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Motivated by the desire to test modified gravity theories exhibiting the Vainshtein mechanism, we
solve in various physically relevant limits, the retarded Galileon Green’s function (for the cubic
theory) about a background sourced by a massive spherically symmetric static body. The static
limit of our result will aid us, in a forthcoming paper, in understanding the impact of Galileon
fields on the problem of motion in the solar system. In this paper, we employ this retarded Green’s
function to investigate the emission of Galileon radiation generated by the motion of matter lying
deep within the Vainshtein radius rv of the central object: acoustic waves vibrating on its surface,
and the motion of compact bodies gravitationally bound to it. If λ is the typical wavelength of the
emitted radiation, and r0 is the typical distance of the source from the central mass, with r0 � rv,
then, compared to its non-interacting massless scalar counterpart, we find that the Galileon radiation
rate is suppressed by the ratio (rv/λ)−3/2 at the monopole and dipole orders at high frequencies
rv/λ � 1. However, at high enough multipole order, the radiation rate is enhanced by powers of
rv/r0. At low frequencies rv/λ� 1, and when the motion is non-relativistic, Galileon waves yield a
comparable rate for the monopole and dipole terms, and are amplified by powers of the ratio rv/r0
for the higher multipoles.

I. INTRODUCTION AND MOTIVATION

The study of the problem of motion in General Relativity (GR) has been a central theme in testing its validity. For
instance, the post-Newtonian program, computing GR corrections to the Newtonian gravitational potential between
massive bodies, is crucial to understanding gravity in our solar system. In the past decade or more, the post-Newtonian
analysis of weak field gravity has also been developed to very high order in perturbation theory because of the need
to model gravitational waves (GWs) from inspiraling compact binaries, which is expected to be a major source for
detectors like Advanced LIGO. At the same time, the discovery of cosmic acceleration and its associated cosmological
constant problem, has prompted many attempts to modify how gravity operates at large (astrophysical) length scales.
One such example is the family of scalar field theories known as Galileons [1], building on interesting properties of a
limit of the Dvali-Gabadadze-Porrati model [2]. These scalar fields couple to the stress-energy of ordinary matter, and
therefore alter large scale dynamics, but due to their self interactions they exhibit the Vainshtein screening effect [3, 4],
such that masses close to the central source of gravity (lying within a so-called Vainshtein radius rv) do not feel their
presence, and thus allowing Galileons to evade solar system tests of GR to date. Furthermore, models of this type
have become even more interesting since it has been discovered that they may be extended in multiple ways to yield
other new field theories [5–24] with related attractive properties, and that they arise as a limit of ghost-free massive
gravity [25–27]

In this paper, we wish to lay the groundwork for understanding analytically, and in some detail, the impact of
such Vainshtein screened scalar fields on the problem of motion. To achieve concrete results we will consider the
cubic Galileon theory about flat spacetime and couple the Galileon field to the trace of the stress-energy of matter.
We will place a large mass M at the origin of our coordinate system. The central goal of this paper is to solve the
retarded Green’s function of the linearized equations of motion of the Galileon fluctuating around the background field
sourced by M . In a paper in preparation [28], we use the static limit of our Green’s function here to investigate the
conservative portion of the dynamics; to compute the effective potential between well separated test masses orbiting
around M .

In the current paper we address the dissipative aspect of the dynamics: does motion of matter lying well within the
Vainshtein radius of M produce Galileon radiation that can carry energy-momentum away to infinity? This question
arises as an issue of principle because the Galileon is a massless scalar field, and one would expect the motion of
sources of massless fields to create radiation. Yet, it is not clear how much radiation would actually be produced,
because it could perhaps be suppressed by the Vainshtein mechanism.

Beyond issues of principle, we are also motivated by the possibility that one can constrain modified gravity theories
by demanding that the power loss from binary pulsar systems, such as the Hulse-Taylor binary PSR B1913+16, had
better not deviate too far from the predictions of GR, since observations have confirmed the latter to high precision1.

1 For recent work on this topic, see [29]
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Furthermore, we look forward to the prospect that, as already alluded to, within the next decade or so GW detectors
may be able to directly listen in on the spacetime ripples generated by such compact binary systems. Once this
is possible, we may hope to use these GW signals to search for or put further constraints on the existence of the
Vainshtein mechanism. This requires that we develop a quantitative prediction of the Galileon waves themselves,
beyond just an estimate of the power loss through scalar emission. Even though the two comparable point mass
Galileon problem possibly requires different techniques to solve due to the importance of the nonlinearities of the field
equations, the results of our current paper, which assume the existence of a very large central mass, may perhaps
be seen as an approximation to the situation where the inspiraling binary consists of rather unequal masses, say
M1 � M2. Yet another possible source of GWs is the oscillations of neutron stars themselves; as such, we will also
consider a toy problem of surface waves on a spherical body stimulating Galileon waves.

The outline of the paper is as follows. In section (II), we set up our problem in a quantitative manner. In section
(III A) we summarize the results for the Galileon retarded Green’s function about the background field of the central
mass M ; and following that in section (III B) we step through its derivation. In section (III C) we describe how the
linearized equations of motion of the Galileon field propagating about the background sourced by M is equivalent to
a minimally coupled massless scalar in some curved spacetime. Then in section (IV) we move on to use the retarded
Galileon Green’s function to study two examples of radiative processes: Galileon radiation produced by surface waves
on an otherwise spherical central body, and that generated by n point masses gravitationally bound to M . In appendix
(A), we work out both the curved and Minkowski spacetime minimally coupled massless scalar analog of the Liénard-
Wiechert potentials in electromagnetism; this spacetime calculation complements the frequency space one in section
(IV B).

Notation A few words on notation. The speed of light is set to unity. The Galileon field is Π. The background
spacetime is (3+1)-dimensional Minkowski, with metric in Cartesian coordinates given by

ds2 = ηµνdxµdxν , ηµν = diag[1,−1,−1,−1] (1)

so that,

∂2Π ≡ ηµν∂µ∂νΠ, (∂Π)2 ≡ ηµν∂µΠ∂νΠ. (2)

In spherical coordinates (t, r, θ, φ), with θ ∈ [0, π] and φ ∈ [0, 2π), the metric reads instead

ds2 = dt2 − dr2 − r2ΩABdxAdxB, (3)

ΩAB = diag[1, sin2 θ], xA = (θ, φ) , (4)

where dΩ ≡ dθdφ
√

Ω (with
√

Ω ≡
√

det ΩAB = sin θ) is the infinitesimal solid angle.
A hat on a variable representing spatial location, e.g. x̂, denotes the unit vector, x̂ ≡ ~x/|~x|. In particular, x̂ only

depends on the spherical coordinate angles x̂ = x̂[θ, φ]. Finally, the Planck mass is defined in terms of Newton’s
gravitational constant GN as Mpl ≡ 1/

√
32πGN.

II. SETUP

We would like to understand Galileon radiative processes taking place in the background Galileon field Π[r] generated
by a massive central body of mass M , which we would take to be static (time independent) and spherically symmetric.

To model this mass M we shall treat it as a point particle at rest, located at the spatial origin ~0 of the coordinate
system. The Galileon radiation we are investigating is generated by matter (described by stress-energy tensor δTµν)
lying well within the Vainshtein radius rv of the central mass. (The Vainshtein radius rv, as we will see very shortly,
is the radius below which the Galileon field Π generated by the mass M is increasingly governed by non-linear self
interactions; well outside Vainshtein, the theory is linear and there M generates a 1/r Coulomb potential.) This
matter distribution δTµν is meant to be viewed as a perturbation relative to the mass M , but can otherwise be
arbitrary. For instance δTµν may describe slight deviation of the mass M from an exact spherical configuration (its
multipole moments), and/or a deviation from time independence; it could also be the energy-momentum of n light
compact bodies, with masses {ma �M |a = 1, . . . , n}, orbiting around M .

We will take for the Galileon theory the simplest cubic Π Lagrangian; in actuality, several other terms are allowed
in 4 spacetime dimensions. The Galileon, being a scalar, couples to the trace of the stress-energy tensor of matter.
The total action for our setup is therefore

SΠ + SM + δS (5)
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where, in Cartesian coordinates,

SΠ ≡
∫

d4x

(
1

2
(∂Π)2 +

1

Λ3
∂2Π(∂Π)2

)
, Λ > 0, (6)

SM ≡
M

Mpl

∫
dt′Π[t′,~0], (7)

δS ≡
∫

d4x
Π

Mpl
δT, δT ≡ δTµµ. (8)

Because we are interested in radiation that can propagate to infinity, we note that far away from the source M ,
contributions to the Galileon stress-energy tensor Tµν due to the cubic-in-Π terms in SΠ fall away more rapidly than
their quadratic counterparts (provided, of course, that Π and its gradients falls off with increasing r). Expressed in
Cartesian coordinates, the asymptotic Galileon energy-momentum tensor is thus that of the non-interacting massless
scalar in flat spacetime,

Tµν [r →∞] = ∂µΠ∂νΠ− 1

2
ηµν(∂Π)2 . (9)

The background Galileon field sourced by the mass M is the exact solution to δ(SΠ + SM )/δΠ = 0. Since we have
a static spherically symmetric source, Π must only depend on r, and so the Euler-Lagrange equation from varying
SΠ + SM becomes

∂r

(
r2

{
∂rΠ−

4

Λ3r

(
∂rΠ

)2})
= −r

2M

Mpl
δ(3)[~x] (10)

Integrating both sides of (10) over a sphere of radius r centered at ~0 then yields

∂rΠ−
4

Λ3r

(
∂rΠ

)2
= − M

4πMplr2
. (11)

(Even though we have modeled the central body as a point mass, (11) is valid outside any isolated static spherically
symmetric matter distribution as long as we replace M with the integral 4π

∫∞
0
τµµ[r′]r′2dr′, where τµν is the stress-

energy tensor of the body.) Eq. (11) is a quadratic equation in Π
′
[r]. Defining the Vainshtein radius

rv ≡
1

Λ

(
4

π

M

Mpl

)1/3

, (12)

we obtain

Π
′
[r]

Λ3
=
r

8

(
1−

√
1 +

(rv
r

)3
)
. (13)

There is a second solution for Π
′
[r] in which the negative sign in front of the square root is replaced with a plus sign.

This solution is proportional to r and hence blows up as r →∞. Since the stress-tensor depends on Π
′
[r] – see eq. (9)

and note that including the contributions to Tµν from the cubic-in-Π terms in SΠ would only exacerbate the problem
– we may discard this second solution on the grounds that the energy-momentum of Π measured by an asymptotic
observer cannot be infinite.

It is possible to integrate eq. (13) exactly in terms of hypergeometric functions,

Π[r]

Λ3
=
r2

16

(
1− 4

(rv
r

) 3
2

2F1

[
−1

2
,

1

6
;

7

6
;−r

3

r3
v

])
−

Γ
[
− 2

3

]
Γ
[

7
6

]
8
√
π

r2
v , (14)

where we have chosen the asymptotic boundary condition to be Π[r →∞] = 0.
For later use, note the following limits of equations (13) and (14). When r � rv,

Π[r] = − M

Mplπrv

(
Γ[− 2

3 ]Γ[ 7
6 ]

2
√
π

+

√
r

rv
+O

[(
r

rv

)2
])

, (15)
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and

Π
′
[r] = −Λ3r

8

((rv
r

)3/2

− 1 +O

[(
r

rv

) 3
2

])
, (16)

Π
′′
[r] =

Λ3

16

((rv
r

)3/2

+ 2 +O

[(
r

rv

) 3
2

])
. (17)

On the other hand, when r � rv,

Π[r] =
M

4πMplr

(
1 +O

[(rv
r

)3
])

, (18)

and

Π
′
[r] = −Λ3r

16

((rv
r

)3

+O
[(rv

r

)6
])

, (19)

Π
′′
[r] =

Λ3

8

((rv
r

)3

+O
[(rv

r

)6
])

. (20)

Notice that the first term of the small radius limit Π
′
[r] ∼ 1/

√
r in (16) can be obtained by dropping the linear term

∂rΠ[r] in eq. (11), whereas the first term in (19) of the large radius limit Π
′
[r] ∼ 1/r2, which is the usual Coulomb

force law, comes about from dropping the non-linear (∂rΠ)2 piece in eq. (11). This is the quantitative statement
that, close to the matter source (r � rv), the dynamics of Galileons are primarily governed by their nonlinear self
interactions. The theory is linear when the observer is well outside the Vainshtein radius.

More physically, to see the Vainshtein effect at work, imagine a test point mass m � M , at spatial location ~Z,
orbiting the central body. Its action takes the same form as SM in eq. (7), except we evaluate the Galileon field about
the background Π generated by M ,

Sm ≡
m

Mpl

∫
dtΠ

[
~Z[t]
]
. (21)

(Strictly speaking, Lorentz invariance says dt needs to be replaced with dt

√
1− ~̇Z[t]2; however, we are working in the

non-relativistic regime, where the square root is very close to unity.) By employing the definition of the Vainshtein
radius in eq. (12), followed by integrating the first term on the right-hand-sides of equations (16) and (19) without
worrying too much about the overall numerical factors,

Sm ∼
∫

dt
GNMm

|~Z[t]|

(
|~Z[t]|
rv

) 3
2

, |~Z[t]| � rv (22)

∼
∫

dt
GNMm

|~Z[t]|
, |~Z[t]| � rv (23)

Thus, the Galileon potential experienced by a test point mass orbiting close to the central mass M is the Newtonian

gravitational potential GNM/|~Z| multiplied by a suppression factor of (|~Z|/rv)3/2 � 1. Only when the test mass
travels well outside Vainshtein does the suppression factor drop out and the Galileon potential become comparable in
strength to that of regular gravity.2

With the exact background solution Π
′
[r] in hand, we now substitute

Π[x] = Π[r] + ϕ[x] (24)

in (5), and drop terms cubic-in-ϕ. The resulting linearized equation of motion of ϕ about the background Π reads

Wxϕ[x] =
δT [x]

Mpl
, (25)

2 The reader concerned about the stability of the Galileon model is referred to [6].
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where the differential operator Wx is

Wxϕ[x] ≡
(
e1∂

2
t − e2∂

2
r −

2

r
e3∂r −

1

r2
e3
~L2

)
ϕ[x] (26)

and ~L2 is the angular part of the Laplacian in Euclidean 3-space, usually called the negative of the “angular momentum
squared” operator, given by

~L2ϕ ≡ 1√
Ω
∂A

(√
ΩΩAB∂Bϕ

)
. (27)

Here

e1[r] ≡ 1− 8Π
′

Λ3r
− 4Π

′′

Λ3
=

1

4

(
3

√
(2r3 + r3

v)
2

r3(r3 + r3
v)
− 2

)
, (28)

e2[r] ≡ 1− 8Π
′

Λ3r
=

√
1 +

(rv
r

)3

, (29)

e3[r] ≡ 1− 4Π
′

Λ3r
− 4Π

′′

Λ3
=

1

4

√
(4r3 + r3

v)
2

r3(r3 + r3
v)
. (30)

If we assume δT does not implicitly depend on Π, then ϕ is entirely sourced by δT , the (for now arbitrary) matter
perturbations. The key to solving ϕ in terms of δT is the retarded Green’s function defined by the equation,

WxG[x, x′] =Wx′G[x, x′] =
1

rr′
δ[t− t′]δ[r − r′]δ[φ− φ′]δ[cos θ − cos θ′], (31)

where the δs are the Dirac delta functions. The solution to the linearized Galileon equation (25) about the static
spherically symmetric background Π is now (in Cartesian coordinates)

ϕ[x] =

∫
d4x′G[x, x′]

δT [x′]

Mpl
. (32)

We write x to represent a collective label for (t, r, θ, φ) and x′ for (t′, r′, θ′, φ′), so that the requirement that the signal
does not precede the turning on of the source requires G[x, x′] = 0 for t < t′.

Note that it is not obvious that the appropriate spacetime dependence multiplying the δ-functions in the Green’s
function equation (31) is (rr′)−1, and therefore we will justify this in appendix (B) below.

When solving eq. (31) it is important to remember the following boundary condition. Since the Green’s function
is the field generated by a unit point mass, if we let δT describe a static point mass sitting at the origin,

δT [x′] ≡ δMδ(3)[~x′], δM/M � 1, (33)

this merely amounts to shifting the mass of the central body by M → M + δM . Then we already know what to
expect from the linear solution represented by the integral in eq. (32). It should be the linear-in-δM piece of the
full Π[r] solution in eq. (14) upon the replacement M → M + δM . Remember that the mass dependence in the full
solution of eq. (14) is contained entirely in rv via eq. (12). Perturbing M → M + δM in eq. (14) up to linear order
in δM yields,

Π[r;M + δM ] = Π[r;M ] + δΠ[r], (34)

with

δΠ[r] =
δM

Mpl

1

2πrv

(
Γ
[

1
3

]
Γ
[

1
6

]
6
√
π

−
√

r

rv
2F1

[
1

6
,

1

2
;

7

6
;−r

3

r3
v

])
. (35)

Hence, when solving G[x, x′] below, we must obtain from eq. (32),

δM

Mpl

∫ ∞
−∞

dt′G[x, x′] =
δM

Mpl

∫ ∞
−∞

dtG[x, x′] = δΠ[r], x ≡ (t, ~x); x′ ≡ (t′,~0). (36)
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(The second equality follows from the time translation symmetry of the problem at hand.) For later use let us note
that the small and large radius limits are, respectively,∫ ∞

−∞
dt′G[x, x′]→ 1

2πrv

(
Γ
[

1
3

]
Γ
[

1
6

]
6
√
π

−
√

r

rv

)
, r → 0 (37)

and (using eq. (95) below) ∫ ∞
−∞

dt′G[x, x′]→ 1

4πr
, r →∞. (38)

III. RETARDED GALILEON GREEN’S FUNCTION IN BACKGROUND SOURCED BY A MASSIVE
SPHERICALLY SYMMETRIC STATIC BODY

In this section we solve, in different limits of physical interest, the Galileon retarded Green’s function about the
spherically symmetric background Π[r] in equation (13). The first subsection summarizes all the results in a coherent
manner, and in subsequent subsections we step through the derivation systematically.

