ
a
A, φ̇

a
A,mA; ǭ

µ
α (rA)

]

+
δLharm

LL

δǫ µ
α

[

ḡµν
]

= 0 . (3.6)

The Fokker Lagrangian [64] is now obtained by insert-
ing the formal solution (3.5) into (3.4); hence

Lharm
F = Lmat

[

vA, φ
a
A, φ̇

a
A,mA; ǭ

µ
α (rA)

]

+ Lharm
LL

[

ḡµν
]

.

(3.7)

This Lagrangian gives the correct equations of motion
(and spin precession) for the matter variables. Its vari-
ational derivative with respect to either the position rA
or spin parameters φa

A [which we collectively denote as
σA ≡ (rA, φ

a
A)] reads

δLharm
F

δσA
=

δLmat

δσA

[

vB , φ
a
B, φ̇

a
B ,mB; ǭ

µ
α (rB)

]

+
δǭ µ

α

δσA

δLharm

δǭ µ
α

, (3.8)

where the last term vanishes thanks to Eq. (3.6).6 The
equations of motion and precession are precisely those we
expect for spinning particles within the background ǭ µ

α

generated by all the particles themselves, i.e.

δLmat

δσA

[

vB, φ
a
B , φ̇

a
B,mB; ǭ

µ
α (rB)

]

= 0 . (3.9)

To obtain this result, the Fokker Lagrangian (3.7) must
involve not only the matter part evaluated in the back-
ground generated by the particles, but also crucially the
Einstein-Hilbert (or Landau-Lifshitz) part for the gravi-
tational field.
We can now use the properties of the Fokker La-

grangian to compute its partial derivative with respect
to one of the masses, say mA, holding all dynamical vari-
ables (and the other masses) fixed. As before we obtain

∂Lharm
F

∂mA
=

∂Lmat

∂mA

[

vB , φ
a
B, φ̇

a
B ,mB; ǭ

µ
α (rB)

]

+
∂ǭ µ

α

∂mA

δLharm

δǭ µ
α

, (3.10)

where again the last term vanishes thanks to Eq. (3.6),
such that it remains only

∂Lharm
F

∂mA
=

∂Lpart

∂mA

[

vA, φ
a
A, φ̇

a
A,mA; ǭ

µ
α (rA)

]

, (3.11)

where we used Eq. (3.1) to express the result in terms of
the single-particle Lagrangian for particle A. From (3.2)
and the proof given above Eq. (2.26), we have, at linear
order in the spin SA,

∂Lharm
F

∂mA
= −zA +O(S2

A) . (3.12)

6 Notice that in the last term of Eq. (3.8) the functional derivative
δǭ µ

α /δσA is to be taken in a generalized sense, because of the
presence of accelerations aB and φ̈a

B .
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We emphasize that this result is valid in the background
field generated by the system of N particles; the redshift
variable therein reads in full glory

zA =
(

−ḡµν
[

rA; rB,vB , aB, φ
a
B , φ̇

a
B, φ̈

a
B ,mB

]

vµAv
ν
A

)1/2

.

(3.13)
In particular it depends on the masses mB of the other
particles in the system.

B. Fokker Hamiltonian

That a relationship analogous to Eq. (3.12) holds also
for the Hamiltonian is not completely straightforward,
because of the presence of higher-order derivatives (no-
tably accelerations) in the harmonic-coordinate Fokker
Lagrangian (3.7). The higher-order derivatives come
from the replacement of the metric by the perturbative
solution (3.5), and from explicit time derivatives in the
self-interaction terms (such as ∂h ∂h) of the graviton ac-
tion. However, as shown in Ref. [66] (see also [33, 67]),
one can remove from a PN expanded Lagrangian the
higher-order derivatives of vA through a suitable redefi-
nition of the position variables, rA → rnewA , and the ad-
dition of a total time derivative to the Lagrangian.7 This
process can be implemented to all orders in PN theory
[33, 66, 67]. The perturbative method of Ref. [66] is very
general, and there should be no obstacle in applying it
to the spin variables, i.e. in removing from a Lagrangian
the higher-order derivatives of φ̇a

A through a redefinition
φa
A → (φa

A)
new

and the addition of a total time derivative.
Thus we can eliminate all the higher-order time deriva-
tives in the harmonic-coordinate Fokker Lagrangian (3.7)
by introducing the new (non-harmonic) Lagrangian

LF = Lharm
F +

δLharm
F

δrA
δrA +

δLharm
F

δφa
A

δφa
A +

dG

dt
, (3.14)

where we denote δrA ≡ rnewA − rA and δφa
A ≡ (φa

A)
new −

φa
A, and G is some function of time that does not affect

the dynamics. The Lagrangian (3.14) now depends on
rnewA and vnew

A , but no longer on accelerations anewA ; and it

depends on the spins only through (φa
A)

new and (φ̇a
A)

new.
Also, the non-harmonic metric (or tetrad) solution of the
field equations in the new variables takes the same form
as in Eq. (3.5), but without the contributions from higher
time derivatives. This is because the redefinition of the
positions rA → rnewA can be seen as being induced by a
coordinate transformation of the “bulk” near-zone met-
ric, and that metric when evaluated at the location of
the particles is necessarily free of higher derivatives (see
Sec. 3 in Ref. [67]). Thus, we have the same result as in
Eq. (3.12). We shall from now on remove the superscript

7 As usual, non-linear contributions in accelerations can be re-
moved by the addition of so-called “multiple-zero” terms [68, 69].

“new” on all variables, but we shall keep in mind that
they correspond to non-harmonic coordinates.
Finally, we have an ordinary Lagrangian LF depend-

ing on the dynamical variables (rA,vA, φ
a
A, φ̇

a
A); like in

Eq. (2.19) we apply a standard Legendre transformation
to obtain the corresponding Hamiltonian, say HF. Defin-
ing PA

i ≡ ∂LF/∂v
i
A and PA

φa
≡ ∂LF/∂φ̇

a
A, we have

HF =

N
∑

A=1

(

PA
i viA + PA

φa
φ̇a
A

)

− LF , (3.15)

where vA and φ̇a
A are now viewed as functions of the

conjugate variables rB, P
B
i , φa

B , and PB
φa
, obtained by

inverting the definitions of the momenta PA
i and PA

φa
.

