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gravity, the low energy string theory [16, 17], Kaluza-Ki¢heory [18], as well as in some
theories with gradient spacetime torsion [19].

The field equations of Einstein-Maxwell-dilaton gravitytivmatter are presented below
in eq. (1). A characteristic feature of this theory is thelong between the scalar field
(dilaton) ¢ and the electromagnetic fielgy, and this coupling is governed by a parame-
tery (called dilaton coupling parameter). The static and staiip isolated black holes in
4D Einstein-Maxwell-dilaton theory were extensively sedlin various aspects during the
last two decades. The classification of the isolated statyprmxisymmetric, asymptotically
flat black holes with a connected horizon in Einstein-Maxwid@hton gravity was given in
[20] for dilaton coupling parametayr satisfying 0< y? < 3. The static asymptotically flat
Einstein-Maxwelldilaton black holes (without axial symimyeand horizon connectedness
assumption) were classified in [21]. The sector of statip&anstein-Maxwell-dilaton black
holes with dilaton coupling parameter beyond the criticdley? = 3 is extremely difficult
to be analyzed analytically. Most probably the black holguaness is violated in this sector
as the numerical investigations imply [22].

In the present paper we derive some inequalities betweearda the angular momen-
tum and the charges for dynamical black holes in Einsteimidl-dilaton gravity with
a non-negative dilaton potential and with a matter energyaentum tensor satisfying the
dominant energy condition.

2 Basic notions and setting the problem

Let (M,g) be a 4-dimensional spacetime satisfying the Einstein-Mgdixdilaton-matter
equations

Ra— 3Ry = 2010 — Gan 10 e + 2621 (FocFy® — S0F4F0)
—2V(9)Gap+ 8MTap,

Djahog =0, (1)
Ta (7 2/F2) = 4rs®,

Oa0% = _%enyq) I:abFab‘f‘ d\(/jiqu))a

whereggy, is the spacetime metric and, is its Levi-Civita connectionGap = Rap — %Rgab

is the Einstein tensolty, is the Maxwell tensor and? is the current. The dilaton field is
denoted by, V() is its potential andy is the dilaton coupling parameter governing the
coupling strength of the dilaton to the electromagnetiafiflhe matter energy-momentum
tensor isTyp. We assume thal, satisfies the dominant energy condition. Concerning the
dilaton potential, we assume that it is non-negativép) > 0).

Further we consider a closed orientable 2-dimensionalediacsurface smoothly
embedded in the spacetinf#. The induced metric orB and its Levi-Civita connection
are denoted by, andD,. In order to describe the extrinsic geometry®fwe introduce
the normal outgoing and ingoing null vectdand k? with the normalization condition
g(l,k) = 12k, = —1. The extrinsic geometry then is characterized by the esipa®', the

2



shearo, and the normal fundamental forf, associated with the outgoing null normal
and defined as follows

@' = g?°Dalp, 2)
1

Oap = 0505 0cla — 5©' 3)

Ql, = —K°g§ Ol (4)

In what follows we requireB to be a marginally outer trapped surface (i@.= 0) and
B to be stable (or spacetime stably outermost in more fornmgjuage) [27]-[25],[4]. The
last condition means that there exists an outgoing ve¢toe A112 — Aok? with functions
A1 > 0 andA» > 0 such thady®' > 0, with 8y being the deformation operator &h[24]—
[26]. In simple words the deformation operator describesitfinitesimal variations of the
geometrical objects o under an infinitesimal deformation @ along the flow of the vector
va,

As an additional technical assumption we requiéo be invariant under the action of
U (1) group with a Killing generaton?®. We assume that the Killing vectgf is normalized
to have orbits with a period® Also we require thatB is axisymmetrically stabfeand
£412 = £,k = 0 and£,Ql, = £,Fap = £,0 = 0, whereF is the projection of the Maxwell
2-form on‘B.