A. Overview of results

Our solution of the retarded Galileon Green’s function G[x, x′] obeying equation (31) is composed of an integral
over all angular frequencies ω and an infinite mode sum over all harmonics (`,m):3

G[x, x′] =

∫ +∞

−∞

dω

2π
e−iω(t−t′)ω

∞∑
`=0

g̃`
[
ωr, ωr′

] +∑̀
m=−`

Y m` [θ, φ]Y m` [θ′, φ′]. (39)

We will make frequent use of the dimensionless variables

ξ ≡ ωr, ξ′ ≡ ωr′, ξv ≡ ωrv. (40)

because we will shortly show that the radial Green’s function g̃` depends on r, r′ and rv solely through ξ, ξ′ and ξv
respectively. In eq. (39), the Y m` s are the usual spherical harmonics spanning a complete set of functions defined on
a sphere of unit radius embedded in 3 spatial dimensions (the over bar means complex conjugation); they obey the
eigenvalue equation

~L2Y m` = −`(`+ 1)Y m` . (41)

Because the background Π is static, the Green’s function reflects the time translation symmetry of the setup at
hand. Moreover, spherical symmetry tells us the radial Green’s functions g̃` do not depend on the azimuthal number
m.

The separation of variables method of mode expansion employed in eq. (39) reduces the problem of solving the
linear partial differential equation for G[x, x′] in eq. (31) to a linear second order ordinary differential equation (ODE)
for the radial Green’s function g̃`. Inserting the ansatz in eq. (39) into eq. (31), and using a Fourier representation
of δ[t − t′] and the completeness relation for the spherical harmonics, one may read off the ODE for g̃` in frequency
space by equating the coefficient of exp[−iω(t− t′)]Y m` [θ, φ]Y m` [θ′, φ′] on both sides of the Green’s function equation.
We then arrive at (

−e2∂
2
ξ −

2

ξ
e3∂ξ − e1 +

`(`+ 1)

ξ2
e3

)
g̃`[ξ, ξ

′] =
δ[ξ − ξ′]
ξξ′

. (42)

We have carried out a change of variables according to the rules in eq. (40); for the e1,2,3 this amounts to simply
replacing every r variable with its corresponding ξ variable. That eq. (42) no longer depends explicitly on the radii

3 Strictly speaking, we need to specify a contour for the Fourier integral below, but since we do not need it in this paper, we shall leave
this question for the future.
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FIG. 1: A Log-Log plot of the WKB “momenta”
√
−U [r/rv] (solid line) – see eq. (47) – as a function of the ratio r/rv. The

asymptotics are:
√
−U [0] =

√
3/2 (long-dashed line) and

√
−U [∞] = 1 (short-dashed line). The turning point, which is a

global minimum, is at
√
−U [r/rv = 1/2] =

√
2/3.

nor on the angular frequency ω means that the solution for the radial Green’s function g̃`, cannot depend on the
lengths r, r′, rv or frequency ω explicitly.

The radial Green’s function g̃` has a discontinuous first derivative at ξ = ξ′ because its second derivatives at ξ = ξ′

needs to yield δ[ξ − ξ′]/(ξξ′). Therefore we need to distinguish between the two regions |ξ| > |ξ′| or |ξ| < |ξ′|. We
therefore let r> and r< represent the larger and smaller of the two radii r and r′, and define

ξ> ≡ ωr>, ξ< ≡ ωr<. (43)

We now proceed to summarize the results for g̃`.
Radiative Limit Of central importance in this paper, is the situation where the emitter lies deep inside the

Vainshtein radius while the observer sits far outside (r � rv � r′). Taking the limit where one of the radii is much
smaller than rv and the other much larger, more specifically r< � rv and |ξ>| � |ξv|3/2, we obtain

g̃`[ξ, ξ
′] =


h

(1)
` [ξ>]C

(rad)
0 [ξv]

4
√
ξ<J− 1

4

[√
3ξ</2

]
` = 0

h
(1)
` [ξ>]C

(rad)
` [ξv]

4
√
ξ<J 1

4 (2`+1)

[√
3ξ</2

]
` > 0

, (44)

where Jν is the Bessel function and the h
(1)
` is the spherical Hankel function of the first kind.

In the high frequency regime |ξv| � `, the coefficients C
(rad)
` are

C
(rad)
` =


√
π/2

ξ
3/4
v

eiπ
7
8−iξvI∞ ` = 0

√
π/2

ξ
3/4
v

eiπ( `4 + 5
8 )−iξvI∞ ` > 0

, (45)

where

I∞ ≡
∫ ∞

0

(
1−

√
−U [ϑ]

)
dϑ ≈ 0.253 , (46)

and

U [ϑ] ≡ −1

4

3(1 + 2ϑ3)− 2
√
ϑ3(1 + ϑ3)

1 + ϑ3
. (47)

and is plotted in Fig.(1) below. The suppression factor of 1/ξ
3/4
v in (45) indicates that high frequency Galileon signals

are indeed Vainshtein screened, at least for small `s.
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In the low frequency regime, |ξv| � 1, the coefficients C
(rad)
` are

C
(rad)
` =


i

8√3π
Γ[ 14 ]

` = 0

i
√
πξ

`−1
2

v
Γ[− 2`

3 −
1
3 ]Γ[ 5

6−
`
3 ]

22`+13
`
4
+ 1

8 Γ[ `2 + 3
4 ]Γ[−`]

(
1 +

cos[ 1
6 (2`+1)π]
sin[π`]

)
` > 0

, (48)

It is worth pointing out that although sin[π`] appears in the denominator, and this expression contains Γ-functions
whose arguments appear they could be negative integers; these ` ≥ 1 terms are all in fact non-singular. (This remark

also applies to the related equation eq. (67) below.) We list the first ten C
(rad)
` s here, to 3 significant figures:

` 1 2 3 4 5 6 7 8 9 10

C
(rad)
` /(i

√
πξ

`−1
2

v ) 0.324 0.127 0.0386 0.0100 0.00230 0.000482 0.0000932 0.0000168 2.86 ×10−6 4.61 ×10−7

Notice from equation (48) that the ` = 0, 1 modes do not contain rv; this is a direct consequence of the fact that the
leading order terms of the static Green’s function in this same r> � rv � r< limit (eq. (67)) do not contain any rv
for ` = 0, 1. In fact, we may further compare the cubic Galileon radial Green’s function g̃` with its non-interacting

massless cousin g̃
(Flat)
` = ih

(1)
` [ξ>]j`[ξ<] (see eq. (77) and (78) below). Let us consider the non-relativistic limit

|ξ′| � 1, where the reciprocal of the characteristic frequency of the motion is much smaller than the characteristic
distance of the source to the central mass M . In this limit, we may replace the Bessel functions with their small
argument limits, and find

g̃0 = g̃
(Flat)
0 = ih

(1)
` [ξ>], g̃1 = g̃

(Flat)
1 =

i

3
ξ<h

(1)
` [ξ>] (49)

and for ` ≥ 2,

g̃`[r> � rv � r<]→ κ`ξ
`
v

(
r<
rv

) `+1
2

h
(1)
` [ξ>] (50)

g̃
(Flat)
` [r> � rv � r<]→ κ′`ξ

`
v

(
r<
rv

)`
h

(1)
` [ξ>].

Here, κ` and κ′` are constants that depend solely on `. This teaches us that, while high frequency Galileon power loss
is Vainshtein screened, low frequency signals generated from deep within the Vainshtein radius of M are comparable
to or even Vainshtein enhanced relative to the non-interacting massless scalar. The results of the radiative processes
described in section (IV) will reflect these observations.

The WKB High Frequency Limit When |ξ|, |ξ′|, |ξv| � max[1, `], we may apply the WKB approximation. Let
us first define

Φ≶ ≡
∫ r≶/rv

0

√
−U [ϑ]dϑ. (51)

where it is worth noting that
√
−U [0] =

√
3/2 and

√
−U [∞] = 1. The leading order WKB solution is

g̃`[ξ, ξ
′] =

(
U [ξ/ξv]U [ξ′/ξv]ξ(ξ

3 + ξ3
v)ξ′(ξ′3 + ξ3

v)
)− 1

4 (52)

×
(
i

2
exp [iξv (Φ> − Φ<)] +

C++
`

2
exp [iξv (Φ> + Φ<)]

)
,

where

C++
` =


ei
π
4 ` = 0

−eiπ( 3
4−

`
2 ) ` > 0

. (53)

When max[1, `]� |ξv| � |ξ|, |ξ′|, the radial Green’s functions become

g̃`[ξ, ξ
′] =

1

ξξ′

(
i

2
exp [i (ξ> − ξ<)] +

C++
`

2
exp [i (ξ> + ξ< − 2ξvI∞)]

)
, (54)
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whereas when `� |ξ|, |ξ′| � |ξv| they become

g̃0[ξ, ξ′] =
2

√
3ξ

3/2
v

4
√
ξξ′

(
i

2
exp

[
i

√
3

2
(ξ> − ξ<)

]
+
C++
`

2
exp

[
i

√
3

2
(ξ> + ξ<)

])
. (55)

In this limit, observe that the r> and t− t′ dependent portion of the combination e−iω(t−t′)g̃` in the mode expansion
eq. (39) is

1
4
√
r>

exp

[
i

√
3

2
ω

(
r> −

2√
3

(t− t′)
)]

, (56)

and if we imagine a source located much closer to M than the observer is (r′ � r � rv) the Green’s function tells
us the observer will receive purely outgoing radial waves. It is not entirely clear from the outset that this would be
the case, particularly viewed from the curved spacetime picture (which we describe in section (III C) below), because
one may think that the radiation from the source could backscatter off the spacetime geometry and return to the
observer, thereby mimicking an ingoing radial wave. (This scenario may in fact occur in the low frequency limit, where
the longer wavelength of the Galileon waves may grow more sensitive to the curvature of the background effective
geometry.) The phase r− (2/

√
3)(t− t′) also indicates these outgoing waves, if they are propagating only in the radial

direction, are superluminal because 2/
√

3 > 1.
Of particular importance is the WKB radiative limit, r> � rv � r<. Here the radial Green’s function is

g̃`[ξ, ξ
′] =


√

2i

ξ>
4
√

3ξ<ξ
3/4
v

ei(ξ>−ξvI∞−
π
8 ) cos

[√
3

2 ξ< −
π
8

]
` = 0

√
2i

ξ>
4
√

3ξ<ξ
3/4
v

ei(ξ>−ξvI∞+π 5−2`
8 ) cos

[√
3

2 ξ< + π 5−2`
8

]
` > 0

. (57)

Large Mode Number It is useful to note that the asymptotic expansion of the Bessel function Jν [z] exhibits an

exponential suppression at large order ν, for z < ν. Therefore, the presence of J(1/4)(2`+1)[
√

3ξ</2] in eq. (44) means,
at least for the radiation problem (r> � rv � r<) – the main object of this paper – we may neglect mode numbers
much larger than |ξ<|.

The Static Limit We may also obtain the zero frequency (static) limit of the Green’s function, defined as

G(static)[~x, ~x′] =

∫ +∞

−∞
G [x ≡ (t, ~x), x′ ≡ (t′, ~x′)] dt (58)

(It does not actually matter, because of time translation symmetry of the situation, whether we integrate with respect
to t or t′ in eq. (58).) As the name suggests, the static Green’s function does not depend on time. We may interpret
G(static)[~x, ~x′] as the Galileon potential between two static point sources, both of unit mass, in the background Π[r].
Putting the mode expansion in eq. (39) into the integral over all time in eq. (58) yields the mode expansion for the
static Green’s function

G(static)[~x, ~x′] = lim
ω→0

ω

∞∑
`=0

g̃`[ξ, ξ
′]

+∑̀
m=−`

Y m` [θ, φ]Y m` [θ′, φ′]. (59)

The exact result can be expressed in terms of hypergeometric functions as

G(static)[~x, ~x′] =
1

2πrv

(
Γ
[

1
3

]
Γ
[

1
6

]
6
√
π

−
√
r>
rv

2F1

[
1

6
,

1

2
;

7

6
;−

r3
>

r3
v

])

+
1

rv

∞∑
`=1

∑̀
m=−`

Y m` [θ, φ]Y m` [θ′, φ′]

2`+ 1

(
r<
rv

) `+1
2

2F1

[
1

6
− `

6
,

1

2
+
`

2
;

7

6
+
`

3
;−

r3
<

r3
v

]

×

(
2

(
rv
r>

) `
2

2F1

[
`

6
+

1

3
,− `

2
;

5

6
− `

3
;−

r3
>

r3
v

]
(60)

+
`!Γ
[
− 1

6 (2`+ 1)
]

√
πΓ
[

1
3 (2`+ 1)

] (r>
rv

) `+1
2

2F1

[
1

6
− `

6
,

1

2
+
`

2
;

7

6
+
`

3
;−

r3
>

r3
v

])
.
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Via the identity in eq. (95) below, the ` = 0 mode (the first line on the right hand side of eq. (60)) is equivalent to

1

4πr>
2F1

[
1

3
,

1

2
;

4

3
;− r

3
v

r3
>

]
. (61)

Also, since

2F1 [α, β; γ; z] =
Γ[α+ β − γ]Γ[γ]

Γ[α]Γ[β]
(1− z)γ−α−β 2F1[γ − α, γ − β; γ − α− β + 1; 1− z]

+
Γ[γ − α− β]Γ[γ]

Γ[γ − α]Γ[γ − β]
2F1[α, β;α+ β − γ + 1; 1− z], (62)

and using that 1/Γ[−m] = 0 if m is a positive integer or zero, one of the static mode functions can be written as, for
` even, (rv

r

) `
2

2F1

[
`

6
+

1

3
,− `

2
;

5

6
− `

3
;−r

3

r3
v

]
=
√
π
(rv
r

) `
2 Γ

[
5−2`

6

]
Γ
[
− `−1

2

]
Γ
[
`+5

6

] 2F1

[
− `

2
,
`+ 2

6
;

1

2
; 1 +

r3

r3
v

]
, (63)

and, for ` odd,

(rv
r

) `
2

2F1

[
`

6
+

1

3
,− `

2
;

5

6
− `

3
;−r

3

r3
v

]
= −2

√
1 +

r3

r3
v

√
π
(rv
r

) `
2 Γ

[
5−2`

6

]
Γ
[
− `

2

]
Γ
[
`+2

6

] 2F1

[
−`− 1

2
,
`+ 5

6
;

3

2
; 1 +

r3

r3
v

]
.

(64)

(Note that 2F1[−`/2, . . . ; 1 + (r/rv)
3] and 2F1[−(` − 1)/2, . . . ; 1 + (r/rv)

3] are, respectively, (`/2)th (even `) and
(1/2)(`− 1)th (odd `) order polynomials in the variable 1 + (r/rv)

3.)
Taking the limit r, r′ � rv hands us the Green’s function to the Laplacian in Euclidean 3-space

G(static)[~x, ~x′] =
1

4π|~x− ~x′|
, (65)

plus corrections that begin at relative order (rv/r)
3 and (rv/r

′)3. This is to be expected, since far outside the
Vainshtein radius, the central mass becomes irrelevant and we ought to recover the theory of a massless scalar in flat
spacetime.

Next, taking the limit r, r′ � rv leads us to

G(static)[~x, ~x′] =
1

2πrv

 √
rr′/r2

v∣∣∣√r/rvx̂−√r′/rvx̂′∣∣∣ −
√

r

rv
−
√
r′

rv
+

Γ
[

1
3

]
Γ
[

1
6

]
6
√
π

 , (66)

a result obtained independently in [28], and which will play a key role in our field theory based analysis of the
conservative portion of the Galileon two body problem taking place in the background field Π of M . Here x̂ = x̂[θ, φ]
and x̂′ = x̂′[θ′, φ′] are the unit radial vectors of the observer and source, respectively, and vertical bars denote the
Euclidean length. We have expressed every occurrence of the two radii in eq. (66) as a small ratio, r/rv or r′/rv, to
highlight the Vainshtein mechanism at work.

In section (III C) below, where we shall view the Galileon propagating on the background Π as a minimally coupled
massless scalar propagating in a particular curved spacetime, we shall re-derive eq. (66) in an alternate manner.

