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Wide area cosmological surveys enable investigation of whether dark energy properties are the
same in different directions on the sky. Cosmic microwave background observations strongly restrict
any dynamical effects from anisotropy, in an integrated sense. For more local constraints we compute
limits from simulated distance measurements for various distributions of survey fields in a Bianchi
I anisotropic universe. We then consider the effects of fitting for line of sight properties where
isotropic dynamics is assumed (testing the accuracy through simulations) and compare sensitivities
of observational probes for anisotropies, from astrophysical systematics as well as dark energy. We
also point out some interesting features of anisotropic expansion in Bianchi I cosmology.

I. INTRODUCTION

The time variation of the cosmic expansion gives key
clues to the energy components of the universe, with the
acceleration pointing to an unknown dark energy. As
cosmological surveys cover more of the sky in more de-
tail we can also examine spatial variation of the expan-
sion and dark energy properties. Here we investigate
anisotropy rather than inhomogeneities. While the cos-
mic microwave background radiation places tight con-
straints on any anisotropy, ensuring a close to isotropic
global expansion, smaller scale pressure anisotropies that
do not disrupt the global isotropy remain possible. In
particular these can also arise from astrophysical system-
atics, but we can phrase this in terms of variations in the
effective dark energy pressure, and explore detectable sig-
natures.

In testing for anisotropy or consistency with isotropy
we can ask which cosmological probes are most sensitive
in what redshift ranges to such a hypothetical anisotropy,
i.e. what constraints could be put on angular variations
in the local dark energy equation of state. The dark
energy equation of state, which can also be interpreted
in terms of an anisotropic pressure, is of interest because
of its close connection with fundamental properties of
the physics behind dark energy. As we will see, it also
gives close connections with exact solutions of anisotropic
spacetimes such as Bianchi models.

Other work has explored dark energy anisotropy in
terms of the small scale spatial inhomogeneities in its
density [1], large scale anisotropies giving an overall el-
lipticity to the universe [2], and within specific models
such as vector dark energy [3–10], elastic dark energy
[11–13], noncommutativity [14], etc. Our approach uses
exact solutions, similar to [15], as well as phenomeno-
logical line of sight anisotropy but global isotropy, sim-
ilar to [16, 17], testing the difference, exploring further
probes, considering sources of astrophysical systematics,
and motivating the phenomenology with comparisons to
exact Bianchi solutions. For early and other work on
anisotropic spacetimes see [18–24].

In Section II we draw lessons from the exact solutions
of Bianchi I cosmology to underscore the difficulty of

global anisotropy and to motivate a possible alternate
approach to anisotropic dark energy. We apply the Ray-
chaudhuri beam equation of light propagation in Sec. III
and simulate how surveys using, e.g., supernova distances
in different sky patches could constrain anisotropy. A line
of sight anisotropic model reminiscent of the Dyer-Roeder
[25] treatment of inhomogeneities is then investigated in
Sec. IV to determine the sensitivity of a variety of cos-
mological probes to detecting anisotropic dark energy or
astrophysical systematics. We conclude in Sec. V.

II. EXACT SOLUTION: BIANCHI I

COSMOLOGY

To assess the influence of both the global expansion
and the line of sight conditions on light propagation we
examine an anisotropic exact solution of the Einstein field
equations. The Bianchi I cosmology has different expan-
sion rates along the three orthogonal spatial directions,
given by the metric

ds2 = −dt2 + a(t)2dx2
a + b(t)2dx2

b + c(t)2dx2
c . (1)

The model is homogeneous but anisotropic. This can
arise from a homogeneous and isotropic density but
anisotropic pressure, for example. We can choose the
matter and radiation components to be isotropic but the
dark energy pressure to be different along the three axes,
with equation of state ratios wi = Pi/ρde.

We begin by examining the global dynamics. Although
the full sky angular average of the dark energy equation
of state is w̄ = (wa + wb + wc)/3, the average expansion
rate H̄ = (Ha + Hb + Hc)/3 does not behave exactly
like in an isotropic universe with w̄. To quantify this,
define Hiso to be the isotropic, Friedmann-Robertson-
Walker (FRW) expansion rate for a universe with the
same present matter density (and dark energy density)
and with isotropic dark energy equation of state w̄. We
can then rewrite the Einstein field equations in terms of
the ratio hi ≡ Hi/Hiso and explore the deviations from
isotropy.