From the axisymmetric stability condition one can derive fbllowing important in-
equality valid for every axisymmetric functianon B [4]

1
/ﬁ{|Da\§+§RfBu2}dSZ/B[GZ\Q”\éJr(xB\G'\§+Gabala(orkb+[3lb)]dS (5)

where|.|q is the norm with respect to the induced metmig, dSis the surface element
measure orB, Rj is the scalar curvature &, Q" = r]f"Q'a andp = aii/Az.
At this stage we can use the field equations (1) which gives

1
/@{|Da|§+§RBa2} dsz/g;{a2|Q”|§|+O(B|0'|(2]+0(2|D¢|§+2a2V(¢) (6)
+20B(120a)? + a?e 2 [EZ + B2 | + 2aBe 2 (i|F)a(ii F)? + 8MTapal (ak® + Bl b)}ds

whereE, = ixi|F andB; = ikij xF. All terms on the right hand side of the above inequal-
ity are non-negative. Indeed, for the last term we han&,gx2(ak? + BIP) > 0 since the
energy-momentum tensor of matter satisfies the dominamggmendition. We also have
2aBe 2% (ijF)4(ijF)2 > 0 since the electromagnetic field satisfies the null energgition
andaf > 0.

Considering now the inequality far = 1 and applying the Gauss-Bonnet theofexe
find that the Euler characteristic & satisfies

Euler(B) > 0, (7)

1je. axisymmetric and stable with axisymmetric functidaagandA,.
2According to the Gauss-Bonnet theorem, the Euler chaiatiteis given byEuler(B) = %fg RzdS=
4m(1— g) whereg is the genus of3.



which shows that the topology @f is that of a 2-dimensional sphe®2.
Discarding the following non-negative termsfjo’|3, 202V(d), 2aB(120a0)2,

20Be 2 (i) F)4(ijF)2 and 81Tl 2(ak? + BIP) we obtain

1
/@{|Da|§+§R@a2} dsS> /g;a2{|Q”|§+|D¢|§+e‘2V¢ [EZ2 +B%]}dS  (8)

Proceeding further we write the induced metric®m the form
dI? = €79d6? + €” sin 6d¢?, (9)

whereC is a constant. The absence of conical singularities regjaiege o = 0l =C. Itis
easy to see that the area®fis given by = 4me®. Regarding the 1-forr@., we may use
the Hodge decomposition

Q' = xdw+dc, (10)

wherex is the Hodge dual o®, andw andc are regular axisymmetric functions &h Then
we obtain

Q" =i, «do (11)

sinceg is axisymmetric andhdg = £,¢= 0.
We can also introduce electromagnetic potendandW¥ on B defined by

d¥ = e 2PE | «n. (13)

It turns out useful to introduce another potengahstead ofw which is defined by
dx = 2Xdw— 2ddW + 2Wd P, (14)

whereX = g,pn?nP is the norm of the Killing fieldn2. This step is necessary in order to
bring the functional.[X"] defined below, in the same formal form as in the stationarg.cas
The electric charg® and the magnetic chardassociated witkB are defined as follows

I
Q=7 [ eEds (15)
1

We also define the angular momentdrassociated wittB

1 1
— n “2E g
J= Sn/BQ dS+ 8n/$(d>e E,—W¥B,)dS (17)

3We denote the Killing vector field and its naturally corresponding 1-form with the same letter
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where the first integral is the contribution of the gravitaal field, while the second integral
is the contribution due to the electromagnetic field [20].

Using the definitions of the potentiads, ® andy one can show that the electric charge,
the magnetic charge and the angular momentum are given by

Q= (18)

Since the potentiald’, ® andy are defined up to a constant, without loss of generality

we put¥(m) = —W(0) = Q, ®(1) = —P(0) = P andy(m) = —x(0) =
Going back to the inequality (8), choosing= €©~9/2, and after some algebra we obtain

1
2(c+1>zﬁ/ {0+—|D0|2+ 5|DX + 20DW — 24D )|
1
+Ye_zy¢|DCD|2+Xe2V¢|DHJ|2+|D¢|2}d5‘o, (19)

where the norn. | and the surface elemed§) are with respect to the standard usual round
metric onS?. Taking into account thafl = 41e® the above inequality is transformed to the
following inequality for the area

4> 4amel! [XA}—Z)/Z, (20)

where the functional[XA], with XA = (X,x,®,W,¢), is defined by the right hand side of
(29), i.e.

|[XA] = /{0+—|D0|2+ 5|DX +2PDW — 2WDd)|?