For r> � rv � r<, we obtain

G(static)[~x, ~x′] =
1

4πr>
+

1

r>

√
r<
rv

∞∑
`=1

∑̀
m=−`

Y m` [θ, φ]Y m` [θ′, φ′]

2`+ 1

(√
rvr<

2r>

)`
(67)

×
Γ
[
− 2`

3 −
1
3

]
Γ
[

5
6 −

`
3

]
√
πΓ[−`]

(
cos
[

1
6 (2`+ 1)π

]
sin[π`]

+ 1

)
,

plus corrections that begin at order (r</rv)
3 and (rv/r>)3 relative to these displayed terms. Notice for ` = 0, 1, rv

drops out of these leading order terms. This tells us for the monopole and dipole terms, when the wavelength of
Galileon signals are much longer than the Vainshtein radius rv, the Vainshtein mechanism becomes less effective.
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Well Inside Vainshtein Let both the observer and emitter lie well inside the Vainshtein radius, r, r′ � rv. In
the low frequency limit, |ξv| � 1, the radial Green’s function becomes,

g̃0[ξ, ξ′] =
π(ξξ′)

1
4

2ξ
3/2
v

J− 1
4

[√
3ξ</2

](4 4
√

3
√
πΓ[ 1

3 ]Γ[ 7
6 ]

Γ[ 1
4 ]2

√
ξvJ− 1

4

[√
3ξ>/2

]
−
√

2J 1
4

[√
3ξ>/2

])
, (68)

for ` = 0, and

g̃`[ξ, ξ
′] = i

π(ξξ′)
1
4

2ξ
3/2
v

J 1
4 (2`+1)

[√
3ξ</2

](
H

(1)
1
4 (2`+1)

[√
3ξ>/2

]

+

 2

i(−)` − 1
− i

ξ
`+ 1

2
v

4`+1Γ
[
− `

3 −
1
6

]
Γ
[
`
2 + 5

4

]2
`!

3
`
2 + 5

4π3/2Γ
[

2(`+2)
3

] )
J 1

4 (2`+1)

[√
3ξ>/2

] , (69)

for ` ≥ 1. In the WKB limit, i.e. |ξv| � max[1, `], the radial Green’s function instead reads

g̃`[ξ, ξ
′] =


iπ(ξξ′)

1
4

2ξ
3/2
v

ei
π
4H

(1)
1
4

[√
3ξ>/2

]
J− 1

4

[√
3ξ</2

]
` = 0

iπ(ξξ′)
1
4

2ξ
3/2
v

H
(1)
1
4 (2`+1)

[√
3ξ>/2

]
J 1

4 (2`+1)

[√
3ξ</2

]
` > 0

. (70)

Well Outside Vainshtein When both observer and emitter lie well outside the Vainshtein radius, r, r′ � rv, we
recover the theory of a minimally coupled massless scalar in flat spacetime, with the radial Green’s function

g̃`[ξ, ξ
′] = ih

(1)
` [ξ>]

(
j`[ξ<] + C

(hh)
` h

(1)
` [ξ<]

)
, (71)

where in the low frequency limit |ξv| � 1,

C
(hh)
` =


< O [ξv] ` = 0

iξ2`+1
v

Γ[− 2`
3 −

1
3 ]Γ[− `3−

1
6 ](csc[ 1

6 (2π`+π)]+cot[ 1
6 (2π`+π)] csc[π`])

22`+33
√
π((2`−1)!!)2Γ[−`] ` > 0

, (72)

and in the high frequency limit |ξv| � max[1, `],

C
(hh)
` =


− 1

2

(
1 + e−i

π
4−2iI∞ξv

)
` = 0

− 1
2

(
1− eiπ( 1

4 + `
2 )−2iI∞ξv

)
` > 0

. (73)

B. Solving The Radial Green’s Function

In this section we derive the results presented in the preceding section. In appendix (B), we review the relevant
facts about solving Green’s functions for linear second order ODEs, and also justify the (rr′)−1 measure on the right
hand side of eq. (31). The algorithm for obtaining g̃` is as follows.

General Solution of Radial Green’s Function We need to first solve for the two linearly independent homogeneous

solutions R
(1)
` [ξ] and R

(2)
` [ξ] to the ODE in eq. (42), namely(

−e2∂
2
ξ −

2

ξ
e3∂ξ − e1 +

`(`+ 1)

ξ2
e3

)
R

(1,2)
` [ξ] = 0. (74)

In the notation of eq. (B1), p2 = −e2 and p1 = −2e3/ξ. Next we normalize the solutions R
(1,2)
` such that they satisfy

e2[ξ, ξv]
(
R

(1)
` [ξ](R

(2)
` )′[ξ]− (R

(1)
` )′[ξ]R

(2)
` [ξ]

)
=

1

ξ2
. (75)
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Then the general solution to our radial Green’s function is

g̃`[ξ, ξ
′] = C`R(1)

` [ξ>]R
(2)
` [ξ<]− (1− C`)R(1)

` [ξ<]R
(2)
` [ξ>] + C11

` R
(1)
` [ξ]R

(1)
` [ξ′] + C22

` R
(2)
` [ξ]R

(2)
` [ξ′], (76)

where the constants C`, C11
` and C22

` do not depend on ξ nor ξ′, but depend on ξv. The C` and 1 − C` terms have
discontinuous first derivatives and hence contribute to the coefficient of the δ-functions on the right hand side of the
Green’s function equation in eq. (42).

For ` ≥ 1, retarded boundary conditions and the demand for non-singular solutions will fix these constants uniquely.
That is, we shall require that, whenever the observer is very far away from M , r � rv, and the source is closer to
the central mass than the observer, r > r′, then the observer ought to receive purely outgoing Galileon waves.
Furthermore, on physical grounds, we will admit only solutions that are nonsingular when either the observer or the
source is situated close to the central body.4 For ` = 0, in addition to regularity and the retarded condition, we
shall also need to invoke Gauss’ law applied to the curved spacetime Helmholtz equation (see eq. (131)) to fix these
constants uniquely.

In the following subsections, we will first solve for g̃` in the zero frequency (static) and high frequency (WKB)

limits. We will shortly also derive the R
(1,2)
` s in terms of Bessel and Hankel functions in the limits r, r′ � rv and

r, r′ � rv. This means we can fix the form of g̃` in the limits r, r′ � rv, r, r
′ � rv and r> � rv � r< up the

ξv-dependent constants C`, C11
` and C22

` . We will then proceed to fix these constants – at least within the low and
high frequency limits, |ξv| � 1 and |ξv| � max[1, `], respectively – by ensuring they agree with the static and WKB
g̃` results in the same limits.

Well Outside Vainshtein That we have just shown that the radial wave equation in eq. (74) reduces to that

in Minkowski spacetime when r � rv implies that we may use the known solution there to read off the R
(1,2)
` s. The

solution in flat (and, importantly, empty) Minkowski spacetime is textbook material, and we may represent it as

δ[t− t′ − |~x− ~x′|]
4π|~x− ~x′|

=

∫
dω

2π
e−iω(t−t′) e

iω|~x−~x′|

4π|~x− ~x′|
. (77)

Then, using

eiω|~x−~x
′|

4π|~x− ~x′|
= iω

∞∑
`=0

∑̀
m=−`

Y m` [θ, φ]Y m` [θ′, φ′]j`[ξ<]h
(1)
` [ξ>], (78)

we can deduce that the R
(1,2)
` [ξ] in the limit r � rv must be a linear combination of j` and h

(1)
` .

The h
(1)
` implement retarded boundary conditions, since the spherical Hankel function of the first kind may be

understood as

h
(1)
` [z] = −i(−z)`

(
1

z

d

dz

)`
eiz

z
, (79)

Note that h
(1)
` [ξ] only contains a factor of exp[+iξ] and does not contain exp[−iξ]. Thus, using the asymptotic

expansion of the Hankel function for large argument, we see that

e−iω(t−t′)h
(1)
` [ξ]→ (−i)`+1 exp [−iω(t− t′ − r)]

ωr

(
1 +O

[
(ωr)

−1
])
, (80)

describes radially purely outgoing waves at unit speed propagating to infinity. A similar discussion shows that

h
(2)
` = (h

(1)
` )∗ implements advanced boundary conditions, and because j` can be expressed as a linear combination

of h
(1,2)
` , it describes a superposition of ingoing and outgoing waves. In the ansatz of eq. (76), we see that we have

to choose R
(1)
` [ξ>] = h

(1)
` [ξ>] and set C` = 1 and C22

` = 0 to ensure retarded boundary conditions. (We are able to

deduce from eq. (78) that h
(1)
` and j` are already appropriately normalized to obey the Wronskian condition in eq.

(75) for r, r′ � rv.) This means we have determined g̃`[r, r
′ � rv] to take the form in eq. (71).

4 The observer placed close to the central mass will experience a Galileon force (∝ 1/
√
r) due to M that blows up as r → 0; but here we

are requiring that, as long as the observer is not sitting on top of the secondary source, i.e. the δT , she should not measure Galileon
forces due to δT that grow without bound.
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Well Inside Vainshtein Let us now understand the forms of R
(1,2)
` [ξ] evaluated close to the central source

(r � rv). We exploit equations (16) and (17), keeping only the most dominant terms in e1,2,3 (equations (28) through
(30)), to reformulate eq. (74) as (

∂2
ξ +

1

2ξ
∂ξ +

3

4
− `(`+ 1)

4ξ2

)
R

(1,2)
` [ξ] = 0 . (81)

One may rescale the solutions R
(1,2)
` [ξ] ≡ ξ1/4R(1,2)

` [
√

3ξ/2] and find that R(1,2)
` [
√

3ξ/2] satisfies Bessel’s equation(
∂2
ζ +

1

ζ
∂ζ +

(
1−

(
2`+1

4

)2
ζ2

))
R(1,2)
` [ζ] = 0 , (82)

where ζ ≡
√

3ξ/2. Noting that the Wronskian between Jν and H
(1)
ν is

Wr(z)[Jν , H
(1)
ν ] = Jν [z](H(1)

ν )′[z]− (Jν)′[z]H(1)
ν [z] =

2i

πz
, (83)

and that

Wr(z)

[
z

1
4 Jν [z], z

1
4H(1)

ν [z]
]

=
√
zWr(z)

[
Jν [z], H(1)

ν [z]
]
, (84)

we conclude that the two linearly independent solutions normalized to obey eq. (75) are

R
(1)
` [ξ] ≡

√
iπ

2ξ
3/2
v

ξ
1
4H

(1)
1
4 (2`+1)

[√
3ξ/2

]
, (85)

R
(2)
` [ξ] ≡

√
iπ

2ξ
3/2
v

ξ
1
4 J 1

4 (2`+1)

[√
3ξ/2

]
. (86)

With these homogeneous solutions, the general solution for the radial Green’s function, deep within the Vainshtein
radius, r, r′ � rv, is

g̃`[ξ, ξ
′] =

iπ

2ξ
3/2
v

4
√
ξξ′

(
C`H(1)

1
4 (2`+1)

[√
3ξ>/2

]
J 1

4 (2`+1)

[√
3ξ</2

]
− (1− C`)H(1)

1
4 (2`+1)

[√
3ξ</2

]
J 1

4 (2`+1)

[√
3ξ>/2

]
+ C

(JJ)
` J 1

4 (2`+1)

[√
3ξ/2

]
J 1

4 (2`+1)

[√
3ξ′/2

]
+ C

(HH)
` H

(1)
1
4 (2`+1)

[√
3ξ/2

]
H

(1)
1
4 (2`+1)

[√
3ξ′/2

])
. (87)

Next, we recall the small argument limits (|z| � 1) of the Bessel and Hankel functions

J 1
4 (2`+1)[z]→

(z/2)
1
4 (2`+1)

Γ
[

1
4 (2`+ 5)

] (1 +O
[
z2
])
, (88)

H
(1)
1
4 (2`+1)

[z]→ − i
π

Γ

[
1

4
(2`+ 1)

](
2

z

) 1
4 (2`+1) (

1 +O
[
z2
])

+
(z

2

) 1
4 (2`+1) (1 + i cot

[
π
4 (2`+ 1)

]
)

Γ[ 1
4 (2`+ 5)]

(
1 +O

[
z2
])
. (89)

The (2/z)ν piece of the small argument behavior of H
(1)
ν [z] ≡ Jν [z] + iNν [z] can be traced to J−ν [z]. This implies

that if we want a nonsingular solution as r</rv → 0, we must set C` = 1 and C
(HH)
` = 0 for ` ≥ 1. For ` = 0, however,

both ξ1/4J1/4[
√

3ξ/2] and ξ1/4H
(1)
1/4[
√

3ξ/2] are nonsingular in the small radius limit; the former goes to zero and the

latter to a constant. We must therefore write R
(2)
0 [r< � rv] as a linear combination of these two functions.

The Radiative Limit We may now fix the form of the radiative limit, r> � rv � r<, of g̃`. This is crucial for
studying the Galileon radiation seen by an asymptotic observer at r � rv generated by a source moving deep within
the Vainshtein radius of the central mass (r′ � rv). Our previous discussion leads us to the forms

g̃`[ξ, ξ
′] =


h

(1)
0 [ξ>]

(
C

(J)
0 · 4
√
ξ<J 1

4

[√
3ξ</2

]
+ C

(H)
0 · 4

√
ξ<H

(1)
1
4

[√
3ξ</2

])
` = 0

h
(1)
` [ξ>]C

(J)
` · 4
√
ξ<J 1

4 (2`+1)

[√
3ξ</2

]
` > 0

. (90)
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1. Static Green’s Function

The static limit of the Green’s function, as defined in eq. (58), requires a slightly different treatment from the time
dependent case because it amounts to setting ω = 0 in frequency space, making the variables ξ, ξ′ and ξv in eq. (74)
ill defined. We therefore work instead with the original radial variables r, r′ and rv, in terms of which (42) becomes,
in the ω → 0 limit (

e2∂
2
r +

2

r
e3∂r −

`(`+ 1)

r2
e3

)
R

(1,2|s)
` [r] = 0. (91)

(Here e2,3 = e2,3[r, rv] depend on r, rv, not ξ, ξv.) We also express eq. (76) as

g̃
(s)
` [r, r′] ≡ lim

ω→0
ωg̃`[ξ, ξ

′] = C`R(1|s)
` [r>]R

(2|s)
` [r<]− (1− C`)R(1|s)

` [r<]R
(2|s)
` [r>]

+ C11
` R

(1|s)
` [r]R

(1|s)
` [r′] + C22

` R
(2|s)
` [r]R

(2|s)
` [r′], (92)

and eq. (75) as

e2[r, rv]
(
R

(1|s)
` [r](R

(2|s)
` )′[r]− (R

(1|s)
` )′[r]R

(2|s)
` [r]

)
=

1

r2
. (93)

As we shall see, for ` ≥ 1, the radial static Green’s function will be fixed once we demand that the solutions are

regular for all radii r, r′. For ` = 0, regularity is irrelevant; instead, g̃
(s)
0 will be determined by ensuring that eq. (36)

is obtained and, for r> →∞, that the Green’s function goes to zero.
Multiplying both sides of eq. (91) by

√
r3(r3 + r3

v) (and dropping the labels) yields

(r3 + r3
v)R

′′[r] +
4r3 + r3

v

4

(
2

r
R′[r]− `(`+ 1)

r2
R[r]

)
= 0 (94)

and this equation may be readily solved in Mathematica [30]. The general homogeneous solutions to the static radial
mode equation eq. (91), normalized to satisfy the condition in eq. (93) are

R
(1|s)
` [r] ≡

√
2

(2`+ 1)rv

(rv
r

) `
2

2F1

[
`

6
+

1

3
,− `

2
;

5

6
− `

3
;−r

3

r3
v

]
,

R
(2|s)
` [r] ≡

√
2

(2`+ 1)rv

(
r

rv

) `+1
2

2F1

[
1

6
− `

6
,

1

2
+
`

2
;

7

6
+
`

3
;−r

3

r3
v

]
.

Since 2F1[α, β; γ; z = 0] = 1, we see that the (1 − C`)R(1|s)
` [r<]R

(2|s)
` [r>] term tends to

√
r>/rv(r>/r<)`/2 and the

C11
` term in eq. (92) tends to (r2

v/(rr
′))`/2, as r/rv, r

′/rv → 0. These two terms grow without bound, and therefore
we must choose C` = 1 and C11

` = 0.
Next, we use the identity

2F1[α, β; γ; z] =
Γ[γ]Γ[β − α]

Γ[β]Γ[γ − α]
(−z)−α 2F1

[
α, α+ 1− γ;α+ 1− β;

1

z

]
(95)

+
Γ[γ]Γ[α− β]

Γ[α]Γ[γ − β]
(−z)−β 2F1

[
β, β + 1− γ;β + 1− α;

1

z

]
to recast the product R

(1|s)
` [r>]R

(2|s)
` [r<] in eq. (92) in terms of 2F1[α, β; γ;−(rv/r≶)3]. The two potentially divergent

terms for ` ≥ 1 are the ones proportional to(
rr′

r2
v

)`(
2C22

` Γ

[
`

3
+

1

6

]
Γ

[
2(`+ 2)

3

]
+

√
π`!

sin
[

1
6π(2`+ 1)

])(1 +O
[
r2
v/r

3
≶

])
(96)

(
r>
r<

)`
rv
r<

(
2C22

` Γ

[
`

3
+

1

6

]
Γ

[
2(`+ 2)

3

]
+

√
π`!

sin
[

1
6π(2`+ 1)

])(1 +O
[
r2
v/r

3
≶

])
. (97)
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We may therefore collect the results

C` = 1, C11
` = 0, C22

` =
`!Γ[− 1

6 (2`+ 1)]

2
√
πΓ[ 1

3 (2`+ 1)]
, (98)

where we have used the Γ-function identity Γ[z]Γ[1− z] = πcosec[πz].