And like in Eq. (2.27), a consequence of the Legendre
transformation (3.15) is that the partial derivative of the
Hamiltonian with respect to the mass mA, holding the
conjugate variables rB, P

B
i , φa

B , and PB
φa

(and the masses

mB 6= mA) fixed, is

∂HF

∂mA
= zA +O(S2

A) . (3.16)

The result (3.16) is the main ingredient of the first law of
mechanics for binary systems of spinning point particles,
which is the topic of Sec. IV.

C. Constructing the canonical Hamiltonian

Working within the ADM Hamiltonian formalism, the
authors of Refs. [26, 27] showed that, starting from the
unconstrained Hamiltonian depending on the spin vari-
ables Sµν , it is possible to build the constrained canonical
Hamiltonian for gravitationally interacting particles by
imposing suitable constraints and gauge conditions, and
making a change of variables for the positions, momenta,
and spins of the particles. On the other hand, starting
from the Hamiltonian (2.19) which depends on the spin
variables φa and Pφa

, the construction of the constrained
canonical Hamiltonian for a single spinning particle in a
given curved spacetime was explicitly done in Ref. [55],
thereby extending to curved spacetime the classic work
by Hanson and Regge [53] for a relativistic top in flat
spacetime. Being guaranteed that a constrained, canoni-
cal ADM Hamiltonian exists for gravitationally interact-
ing spinning point particles [26, 27, 43], henceforth we
assume that the construction of Ref. [55] can be extended
to interacting particles. Let us then briefly review how
the constrained Hamiltonian for a single spinning particle
was built in Ref. [55].
We start from the unconstrained Hamiltonian for a sin-

gle spinning particle Hpart(r, Pi, φ
a, Pφa

), together with
the Poisson bracket operation {· , ·} (see Sec. III B in
Ref. [55] for the explicit expressions of the Poisson brack-
ets between the relevant variables). We consider a set of
constraints ξk = 0 with k = 1, · · · , 2M (with M < 9)
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such that the matrix Ckl = {ξk, ξl} is not singular. Fol-
lowing Ref. [53], these constraints can be imposed by (i)
replacing the original Poisson brackets with Dirac brack-
ets,8 and (ii) inserting the constraints directly in the
original, unconstrained Hamiltonian. More specifically,
Ref. [55] first imposed the Newton-Wigner SSC [53], suit-
ably generalized to curved spacetime, to eliminate 3 out
of the 6 variables Pφa

(a = 1, · · · , 6), and an additional
constraint to eliminate 3 out of the 6 variables φa, such
that the constraint hypersurface contains the same num-
ber of configuration coordinates and conjugate momenta.
Then, the constrained Hamiltonian HC(r,p,S) and the
phase-space algebra of the constrained system were com-
puted, showing that they are canonical at linear order in
the particle’s spin. Thus, the variables r, p, and S—with
Si = 1

2ε
ijkSjk where Sjk = ǫ µ

j ǫ ν
k Sµν (i, j, k = 1, 2, 3)—

obey the standard commutation relations {ri, pj} = δij
and {Si, Sj} = εijkSk, all other brackets vanishing. As
usual, this algebra can be used to compute the dynami-
cal evolution of any (time-independent) function f of the

canonical variables according to ḟ ≡ df/dt = {f,H}. Fi-
nally, the constrained canonical Hamiltonian constructed
in Ref. [55] coincides with the ADM Hamiltonian for a
spinning particle moving in a given background.
As said, we shall assume that the construction above

can be extended to gravitationally interacting spinning
point particles. The resulting constrained Hamiltonian
HC(rA,pA,SA) with A = 1, · · · , N with usual canonical
variables will coincide with the ADM canonical Hamil-
tonian. Furthermore, being constructed from the class
of Fokker Hamiltonians (3.15), it necessarily satisfies
Eq. (3.16). Thereafter, we restrict ourselves to a binary
system of spinning point masses, i.e. A = 1, 2, and we
denote the canonical ADM Hamiltonian by H .

IV. FIRST LAW OF MECHANICS FOR BINARY

POINT PARTICLES WITH SPINS

A. Derivation of the first law

In Section III B we proved the remarkable relation-
ship (3.16), valid when neglecting non-linear terms in the
spins of the type O(S2

1) and O(S2
2), i.e.

∂H

∂mA
= zA . (4.1)

Note that this relation is not only valid for linear contri-
butions O(S1) and O(S2), but also for non-linear spin
contributions of the type O(S1S2). Here the redshift

8 For two phase-space functions A and B, the Dirac brackets are
given by {A,B}

D
= {A,B}+ {A, ξk}{B, ξl}[C−1]kl, and repre-

sent the projection of the original symplectic structure onto the
phase-space surface defined by the constraints.

quantity zA is defined in terms of the coordinate four-
velocity vµA = (1,vA) of particle A, in ADM-type coordi-
nates, by

zA =
dτA
dt

=
(

−ḡµν
[

rA; rB,vB ,SB,mB

]

vµAv
ν
A

)1/2

,

(4.2)
with ḡµν being the background metric generated by the
two particles, and evaluated at the location of particle A.
Note that the particle velocity vA in the RHS of Eq. (4.2)
should be viewed as a function of the conjugate variables
rA, pA, SA, obtained by inverting the definition of the
momentum pA. We emphasize that Eqs. (4.1)–(4.2) are
valid for generic orbits and spin configurations. For cir-
cular orbits and spins aligned or anti-aligned with respect
to the orbital angular momentum, zA would coincide with
the (gauge-invariant) redshift observable introduced by
Detweiler [11]. This is the redshift of a photon emitted
from the particle and observed at a large distance, along
the symmetry axis ẑ perpendicular to the orbital plane.
In order to derive the first law, we reduce the ADM