2

This gives rise to an autonomous system of equations

h′

a =
3

2
ha − h2

a −
1

2
(hahb + hahc − hbhc) (2)

−
3

2
Ωde (wb + wc − wa) +

3

2
w̄haΩde,iso

h′

b =
3

2
hb − h2

b −
1

2
(hbhc + hbha − hcha) (3)

−
3

2
Ωde (wc + wa − wb) +

3

2
w̄hbΩde,iso

h′

c =
3

2
hc − h2

c −
1

2
(hcha + hchb − hahb) (4)

−
3

2
Ωde (wa + wb − wc) +

3

2
w̄hcΩde,iso

Ω′

de = −Ωde [(1 + wa)ha + (1 + wb)hb + (1 + wc)hc

−3− 3w̄Ωde,iso] (5)

Ω′

m = −Ωm [ha + hb + hc − 3− 3w̄Ωde,iso] , (6)

where prime denotes d/d lnaiso. The isotropic scale fac-
tor is used as a measure of time; note it is not equal to the
monopole anisotropic scale factor ā = (abc)1/3. The time
dependent dimensionless dark energy and matter densi-
ties Ωde and Ωm are defined as Ωi ≡ 8πGρi/(3H

2
iso), and

Ωde,iso denotes the dark energy density in the isotropic
case, with equation of state w̄. Numerically we evolve
equations (2-6) and use the Friedmann-like equation

hahb + hahc + hbhc = 3(Ωm +Ωde) (7)

as a consistency check at each timestep.

Numerical solutions to the field equations appear in
Fig. 1. The early universe appears isotropic, with devia-
tions in the expansion rate along symmetry axis i of order
(w̄−wi)Ωde. So when Ωde ≪ 1 the universe is effectively
isotropic. As the dark energy becomes more dynamically
important, the anisotropy grows. However, note there
is a late time fixed point (for w̄ > −1) such that the
expansion rates go to constant offsets from the isotropic
behavior. This is quite interesting: the universe does not
“pancake” in terms of expansion rate (although the ellip-
ticity does diverge), but rather it retains some memory of
the isotropic state and remains nearly isotropic in some
average sense.

The fixed point solutions can be calculated analytically
to various orders in the equation of state anisotropy. Take
the dark energy equation of state along the three sym-
metry axes to be

(wa, wb, wc) = (w̄ − e− f, w̄ + e, w̄ + f) . (8)

Assuming both e and f are small compared to 1 + w̄,
i.e. ∆w ≡ |wi − w̄| ≪ 1 + w̄, the asymptotic solutions as
we approach the limit aiso → ∞ for the expansion rates
hi = Hi/Hiso normalized to the isotropic rate Hiso(w̄)

FIG. 1. Anisotropic expansion of a model with ~w =
(−0.45,−0.5,−0.55) is plotted vs ln aiso from the early to late
universe. Solid black curves give the scale factors, and dashed
red curves give the expansion rates, along the symmetry axes
as ratios to an isotropic, w̄ = −0.5 FRW universe. Early time
and late time fixed points in expansion rate are seen.

are, to second order,

ha = 1−
2(e+ f)

1− w̄
−

4

3

e2 + f2 + ef

1− w̄2
(9)

hb = 1 +
2e

1− w̄
−

4

3

e2 + f2 + ef

1− w̄2
(10)

hc = 1 +
2f

1− w̄
−

4

3

e2 + f2 + ef

1− w̄2
(11)

h̄ = 1−
4

3

e2 + f2 + ef

1− w̄2
(12)

Ωde = 1−
4

3

(3− w̄)(e2 + f2 + ef)

(1 + w̄)(1 − w̄)2
. (13)

These expressions agree with the numerical results for the
asymptotic expansion rates shown in Fig. 1 to 0.03%.
These solutions have several interesting properties.