Notice that none of the regularity constraints apply for ` = 0. In fact, R
(1|s)
0 [r] is a constant. R

(2|s)
0 [r] varies as√

2/rv
√
r/rv for small r/rv, and using eq. (95), we obtain the equivalent expression

R
(2|s)
0 [r] =

√
2

rv

(
Γ[ 1

3 ]Γ[ 7
6 ]

√
π

− rv
2r

2F1

[
1

3
,

1

2
;

4

3
;−r

3
v

r3

])
, (99)

which varies as
√

2/rv(const. − rv/(2r)) for large r/rv. This implies that R
(2|s)
0 [r] is regular for both large and

small r/rv. To determine C0, C11
0 and C22

0 here, we recall the discussion towards the end of section (II), that

g̃
(s)
0 [r, r′ = 0]/(4π) must correspond to the coefficient of the δM/M piece of δΠ[r] in eq. (35); by spherical symmetry,

the ` ≥ 1 do not contribute to the solution generated by a point mass at the origin. This implies C0 = 0 and C11
0 =

Γ[1/3]Γ[1/6]/(6
√
π). When r> � r< � rv, by using the identity in eq. (95) on g̃

(s)
0 [r, r′]/(4π), and setting the resulting

2F1s to unity, we find that the only constant term (independent of both r and r′) reads C22
0 Γ3[1/6]/(9 · 22/3

√
3πrv).

Because we have already chosen the asymptotic boundary condition (see equations (14) and (18)) that ϕ[r → ∞]
generated by a point mass located at some finite r′ should approach zero, this implies C22

0 = 0. We see, at this point,

that g̃
(s)
0 [r, r′] only depends on r> and not on r<.

We may also arrive at the same result for g̃
(s)
0 [r, r′]/(4π), without invoking the background solution Π, if we refer

to the curved spacetime picture described in section (III C). In particular, the static limit of eq. (131), gotten by
setting ω → 0, translates to

− lim
r→0

√
rr3
v∂rg̃

(s)
0 [r, r′ = 0] = 1− C0 = 1. (100)

This immediately implies C0 = 0. Taking the r> � r< � rv limit tells us that, as r> →∞, we are left with

2

rv

(
C11

0 −
Γ[ 1

3 ]Γ[ 7
6 ]

√
π

)
+ C22

0

(
2Γ2[ 1

3 ]Γ2[ 7
6 ]

πrv
−

Γ[ 1
3 ]Γ[ 7

6 ]
√
πr<

)
. (101)

Since we require ϕ[r →∞] = 0 for any finite radial location of the point mass, we must have C11
0 = Γ[ 1

3 ]Γ[ 7
6 ]/
√
π and

C22
0 = 0.
This completes the derivation of eq. (60).
With the exact solution to the static Green’s function in hand, we may now take the limits r, r′ � rv, r, r

′ � rv,
and r> � rv � r<. In the small radii limit, r, r′ � rv, we set the 2F1s in eq. (60) to unity, and drop the subleading

(rr′/r2
v)

(`+1)/2 term relative to the dominant (r</r>)`/2
√
r</rv term, to obtain

G(static)[~x, ~x′] = − 1

2πrv

(√
r

rv
+

√
r′

rv

)
+

2
√
rr′

r
3/2
v

∞∑
`=0

∑̀
m=−`

Y m` [θ, φ]Y m` [θ′, φ′]

2`+ 1

1
√
r>

(
r<
r>

) `
2

, (102)

The infinite mode sum in eq. (102) may be collapsed into a closed expression by first summing over the azimuthal
modes and then invoking the generating function of the Legendre polynomials. The result of the mode sum in eq.
(102) is eq. (66).

In the same vein, the large radii r, r′ � rv static Green’s function may be summed into a closed form by similar
means. In fact, our solution is consistent with our earlier observation that Galileon dynamics reduce to that of a
minimally coupled massless scalar field in Minkowski; for since we know its static limit is eq. (65), our Galileon static
Green’s function ought to reduce to the same in this asymptotic limit to lowest order in rv/r≶. In detail, if one
begins from eq. (60), applies the identity in eq. (95) to the 2F1s and then proceeds to set the transformed 2F1s to
unity – because their arguments will go as −(rv/r)

3, which is very small at large radii – one finds a subleading term
proportional to r2`+2

v /(rr′)`+1 and a dominant term proportional to (1/r>)(r</r>)`. Keeping only the dominant term
and again converting the sum over spherical harmonics into one over Legendre polynomials, followed by applying the
latter’s generating function, we reach eq. (65).

As for the case r> � rv � r<, the result in eq. (67) can be obtained by starting with the exact solution in eq.

(60), but only applying the identity in eq. (95) to R
(2|s)
` [r>], followed by setting the 2F1s to unity.
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2. The WKB Green’s Function

Next we consider the high frequency limit, |ξ|, |ξv| � max[1, `]. We first rescale the mode functions via

R
(1,2)
` [ξ] ≡

R(1,2)
` [ξ]

(ξ(ξ3 + ξ3
v))

1/4
, (103)

so that the Wronskian condition in eq. (75) becomes R(1)
` [ξ](R(2)

` )′[ξ]− (R(1)
` )′[ξ]R(2)

` [ξ] = 1, and (74) reads

0 = −
(
R(1,2)
`

)′′
[ξ] + (K[ξ, ξv] + U [ξ/ξv])R(1,2)

` [ξ] . (104)

Here U has already been defined in eq. (47), and we define

K[ξ, ξv] ≡
16ξ6`(`+ 1) + 4ξ3ξ3

v(5`(`+ 1) + 6) + ξ6
v(4`(`+ 1)− 3)

16ξ2(ξ3 + ξ3
v)2

. (105)

For large |ξ|, |ξv| � max[1, `], we see that the denominator of K scales as 8 powers of the large quantity 1/δ ∼ |ξ|, |ξv|;
while its numerator contains six powers of 1/δ times terms of order unity, order ` and order `2. This means that the
largest possible scaling of K is that it goes as (`δ)2 � 1. For ` = 0, K scales as δ2. Since U is of order unity, in the
high frequency limit we may therefore discard K relative to U .

Suppressing the irrelevant indices, we now seek to solve

0 = −ε2R′′[ξ] + U [ξ/ξv]R[ξ] . (106)

(Here and below, we are introducing a fictitious parameter ε that will be set to unity once the solutions to R
are obtained.) Observe that, viewed as a function of ξ, the U is very flat by assumption, because ∂ξU [ξ/ξv] =
U ′[ξ/ξv]/ξv � 1. This calls for the WKB method of solution, in which one uses the derivatives of U with respect to
ξ as an expansion parameter. We therefore pose the ansatz

R[ξ] =
e(i/ε)S[ξ]

4
√
−U [ξ/ξv]

∞∑
`=0

ε`τ(`)[ξ]. (107)

It is important to note from eq. (47) that
√
−U [ξ/ξv] has no real zeros, though it has a singularity at ξ/ξv = −1 and

a global minimum at
√
−U [ξ/ξv = 1/2] =

√
2/3. Both in eq. (106) and the ansatz of eq. (107), ε will turn out to

count derivatives, so that 1/ε implies an integral. Inserting eq. (107) into eq. (106) and setting the coefficient of each
distinct power ε` to zero, the ` = 0 term yields a relationship between U and S ′, which we may integrate to obtain
two solutions

S[ξ] = ±
∫ ξ

dξ′′
√
−U [ξ′′/ξv] . (108)

The ` = 1 term gives a differential relationship between τ(0)/
4
√
−U [ξ/ξv], its first derivative with respect to ξ, and S ′

and S ′′. Through eq. (108), this gives

τ(0) = constant. (109)

By setting to zero the coefficients of ε`, for ` ≥ 2, we find a recursion relation obeyed by τ(`),

τ(`) = ∓1

2

∫ ξ dξ′′

4
√
−U [ξ′′/ξv]

d2

dξ′′2

(
τ(`−1)[ξ

′′]
4
√
−U [ξ′′/ξv]

)
, (110)

where − (or +) is chosen if we chose the + (or −) sign in eq. (108). As advertised earlier, we see that every higher
order in ε contains an additional derivative with respect to ξ; and the 1/ε in the phase of eq. (107) is the integral in
eq. (108).

For our purposes, we shall work only to lowest order in the WKB approximation, just involving S and τ(0); the

solutions R
(1,2)
` normalized to obey the Wronskian condition in eq. (75) are

R
(1
2)
` [ξ] =

exp
[
±iξv

∫ r/rv
0

dϑ
√
−U [ϑ]

]
4
√
−U [r/rv] (ξ(ξ3 + ξ3

v))
1/4

. (111)
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Let us pause to understand the large (r/rv � 1) and small (r/rv � 1) radius limits. Examining Fig.(1) reminds us

that
√
−U [r/rv] is basically flat for large r/rv � 1. Together with the limit

√
−U [+∞] = 1, we may infer, for some

ξ0 and ξ such that ξ/ξv > ξ0/ξv � 1,

ξv

∫ ξ/ξv

0

√
−U [ϑ]dϑ ≈ ξv

∫ ξ0/ξv

0

√
−U [ϑ]dϑ+ ξ − ξ0 = ξ − ξv

∫ ξ0/ξv

0

(
1−

√
−U [ϑ]

)
dϑ. (112)

We will justify below that we may now further approximate this integral by extending the upper limit of integration
ξ0/ξv to infinity,

ξv

∫ ξ/ξv

0

√
−U [ϑ]dϑ ≈ ξ − ξvI∞, ξ/ξv � ` (113)

where I∞ was defined in eq. (46). Similarly, for r/rv � 1, by the flatness of the potential
√
−U [ϑ] near ϑ = 0, we

have

ξv

∫ ξ/ξv

0

√
−U [ϑ]dϑ ≈

√
3

2
ξ, ξ/ξv � 1. (114)

We thus have

R
(1
2)
` [ξ] ≈


exp

[
±i
√

3
2 ξ

]
√√

3/2(ξξ3v)1/4
, r/rv � 1

exp[±i(ξ−ξvI∞)]
ξ r/rv � 1

. (115)

The r, r′ � rv, r, r
′ � rv and r> � rv � r< limits reported in equations (54), (55), and (57) follow from equations

(52) and (115) once C++
` is computed.

It is important to observe that, in this high frequency limit we are working in, R
(1)
` [ξ] (the + sign solution) in eq.

(111) is proportional to ξ1/4H
(1)
(2`+1)/4[

√
3ξ/2] in the r � rv regime and to h

(1)
` [ξ] in the r � rv regime. To validate

this assertion, we merely need to compare the expressions in eq. (115) against the high frequency limit of the Hankel

functions. (Likewise, R
(2)
` [ξ] is proportional to h

(2)
` [ξ] and ξ1/4H

(2)
(2`+1)/4[

√
3ξ/2] in the limits r � rv and r � rv

respectively.) Retarded boundary conditions mean, therefore, that in eq. (76) we need to set C` = 1 and C22
` = 0 for

all ` ≥ 0. At this point, our WKB radial Green’s function solution takes the form in eq. (52).
For ` ≥ 1, C++

` may be fixed by regularity, demanding that the limit r</rv → 0 yields a radial Green’s function

that is proportional to the high frequency behavior of ξ
1/4
< J(2`+1)/4[

√
3ξ</2]. From the form in eq (52) and the large

argument limit of the Bessel function this translates to the consistency condition

ie−i
√

3ξ</2 + C++
` ei

√
3ξ</2 = χ

√
4

π
√

3
cos

[√
3ξ<
2
− π

2

2`+ 3

4

]
, (116)

where χ is a constant. By converting the cosine into exponentials and equating the coefficients of exp[±i
√

3ξ</2] on
both sides, this lets us solve for both C++

` and χ.
For ` = 0, the radial Green’s function can now be proportional to a linear combination of the high frequency limits

of ξ
1/4
< J1/4[

√
3ξ</2] and ξ

1/4
< H

(1)
1/4[
√

3ξ</2], because as already discussed, both are non-singular in the zero radius

limit. Let us consider setting r</rv = 0, eliminating the ξ1/4J1/4 term. If we now also take r> � rv, and if we remind

ourselves of eq. (115) and the large argument limit of H
(1)
ν , we see that the WKB C++

0 term must match onto the high

frequency limit of the 4
√
ξξ′H

(1)
1/4[
√

3ξ/2]H
(1)
1/4[
√

3ξ′/2] term in eq. (87), i.e. C++
0 ∝ C

(HH)
0 when |ξv| � max[1, `]. As

we will discuss in section (III C) below, the ` = 0 radial Green’s function, which obeys an inhomogeneous Helmholtz
equation in curved spacetime, must obey the Gauss’ law in eq. (131):

− lim
ξ→0

√
ξξ3
v∂ξ g̃0[ξ, ξ′ = 0] = 1, (117)

where we have taken the small radius limit of the effective metric in eq. (128). Because the ξ1/4J1/4[
√

3ξ/2] vanishes
when evaluated at ξ = 0, this condition applied to eq. (87) allows us to solve for

iπ

2ξ
3/2
v

C
(HH)
0 = − (1 + i)π

4ξ
3/2
v

, (118)
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which in turn yields the C++
0 in eq. (53).

In the preceding discussion, we invoked the flatness of
√
−U [ϑ] at both large and small ϑ. Let us pause to quantify

this flatness by examining the following expressions

F0[ϑ] ≡ ξv
∫ ϑ

0

dϑ′

(√
3

2
−
√
−U [ϑ′]

)
(119)

and

F∞[ϑ] ≡ ξv
∫ ∞
ϑ

dϑ′
(

1−
√
−U [ϑ′]

)
. (120)

The reason for the ξv in front of the integrals is that, because these expressions occur in phases (e.g. exp[iξvΦ≶]), it
is not sufficient for the integrals themselves to be much less than unity. We need the entire expression to be small, so
that very little oscillation occurs.

Computing the power series of F0[δ] and F∞[1/δ] about δ = 0 allows us to understand precisely how good an
approximation the expressions in eq. (115) are. For r/rv � 1 we obtain

F0[r/rv] = ξv
(ξ/ξv)

5/2

5
√

3
+O

[
ξv(ξ/ξv)

4
]

(121)

and, for r/rv � 1,

F∞[r/rv] = ξv
(ξv/ξ)

2

8
+O

[
ξv(ξv/ξ)

5
]
. (122)

Therefore, replacing r0/rv with +∞ in eq. (112) results in an error in the phase that is of order ξv(ξv/(ωr0))2 � 1,
as long as we assume |ξ>| � ωr0 � |ξv|3/2 (i.e. the observer is far enough outside Vainshtein). Likewise, the

approximation in ξvΦ< for r</rv � 1, replacing
√
−U with

√
3/2, makes an error in the phase that is of order

ξv(ξ</ξv)
5/2 � 1 as long as `� |ξv|3/5.

3. Low and High Frequency Limits

Because we were able to solve for the relevant mode functions (up to their overall ξv-dependent normalization
constants) in the regions very close to and very far away from the the central mass, we were able to determine the
form of the radial Green’s function in the limits r, r′ � rv (eq. (71)), r, r′ � rv (eq. (87)), and r> � rv � r<
(eq. (90)). We may calculate the ξv-dependent constants appearing in these expressions at least in the low frequency
|ξv| � 1 and high frequency |ξv| � max[1, `] limits by matching them onto the static and WKB results we have
obtained in the previous two sections.

In the low frequency limit, we may simultaneously take the limit |ξv| � 1 and replace the Bessel and Hankel
functions, and their spherical versions, with their small argument limits. The resulting expressions in equations (90),
(87), and (71) can then be compared against the respective expressions in equations (67), (the small r/rv, r

′/rv limit
of) (60), and (65).

Similarly, in the high frequency limit, we may simultaneously take the limit |ξv| � 1 and the resulting expressions
in (90), (87), and (71) can then be compared with the respective expressions in equations (57), (55) and (54).

Notice that, upon these comparisons, for the radial Green’s function evaluated deep inside Vainshtein, eq. (87),
C0 = 1 in the high frequency limit, while it goes to zero in the low frequency limit.

Finally, to arrive at equations (44), (68), and (70), it is useful to write H
(1)
1/4 = J1/4 + iN1/4, and to use

Nν [z] =
Jν [z] cos[πν]− J−ν [z]

sin[πν]
. (123)

One may wonder why the result in eq. (71) is not simply the usual answer in flat Minkowski spacetime, i.e.