HamiltonianH(rA,pA,SA,mA), given in a generic frame
of reference, to the center-of-mass Hamiltonian, say
H(r,p,SA,mA). This is achieved by first imposing that
the ADM linear momentum PADM = p1 + p2 vanishes,
then substituting the individual momenta pA for the rel-
ative linear momentum p ≡ p1 = −p2, and denoting the
coordinate separation by r = r1 − r2.
We shall also limit our study to spins aligned or anti-

aligned with the orbital angular momentum L, and to
circular orbits. Defining L = L ẑ, where ẑ is the unit vec-
tor orthogonal to the orbital plane, we have SA = SA ẑ,
with |SA| < m2

A. Using polar coordinates (r, ϕ) in the
orbital plane, we can express the Hamiltonian as a func-
tion of the separation r = |r|, of the radial momentum pr,
of the azimuthal momentum pϕ = L, and of the masses
mA and amplitudes SA of the spins of the two point par-
ticles. An unconstrained variation of the Hamiltonian
H(r, pr, pϕ, SA,mA) thus gives

δH =
∂H

∂r
δr +

∂H

∂pr
δpr +

∂H

∂L
δL

+
∑

A

(

∂H

∂mA
δmA +

∂H

∂SA
δSA

)

, (4.3)

where to ease the notation we have omitted to indicate
that the partial derivatives with respect to r, pr, L,
SA, and mA are computed keeping all the other vari-
ables fixed. If the variation compares one solution of the
Hamiltonian dynamics to a neighbouring solution, then
Hamilton’s equations of motion must be satisfied. For
circular orbits, this yields ∂H/∂r = −ṗr = 0, as well as
∂H/∂pr = ṙ = 0. The constant circular-orbit frequency
is given by ∂H/∂L = ϕ̇ = Ω, and the Hamiltonian is nu-
merically equal to the ADM mass: H = M . Therefore,
“on shell” we have

δM = Ω δL+
∑

A

(

∂H

∂mA
δmA +

∂H

∂SA
δSA

)

. (4.4)
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At linear order in the spins, the Hamiltonian can be
written as the sum of an orbital part HO, which does not
depend on the spins SA, and a spin partHS =

∑

A ΩASA.
The partial derivatives of the Hamiltonian with respect
to the spins,

ΩA =
∂H

∂SA
, (4.5)

are the so-called precession frequencies of the spins. In-
deed, using the algebra satisfied by the canonical vari-
ables, the spins SA can easily be seen to satisfy — in the
most general, precessing case — the Newtonian-looking
(but exact) precession equations ṠA = ΩA × SA. Thus,
the usual Euclidean norms of the canonical spins are con-
served, SA · SA = const, and SA are also referred to as
the constant-in-magnitude spins, or constant spins.9

Finally, combining Eqs. (4.1), (4.4), and (4.5), the first
law of mechanics takes on the simple form10

δM − Ω δL =
∑

A

(

zA δmA +ΩA δSA

)

. (4.6)

This differential relation gives the changes in the ADM
mass M and orbital angular momentum L of the binary

system under small changes in the individual masses mA

and spins SA of the two point particles. We emphasize
that Eq. (4.6) is valid for any spin magnitude |SA| < m2

A.
It is convenient to replace the orbital angular momen-

tum L in favor of the total (ADM-like) angular momen-
tum J . For aligned or anti-aligned spins, we simply have

J = L+
∑

A

SA . (4.7)

In terms of J , the first law (4.6) reads

δM − Ω δJ =
∑

A

[

zA δmA + (ΩA − Ω) δSA

]

. (4.8)

We recall that the expressions (4.6) and (4.8) of the first
law are, in principle, valid only at linear order in the am-
plitudes SA of the constant (or canonical) spin variables
SA. It is true that the definitions (4.5) of the precession
frequencies do not require that the Hamiltonian H be
linear in the spins; if contributions quadratic (or higher)
in the spins were included in the Hamiltonian, then the
precession frequencies ΩA would become functions of the
spins SA. Nevertheless, our proof in Sec. III of the result
(3.16) is only valid at linear order in the spins.

9 Note that the constant spins are not uniquely defined, because a
local Euclidean rotation leaves the magnitude SA ·SA of the spin
SA unchanged. However, for spins aligned or anti-aligned with
the orbital angular momentum, this remaining gauge freedom is
irrelevant, as it does not affect the (algebraic) magnitude SA.

10 A similar result was previously established in [70], see Eq. (24)
there, although without the crucial mass variation terms zA δmA

in the right-hand side.

B. Consequences of the first law

We now explore some consequences of the first law for
spinning point particles. In particular, we establish alge-
braic expressions which can be regarded as first integrals
associated with the variational relations (4.6) and (4.8).
For two spinning point particles with masses mA and

spins SA, on a circular orbit with azimuthal frequency
Ω, the ADM mass M , orbital angular momentum L, red-
shifts zA and precession frequencies ΩA are all functions
of the five independent variables (Ω,m1,m2, S1, S2).
Therefore, the first law (4.6) is equivalent to the following
set of partial differential equations:

∂M

∂Ω
− Ω

∂L

∂Ω
= 0 , (4.9a)

∂M

∂mA
− Ω

∂L

∂mA
= zA , (4.9b)

∂M

∂SA
− Ω

∂L

∂SA
= ΩA . (4.9c)

Note that the relations (4.9a) and (4.9b) are unchanged
with respect to the results in the non-spinning case [see
Eqs. (2.40) and (2.41) of Paper I], where they have been
checked up to 3PN order plus the logarithmic contribu-
tions at 4PN and 5PN order. However, in the spinning
case we have the additional equations (4.9c) relating the
precession frequencies ΩA to the partial derivatives of M
and L with respect to the spins SA.
By combining Eqs. (4.9a)–(4.9b) with numerical cal-

culations of the GSF effect on the redshift z1 of a non-
spinning point particle on a circular orbit around a
Schwarzschild black hole [11, 23, 71], the exact expres-
sions of the total massM and orbital angular momentum
L could be determined, at leading order beyond the test-
particle approximation [19]. This result was used in [20]
(see also Ref. [21]) to improve the knowledge of the EOB
model [7, 8, 72] for non-spinning binaries. We leave to fu-
ture work the generalization of these findings to spinning
point masses.
By commutation of partial derivatives, Eqs. (4.9b) and