+%e‘2v¢|Dd>|2+¥e2V¢\DLP|2+|D¢|2}d5‘0. (21)

In order to bring the action into a form more suitable for thetlier investigation we
expressDo by the norm of the Killing fieldn (i.e. €° = X/sinze) and introduce a new
independent variable= cosb. In this way we obtain

1{d 1 /dx\? 1 [dx dw do
A el _ = [ =2~ = -
I [X™] = /1{dT(OT)+1+(1 ) 4X2<d'[) +4X2(dt+2q)d 2LIJdT>

e 0 /dp\2 e 2 /de\? 1
A <E> X (dt) *(a) ]_—1—t2}dt' (22)

At this stage we introduce the strictly positive definite rivét

dX2 + (dx 4 20dW — 2Wdd)? e Vodp? 4 VP dy?
4X2 * X

41t is worth mentioning that the continuous rotatioi@(2) symmetry in the case of Einstein-Maxwell
gravity degenerates here to the discrete symmetr— +W andd +— —¢.

dL? = GagdXAdXB =

+d? (23)
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on the 5-dimensional Riemannian manifelfd= {(X,x,®,¥,$) € R% X > 0}. In terms of
this metric the functiondl[X*] is written in the form

(24)

dt dt 1-12

dXA dxB 1 }
dr.
dt

I[XA] = /t{g(or)—l-l-l—(l—Tz)GAB

Let us summarize the results obtained so far in the following

Lemma 1. Let B be a smooth, spacetime stably outermost axisymmetric nalgiouter
trapped surface in a spacetime satisfying the Einstein-#igilaton-matter equations (1).
If the matter energy-momentum tensor satisfies the domeraergy condition and the dila-
ton potential is non-negative, then the areai$atisfies the inequality

4> ane!X-2/2, (25)

where the functional[X”] is given by (24) with a metric £ defined by (23)

In order to put a tight lower bound for the area we should stiteevariational problem for
the minimum of the functional[X”] with appropriate boundary conditions if the minimum
exists at all. Since the first two terms lifX”] are in fact boundary terms, the minimum of
| [XA] is determined by the minimum of the reduced functional

1 dXxAdxB 1
|*[XA] :/_1 {(1—T2)GAB T dr 11 dt. (26)

In order to perform the minimizing procedure we have to dgeniwhich class of func-
tionsXA = (X, X, ®, ¥, ¢), the functional*[XA] is varied. From a physical point of view the
relevant class of functions is specified by the natural regouénts(x, ®,W,¢) € C*[—1,1],
0:m<ﬁ%)ecmkiﬁhmmbmxﬂwyammmm@ﬁ:~4y:—¢ﬁzﬂJ:PAWT:
-1 =-Y(r1=1) =Qandx(t=-1)=—x(t=1) =4J.

Lemma 2. For dilaton coupling parameter satisfyin@ < y* < 3, there exists a unique

smooth minimizer of the functiondX”] (respectively I[X*#]) with the prescribed boundary
conditions.

Proof. Let us consider the "truncated" functional

dxAdxB 1
A _ _
I*[X ][T27Tl] - /Tl dr drt 1_.[2:| dt

T2

{(1—r2>GAB (27)

with boundary condition¥”(ty), XA(12) for —1 < 11 < T2 < 1. Introducing the new variable

t = 3In(Ft) the truncated action takes the form
t2 dXAdxB
|, [XA[to, t :/ 71| dt 2
R O [ 28)

which is just a modified version of the geodesic functionalthle Riemannian space
(N,Gag). Consequently the critical points of our functional are d@g=ics inA_. How-
ever, it was shown in [20] that for & y* < 3 the Riemannian spadg\(,Gag) is sim-
ply connected, geodesically complete and with negativeaead curvature. Therefore for
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fixed pointsX”(t;) andXA(t,) there exists a unique minimizing geodesic connecting these
points. Hence we conclude that the global minimizek, &% [t,,t1] exists and is unique for