C
(hh)
` = 0, since if both observer and emitter are very far from the central mass M the propagation of signals would

not be expected to feel the presence of the central body M . The physical reason is that signals with wavelengths

much longer than that of Vainshtein radius |ξv| � 1 indeed cannot resolve rv very well – C
(hh)
` is proportional to
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some integer power of the small quantity ξv – but once the wavelengths become much shorter than rv Galileon signals

can resolve the Vainshtein scale and C
(hh)
` is not small but becomes a mere phase.5

We have now completed the derivation of the results in section (III A).

C. The Curved Spacetime Picture

Before we move on to investigate the radiation seen by an asymptotic observer generated by the motion of matter
close to the central source M , we would like to discuss an alternative perspective for the Galileon propagating on the
background Π[r]. We shall also discuss the existence of a Gauss’ law for the Helmholtz equation obeyed by the ` = 0
mode of the radial Green’s function.

By a direct calculation, it is possible to view the Green’s function equation (31) as that for a massless scalar wave
equation in a curved spacetime. Specifically – recalling equations (28) through (30) – dividing both sides of (31) by√
e1e2e3, we arrive at

2xG[x, x′] = 2x′G[x, x′] =
δ(4)[x− x′]
|gg′|1/4

=
√
H[r/rv]H[r′/rv]δ[t− t′]

δ[r − r′]
rr′

δ(2)[x̂− x̂′] (124)

with

H[ϑ] ≡ 8ϑ3

1 + 4ϑ3

√
1 + ϑ3

3(1 + 2ϑ3)− 2
√
ϑ3(1 + ϑ3)

, (125)

and

δ(2)[x̂− x̂′] ≡ δ[cos θ − cos θ′]δ[φ− φ′], (126)

g ≡ det gαβ [x], g′ ≡ det gαβ [x′]. (127)

We have denoted 2x ≡ gαβ [x]∇xα∇xβ and 2x′ ≡ gαβ [x′]∇x′α∇x′β to be the minimally coupled massless scalar wave
operator in a curved spacetime geometry given by the metric

gαβdxαdxβ ≡ e−
1
2

1 e
1
2
2 e3dt2 − e

1
2
1 e
− 1

2
2 e3dr2 − e

1
2
1 e

1
2
2 r

2ΩABdxAdxB, xA ≡ (θ, φ) (128)

Observe that the H[r′/rv] (eq. (125)) occurring in eq. (124) is (8/
√

3)(r/rv)
3 in the small radii limit and unity at

large radii. This is the Vainshtein effect at work: the magnitude of the point mass sourcing the Green’s function grows
weaker the closer it gets to the central mass M , but goes to unity far away from it. On the other hand, it is somewhat
puzzling, in this curved spacetime picture, that a source located nearer and nearer to the spatial origin tends to zero
strength; for instance, we have already remarked, towards the end of section (II), that a static point source located
at the origin must contribute to the background Π[r] solution via a shifting of the mass, M →M + δM .

To understand this we first re-express eq. (124) in accordance with our decomposition in eq. (39); this means that

we drop the integration symbol
∫

dω/(2π), and replace δ[t− t′] and δ(2)[x̂− x̂′] with, respectively, e−iω(t−t′) and the
spherical harmonic completeness relation. Because placing the point source at the origin means we have a spherically
symmetric problem, this means only the monopole ` = 0 term in eq. (124) is relevant. Keeping the discussion general
for now, let us merely assume the metric reads

gµνdxµdxν = g00dt2 + grrdr
2 + gABdxAdxB, (129)

and is time independent. Our frequency space curved spacetime equation is then

ω
(
−ω2

√
|g|g00g̃0[ξ, 0] + ∂r

(√
|g|grr∂r g̃0[ξ, 0]

))
= δ[r], (130)

5 A simpler toy example is to consider the theory of a minimally coupled massless scalar, with a spherical perfect absorber with radius

R0 centered at the origin of the spatial coordinate system. The radial retarded Green’s function takes the form ih
(1)
` [ξ>](j`[ξ<] −

χh
(1)
` [ξ<]). Perfect absorber here means the scalar field observed on the surface of the sphere is identically zero, thereby imposing

χ = j`[ωR0]/h
(1)
` [ωR0]. At low frequencies, |ωR0| � 1, χ → i(ωR0)2`+1/((2` − 1)!!(2` + 1)!!). At high frequencies, |ωR0| � 1,

χ→ (1/2)(1− exp[i(π`− 2ωR0)]).
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which allows us to integrate over an infinitesimally small neighborhood about r = 0 to obtain the normalization
condition:

lim
r→0

ω
√
|g|grr∂rg̃0[ξ, 0] = 1. (131)

This indicates that, even though the measure H[r/rv]/r
2 (see equations (124) and (125)) tends to zero as r → 0, a

point mass sitting at the spatial origin must nonethless produce a non-zero (spherically symmetric) Galileon field, for
otherwise eq. (131) cannot be satisfied.

That we are able to obtain an equivalent curved spacetime wave equation to eq. (31), is in fact one way to justify
the “measure” 1/(rr′) multiplying the δ-functions on its right hand side. From general arguments due to Hadamard
[33] – see [34] for a review on Green’s functions in curved spacetime – we know that solutions exist for the massless
scalar Green’s function equation (124). Since equations (31) and (124) are equivalent, this means the (rr′)−1 is the
correct measure. Moreover in this curved spacetime picture of the Galileon Green’s function, we know that, when the
observer at x and the source at x′ can be connected by a unique geodesic, the retarded Green’s function consists of
the sum of two terms, namely

G[x, x′] =
Θ[t− t′]

4π

(
δ[σx,x′ ]

√
∆x,x′ + Θ[σx,x′ ]Vx,x′

)
. (132)

Here, σx,x′ is half the square of the geodesic distance from x′ to x. The first term after the equality describes
propagation of Galileon signals on the null cone of the geometry in eq. (128); ∆x,x′ is related to the evolution of the
cross sectional area of null rays emanating from x′ to x. V [x, x′], known as the tail term, describes Galileons traveling
inside the future null cone of x′. It is the solution to the homogeneous wave equation 2xV = 2x′V = 0, obeying
non-trivial boundary conditions on the null cone of x′. We see that solving the retarded Galileon Green’s function
provides us information not only about the causal structure of Galileon signals but also about the effective spacetime
in eq. (128).

Via equations (16) through (20): we recover flat spacetime for the region well outside the Vainshtein radius (r � rv),

gαβdxαdxβ ≈ ηµνdxµdxν (133)

and for the region well within Vainshtein (r � rv) we have instead

gαβdxαdxβ ≈
(rv
r

) 3
2 1

2
√

3

(
dt2 − 3

4
dr2 − 3r2ΩABdxAdxB

)
. (134)

The 3/4 in front of dr2 indicates that, deep within the Vainshtein radius of the central object, Galileon waves

propagating in the radial direction are superluminal, since dr/dt = 2/
√

3 > 1. (We have already noted this, within
the context of the WKB results, right after eq. (55).) In the same vein, it is worth mentioning that, if some method
can be found to evaluate the infinite mode sum of the Green’s function result for r, r′ � rv described by equations
(39) and (68) through (70), we should obtain the Hadamard form in eq. (132) and this would give us a deeper insight
into the superluminal properties of Galileon signals near the matter source.

Note that defining

ρ ≡
√√

3r/2, ρv ≡
√√

3rv/2 (135)

transforms eq. (134) into

gαβdxαdxβ =
1

2
√

3

(
ρv
ρ

)3 (
dt2 − (2ρ)2δijdρ

idρj
)
, (136)

where the Cartesian components of the spatial coordinates are

ρi ≡ ρ(sin θ cosφ, sin θ sinφ, cos θ). (137)

This small radius curved spacetime metric provides an alternate means of deriving the inhomogeneous portion of the
static Green’s function in eq. (66). To see this, first re-scale the static Green’s function as

G(static)[~x, ~x′] ≡
√

3

ρ3
v

ρρ′g(static)[ρ, θ, φ; ρ′, θ′, φ′] . (138)
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Next, compute the static analog of (124), namely

2xG
(static)[~x, ~x′] = |g[x]g[x′]|−1/4δ(3)[~x− ~x′], (139)

using the small radii metric in (136). Thus, g(static) is the Green’s function to the Laplacian in Euclidean 3-space

∆~ρ ≡ δij
∂

∂ρi
∂

∂ρj
, (140)

namely

−∆~ρg
(static)[~ρ, ~ρ′] = −∆~ρ′g

(static)[~ρ, ~ρ′] = δ(3)[~ρ− ~ρ′]. (141)

Remembering the rescaling performed in (138) and requiring that G(static)[~x, ~x′] = G(static)[~x′, ~x] then fixes the general
solution to take the form

G(static)[~ρ, ~ρ′] =

√
3

4πρ3
v

(
ρρ′

|~ρ− ~ρ′|
− χ0 − χ1 (ρ+ ρ′)− χ2ρρ

′
)
, (142)

where χ0,1,2 are spacetime constants; these χ0,1,2 terms are homogeneous solutions, i.e. 2x and 2x′ applied on them
give zero. The χ0,1 may be fixed by placing the source at the spatial origin, ρ′ = 0 or ρ = 0, and making sure that
eq. (37) is recovered. (The χ1 may also be determined using the condition derived in eq. (131). First replace r with

ρ; remember G(static)[~x,~0] = limω→0 ωg̃0[ξ, 0]/(4π); and a short calculation yields
√
|g|gρρ = −ρ3

v/
√

3. Altogether,
χ1 = 1.) Finally, χ2 can be fixed by demanding that, for r> → ∞, the Green’s function goes to zero. (We do not
compute χ0,1,2 in detail, since we have already obtained the exact result in the previous sections.)

In equations (A9) and (A12) we derive the minimally coupled scalar field generated by n point masses in a generic
curved spacetime in terms of the Hadamard form in eq. (132). The reason for doing so is that the Galileon field ϕ
generated by the n body dynamics is, in fact, related to eq. (A12) – the curved geometry in question is eq. (128).6

One cannot help but wonder if our mode expansion results in section (III A) can be utilized, at least in some limits,
to extract the various portions (

√
∆x,x′ , σx,x′ , etc.) of the Hadamard form in eq. (132). We leave these questions for

possible future work.

IV. RADIATIVE PROCESSES

In the following two sections we wish to examine the Galileon waves produced by matter in motion, within two
concrete scenarios. The first is the radiation made by acoustic waves propagating on the surface of the large central
body of mass M with radius R0. The second is the radiation created by the movement of compact bodies orbiting
this central body; for instance, this could describe our solar system, with planets orbiting around the Sun or a highly
asymmetric mass ratio binary star system capable of also generating gravitational waves that could be observed by
upcoming gravitational wave detectors.

We initiate the discussion by defining radiation to be the piece of the Galileon field that carries a non-trivial energy-
momentum flux to infinity. Quantitatively, we only wish to consider the portion of ϕ that contributes a non-zero
power (per unit solid angle) at infinity,

dE

dtdΩ
≡ lim
r→∞

r2T0r = − lim
r→∞

r2∂rϕ∂tϕ. (143)

(We have used eq. (9).) As we will see more explicitly below, both ∂tϕ and ∂rϕ contain a power series in 1/r,
beginning at 1/r. Even though the full Galileon field is Π ≡ Π + ϕ, according to eq. (19), the derivative of the static

background Galileon field goes as Π
′
[r →∞] ∼ 1/r2, it does not contribute to the asymptotic power we are currently

after and hence would be neglected in the following discussion.

6 It is not exactly the same expression because, in curved spacetime, the element of proper time is ds =
√
gµν ẋµẋνdt, whereas in this

paper we are working in flat spacetime and the element of proper time is ds =
√
ηµν ẋµẋνdt.
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To highlight the importance of the non-linear self interactions of the Galileon field, we will also compute the
radiation signature in the same setups arising from the minimally coupled massless scalar, so that we can compare
the prediction of the two theories. That is, we will also consider the theory described by the following action

SΞ ≡
∫

d4x

(
1

2
(∂Ξ)2 + Ξ

δT

Mpl

)
+

M

Mpl

∫
Πdt′. (144)

Compare this with the Galileon action SΠ + SM + δS in equations (6), (7), and (8). There, we had to first solve Π
sourced by M and then proceed to perturb around it. Here, because the Ξ-theory is linear, the complete field Ξ is
gotten by superposing the field spawned by each individual source.

When we compute the radiation generated by the surface waves on M , we will assume that these waves are driven
by external (non-gravitational) forces, so that M itself can be considered to be a static source of the scalar field(s)
(falling off as 1/r2), and do not produce any radiation due to backreaction. The only source of radiation there is
δT describing the waves themselves. When we compute the radiation of the n-body system, however, we need to
remember that, even though M � ma, and hence the location of M never deviates far from the center of energy of
the system – the entire system is held together by (largely) conservative gravitational forces. In this case, we shall
see it is important to include M in the radiation calculation so as to enforce the conservation of linear momentum.

The radiative limits of the Green’s function for ϕ (equations (44) through (48)) and for Ξ (equations (77) and (78))
both take the form

G[x, x′] =

∫
dω

2π
e−iω(t−t′)

∑
`,m

Ω̂m` [θ, φ](Ω̂m` )∗[θ′, φ′]R<` [ξ<]h
(1)
` [ξ>] , (145)

where we have chosen to write the orthonormal angular mode functions as a linear combination of the usual spherical
harmonics

Ω̂m` = (`)L
m
n′Y

n′

` . (146)

(The ∗ in (Ω̂m` )∗ represents complex conjugation.) Here (`)L
m
n′ is a unitary (2`+ 1)× (2`+ 1) matrix, so {Ω̂m` } is as

good an orthonormal basis as the spherical harmonics. For the minimally coupled massless scalar Ξ, equations (77)
and (78) tell us

R(<|Ξ)
` [ξ<] = iωj`[ξ<] , (147)

while eq. (44) gives, for the Galileon ϕ,

R(<|ϕ)
` [ξ<] = ωC

(rad)
` · 4

√
ξ<Jσ`

4 (2`+1)

[√
3ξ</2

]
, (148)

where σ0 = −1 and σ` = 1 when ` ≥ 1. If we decompose the matter source in the same way that we decomposed the
Green’s function,

δT [x] =

∫
dω

2π
e−iωt

∑
`,m

Ω̂m` [θ, φ]ρm` [ω, r], (149)

then by the orthonormality of both the exponentials and the angular mode functions, we may translate eq. (32) into
the following solution for the ϕ or Ξ field evaluated at (t, r, θ, φ), sourced by δT/Mpl

ϕ[x],Ξ[x] =
1

Mpl

∫
dω

2π
e−iωt

∑
`,m

Ω̂m` [θ, φ]h
(1)
` [ξ]

∫ ∞
0

dr′r′2R<` [ξ′]ρm` [ω, r′]. (150)

The asymptotic behavior of the spherical Hankel function then implies that the scalar field, for a fixed angular
frequency ω, is indeed proportional to a finite power series in 1/r, and the series begins at 1/r. This leading order
1/r piece of the time and radial derivatives is precisely what we call radiation, because when inserted into eq. (143),
the factors of r cancel and what remains is a finite amount of energy transported to infinity. Any part of the fields
containing a higher power than 1/r would make a contribution to r2T0r that decays to zero at infinity.

Moreover, since taking a time derivative brings down a −iω and taking a r-derivative – to lowest order in 1/r –
brings down a +iω, we deduce that the radiative part of the fields obey the relationship,

(∂tϕ)radiation = −(∂rϕ)radiation (151)
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with Ξ respecting the same equation. Hence it suffices to display only the time derivatives,

∂tϕ, ∂tΞ = − 1

Mpl

∫
dω

2π
e−iωt

∑
`,m

Ω̂m` [θ, φ](−i)` e
iξ

r

(
1 +O

[
1

r

])∫ ∞
0

dr′r′2R<` [ξ′]ρm` [ω, r′]. (152)

Because it contains an r-dependent exponential eiξ, one may worry that the Fourier integral in eq. (152) would
somehow introduce additional terms that go as 1/r (after the ω-integral has been performed), and therefore that
dropping the higher powers of 1/r in eq. (152) at this stage is premature. However, we will see from the integral in
eq. (154) below that the eiξ drops out of the expression for total energy, and therefore r does not take part in the
resulting ω-integral; in particular, the higher powers of 1/r that have been discarded in eq. (152) would indeed decay
away once we take the r →∞ limit.

In general, we expect the Fourier integral in eq. (152) to be extremely difficult to evaluate. We will instead consider
what the spectrum of radiation emitted from a particular system is. The spectrum is indeed a physical observable,
since observations usually take place over enough cycles of the radiation field for a Fourier analysis to be done.

The total energy per solid angle radiated to infinity is the integral

dE

dΩ
= − lim

r→∞

∫ ∞
−∞

r2∂rϕ∂tϕdt. (153)

(The same expression holds for Ξ.) A few standard Fourier identities allow us to express the total scalar energy
radiated per unit solid angle, from eq. (152), as the following integral over all angular frequencies

dE[ϕ or Ξ]

dΩ
=

1

M2
pl

∫
dω

2π

∣∣∣∣∣∑
`,m

Ω̂m` [θ, φ](−i)`
∫ ∞

0

dr′r′2R<` [ξ′]ρm` [ω, r′]

∣∣∣∣∣
2

. (154)

In the subsequent two sections, we perform the decomposition in eq. (149) for surface waves on the spherical mass
M as well as that of n compact bodies orbiting it, and proceed to apply them to eq. (154).