(4.9c) can be combined to give the interesting relation

∂zA
∂SB

=
∂ΩB

∂mA
. (4.10)

This equation relates the variation in the redshift zA of
particle A under a small change in the spin SB of particle
B to the variation of the precession frequency ΩB of par-
ticle B under a small change in the mass mA of particle
A. Therefore, for A 6= B, Eq. (4.10) reflects some equi-
librium state of the spinning point particles under their
mutual gravitational attraction. For A = B, we obtain
a non-trivial relation between the redshift (coinciding, in
adapted coordinates, with the helical Killing energy) and
the precession frequency of each spinning point particle.
We now derive the first integral associated with the

variational first law (4.6) by following the same steps as
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in the proof given in the non-spinning case in Paper I.
First, we introduce the convenient combination

M≡M − ΩL . (4.11)

Making the change of variables (Ω,m1,m2, S1, S2) →
(Ω,m, ν, χ1, χ2), where m ≡ m1 +m2 is the total mass,
ν ≡ m1m2/m

2 the symmetric mass ratio, and χA ≡
SA/m

2
A the dimensionless spins, Eqs. (4.9b)–(4.9c) can

be combined to give

∑

A

(

mAzA + 2ΩASA

)

=
∑

A

(

mA
∂M
∂mA

+ 2SA
∂M
∂SA

)

= m
∂M
∂m

. (4.12)

Next, we notice that the ratio M/m is dimensionless
and symmetric by exchange m1 ↔ m2 of the particles; it
must thus be a function of mΩ, ν, χ1, and χ2; see e.g.

Eqs. (5.7) below. This last observation implies the rela-
tionship m∂(M/m)/∂m = Ω ∂(M/m)/∂Ω, which when
combined with (4.9a) and (4.12) yields the first integral
relation

M − 2ΩL =
∑

A

(

mAzA + 2ΩASA

)

. (4.13)

Alternatively, Euler’s theorem for homogeneous functions
provides a more straightforward proof of the result (4.13).
Since the Einstein field equations do not contain any priv-
ileged mass scale, the ADM mass must be a homogeneous

function of degree one in L1/2, mA and S
1/2
A . Hence, Eu-

ler’s theorem implies

M(L,mA, SA) = L1/2 ∂M

∂L1/2

+
∑

A

(

mA
∂M

∂mA
+ S

1/2
A

∂M

∂S
1/2
A

)

, (4.14)

which when combined with the first law (4.6) immedi-
ately yields the first integral relation (4.13). This result
generalizes to spinning point particles the first integral
relation derived in the non-spinning case [see Eq. (1.2) of
Paper I], as it involves appropriate additional spin terms.
Furthermore, we can use the previous results to obtain

a relationship between the spin contributions to the ADM
mass M and the sum

∑

A mAzA of the redshifted masses.
Indeed, Eqs. (4.10) and (4.9c) successively imply

∂

∂SB

∑

A

mAzA =
∑

A

mA
∂ΩB

∂mA
=

∂

∂SB

∑

A

mA
∂M
∂mA

.

(4.15)
By combining Eqs. (4.12) and (4.13), we can easily re-
place the sum

∑

A mA∂M/∂mA in the RHS by the ex-
pression −M +2M− 2

∑

A SA∂M/∂SA. At linear order
in the spins, ∂2M/(∂SA∂SB) = 0, and we find

∂

∂SB

(

M +m1z1 +m1z2
)

= 0 . (4.16)

This simple relation immediately gives the SO contribu-
tions to the ADM mass M once those in the redshift
observables z1 and z2 are known, and vice versa.
Until now, all results were given in terms of the or-

bital angular momentum L. We can rewrite them using
the total angular momentum (4.7) instead. The partial
differential equations (4.9) then become

∂M

∂Ω
− Ω

∂J

∂Ω
= 0 , (4.17a)

∂M

∂mA
− Ω

∂J

∂mA
= zA , (4.17b)

∂M

∂SA
− Ω

∂J

∂SA
= ΩA − Ω . (4.17c)

Equation (4.17a) is the “thermodynamical” relation com-
monly used in PN theory for quasi-circular orbits (see,
e.g., Refs. [29, 73]), or in the construction of sequences
of quasi-equilibrium initial data for binary black holes
and binary neutrons stars [74–77]. In terms of the total
angular momentum, Eq. (4.13) becomes

M − 2ΩJ =
∑

A

[

mAzA − 2(Ω− ΩA)SA

]

, (4.18)

which is, as expected, the first integral associated with
the variational first law (4.8). The existence of such a
simple, linear, algebraic relation between the local quan-
tities zA and ΩA on one hand, and the global quantities
M and J on the other hand, is noticeable.

V. SPIN-ORBIT EFFECTS IN THE PARTICLE’S

REDSHIFT OBSERVABLE

We employ the ADM Hamiltonian to derive the spin-
orbit terms at next-to-leading 2.5PN order in the parti-
cle’s redshift observable (or helical Killing energy) using
the relation (4.1). We keep neglecting all terms O(S2

A)
or higher. We do not include non-linear spin interactions
of the type O(S1S2) either, even though they must sat-
isfy our first law of mechanics. The center-of-mass ADM
Hamiltonian can then be written as

H = H(r,p,SA,mA) = HO +HSO +HNLSO , (5.1)

where HO is the orbital (or non-spinning) Hamiltonian,
which is known through 3PN order, while the leading-
order 1.5PN spin-orbit term reads [78]

HSO =
2

r3
Seff · L , (5.2)

with L = r× p the orbital angular momentum, n = r/r
the unit vector pointing from m2 to m1, and