0 < y? < 3. Since(A/,Gag) is geodesically complete the global minimizerlgiXA|[t, t1]

can be extended to a global minimizerlgiX#] andl [X#]. In more detail the proof goes as
follows. Let us putro(€) = 1 —€,T1(€) = —1+€ (i.e. ta(€) = —t1(€) = 5In (%E) ) wheree

is a small positive numbek ¢~ 0) and consider the truncated functlonal

2 [ d
|8[XA] :/T(S) [
1

200+ 1] L IXAra(e). (o)) -
Ofr2(e)]ta(e) — Olta(E)]Ta(e) + 2(1—) + LX), Ta ) 29)

with boundary conditionsXA(t1(g)) = Xf(e) and XA(12(€)) = X§'(¢), and with
lime_,0X(€) = (0,43,P,Q,¢_) and lime_,o X5\(€) = (0, —4J, —P,—Q, ¢, ). Hered . are de-
fined by, = ¢(1=+1).

Consider now the unique minimizing geodeEicin A’ between the pointXf(¢) and
X2\(g). Then we have

16[X"] > oft2(e)]Ir. T2(e) — oft1(e)]Ir, T2 (€) +2(1 —&) + 1.[X"[t2(e). T2(e)]Ir.  (30)

where the rlght hand side of the above inequality is evatlatethe geodesi€:. Since
A2 = GABdgft dgft is a constant on the geodes$igwe find

ta(€) { dXxAdxB
AB

XA a(e) Tale)lr = | |Gae g o

t1(€)

- 1] dt= (A2—1) (ta(e) —ta(€)).  (31)

The nest step is to evaluale. This can be done by evaluatir@agds 9 at the
boundary pomts which are in a small neighborhood of the pole +1. Flrst we write

N =G Bdéi dx in the form

o_ (AT A\ (-T2 dx L d¥ Ao
Ae = 2 \ar) Taxe e %w Yo +

E e ((é_f)zﬁl—;z) v (‘;—‘T") (11 (%)2 (32)

Within the class of function we consider, the terms assediatithX and¢ have the follow-
ing behavior in a small neighborhood of the pates +1, namely

_ 12)\2 2
% (%—f) —140(e), (33)

(1—12)2 (‘3‘1’) =0(g?). (34)
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The terms associated with andW¥ behave as

_2\2 2

(1;>eMC§)=O@, (35)
_ +2\2 2

(1 XT )" 2 (%—f) — O(e). (36)

In order to find the behavior of the term associated with thtemttalx, we should notice
thatd/0x is a Killing vector for the metridGag and consequently we have the following
conservation law

1 [dx do doy 1-12 /dy do doy
e (E + ZCDE — ZL“H) = I (E + ZCDE — ZLPE) = const. (37)

Using this we obtain that the term associated wiib equal to £onsg X? which shows
that it behaves a®(e?). Therefore we can conclude thgt— 1 = O(g) which gives

lim 1. [X*][t2(e), Ta(8)]|r, = lim (A —1) (ta(e) —ta(e)) = 0. (38)

e—0

In this way, from (30) we have

XA = lim 1e[X*) > (39)
tim { ofta(e))Ir, T2(e) — ofta(e)]r, Ta(E) +2(1— &) + 1. X*[t2(e). Ta(e) I, |

and therefore

| XA > 20p+2 (40)

whereay, is the value of(t) on the poles. This completes the proof.

Even in the cases when the global minimizer 6] exists, there is another serious prob-
lem in Einstein-Maxwell-dilaton gravity. In Einstein-Mwaell gravity the lower bound for
the area is clear from physical considerations and theredrgletely explicit solution re-
alizing it, namely the extremal Kerr-Newman solution. Se #pproach is to formally prove
that the area of the extremal Kerr-Newman solution is indeedower bound. The situation
in Einstein-Maxwell-gravity is rather different. Contyao the Einstein-Maxwell case where
the Euler-Lagrange equations can be solved explicitly,imstgin-Maxwell-dilaton gravity
the corresponding Euler-Lagrange equations are not iabdgyfor general dilaton coupling
parameter. So it is very difficult to find explicitly the sharp lower bodror the area in
Einstein-Maxwell-dilaton gravity with arbitrary. That is why our approach here should be
different in comparison with the Einstein-Maxwell gravity
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3 Area-angular momentum-charge inequality for critical
dilaton coupling parameter