A. Surface Waves On Spherical Body

In this section we will describe surface (acoustic) waves propagating on the large central mass M of radius R0 by

δT�[x] ≡ M

V�
δR δ[r −R0]. (155)

where V� is the volume of M ,

V� ≡
4

3
πR3

0. (156)

Denote by R[t, x̂] the radius of the mass M at a given time t and direction (θ, φ) from the spatial center of the
coordinate system. For a non-relativistic system, which we shall assume is the case in this section, the trace of the
stress-energy tensor δT primarily describes its mass density δT00. Then eq. (155) may be interpreted as describing
surface waves of very small fluctuations δR[t, x̂] ≡ R[t, x̂]−R0 around the mean radius R0, on an otherwise perfectly
spherical body. We will decompose these undulations δR as

δR[t, x̂] = R0

∞∑
`=1

∑̀
m=0

(
Âm` [x̂]am` cos [Ωm` t+ Φm` ] + B̂m` [x̂]bm` cos [Ω′m` t+ Ψm

` ]
)
, (157)

with |am` |, |bm` | � 1. The “rotated” spherical harmonics {Âm` , B̂m` } are defined as, whenever m 6= 0,

Âm` ≡ im(Y m` + Y −m` )/
√

2,

B̂m` ≡ im+1(Y m` − Y −m` )/
√

2, (158)

whereas for m = 0,

Â0
` ≡ Y 0

` = (Â0
`)
∗, B0

` ≡ 0. (159)
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Because Y m` = (−)mY −m` , the Âm` and B̂m` are real. This is the primary reason for using them instead of the usual
Y m` , because now am` and bm` can directly be read off as dimensionless amplitudes of a particular mode of vibration,
with respective oscillation frequencies Ωm` , Ω′m` , and phases Φm` and Ψm

` . For technical convenience, we will assume
all oscillation frequencies {Ωm` ,Ω′m` } are distinct and positive.

It is also worthwhile to observe we have not allowed a monopole ` = 0 term in the infinite sum eq. (157): in
particular,

∫
d3xδT [t, ~x] = 0, and the total mass is a constant. While our scalar field theories do not enjoy any sort

of symmetry giving rise to a conservation law for the associated scalar charge, the coupling to the scalar fields here is
of (sub-)gravitational strength, and thus very weak. Therefore the requirement from the known laws of physics that
mass is a conserved quantity, in the Minkowski spacetime we are working in, therefore takes precedence.

By a direct calculation, one can check that our surface waves have the following decomposition

δT�[x] =

∫
dω

2π
e−iωt

MR0

V�
δ[R0 − r]π (160)

×
∞∑
`=1

∑̀
m=0

(
Âm` [x̂]am`

(
e−iΦ

m
` δ[ω − Ωm` ] + eiΦ

m
` δ[ω + Ωm` ]

)
+ B̂m` [x̂]bm`

(
e−iΨ

m
` δ[ω − Ω′m` ] + eiΨ

m
` δ[ω + Ω′m` ]

))
.

Here, the analog of the ρm` s appearing within the formula in eq. (154), are the coefficients of
∫

(dω/(2π))e−iωtÂm` and∫
(dω/(2π))e−iωtB̂m` . When taking the square | . . . |2 in eq. (154), we encounter cross terms involving the δ-functions.

However, since we have assumed that all frequencies are distinct and positive, the arguments of the δ-functions cannot
be simultaneously zero unless the frequencies are in fact the same. This collapses the summations into a single `- and
a single m-sum. It remains to deal with squares of the form ((2π)δ[ω ± ω′])2, with ω′ being one of the Ωm` s or Ω′m` s.
We will treat one of the (2π)δ[ω ± ω′] as the total duration of time, since

(2π)δ[ω = 0] =

∫
dt lim

ω→0
e−iωt = total time elapsed. (161)

Dividing both sides of eq. (154) by total time, i.e. (2π)δ[ω = 0], then gives us back power radiated in scalar waves
per unit solid angle.

Minimally Coupled Massless Scalar The result for Ξ, from eq. (147), is then

dE[Ξ]

dtdΩ
=

9GNM
2

πR2
0

∞∑
`=1

∑̀
m=0

{∣∣∣Âm` [x̂]am` Ωm` R0j`[Ω
m
` R0]

∣∣∣2 +
∣∣∣B̂m` [x̂]bm` Ω′m` R0j`[Ω

′m
` R0]

∣∣∣2}. (162)

(We have exploited the fact that, because j`[z] is z` times a power series in z2, |j`[−z]| = |j`[z]|.)
For non-relativistic systems, a substantial subset of the oscillation periods ∼ 1/Ωm` , 1/Ω

′m
` ought to be much longer

than the light crossing time ∼ R0. Therefore we can treat the small dimensionless quantities Ωm` R0,Ω
′m
` R0 � 1 as

expansion parameters. This leads us, in this non-relativistic limit, to

dE[Ξ]

dtdΩ
=

9GNM
2

πR2
0

∞∑
`=1

∑̀
m=0

1

((2`+ 1)!!)2

{∣∣∣Âm` [x̂]am` (Ωm` R0)
`+1
∣∣∣2 +

∣∣∣B̂m` [x̂]bm` (Ω′m` R0)
`+1
∣∣∣2}. (163)

Galileons For the Galileon ϕ, because the Vainshtein radius depends on Λ in eq. (6) – a free parameter in this
paper – it is not necessary that Ωm` rv,Ω

′m
` rv � 1 ≤ `. This prompts us to write the energy output dEm` /dtdΩ due to

Galileons as a function of the mode numbers (`,m) instead. We will assume that the surface waves are non-relativistic,
and thus the ratio of the radius to that time of oscillation is a small number (i.e. Ωm` R0, Ω′m` R0 � 1), so that we
may replace the Bessel and Hankel functions with their small argument limits.

When Ωm` rv,Ω
′m
` rv � 1 and ` ≥ 1,

dEm` [ϕ]

dtdΩ
=

288GNM
2

R2
0

R0

rv

(
Γ
[
− 2`

3 −
1
3

]
Γ
[

5
6 −

`
3

]
23`+ 7

2 Γ
[
`
2 + 3

4

]
Γ
[
`
2 + 5

4

]
Γ[−`]

(
cos
[

1
6π(2`+ 1)

]
sin[π`]

+ 1

))2

(164)

×

{
(Ωm` R0)

`+2
(Ωm` rv)

`
∣∣∣Âm` [x̂]am`

∣∣∣2 + (Ω′m` R0)
`+2

(Ω′m` rv)
`
∣∣∣B̂m` [x̂]bm`

∣∣∣2}.
Notice that for the ` = 1 case, the Vainshtein radius rv drops out; low frequency oscillations are thus unscreened to
the lowest order. At higher than dipole order, ` ≥ 2, by comparing the (R0/rv)(Ω

m
` R0)`+2(Ωm` rv)

` in the Galileon
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result in eq. (164) to the analogous (Ωm` R0)2`+2 in eq. (163) for the non-interacting massless scalar, we find that
Galileon power is actually enhanced (up to `-dependent numerical factors) by the ratio (rv/R0)`−1 � 1.

When Ωm` rv,Ω
′m
` rv � max[1, `], and ` ≥ 1,

dEm` [ϕ]

dtdΩ
=
GNM

2

R2
0

3
`
2 + 9

4

4`+1Γ
[
`
2 + 5

4

]2
{∣∣∣Âm` [x̂]am`

∣∣∣2 (Ωm` R0)
`+3

(Ωm` rv)
3
2

+
∣∣∣B̂m` [x̂]bm`

∣∣∣2 (Ω′m` R0)
`+3

(Ω′m` rv)
3
2

}
. (165)

For a fixed ` mode, we may take the ratio of the Ξ results in eq. (163) to the ones here for high frequency oscillations:
up to numerical `-dependent factors, we obtain (Ωm` R0)`−1(Ωm` rv)

3/2. For ` = 1, this ratio is (Ωm` rv)
3/2 � 1, telling

us the dipole term in eq. (165) is Vainshtein screened. However, in this non-relativistic limit, Ωm` R0 � 1, once `

is large enough that (Ωm` R0)`−1(Ωm` rv)
3/2 � 1, we see that high multipole Galileon radiation becomes Vainshtein

amplified relative to their non-interacting cousins. We also note that, while low frequency oscillations in eq. (164)
contain integer powers of frequency, here the radiation spectrum contain (Ωm` R0)3/2 and (Ω′m` R0)3/2.

The expressions in equations (164) and (165) came directly from the Bessel and Hankel mode functions satisfying
the original wave equations of ϕ and Ξ. Together with the presence of the combinations Ωm` R0 and Ω′m` R0, these
facts teach us that radiation generated by the surface vibrations of the massive object M directly probes not only
the vibrations themselves but also the dynamics of our field theories – in the Galileon case, it carries information
about the theory operating deep within the Vainshtein radius of M , where the self interactions of the full Π theory
are dominant.

At small ratios of the Vainshtein radius to oscillation time scale (eq. (164)), we see that the Galileon radiation
spectrum, like its Ξ cousin in eq. (163), contains only integer powers of the oscillation frequencies. However, for
very large Vainshtein radius to oscillation time scale ratios (eq. (165)), the power emitted begins to contain fractional
powers of angular frequencies; this indicates there must be a change in the spectral index if one is able to probe Galileon
radiation over a broad bandwidth. This can be traced to the Galileon radial mode functions 4

√
ξJ(1/4)(2`+1)[

√
3ξ/2]

within the Vainshtein radius, r � rv. We will witness this phenomenon again in the following section on the n body
radiative problem.

B. n Point Masses Orbiting Within The Vainshtein Radius Of Large Central Mass

In this section, we consider an arbitrary number of compact bodies of masses {ma|a = 1, 2, . . . , n} orbiting around
the central object M .7 We will assume this system is held together by only gravitational and scalar forces, and we will
further approximate these compact bodies as point masses, with spatial position vectors {~ya|a = 1, 2, . . . , n}. If we
work within the non-relativistic (i.e., slow motion) approximation, valid for a wide range of astrophysical dynamics,
including that of our solar system – the Galileon and gravitational interactions are described by

n∑
a=1

ma

∫
dt

(
1− 1

2

(
~̇y2
a −

h00

Mpl

)
+ . . .

)(
ϕ or Ξ

Mpl
− 1

)
. (166)

The effects of gravitation are encoded in the proper time element dsa = dt
√
gµν ẏ

µ
a ẏνa , which we have expanded in

powers of velocities and the graviton field hµν/Mpl. We have assumed gravity is weak, gµν = ηµν + hµν/Mpl, where
|hµν/Mpl| � 1. The virial theorem tells us that the potential hµν/Mpl scales as the square of the typical velocities
v2
a ≡ (d~ya/dt)

2, so that the “+ . . . ” in eq. (166) can be understood to scale as v3
a and higher. (The scalar potential

Ξ/Mpl would scale similarly; but the static portion of ϕ/Mpl would be considerably weaker because of Vainshtein
screening.)

Because we are interested in Galileon and not in gravitational radiation, we may “integrate out” the gravitational
field h00/Mpl. To the lowest order in the non-relativistic expansion, this amounts to replacing the h00/Mpl evaluated
on the ath point mass world line with the gravitational potential exerted on ma by M ; the potentials due to the
other compact bodies, as long as they are distant enough, scale as mb/M , b 6= a, relative to that due to M , and
hence are subdominant. (We ignore the possible self-force contribution.) The Newtonian energy per unit mass

Ea/ma ≡ (1/2)(~̇y2
a+h00/Mpl) is a constant (up to corrections ofO[v4

a]) – this means we may replace (1/2)(~̇y2
a−h00/Mpl)

7 The gravitational waves analog to this section can be found in [31]. The conservative aspect of the n body (weak field) gravitational
problem has a long history; see, for instance, [32] and the references within.
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in eq. (166) with ~̇y2
a − Ea/ma.8 At this point, what is relevant for the Galileon radiation problem is the interaction∫

d4x
ϕ or Ξ

Mpl
δTm ≡

n∑
a=1

ma

∫
dtFa[t]

ϕ or Ξ

Mpl
, (167)

with the non-relativistic expansion denoted by

Fa[t] ≡ 1− ~̇y2
a +

Ea
ma

+O
[
v3
a, v

2
a

m

M

]
. (168)

By a direct calculation, the trace of the associated stress-energy in eq. (167) is

δTm[t, ~x] =
∑
a

ma

∫
dt′Fa[t′]δ[t− x0[t′]]δ(3)[~x− ~ya[t′]]. (169)

We rewrite this as

δTm[t, ~x] =

∫
dω

2π
e−iωt

∞∑
`=0

∑̀
m=−`

Y m` [x̂]ρm` [ω, r], (170)

where, by a change of variables from proper time to coordinate time,

ρm` [ω, r] =
∑
a

ma

∫
dt′Fa[t′]eiωt

′ δ [r − |~ya[t′]|]
r|~ya[t′]|

Y m` [ŷa[t′]]. (171)

With this ρm` , the total scalar energy emitted by n bodies orbiting around the parent body M is therefore given by
(154).

dE[ϕ or Ξ]

dΩ
= 32πGN

∫
dω

2π

∣∣∣∣∣
n∑
a=1

ma

∫
dt′Fa[t′]eiωt

′
∞∑
`=0

∑̀
m=−`

Y m` [x̂]Y m` [ŷa[t′]](−i)`R<`
[
ω|~ya[t′]|

]∣∣∣∣∣
2

. (172)

Minimally Coupled Massless Scalar Using equations (147), (168) and

e−i
~k·~x = 4π

∞∑
`=0

∑̀
m=−`

(−i)`j`[|~k|r]Y m` [k̂]Y m` [x̂] (173)

eq. (172) becomes

dE[Ξ]

dΩ
=

2GN

π

∫
dω

2π

∣∣∣∣∣
n∑
a=1

ma

∫
dt′eiωt

′
∂t′ {Fa[t′] exp [−iωx̂ · ~ya[t′]]}

∣∣∣∣∣
2

, (174)

where we have also used the fact that every integer power of ω occurring within our integrand may be replaced with
a time derivative (namely, i∂t′) acting on t′ dependent factors. Let us now Taylor expand exp [−iωx̂ · ~ya[t′]], and
convert each additional power of ω into an additional i∂t′ . Roughly speaking, each time derivative should scale as

∂t ∼ ω ∼ va/ra, (175)

where ra is the typical orbital radii of the compact bodies in motion.
We have previously highlighted that the n-body system under consideration is held together by (largely) conservative

forces, and it is therefore important to include the central body M in our radiative calculations to respect the
conservation of linear momentum. This is an appropriate place to consider how the backreaction on the central mass

8 The need for including the gravitational potentials, in order for the ensuing analysis to be consistent with energy conservation, has been
emphasized in [29], and our discussion here overlaps with that treatment.
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M by the compact bodies orbiting it affects our analysis here and below. What we shall do is to extend the sum∑
1≤a≤n →

∑
0≤a≤n to include that of M itself, via the definitions

~y0 ≡ spatial location of M, m0 ≡M. (176)

For the minimally coupled scalar case at hand, this is nothing but the principle of superposition, since the theory
is linear. For the Galileon case, this amounts to including in the matter perturbations δTm in eq. (167) the time
dependent multipole moments of the central mass M ,9 induced by the gravitational and scalar forces of its n planetary
companions pushing it away from the center of the spatial coordinate system. (That all our results in this section
depend on at least two time derivatives of the spatial coordinates of M and the n compact bodies corroborates this
interepretation.) This is subtly different from the non-self-interacting Ξ case because, to capture the Vainshtein
mechanism, we first had to assume that M was motionless so that we could solve for the background Π it generated,
before proceeding to compute the Galileon Green’s function. It is for this reason we have phrased our discussion of
including M in the sum over a in terms of a backreaction on the motion of M . More quantitatively, the stress energy
of the central mass is given by Mδ(3)[~x − ~y0], and we may Taylor expand it about ~y0 = ~0. The lowest order term
is Mδ(3)[~x], which is the source of the background field Π; we are thus treating every higher term in the expansion
(which is necessarily proportional to powers of ~ya[t]) as part of the matter perturbation δTm.

By Taylor expanding exp [−iωx̂ · ~ya[t′]], followed by converting all ω’s into time derivatives, we find that the non-
relativistic scalar energy loss per unit solid angle from our n-body system is given by the expansion:

dE[Ξ]

dΩ
=

2GN

π

∫
dω

2π

∣∣∣∣∣
n∑
a=0

ma

∫
dt′eiωt

′

(
x̂ · d2~ya

dt′2
+

1

2

d3 (x̂ · ~ya)
2

dt′3
− d~̇y2

a

dt′
+O

[
v4
a, v

3
a

m

M

])∣∣∣∣∣
2

, (177)

The importance of including M in the sum over a is now manifest, for the first term involving the sum of all forces
must yield zero,

∑
ama(d2~ya/dt

′2) · x̂ = 0; in a spacetime translation symmetric background, linear momentum is

conserved and Newton’s third law must be obeyed. Therefore Ξ radiation really begins at O
[
v3
a

]
.