Seff ≡
(

1 +
3m2

4m1

)

S1 +

(

1 +
3m1

4m2

)

S2 . (5.3)



11

The next-to-leading 2.5PN SO terms, computed first in
the harmonic-coordinates approach [38, 39], and then in
the ADM Hamiltonian [41], read11

HNLSO =
(L · S1)

r3

{(

−6m1 − 13m2 −
5m2

2

m1

)

1

r

+

[(

3

4

1

m2
1

+
3

2

1

m1 m2

)

(n · p)2

+

(

3

4

1

m2
1

+
7

4

1

m1 m2
− 5

8

m2

m3
1

)

p2

]}

+ 1←→ 2 . (5.4)

As was done in Sec. IV, we now restrict to circular or-
bits (pr = n · p = 0,Ω = ∂H/∂L, ∂H/∂r = 0) and spins
aligned or anti-aligned with the orbital angular momen-
tum, and use Eq. (4.1) to compute the spin-orbit coupling
through 2.5PN order in the redshift observable zA. Re-
member that the partial derivative with respect to mA in
Eq. (4.1) is to be taken at fixed r, L, SA, and mB 6= mA.
A straightforward calculation gives the following leading
1.5PN SO contributions to the redshift associated with
particle 1:12

zSO1 =

[(

−1

3
+

∆

3
+

2

3
ν

)

ν χ1

+

(

1 + ∆− 17

6
ν − 5

6
∆ ν +

2

3
ν2
)

χ2

]

x5/2 , (5.5)

and similarly for the next-to-leading 2.5PN SO terms

zNLSO
1 =

[(

1

2
− ∆

2
+

19

18
ν − 19

18
∆ ν − ν2

9

)

ν χ1

+

(

3

2
+

3

2
∆− 17

3
ν − 8

3
∆ ν +

179

36
ν2

+
41

36
∆ ν2 − ν3

9

)

χ2

]

x7/2 . (5.6)

We have introduced the usual frequency-related PN pa-
rameter x ≡ (mΩ)2/3 and we recall the notation χA =
SA/m

2
A. The SO and NLSO terms found in Eqs. (5.5)

and (5.6) agree with the results of Ref. [52], obtained from
a direct calculation based on the near-zone PNmetric; see
Eq. (3.13). This provides an important, non-trivial test
of the validity of the relation (3.16) derived in Sec. III.

For consistency we verified that Eqs. (4.9), (4.10), and
(4.13) hold in the spin-orbit sector. We also verified that
Eq. (4.16) is satisfied by the spin-orbit terms through

11 Note that spin-orbit terms in the ADM Hamiltonian are also
known at 3.5PN order [42, 47], but we do not include them here.

12 Hereafter we assume, without any loss of generality, m1 6 m2.
We denote the reduced mass difference by ∆ ≡ (m2 −m1)/m =√
1− 4ν. The redshift observable z2 of particle 2 can immedi-

ately be deduced from z1 by setting ∆ −→ −∆ and χ1 ←→ χ2.

2.5PN order. To check those relations we use the spin-
orbit contributions to the binding energy E ≡ M − m
and orbital angular momentum:

ESO = −mν x

2

[(

4

3
− 4

3
∆− 2

3
ν

)

χ1

+

(

4

3
+

4

3
∆− 2

3
ν

)

χ2

]

x3/2 , (5.7a)

ENLSO = −mν x

2

[(

4− 4∆− 121

18
ν +

31

18
∆ ν +

ν2

9

)

χ1

+

(

4 + 4∆− 121

18
ν − 31

18
∆ ν +

ν2

9

)

χ2

]

x5/2 ,

(5.7b)

LSO =
mν x

Ω

[(

−5

3
+

5

3
∆+

5

6
ν

)

χ1

+

(

−5

3
− 5

3
∆ +

5

6
ν

)

χ2

]

x3/2 , (5.7c)

LNLSO =
mν x

Ω

[(

−7

2
+

7

2
∆+

847

144
ν − 217

144
∆ ν − 7

72
ν2
)

χ1

+

(

−7

2
− 7

2
∆ +

847

144
ν +

217

144
∆ ν − 7

72
ν2

)

χ2

]

x5/2 .

(5.7d)

We need also the orbital (i.e. spin-independent) part of
the precession frequencies at next-to-leading order. We
compute it from the definition (4.5) together with the SO
Hamiltonian (5.2)–(5.4), and find

Ω1 = Ω

{(

3

4
+

3

4
∆ +

ν

2

)

x

+

(

9

16
+

9

16
∆ +

5

4
ν − 5

8
∆ ν − ν2

24

)

x2

}

. (5.8)

Note that when computing the partial derivatives to
prove Eqs. (4.9), (4.10), and (4.16), we need to hold fixed
the spin variables SA and not the reduced spins χA.

We conclude that the redshift observables zA satisfy
the first law of mechanics in the non-spinning sector, up
to 3PN order included, as well as for the leading-order
4PN and next-to-leading order 5PN logarithmic terms
(Sec. II D of Paper I), and, in the spin-orbit sector, up
to the next-to-leading 2.5PN order.