The main result in this section is the next theorem:

Theorem 1. Let B be a smooth, spacetime stably outermost axisymmetric nedlygi
outer trapped surface in a spacetime satisfying the Eingtéawell-dilaton-matter equa-
tions (1) with a dilaton coupling parametgf = 3. If the matter energy-momentum tensor
satisfies the dominant energy condition and the dilatonmi@kis non-negative, then the
area of B satisfies the inequality

4> 8m/|Q2P2—J2|, (41)

where Q, P and J are the electric charge, the magnetic chargkthe angular momentum
associated withB. The equality is saturated only for the extremal stationaegr horizon
geometry of thg? = 3 Einstein-Maxwell-dilaton gravity with \4) = 0 and T = 0.

Proof. For the critical couplind A, Gag) is a symmetric space with a negative sectional
curvature [20]. In fact\[ is SL(3,R)/O(3) symmetric space and therefore its metric can be
written in the form

dL? = :—E:Tr (M~tdMM~1dMm), (42)

where the matribM is symmetric, positive definite ard € SL(3,R). After tedious calcula-
tions it can be shown that

, X + 402 2V30 L X1y +20W)2 26 2V3D 42X (X +20W)W X L(x+20W)
M=e3V®|  2g-2V3bq | ox (4 20W) W e 23 4 qp2x -1 2wx-1
X1(x +20w) 2Wx1 X1

In terms of the matrisM the functional [XA] becomes

2
I[XA] = /1 {%(m)+1+%(1—r2)Tr (Mldd—l\T/I) — 1_1 }dP (43)

—1 '[2

The Euler-Lagrange equations are then equivalent to thenfislg matrix equation

d _.dM
T ((1—r2)|v| 1@) =0. (44)
Hence we find
(1—r2)|v|1c;—'\:' = 2A, (45)

whereA is a constant matrix. From det= 1 it follows thatTrA = 0. Integrating further we
obtain



1+t
M_Moexp<ln1_T ), (46)
whereMg is a constant matrix with the same propertiedvaand satisfyingA" Mg = MoA.
SinceMy is positive definite it can be written in the forily = BBT for some matrixB with
|detB| = 1 and this presentation is up to an orthogonal ma&{ke. B — BO). This freedom
can be used to diagonalize the maBiAB™ ~1. So we can takBT AB" ~! = diag(ay, a2, a3)
and we obtain

(FE)™ 0 0
M=B o (HH® o0 . B'. (47)
0 o ()"

The eigenvalues; can be found by comparing the singular behavior of the leftrend right
hand side of (47) at — +1. Doing so we find, up to renumbering, tlzat= 0,a, = —1 and
az = 1. The matrixB can be found by imposing the boundary conditions which gives

e B0 30t At
S (23+PQet I (234 PQet
B | _sevatt Qevat=2% ~Qevst 2% (49)
VIP2Q2-72| |
po Vit 1,750-—20 10/30+ 3%
BN >
where
_ X
opzrl'ﬂlln(l—r?) =o(t1=41). (50)

Taking into account thgddetB| = 1 we find

% = 2,/|P2Q2 — J2|. (51)

Now we are ready to evaluate the minimum of the functioféf{. Substituting (45) in (43)
we see that the last two terms cancel each other and we find

Imin[X"] = 20, +2 = 2In (2\/\P2Q2—J2|) +2. (52)

Substituting further this result in (20) we finally obtain

4> 8m/|P2Q2— 32|, (53)

The extremal stationary near horizon geometry is in facineefiby equation (44), by the
same boundary conditions and by the same class of funct®iisoge in the variational
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problem. Therefore, it is clear that the equality is satdainly for the extremal stationary
near horizon geometry. This completes the proof.

Remark. The casd®?Q? = J? is formally outside of the class of functions we consider.
In the language of stationary solutions, it corresponds exd@remal (naked) singularity with
zero area.