As a check of the formalism here, in eq. (A20) below we shall re-derive the analog of eq. (177) directly from
the position space Green’s function in eq. (77), but (for simplicity) without including the gravitational potential in
the proper time element.10 We see that, at this order in the non-relativistic expansion, including the gravitational
potential merely changes the −(1/2)d~̇y2

a/dt
′ in eq. (A20) to −d~̇y2

a/dt
′ in eq. (177).

Before we proceed to the Galileon case, let us note that we could have obtained eq. (177) directly from the infinite
`-sum in eq. (172), if we Taylor expand the spherical Bessel functions and use the explicit polynomial expressions
for the P`s. (The reason for collapsing the infinite `-sum into an exponential in eq. (174) is to emphasize that,
because exp [−iωx̂ · ~ya[t′]] admits a Taylor expansion in integer powers of ω, the radiation spectrum in (174) depends
on frequency solely through time derivatives acting on the ~yas; this will not be the case for Galileons.) Because we
are seeking an answer accurate up to O[v3

a], by counting powers of ω, we may infer that up to the ` = 2 terms of the
sum are needed. Specifically, the mad2~ya/dt

′2 term comes from the leading order piece of the ` = 1 term; whereas

the d3 (x̂ · ~ya)
2
/dt′3 from the leading order piece of the ` = 2 term; and the d~̇y2

a/dt
′ comes from the ` = 0 term with

Fa included. Furthermore, there is cancellation between the ` = 0 first order correction term involving (ω|~ya|)2 and
that from the ` = 2 term.
Galileons In parallel with the treatment for Ξ, we will assume that our astrophysical n-body system is non-

relativistic, so that the orbital time scale 1/ω is very small compared to the light crossing time ∼ |~ya|, allowing us to
replace the Bessel and Hankel functions with their small argument limits.

For low frequencies, |ξv| � 1, we have

dE[ϕ]

dΩd(ω/2π)
=

2GN

π

∣∣∣∣∣
n∑
a=1

ma

∫
dt′eiωt

′
∞∑
`=0

∂`+1
t′ {Fa[t′]M`[t

′]}

∣∣∣∣∣
2

, (178)

where

M`[t
′] =


1− (ω|~ya[t′]|)2

4 + . . . , ` = 0

√
|~ya[t′]|
rv

(rv|~ya[t′]|)
`
2 P` [x̂ · ŷa[t′]]

√
π(2`+1)Γ[− 2`

3 −
1
3 ]Γ[ 5

6−
`
3 ]

23`+3
2 Γ[ `2 + 3

4 ]Γ[ `2 + 5
4 ]Γ[−`]

(
cos[ 1

6π(2`+1)]
sin[π`] + 1

)
, ` > 0

, (179)

9 Observe the hierachy: |~y0| � |~ya| � rv , where a = 1, 2, 3, . . . , n.
10 Be aware that the frequency space analysis here does not capture the dependence on the approximate retarded time t′ = t− r.
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and we have converted the spherical harmonics sum to one over Legendre polynomials. The presence of ∂`t′ implies

the magnitude of the `th channel is suppressed by
√
r/rv(r/τ)`/2 relative to the lowest ` = 0 mode, where r is the

typical orbital radius and τ is the typical orbital time scale; the factor of (rv/τ)`/2 further suppresses the power loss
because the motion is highly non-relativistic. (We have already noted that the leading monopole and dipole terms in
the radial Galileon Green’s function in the non-relativistic limit matches that of its non-interacting cousin.)

Developing the non-relativistic expansion up to O[v3
a] requires the monopole, dipole and quadrupole terms (` =

0, 1, 2): in the low frequency limit, we gather

dE[ϕ]

dΩd(ω/(2π))
=

2GN

π

∣∣∣∣∣
n∑
a=0

ma

∫
dt′eiωt

′

(
x̂ · d2~ya

dt′2
(180)

+
1

4

d3~y2
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dt′3
− d~̇y2

a

dt′
+

√
3Γ[− 2

3 ]Γ[ 1
6 ]

40π3/2

d3
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(√
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|~ya[t′]|

(
~y2
a − 3 (x̂ · ~ya)

2
))

+O
[
v4
a, v

3
a

m

M

])∣∣∣∣∣
2

, |ξv| � 1.

Comparing equations (177) and (180) informs us that very low frequency Galileon waves travel essentially unscreened,

even though they are generated deep within the Vainshtein radius of the system. The
√
rv/|~ya| factor in eq. (180)

may even yield Vainshtein enhancement relative to its cousin Ξ. Moreover, we shall now argue that unlike eq. (177),
the first term

∑
ama(d2~ya/dt

′2) · x̂ here in eq. (180) and in eq. (183) below, is small – it scales as m/M – but is no
longer exactly zero. The primary reason is that, while gravitational forces between any two objects obey Newton’s
third law, Galileon forces between the compact bodies (in the non-relativistic limit) do not. This is because the
background Π does not respect spatial translation symmetry; this statement can even be checked explicitly by taking
the gradients of, say, the static Green’s function in eq. (66) with respect to both ~x and ~x′, and noting they do not
give equal and opposite spatial vectors. It does turn out, however, that the force between each compact body and
the central mass is equal and opposite: without loss of generality we may consider some small mass m lying on the
positive z-axis. The problem is now cylindrically symmetric, which tells us the force on M due to m; and the force
on m due to M , must both point along the z-axis. The

∫
dt(M or m)Π/Mpl coupling tells us the z-component of

the force on m due to M , to leading order, is simply (m/Mpl)Π
′

= −Mm/(2πM2
plr

3/2
v

√
r′) (refer to Π

′
in eq. (16)),

where r′ is the radial location of m. The force on M due to m is, in the non-relativistic limit, given by first invoking
the cylindrical symmetry to replace |

√
r/rvx̂ −

√
r′/rvx̂

′| in eq. (66) with |
√
r/rv −

√
r′/rv|, and then computing

limr→0(Mm/M2
pl)∂rG

(static)[~x, ~x′] = Mm/(2πM2
plr

3/2
v

√
r′).11 Note that even though Newton’s third law is not obeyed

between the compact bodies, because the theory we started with in eq. (5) was defined in flat spacetime, total linear
and angular momentum must still be conserved. What must happen is that the radiation generated at O[v2

a] carries
away some of the linear momentum.

At high frequencies but non-relativistic orbital speeds, i.e. rv � 1/|ω| � |~ya|,

dE[ϕ]

dΩd(ω/2π)
=

32GN

|ωrv|3/2

∣∣∣∣∣
n∑
a=1

ma

∫
dt′eiωt

′
∞∑
`=0

(−i)`∂t′ {Fa[t′]M`[t
′]}

∣∣∣∣∣
2

, (181)

where

M`[t
′] =


(−3)7/8

16Γ[ 74 ]

(
1− (ω|~ya[t′]|)2

4 + . . .
)
, ` = 0

3
`
4
+ 1

8

2`+1Γ[ `2 + 1
4 ]
eiπ

2`+5
8 (ω|~ya[t′]|)

`+1
2 P` [x̂ · ŷa[t′]] , ` > 0

. (182)

Here, the prefactor 1/|ξv|3/2 � 1 exhibits Vainshtein screening of high frequency Galileon radiation. Counting powers

11 The reader concerned about the domain of validity of the ϕ solution generated by m, whose gradient is responsible for the force acting on
M , can perform the following order-of-magnitude check. Replace the Π in the Lagrangian density of the action in eq. (6) with the total
field of M and m, i.e. Π→ Π + (m/Mpl)G

(static)[~x, ~x′], with G(static)[~x, ~x′] given by eq. (66). After expanding about r = 0, divide the

dominant piece of the quadratic-in-G(static) portion of the resulting Lagrangian density by the dominant piece of the cubic-in-G(static)

term. For fixed r′, the radial location of m, one should find the ratio to go as Mr′/(mr)� 1 – i.e. the linear solution offered by G(static)

should be an excellent description of the force of m on M . In the same spirit, one may also expand this same quadratic-to-cubic ratio
about r = r′ and find that, in the r, r′ � rv limit, nonlinearities begin to render the solution offered by G(static) invalid at distances
closer to m than

√
m/Mr′.
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of ω tells us that an O[v3
a]-accurate answer receives contributions from the ` = 0, 1, 2 terms:

dE[ϕ]

dΩd(ω/(2π))
=

2 · 3 3
4GN

|ωrv|3/2Γ[ 3
4 ]2

∣∣∣∣∣
n∑
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ma
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dt′eiωt

′

(
x̂ · d2~ya

dt′2
(183)

−
4
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dt′3

(
~y2
a − 3 (x̂ · ~ya)

2√
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+

1
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d3~y2
a

dt′3
− 2

d~̇y2
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dt′
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+O

[
v7/2
a , v3

a

m

M

])∣∣∣∣∣
2

, |ξv| � 1.

(The mad2~ya/dt
′2 came from ` = 1; the second group involving 1/

√
ω|~ya| from ` = 2; and the final group from ` = 0

with Fa included.) Comparing equations (180) and (183), we find, as we did in the previous section, that the slope
of the Galileon power spectrum depends on the size of |ξv|. At low frequencies the radiation is very similar to that of
the non-interacting case, while at high frequencies, the spectrum acquires an overall suppression factor of 1/|ξv|3/2.
The phenomenology of Galileon radiation appears to be richer than its minimally coupled massless counterpart due
to the existence of the additional length scale rv in the problem. Also note the presence of fractional powers of ω that
cannot be associated with time derivatives – this aspect of the Galileon radiation has no analog in its non-interacting
cousin nor in gravitational waves propagating on flat spacetime.

Gravitational Waves Let us also record the power spectrum of GW emission. Arguments based on conservation
of energy and the validity of Newton’s third law leads us to infer that the lowest order answer arises from the third
time derivative of the quadrupole moment of the system. Misner, Thorne and Wheeler [35] equations 36.1 and 36.2
tell us

dE

d(ω/(2π))
=
GN

5

∣∣∣.̃..Qij [ω]
∣∣∣2 , (184)

where
.̃..
Qij is the Fourier transform of the triple time derivative of the quadrupole moment,

.̃..
Qij [ω] ≡

∫
dt′eiωt

′
n∑
a=1

ma
d3

dt′3

(
yai[t

′]yaj [t
′]− 1

3
δij~y

2
a[t′]

)
. (185)

As we have seen, the forces acting between compact bodies orbiting around a central mass M no longer obey Newton’s
third law if Galileons exist (

∑
amad2~ya/dt

′2 6= 0) – this in turn means, eq. (184) may no longer be the leading order
answer to the GW spectrum. We hope to return to this issue in the future.

V. SUMMARY AND DISCUSSION

Within the next decade or so, gravitational wave detectors are expected to begin hearing signals from astrophysical
systems such as inspiralling compact binaries. It is therefore an appropriate time to explore the possibility that there
could be emission of radiation due to additional degrees of freedom coming from the various modifications of General
Relativity that has been proposed in the literature to date. Our work initiates such an investigation for Galileons, a
class of scalar field theories that exhibit what is known as the Vainshtein mechanism, within the context where there
is a large central mass M .

We have constructed the Galileon retarded Green’s function satisfying the linearized equations of motion about the
background field of this central mass. The main results are described in section (III A). For the radiation problem,
where the observer is situated at a very large distance from M and the source generating Galileon waves is located
well within the Vainshtein radius of M , the primary results can be found in equations (44) through (48). We have
also obtained the exact static Green’s function, the WKB limit of the retarded Green’s function, and the Green’s
function evaluated both deep inside and far outside the Vainshtein radius of M .

We have used this radiative Green’s function to obtain the frequency spectrum of Galileon radiation emitted from
(acoustic) waves on the surface of the spherical mass M , described by equations (155), (157), (158), and (159). The
power dissipated per unit solid angle per mode (`,m), in the non-relativistic limit, can be found in eq. (164) for the
case where the rv-to-oscillation-time-scale ratio was much smaller than unity; and in (165) for that ratio very large.
To illustrate the importance of the nonlinearities of the Galileon interaction for the problem at hand, we have also
calculated for comparison the power emitted if we replace the Galileon with a non-interacting massless scalar, with
the relevant results given in equations (162) and (163).

A particularly interesting application of our results is to the radiation spectrum due to the motion of n point masses
gravitationally bound to the central mass M . This is the dissipative aspect of the Galileon modified gravitational
dynamics whose conservative portion we investigate in a separate paper [28]. We have focused on the non-relativistic
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limit, and have found the energy in Galileon radiation lost to infinity in two regimes. For small rv-to-orbital-time-scale
ratios, this is given by eq. (178), and the lowest order answer is (180). For large rv-to-orbital-time-scale ratios, the
answer is eq. (181), with the lowest order result in eq. (183). For comparison, the non-interacting massless scalar
result is eq. (177) and that of the quadrupole radiation formula for gravitational waves is eq. (184).

In these radiative processes, we find that the non-interacting massless scalar and Galileon radiation are comparable
in the non-relativistic, low frequency, and low multipole regime. Moreover, in this limit Galileon radiation is actually
amplified relative to its non-interacting counterpart for higher multipoles – these findings are a direct consequence of
the structure of the Galileon radial Green’s function, which we have already highlighted in the discussion surrounding
equations (49) and (50). In the high frequency limit, we confirm the anticipated Vainshtein screening of the Galileo

radiation at low multipole orders; demonstrating it to be of O
[
ξ
−3/2
v

]
relative to its non-interacting counterpart. At

high enough multipoles, however, high frequency Galileon radiation becomes enhanced relative to its non-interacting
counterpart. Moreover, for the astrophysical n body system, where Newton’s third law is obeyed between each
compact body and M but not between the compact bodies themselves, the leading O[v2

a] terms in the radiation
formulas, equations (180) and (183), are small (scaling as O[m/M ]) but non-zero, in contrast with the non-self-
interacting scalar case, where

∑
amad2~ya/dt

′2 = 0.
Having developed some quantitative understanding of the production of Galileon radiation in this paper, let us

remark that, if Galileon waves exist, they are in principle detectable by GW detectors. About flat Minkowski
spacetime, the sum of the graviton-matter and Galileon-matter coupling (eq. (8)) is

SI ≡ −
1

2

∫
Tµν

Mpl
h(eff)
µν d4x, h(eff)

µν ≡ hµν − 2Πηµν . (186)

This implies that, if Galileons are present, ordinary matter experiences an effective weakly curved metric of the form

gµν = ηµν +
h

(eff)
µν

Mpl
, (187)

and the tidal forces experienced by the arms of the interferometers of GW detectors would now be due to both the

transverse-traceless graviton h
(TT)
µν and the Galileon waves ϕ.

Some of the calculations we have carried out have overlap with other recent work on the same topic [29]. In this
paper, we have sought to understand the Galileon radiation spectrum in both the high and low frequency limits, and
have found that the slope of the power spectrum of Galileon radiation should be a non-trivial function of ξv, the ratio
of the Vainshtein radius rv to the typical wavelength of the emitted waves. (For instance, the radiative limit of our

retarded Green’s function, namely, eq. (44) and the coefficients C
(rad)
` s described in (45) and (48), have very different

ξv-dependence for |ξv| � 1 compared to |ξv| � 1.) In [29], the focus was on the power loss from binary pulsar systems
such as PSR B1913+16, and thus the authors carried out an analysis valid in the high frequency limit [38].12 In the
limit |ξv| � 1 we find that the Galileon power scales as |ξv|−3/2, in agreement with the results of [29].

We note that, a priori, caution is required in interpreting the results both in this paper and in [29] as describing a
comparable mass binary pulsar system, because it is unclear if such a binary can be treated within the perturbative
framework, given that the nonlinearities of Galileons are very important when the motion is taking place deep within
the collective Vainshtein radius of the system itself.13 However, the authors of [29] have explicitly verified the validity
of their perturbative scheme, and will present it in an upcoming publication [38, 39].

12 As explained in [29], for Galileons to be relevant for cosmology, it is often assumed that Λ ∼ MplH
2
0 ∼ 1/(103km), where H0 ∼ 10−33

eV is the current Hubble parameter. For binary pulars like PSR B1913+16, with masses on the order of a few solar masses, the
corresponding Vainshtein radius is rv ∼ O[103] light years. Because the period of typical binaries (∼ 1/ω) are of the order of a few
hours, therefore |ξv | � 1.