VI. BINARY BLACK HOLES IN COROTATION

In this Section, we consider the particular case of coro-
tating point particles on a circular orbit. By modeling
each spinning point particle by an isolated rotating black
hole, and comparing with the first law of binary black
hole mechanics [79], we define and compute the proper
rotation frequencies of the corotating point particles.
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A. Spinning point particles as Kerr black holes

In Sec. IV we derived the first law of mechanics for
spinning point particles [see Eq. (4.8)]. We now derive
an alternative version of this result that can heuristically
be applied to binary black holes carrying spins. Clearly,
in order to derive a first law for extended bodies such
as rotating black holes, we must supplement the pole-
dipole model we have used so far with some “constitutive
relations” mA(µA, SA, · · · ) specifying the energy content
of the bodies, i.e. the relations of their masses mA to
the spins SA and to some “irreducible” masses µA. In
principle, these constitutive relations should also involve
other parameters such as some external (tidal) multipole
moments due to the environment; in the two-body case,
they would thus depend on the orbital separation and
the mass of the other body.
By analogy with the first law of mechanics for a single

black hole [80], we define for each spinning point particle
the analogue of an irreducible mass µA ≡ mirr

A via the
variational relation δmA = cA δµA + ωA δSA, in which
the “response coefficients” cA and ωA are associated with
the internal structure:

cA ≡
∂mA

∂µA

∣

∣

∣

∣

SA

, ωA ≡
∂mA

∂SA

∣

∣

∣

∣

µA

. (6.1)

In particular, ωA can be interpreted as the proper rota-
tion frequency of body A. Assuming the validity of the
Christodoulou mass formula m2

A = µ2
A + S2

A/(4µ
2
A) for

Kerr black holes [81, 82], i.e. neglecting the influence of
the other body, we have

cA =
µA

mA

(

1− S2
A

4µ4
A

)

, (6.2a)

ωA =
SA

4mAµ2
A

. (6.2b)

For an isolated black hole, the coefficient cA is related to
the constant surface gravity κA by cA = 4µAκA. Note
that, at linear order in the spins, we have cA = 1+O(S2

A).
While the first law (4.8) does not account for spin ef-
fects O(S2

A) or higher, we shall not make the substitution
cA → 1 in the equations and discussion below, in order
to ease the comparison with the binary black hole case.
Identifying each spinning point mass with an “ex-

tended body” (or black hole) characterized by coefficients
cA and ωA, we use the definitions (6.1) and find that the
first law (4.8) can be re-written as

δM − Ω δJ =
∑

A

[

cAzA δµA + (zA ωA +ΩA − Ω) δSA

]

.

(6.3)
This variational relationship is reminiscent of the first
law of binary black hole mechanics of Friedman, Uryū,
and Shibata [79]:

δM − Ω δJ =
∑

A

4µAκA δµA , (6.4)

which holds for two actual black holes with irreducible
masses µA and constant surface gravities κA (the surface
areas of the black holes being AA = 16πµ2

A).

B. First law for corotating binaries

Both first laws (6.3) and (6.4) have been derived for
circular orbits and spins aligned with the orbital angu-
lar momentum. However, whereas Eq. (6.3) is valid for
arbitrary spin magnitudes, Eq. (6.4) can only describe
corotating black holes. This key difference is intimately
related to the fact that black holes are finite-sized objects,
whereas point particles have (by definition) no spatial ex-
tension. The assumption of a circular orbit implies the
existence of a helical symmetry. In the binary black hole
case, the helical Killing field must be tangent to the null
geodesic generators of the horizons, which entirely con-
strains the rotational state of each black hole. If corota-
tion were not realized, the resulting non-vanishing shear
would lead to the growth of the horizon’s surface areas,
in contradiction with the hypothesis of helical symmetry
[79]. In the binary point-particle case, however, no such
restriction occurs because of the point-like nature of such
idealized objects.
By analogy with Eq. (6.4), we see from Eq. (6.3) that

the two point particles will be “corotating” if and only if

zA ωA +ΩA = Ω . (6.5)

This equation determines the values of the proper fre-
quencies ωA to be used to compute the corotating point
particle spins SA through the relation SA = 4mAµ

2
AωA

(and the Christodoulou mass formula). Physically, the
condition (6.5) means that the redshifted proper rotation
frequency of each particle, zA ωA, must be equal to the
circular-orbit frequency Ω, as seen in a frame rotating at
the angular rate ΩA with respect to an inertial frame of
reference. Alternatively, we can associate to the proper
rotation frequency ωA a proper rotation angle φA by the
definition ωA ≡ dφA/dτA, such that Eq. (6.5) becomes
dφA = (Ω− ΩA) dt = dϕ− dΦA. This relationship gives
the change dφA in the proper rotation angle in terms of
the changes dϕ and dΦA in the orbital phase and preces-
sion angle during a coordinate time interval dt.
For such corotating point particles, the first law (6.3)

simplifies considerably to

δM − Ω δJ =
∑

A

cAzA δµA . (6.6)

It is almost identical to that derived for non-spinning
binaries in Paper I, which is Eq. (6.6) with the substi-
tutions δµA → δmA and cA → 1. Since the irreducible
mass µA of a rotating black hole is the spin-independent
part of its total mass mA, this observation suggests that
corotating binaries are very similar to non-spinning bi-
naries, at least from the perspective of the first law of
mechanics. This helps to explain why the first law of bi-
nary black hole mechanics (6.4) has been observed — in
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the context of sequences of quasi-equilibrium initial data
— to be remarkably well satisfied by non-spinning binary
black holes [77], even though it should, in principle, hold
only for corotating black hole binaries [79].
We also note that the variational first law (6.6) admits

the first integral

M − 2ΩJ =
∑

A

µAcAzA , (6.7)

which again is very similar to the first integral relation de-
rived in the non-spinning case, i.e. Eq. (6.7) with µA →
mA and cA → 1. Equation (6.7) can also be derived from
the first integral (4.18) valid for arbitrary spins, in which
we replace the masses mA by the irreducible masses µA

and spins SA usingmA = µAcA+2ωASA (the analogue of
Smarr’s formula [83] for spinning point particles treated
as Kerr black holes), and impose the condition (6.5) for
corotation.
Now, comparing the first law (6.4) for corotating black

holes with the first law (6.6) for corotating point parti-
cles, we notice the formal analogy

cAzA ←→ 4µAκA . (6.8)

This point-particle/black-hole analogy was pointed out in
Paper I (with cA → 1), in the case of non-spinning point
masses. Up to the factors of cA = 1 + O(S2

A), the first
law for corotating point particles expressed in terms of
the irreducible masses µA is identical to the first law for
non-spinning point particles expressed in terms of the to-
tal masses mA = µA+O(S2