It is interesting to note that whePQ = 0, butP? + Q? # 0, the lower bound of the area
depends only on the angular momentum but not on the nonzargeln contrast with the
Einstein-Maxwell gravity.

4 Area-angular momentum-charge inequality for dilaton
coupling parameter 0 <y* < 3

As we mentioned above, finding of sharp lower bound for tha &ren the case of arbitrary
y seems to be very difficult. However, an important estimatetie area can be found for
dilaton coupling parameter satisfyingOy? < 3. The result is given by the following

Theorem 2. Let B be a smooth, spacetime stably outermost axisymmetric nahgiouter
trapped surface in a spacetime satisfying the Einstein-8gilaton-matter equations (1)
with a dilaton coupling parametey; satisfyingd < y? < 3. If the matter energy-momentum
tensor satisfies the dominant energy condition and thedatilpbtential is non-negative, then
for everyy in the given range, the area @ satisfies the inequality

4 > 8m/|Q2P2 - J2|, (54)

where Q, P and J are the electric charge, the magnetic chargkthe angular momen-
tum associated witkB. The equality is saturated for the extremal stationary nlearizon
geometry of thg” = 3 Einstein-Maxwell-dilaton gravity with ¥4) = 0 and T = 0.

Proof. Let us first focus on the case<0y? < 3 and consider the metric

di(? = GagdXAdXB (55)
X2 (dy + 20dW — 2Wd D) | e’ eedy? fd¢2
B 4X2 X 3
and the associated functional
g 1(d ~ dxAdxB 1
A - _ 12 _
(XA = /_1{dT(m)+1+(1 )G 1_T2}dt. (56)
It is easy to see thafX”] > I [X#] and therefore
4> 4melX-2/2, (57)

Redefining now the scalar fieffl = ﬁcp we find that the functional [X#] reduces to the
functionall [XA] for the critical coupling/® = 3. Hence we conclude that

4> 8m/|Q2P2— J2| (58)
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for everyy with 0 < y? < 3.
The case/= 0 needs a separate investigation. Fortunately, it can g eeduced to the
pure Einstein-Maxwell case. Indeed, it is not difficult te ¢kat fory = 0 we have

L[XA] > 1EMXA, (59)
where IEM[XA] is the functional for the pure Einstein-Maxwell gravity. Einstein-
Maxwell gravity it was proven in [6] tha®d > 8n\/32+%(Q2+P2)2 which gives4 >

8, /92 + §(Q2 + P2)2 > 8my/|Q2P2 — 72|
Finally, it is worth noting that, as a direct consequenceahima 2, for every fixegt we
obtain the following inequality

A > ANHG (60)

where AnHc is the area associated with the extremal stationary ned&dmogeometry of
Einstein-Maxwell-dilaton gravity witW (¢) = 0 andT,, = O, for the corresponding

5 Discussion

In the present paper we derived area-angular momentungehnaequalities for stable
marginally outer trapped surfaces in the four dimensiomastein-Maxwell-dilaton theory
for values of the dilaton coupling parameter less than oaktquthe critical value. The cou-
pling of the dilaton to the Maxwell field leads in general teqgualities that can be rather
different from that in the Einstein-Maxwell gravity. Somstienates for the sectof > 3
could be found if we impose the additional condition on thatdn potential to be convex.
We leave this study for the future.

Given the current interest in the higher dimensional gyatit interesting to extend the
area-angular momentum-charge inequalities to higher miinas. This is almost straight-
forward in the case of Einstein equations [27]. Howeverhia tase of Einstein-Maxwell
and Einstein-Maxwell-dilaton gravity the extensions & thequalities is difficult. The cen-
tral reason behind that is the fact that even the stationasymetric Einstein-Maxwell
eguations are not integrable in higher dimensions [28].exi&eless, some progress can be
made and the results will be presented elsewhere [29].

Acknowledgments: This work was partially supported by the Bulgarian Natio&ai-
ence Fund under Grants DMU-03/6, and by Sofia University &ebeFund under Grant
148/2012.
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