13 In more detail, in [29] the binary system, with masses M1 and M2, is modeled by adding and subtracting to the binaries’ stress energies
a monopole term with stress energy given by T0[~x] = (M1 +M2)δ(3)[~x]. The field generated by T0 is then used as a background, and the
stress-energies of the pair of point masses themselves minus the stress energy of the central monopole (see their eq. (2.6)) are treated as
perturbations. However, since, as in this paper, the linearized equation of motion about the background of the monopole are solved, the
subtracted monopole really plays no role, and this scheme is really equivalent to the setup where there is one central mass M ≡M1 +M2

and two masses in orbit around it, one of mass M1 and the other M2. But since M1 and M2 are comparable in magnitude to M1 +M2,
and there is no small dimensionless ratio one may use as an expansion parameter, it is not evident for the general binary problem that
the M1,2 are mere perturbations on top of the M . More quantitatively, recall the mode functions evaluated deep within the Vainshtein
radius can be expressed in a separated form, reflecting the spherical symmetry of the background. In a comparable mass relativistic
binary system, this spherical symmetry is completely absent. Thus, the separation of variables technique may not be useful in solving
the general binary problem.
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Future Work It would be worthwhile to convert the frequency space calculation in this paper to a real time one,
in order to better understanding the physical meaning behind the fractional powers of angular frequency found in the
Galileon emission spectrum. To this end, the identification of the correct contour prescriptions in the Fourier integral
of eq. (39) would be necessary. We also have left unexplored a large range of |ξv|, as we have only examined the
extreme limits |ξv| � 1 and |ξv| � 1. Furthermore, since the nonlinearities of the Galileon theory play such a crucial
role in its dynamics, we hope in the near future to go beyond the linear analysis about the background Π due to M .
We could compute, say within the Born approximation, the first correction arising from the cubic self-interactions in
eq. (6) to the wave solutions we have obtained here, so as to better understand the domain of validity of the results
in this paper.14

There are a number of interesting further directions for future work. In 4 dimensional flat spacetime, one should
introduce the quartic and quintic Galileon terms and carry out an analogous analysis to that performed here. One
may also wish to develop an understanding of the backreaction of the power loss on the motion of the n point masses.
In this context, there are other processes one could consider – for example, one could carry out a calculation analogous
to the one found in [36] and [37] for the gravitational case, in which one small mass scatters off M , producing Galileon
bremsstrahlung radiation in the process.
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Appendix A: Minimally Coupled Massless Scalar Radiation: Spacetime Calculation

The central goal of this section is an alternate derivation of eq. (177), but (for technical simplicity) without the
inclusion of gravitational interactions. We wish to compute the non-relativistic power emitted in non-interacting
massless scalar radiation by the motion of n compact bodies. We will do so by finding the scalar field and its first
derivatives generated by these point masses in flat spacetime; and from these gradients construct r2T0r. However, we
will first derive a expression in curved spacetime and proceed to specialize to Minkowski spacetime. The reason for
doing so is that the Galileon ϕ field generated by the n body system we examined in section (IV B) is related to the
problem of a non-interacting scalar in the geometry given in eq. (128).

Let the n masses be {ma|a = 1, 2, . . . , n} and their spacetime locations {yµa}. The massless scalar theory in question
is the curved spacetime generalization of the Ξ-theory in eq. (144), namely

S′Ξ ≡
1

2

∫
d4x|g|1/2∇µΞ∇µΞ +

n∑
a=1

ma

Mpl

∫
dsaΞ, (A1)

with proper times

dsa ≡ dt

√
gµν

dyµa
dt

dyνa
dt

. (A2)

From the Hadamard form of the scalar Green’s function in eq. (132),

Gx,x′ =
Θ[t− t′]

4π
(δ[σ]Ux,x′ + Θ[σ]Vx,x′) , (A3)

with

Ux,x′ ≡
√

∆x,x′ (A4)

14 We may perform an estimate on the domain of validity of the radiative solutions, in the r →∞ limit, by first writing the cubic Galileon
term in (6) as (∂Π)2(Λ−2∂2)(Π/Λ). (Note that, in this limit, the background Π is irrelevant.) We see that a necessary condition for the
cubic term to be subdominant to the kinetic term (∂Π)2 is for (Λ−2∂2)(Π/Λ)� 1; in particular, our linearized Galileon wave solutions
become suspect at very high frequencies, where ω/Λ� 1, and large amplitudes Π/Λ� 1.
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(for an explanation of these symbols, see [34]), the solution to Ξ is given by the integral

Ξ[x] =

n∑
a=1

ma

4πMpl

∫
dsaΘ[t− y0

a[sa]] (δ[σx,ya ]Ux,ya + Θ[σx,ya ]Vx,ya) ,

For a fixed x, σx,ya = constant defines the geodesic joining x (the observation point) to ya (the source point), provided
this geodesic is unique (an assumption used when deriving the Hadamard form in eq. (132)). Thus it must be possible
to invert σx,ya for sa and vice versa. In particular, in the following, we will need

dσx,ya
dsa

=
dyα

′

a

dsa
∇α′σ[x, x′ = ya] . (A5)

and hence

dsa
dσx,ya

=

(
dσx,ya

dsa

)−1

. (A6)

The null cone piece of Ξ involves δ[σx,ya ] which we may then write

δ[σx,ya ] =
δ[sa − τa]

|dσx,ya/dsa|

∣∣∣∣
sa=τa

, (A7)

where τa, the retarded time, is defined to be the proper time of the ath mass when it lies on the backward null cone
of the observer at x,

σ[x, ya[τa]] ≡ 0. (A8)

The “backward” part of the requirement is reinforced by the step function Θ[t− y0
a] in eq. (A5).

The curved spacetime scalar field produced by the n point masses is therefore

Ξ[x] =

n∑
a=1

ma

4πMpl

{(
∆1/2[x, ya]

|dσx,ya/dsa|

)
sa=τa

+

∫ τ−a

−∞
ds′V [x, ya[s′]]

}
. (A9)

We may obtain the gradients of Ξ by differentiating the integral representation in eq. (A5).

∇αΞ[x] =
∑
a

ma

4πMpl

∫
dsa

(
∇ασδ′[σ]U + δ[σ]∇αU + δ[σ]∇ασV + Θ[σ]∇αV

)
. (A10)

The δ′[σ] term may be re-written, holding x fixed,

δ′[σx,ya ] =
dsa

dσx,ya

d

dsa

δ[sa − τa]

|dσ[sa = τa]/dsa|
, (A11)

which allows us to integrate by parts to obtain

∇αΞ[x] =

n∑
a=1

ma

4πMpl

({
∇αUx,ya
|dσx,ya/dsa|

+
∇ρ′∇ασx,yaUx,ya +∇ρ′Ux,ya∇ασx,ya

(dσx,ya/dsa)2

dyρ
′

a

dsa
(A12)

+
∇ασx,yaUx,ya
|dσx,ya/dsa|3

(
d2yλ

′

a

ds2
a

∇λ′σx,ya +
dyλ

′

a

dsa

dyκ
′

a

dsa
∇κ′∇λ′σx,ya

)
+
∇ασx,yaVx,ya
|dσx,ya/dsa|

}∣∣∣∣
sa=τa

+

∫ τ−a

−∞
dsa∇αVx,ya

)
,

with Ux,x′ ≡
√

∆x,x′ . The primed derivatives are with respect to ya (the ath point mass location) and the unprimed
ones with respect to x (the observer location).

Minkowski spacetime In Minkowski spacetime, U = 1 and ∇U = V = ∇V = 0, while the world function reads

σx,x′ =
1

2
ηµν(x− x′)µ(x− x′)ν (A13)
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so that its derivatives are

∇µσx,ya = (x− ya)µ, ∇µ′σx,ya = (ya − x)µ, ∇µ∇ν′σx,ya = −ηµν , (A14)

and

dσx,ya
dsa

= −dyν
′

a

dsa
(x− ya)ν . (A15)

For convenience we shall use a dot to represent a derivative with respect to sa. The gradient of Ξ in Minkowski
spacetime generated by n point masses is given by

∇µΞ[x] = −
n∑
a=1

ma

4πMpl

{
ẏµa

(ẏκa (ya − x)κ)2
− (x− ya)µ

|ẏκa (ya − x)κ|3
(
ÿλa (ya − x)λ + ẏ2

a

)}∣∣∣∣∣
sa=τa

, (A16)

where the retarded proper time τa is the solution of the equation

t− y0
a[τa] = |~x− ~ya[τa]|. (A17)

Comparing equations (A12) and (A18), we see that in flat spacetime, the field detected by an observer (or felt by some
test mass) at x is a function of the positions of the n point masses evaluated at the appropriate retarded times – that
is how long it takes the signal to reach the observer from the source. Whereas in curved spacetime, where Huygens’
principle no longer holds, the problem of motion is a richer one, because the proper time integral involving the tail
term Vx,ya in eq. (A12) receives contributions from the point masses’ entire past histories. (The electromagnetic
counterpart to this statement can be found in [40], in which the Aµ and Fµν analogues of equations (A9) and (A12)
are derived.)

We are now ready to determine the power radiated by the n point masses moving in flat spacetime. Let us
assume the motion of these n bodies is confined within some finite spatial volume containing the center of the spatial
coordinate system; this will certainly be true when these n bodies are bound together by their mutual gravity, which
is the central theme of this paper. We wish to extract the piece of Ξ that represents radiation. As already explained
earlier, in Minkowski spacetime, the radiative piece of Ξ is the 1/r piece. From the result in eq. (A18), we see
that this can be identified by counting powers of (x − ya); this isolates the acceleration ÿλa term. If we let the

observer lie at some very large radius, we deduce ÿλa (ya − x)λ = −|~x − ~ya|ÿ0
a + ~̈ya · (~x − ~ya) → r(−ÿ0

a + ~̈ya · x̂) and

ÿλa (ya−x)λ = −|~x− ~ya|ẏ0
a + ~̇ya · (~x− ~ya)→ r(−ẏ0

a + ~̇ya · x̂). Recalling the notation dyµa/dsa ≡ ẏµa and d2yµa/ds
2
a ≡ ÿµa ,

∇µΞ[r →∞] = − (1, x̂)

4πr

n∑
a=1

ma

Mpl

ÿαa ηαβ (1, x̂)
β

|ẏ0
a − ~̇ya · x̂|3

∣∣∣∣∣
sa=τa

, (A18)

and the power radiated to infinity per unit solid angle r2T0r = r2∇rΞ∇tΞ is

dE

dtdΩ
=

2GN

π

 n∑
a=1

ma
ÿαa ηαβ (1, x̂)

β

|ẏµaηµν (1, x̂)
ν |3

∣∣∣∣∣
sa=τa

2

. (A19)

To take the non-relativistic limit, we first recall that d/dsa = (1 − (d~ya/dt
′)2)−1/2d/dt′, where the retarded time t′

satisfies eq. (A17), i.e. t′ = t − |~x − ~ya[t′]|. That retarded time depends on the trajectory ~ya means, upon carrying
out the retarded time derivatives with respect to t′ in eq. (A19), we still need to Taylor expand every time dependent
expression in powers of |~ya[t′]|/r, because the latter expansion introduces further time derivatives. It is at this point
that terms containing the same number of time derivatives (now evaluated at the approximate retarded time t′ = t−r)
are considered to be of the same order in the non-relativistic expansion. Up to O[v3

a] we have

dE

dtdΩ
=

2GN

π

(
n∑
a=1

ma

(
x̂ · d2~ya

dt′2
+

1

2

d3 (x̂ · ~ya)
2

dt′3
− 1

2

d

dt′

(
d~ya
dt′

)2

+O[v4
a]

)∣∣∣∣∣
t′=t−r

)2

. (A20)

Appendix B: Green’s Function of Linear Second Order Ordinary Differential Equation

In this section we review the construction of the Green’s function for linear second order ordinary differential
equations (ODEs) in terms of their homogeneous solutions. Consider the differential operator

Dz ≡ p2[z]
d2

dz2
+ p1[z]

d

dz
+ p0[z] , (B1)
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where p0,1,2[z] are smooth functions of z. The homogeneous solution f to the corresponding linear second order ODE
satisfies Dzf [z] = 0, and the associated symmetric Green’s function obeys

DzG[z, z′] = Dz′G[z, z′] = λ[z]δ[z − z′] = λ[z′]δ[z − z′] . (B2)

To solve this, first assume z > z′, so that δ[z − z′] = 0. The problem is thus reduced to solving the homogeneous
equation DzG[z, z′] = Dz′G[z, z′] = 0. Let f1,2[z] be a pair of linearly independent homogeneous solutions, i.e.

Dzf1[z] = Dzf2[z] = 0, Wr(z)[f1, f2] 6= 0, (B3)

where the Wronskian Wr is defined to be

Wr(z)[f1, f2] ≡ f1[z](f2)′[z]− (f1)′[z]f2[z]. (B4)

Because DzG[z, z′] = 0, we must have

G[z > z′] = αIfI[z], I = 1, 2 (B5)

where the αIs are z-independent. Similarly, Dz′G[z, z′] = 0 means

αI = AIJ
>fJ[z′], J = 1, 2, (B6)

where AIJ
> is now a 2× 2 matrix of z, z′-independent constants. The same argument would hand us, for z < z′,

G[z < z′] = AIJ
<fI[z]fJ[z′], I, J = 1, 2 (B7)

If G[z, z′] were not continuous at z = z′ its second derivative with respect to z or z′ there, and hence the second line
of eq. (B2), would involve a derivative of δ[z − z′]. That implies we may assume G[z, z′] is continuous at z = z′.
AIJ
<fI[z]fJ[z] = AIJ

>fI[z]fJ[z] imposes the conditions

A11
> = A11

< , A
22
> = A22

< (B8)

A12
> +A21

> = A12
< +A21

< . (B9)

We now integrate DzG[z, z′] = λ[z]δ[z−z′] around the neighborhood of z = z′, applying integrating-by-parts as many

times necessary to shift all the derivatives acting on G[z, z′] onto the p2,1. By continuity, the p0 term, [p1G]z=z
′+

z=z′− ,

[(p2)′G]z=z
′+

z=z′− and the remaining integral involving G (with no derivatives acting it) drop out – assuming p1,2 are
smooth – leaving us with

λ[z′] = p2[z′]

[
∂G[z, z′]

∂z

]z=z′+
z=z′−

. (B10)

Employing the continuity conditions in equations (B8), one would find the A11
> and A22

> do not contribute to λ[z′].
We may use (B9) to eliminate, say A12

> , and find (B10) becomes

λ[z′] = −p2[z′](A21
< −A21

> )Wr(z′)[f1, f2] (B11)

Because any “rotation” of the pair f1,2, i.e. the pair {qI ≡ Q J
I fJ|I = 1, 2} for any 2 × 2 invertible Q, is an equally

valid pair of linearly independent homogeneous solutions, without loss of generality we may choose A21
> = A21

< − 1,
such that now

λ[z] = −p2[z]Wr(z)[f1, f2] (B12)

Therefore, the general solution to eq. (B2) is

G[z, z′] = Cf1[z>]f2[z<]− (1− C)f1[z<]f2[z>]

+ C11f1[z]f1[z′] + C22f2[z]f2[z′], (B13)

where z> (or z<) is the greater (or smaller) of the pair (z, z′), and C, C11 and C22 are arbitrary constants. These
coefficients will be fixed by the boundary conditions of the given physical problem.
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By using the differential equation obeyed by the f1,2, one may readily show that

d

dz
Wr(z)[f1, f2] = −p1[z]

p2[z]
Wr(z)[f1, f2]. (B14)

This in turn means the Wronskian of two linearly independent solutions, and hence the measure λ[z], can be solved
up to an overall constant, without first solving for the homogeneous solutions. Recalling eq. (B12), we gather

λ[z] = χ p2[z] exp

[
−
∫ z

dz′′
p1[z′′]

p2[z′′]

]
, (B15)

where χ is the constant. In solving for G[z, z′], we will thus first choose a value for χ, and use this choice to fix the
normalization of the product of the solutions f1[z>]f2[z<] in eq. (B13).

We wish to emphasize, because we are constructing a symmetric Green’s function, one that is a Green’s function
with respect to both variables z and z′, we have just seen that one does not have a choice in picking the measure
λ[z], but rather λ[z] is fixed up to an overall numerical constant by p2[z] in eq. (B1) and the Wronskian of any two
linearly independent homogeneous solutions.

To summarize, once a pair of homogeneous solutions f1,2 are known, the symmetric Green’s function has the general
solution given in equation (B13). The measure λ[z] multiplying the δ-functions in eq. (B2) is given by eq. (B15), and
the overall constant χ there needs to be chosen. In a given problem – for this paper it is the solution of g̃`[ξ, ξ

′] in
eq. (39) – the analog of C, C11, and C22 (or the A1,2 and B1,2) will be fixed by appropriate regularity and boundary
conditions. Because λ[z] has been computed, the overall normalization of the products f1[z>]f2[z<] is determined by
the Wronskian condition in eq. (B12).
δ-Function Measure Let us conclude this section by justifying the (rr′)−1 measure on the right hand side of

eq. (31). Equation (B15) informs us that we can determine this measure up to a constant, by integrating the ratio of
−2e3/ξ to −e2. This may be achieved by using the explicit expressions in (28) through (30) yielding

exp

[
−
∫ ξ 2e3[ξ′′, ξv]

ξ′′e2[ξ′′, ξv]
dξ′′

]
=
(
ξ(ξ3 + ξ3

v)
)− 1

2 . (B16)

This immediately tells us that the measure multiplying the δ-functions in eq. (31) is

χe2[ξ, ξv] exp

[
−
∫ ξ 2e3[ξ′′, ξv]

ξ′′e2[ξ′′, ξv]
dξ′′

]
=

χ

ξ2
, (B17)

where χ is a constant. Far away from the central mass M , using equations (19) and (20) to keep only the most
dominant terms in e1,2,3 (equations (28) through (30)), the left hand side of eq. (31) yields, as expected, the flat
spacetime minimally coupled massless scalar wave equation

ηµν∂µ∂νG[x, x′] =
χ

rr′
δ[t− t′]δ[r − r′]δ[cos θ − cos θ′]δ[φ− φ′] . (B18)

Therefore choosing χ = 1 amounts to adhering to the usual convention.
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