A). As derived in Paper I, the
analogy (6.8), with cA → 1, was not entirely physically
motivated, because it required the identification of the
irreducible masses of the corotating black holes with the
total masses of the non-spinning point particles. Having
been established here in the case of corotating point par-
ticles, and requiring only the identification of irreducible
masses, the relation (6.8) is much more compelling.
In the limit of large separation, the black holes or point

particles can be viewed, in first approximation, as iso-
lated. In that limit, we know that 4µAκA → cA for each
black hole, and zA → 1 for each point particle, such that
the analogy (6.8) is consistent. Going beyond the large
separation limit, Eq. (6.8) suggests that the deviations
of the redshifts of the point particles from one provide a
measure of the interaction between the black holes. In
particular, since the redshifts zA = dτA/dt must be less
than one, we expect

κA <
cA
4µA

(6.9)

in binary systems of corotating black holes on circular
orbits. In words, the tidal interaction between the holes
should decrease the surface gravities with respect to their
values in isolation. This prediction could be checked by
computing numerically κA in sequences of quasi-circular
initial data relying on the existence of a global helical
Killing vector [74, 75]. One could also compare quantita-
tively PN results for zA [11–13, 22] with numerical results
for 4µAκA, as functions of the circular-orbit frequency Ω.

C. Proper rotation frequencies through 2PN order

The condition (6.5) for corotation can be solved for the
proper rotation frequencies ωA of the particles:

ωA = ut
A (Ω− ΩA) , (6.10)

where ut
A = 1/zA has been computed up to very high PN

orders, for non-spinning binaries [11–13, 22]. Here we
only need the 1PN-accurate results. For circular orbits,
and in the center-of-mass frame, the spin-independent
contributions to the redshift associated with particle 1
read

ut
1 = 1 +

(

3

4
+

3

4
∆− ν

2

)

x (6.11)

+

(

27

16
+

27

16
∆− 5

2
ν − 5

8
∆ ν +

ν2

24

)

x2 +O(x3) .

However, for corotating binaries we should also include
spin contributions. The lowest order spin-related effect
comes from the leading-order 1.5PN SO terms, as given
by Eq. (5.5). Since χA ∝ Ω at leading order, this term
will yield a 3PN contribution, which can be neglected
here. Combining Eqs. (5.8) and (6.11), the condition
(6.10) for corotation readily fixes at 2PN order

ωA = Ω

{

1− ν x+ ν

(

−3

2
+

ν

3

)

x2 +O(x3)

}

. (6.12)

Noticeably, even though ut
1 6= ut

2 and Ω1 6= Ω2, we find
ω1 = ω2 up to 2PN order included. Future work should
investigate whether this symmetry property still holds at
the next 3PN order. Note that in the Newtonian limit
x → 0 or the test-particle limit ν → 0 we simply have
ωA = Ω, in agreement with physical intuition.
The observation that ω1 = ω2 up to high order suggests

that the proper rotation frequency ωA might physically
correspond to the rotation rate of the tidal field of the
companion B 6= A, as measured in the local asymptotic
rest frame (LARF) of body A [84]. By matching the near-
zone PN metric of a binary system of point particles to
the metric of two tidally distorted Schwarzschild black
holes, Alvi [85] (see also Ref. [86]) computed the 1PN-
accurate expression of the rotation rate of the tidal field
of body B in the LARF of body A. Interestingly, his
result agrees with the restriction at 1PN order of our
2PN-accurate expression (6.12).
Furthermore, Caudill et al. [77] previously made that

same hypothesis, in the context of quasi-equilibrium ini-
tial data for equal-mass black hole binaries. They found
that using the 1PN-accurate result ωA = Ω(1− ν x) in-
stead of the leading-order result ωA = Ω considerably
improved the agreement between two different quasi-local
measures of the individual spins of the black holes; see
Eqs. (54)–(56) and Figs. 4 and 5 of Ref. [77]. It would
be interesting to revisit their work using our improved,
2PN-accurate expression (6.12) for the proper rotation
frequencies.
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In Ref. [73], the binding energy E = M −m and total
angular momentum J of a binary system of corotating
point particles were computed by replacing the masses
mA and spins SA by the irreducible masses µA and
proper rotation frequencies ωA, using the PN-expanded
form of the relations between (mA, SA) and (µA, ωA) ob-
tained from the Christodoulou formula, and assuming the
leading-order result ωA = Ω. Using the corrected for-
mula (6.12) instead, the results of Ref. [73] are modified.
Redoing the calculation for the additional spin-related
contributions Ecor and Jcor to the binding energy and
total angular momentum in the corotating case, we find

Ecor = µ (2− 6η)x3
µ + µη (−10 + 25η)x4

µ , (6.13a)

ΩJcor = µ (4− 12η)x3
µ + µη (−16 + 40η)x4

µ , (6.13b)

where the total mass µ = µ1+µ2, the symmetric mass ra-
tio η = µ1µ2/µ

2, and the dimensionless invariant PN pa-
rameter xµ = (µΩ)2/3 are now expressed in terms of the
irreducible masses µA, rather than the masses mA. The
2PN and 3PN spin-related contributions (6.13) must be
added to the known 3PN-accurate expressions of E and J
for spinless binaries. As expected, the 1PN correction in
Eq. (6.12) modifies the 3PN terms in (6.13) with respect
to the results of Ref. [73]. It can be checked that the ad-
ditional contributions (6.13) for corotating binaries now
satisfy the relation

∂Ecor

∂Ω

∣

∣

∣

∣

µA

= Ω
∂Jcor

∂Ω

∣

∣

∣

∣

µA

. (6.14)

Since the spin-independent contributions to E and J are
known to satisfy that same relation (see Paper I), we
conclude that the thermodynamical law is verified, as
it should according to the first law (6.6), for corotat-
ing point particles. It would be interesting to revisit the
PN/NR comparison of Ref. [73] using the corrected for-
mulas (6.13).

VII. SUMMARY AND PROSPECTS

In this paper we generalized to spinning point particles
the first law of binary mechanics established in Paper I
for non-spinning point masses. We derived a simple rela-
tion between the Hamiltonian and the redshift observable
using a general formalism for the Fokker Lagrangian and
Hamiltonian of a system of spinning particles. We then
derived the first law within the canonical ADM Hamilto-
nian formalism, for binaries on circular orbits and with
spins aligned or anti-aligned with the orbital angular mo-
mentum. We also obtained several useful relations link-
ing the main quantities describing the two-body dynam-
ics for circular orbits, mainly the ADM mass, angular
momentum, and precession frequencies.
Similarly to previous work [19, 20], a calculation of the

gravitational self-force effect on the redshift observable of

a particle on a circular, equatorial orbit around a Kerr
black hole [52, 87] could be used to compute the exact
spin-orbit contributions to the binding energy and orbital
angular momentum, for aligned or anti-aligned spins, be-
yond the test-particle approximation. This would allow
computing the frequency shift of the Kerr innermost sta-
ble circular orbit under the effect of the conservative self-
force (at linear order in the spin), an important strong-
field benchmark.
New comparisons to numerical relativity simulations

of spinning black hole binaries could then explore fur-
ther the promise of using perturbation theory to model
comparable-mass compact binaries [16, 19]. This infor-
mation could also be used to improve the EOB model
for spinning binaries [88–93]. Furthermore, once second-
order gravitational self-force calculations [94–97] become
mature enough, these same ideas could be applied to
compute the fully relativistic second-order contributions
in the (symmetric) mass ratio to the binding energy and
angular momentum, for circular orbits. All of these re-
sults would be valuable to improve template waveforms
for inspiraling and coalescing binaries of compact objects.
Moreover, our simple relation between the redshift ob-

servable and the (ADM, or more generally Fokker-type)
Hamiltonian allowed us to compute spin-orbit effects in
the redshift through 2.5PN order, for circular orbits and
spins aligned or anti-aligned. These results agree with
a recent direct calculation based on the PN metric [52].
Future work can extend the knowledge of the redshift
function to higher PN order using the recently computed
spin-orbit effects at 3.5PN order [40, 42]. It would also
be interesting and useful to extend the first law to sec-
ond order in the spins, in order to account for spin-spin
contributions and quadrupolar deformations.
Finally, we specified our first law for binary systems of

spinning point particles to the corotating case, allowing
a comparison with the binary black hole case. Extending
previous results [85, 86], we computed the proper rota-
tion frequencies of the particles through 2PN order. This
finding could be used to improve the quasi-local measure
of the individual spins of black holes in the context of
quasi-equilibrium initial data [77].
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Grav. 27, 135007 (2010), arXiv:1002.2093 [gr-qc].

[47] J. Hartung and J. Steinhoff, Ann. Phys. 523, 919 (2011),
arXiv:1107.4294 [gr-qc].

[48] R. A. Porto, Phys. Rev. D 73, 104031 (2006), arXiv:gr-
qc/0511061.

[49] R. A. Porto and I. Z. Rothstein, Phys. Rev. Lett. 97,
021101 (2006), arXiv:gr-qc/0604099.

[50] R. A. Porto and I. Z. Rothstein, Phys. Rev. D 78, 044012
(2008), Errata: Phys. Rev. D 81, 029904(E) (2010) &
Phys. Rev. D 81, 029905(E) (2010), arXiv:0802.0720 [gr-
qc].

[51] R. A. Porto and I. Z. Rothstein, Phys. Rev. D 78, 044013
(2008), Errata: Phys. Rev. D 81, 029904(E) (2010) &
Phys. Rev. D 81, 029905(E) (2010), arXiv:0804.0260 [gr-
qc].

[52] J. L. Friedman, A. Le Tiec, and A. G. Shah, unpublished
(2012).

[53] A. J. Hanson and T. Regge, Ann. Phys. 87, 498 (1974).
[54] I. Bailey and W. Israel, Commun. Math. Phys. 42, 65

(1975).
[55] E. Barausse, E. Racine, and A. Buonanno, Phys. Rev. D

80, 104025 (2009), arXiv:0907.4745 [gr-qc].
[56] W. Tulczyjew, Bull. Acad. Polon. Sci. Cl. III 5, 279

(1957).
[57] W. Tulczyjew, Acta Phys. Polon. 18, 37 (1959).
[58] M. Mathisson, Acta Phys. Polon. 6, 136 (1937), trans-

lated in English by A. Ehlers and reprinted in Gen. Rel.



16

Grav. 42, 1011 (2010).
[59] A. Papapetrou, Proc. R. Soc. Lond. A 209, 248 (1951).
[60] E. Corinaldesi and A. Papapetrou, Proc. R. Soc. Lond.

A 209, 259 (1951).
[61] F. A. E. Pirani, Acta Phys. Pol. 15, 389 (1956).
[62] A. Trautman, Gen. Rel. Grav. 34, 721 (2002), reprinted

from lectures delivered in 1958.
[63] W. Dixon, in Isolated gravitating systems in general rel-

ativity, edited by J. Ehlers (North-Holland, Amsterdam,
1979), vol. 67 of Proceedings of the International School

of Physics Enrico Fermi, p. 156.
[64] A. D. Fokker, Z. Phys. 58, 386 (1929).
[65] T. Damour and G. Esposito-Farèse, Phys. Rev. D 53,
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[67] T. Damour and G. Schäfer, Gen. Rel. Grav. 17, 879

(1985).
[68] B. M. Barker and R. F. O’Connell, Phys. Lett. 78A, 231

(1980).
[69] B. M. Barker and R. F. O’Connell, Can. J. Phys. 58,

1659 (1980).
[70] T. Damour, E. Gourgoulhon, and P. Grandclément,

Phys. Rev. D 66, 024007 (2002), arXiv:gr-qc/0204011.
[71] A. G. Shah, T. S. Keidl, J. L. Friedman, D.-H. Kim,

and L. R. Price, Phys. Rev. D 83, 064018 (2011),
arXiv:1009.4876 [gr-qc].

[72] T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev.
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