First, note that the averaged expansion rate h̄ deviates
from the isotropic expansion rate only at second order
in the equation of state anisotropy. Second, when the hi

approach fixed points, this means that Hi/Hiso = con-
stant, not Hi = constant. When w̄ ≈ −1 and so Hiso ≈
constant then as long as the offsets e, f are sufficiently
small each Hi is nearly constant, i.e. one almost has de
Sitter-like behavior.
This constancy of the expansion rate is reminiscent

of the generic isotropization during inflation shown by
[26]. There, anisotropic matter plus a cosmological con-
stant led to eventual isotropic, de Sitter expansion while
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here isotropic matter plus anisotropic dark energy leads
to anisotropic expansion but one proportional to the
isotropic case, and nearly de Sitter in the case that w̄ →
−1. Separately, note that Ωde goes asymptotically to a
finite value different from 1, but the dimensionless mat-
ter density Ωm still goes to 0. The relation Ωde+Ωm = 1
does not hold because these quantities were defined rel-
ative to Hiso, and ρde(wa, wb, wc; t) 6= ρde,iso(w̄; t).
Cosmological models containing a global anisotropy,

such as this Bianchi model, are severely constrained by
observations [27–30], specifically the integrated Sachs-
Wolfe effect on the CMB [31–33]. Illustratively, the tem-
perature anisotropy arises as

∆T

T
∼

∫

dη δġij n̂
in̂j ∼

∫

dη (aȧ− bḃ)

∼

∫

dη (ha − hb) ∼

∫

dη∆w , (14)

where η is the conformal distance, gij the metric, and
n̂ the line of sight unit vector. More precisely, [3, 15]
showed that for a dark energy model with constant equa-
tions of state (w̄ +∆wa, w̄ +∆wb, w̄ −∆wa −∆wb),

∆T

T
= −J(Ωm, w)

[

∆wa sin
2 θ cos2 φ+∆wb sin

2 θ sin2 φ

− (∆wa +∆wb) cos
2 θ
]

, (15)

where (θ, φ) parametrize the angular position on the
sky and J(Ωm, w) ∼ O(1) is a function of the cosmo-
logical parameters. This equation highlights two im-
portant points: first that this anisotropic dark energy
model sources the CMB quadrupole only (to leading
order in ∆w ≪ 1), and second that the temperature
anisotropy is linearly proportional to ∆w (as the car-
toon version Eq. 14 also indicated). Therefore, barring
any fine tuned cancellations of the leading order effect
(such as through precisely compensated distributions of
the energy-momentum, cf. the path integration over ∆w
in Eq. 14), |∆w| < 2 × 10−4 is required for this Bianchi
I class of models [15].
This conclusion seems difficult to avoid. However, let

us investigate at what level other probes might inde-
pendently constrain dark energy anisotropy within this
model. Also note that the CMB constraint is an inte-
grated effect from recombination to the present and so
using only the late universe might also be of interest. To
address those issues of possible compensation (such as
might arise in vector field models [34]) or time-dependent
low redshift anisotropy, in the next section we concen-
trate on supernova distances, observed over several well
separated areas of sky, such as from the deep fields of
Dark Energy Survey [35] or LSST [36].

III. SUPERNOVA CONSTRAINTS ON

ANISOTROPIC EXPANSION

Type Ia supernova (SN) distances provide excellent
probes of the dark energy equation of state in isotropic

Friedmann-Robertson-Walker (FRW) universes. Here we
apply them to an anisotropic universe such as the Bianchi
I model just considered. (Also see [37] for fitting current
data to a restricted Bianchi model.) The supernova sur-
vey is treated as independent sky areas with deep, well
cadenced observations suitable for accurate distance mea-
surement. We consider three patches of 10 deg2 each and
study the effect of the angular distribution of the patches.
Within each area we simulate 1000 SN with magni-

tudes drawn from a Gaussian distribution with disper-
sion σm = 0.1 and mean given by the isotropic expansion
FRW relation with w = −1. The SN are randomly dis-
tributed between z = 0.2− 1.2. This gives ∼100 SN per
0.1 redshift bin, or a statistical precision of 0.01 mag per
bin. This is treated as the systematic floor, i.e. a sur-
vey may observe more SN in each patch but the effective
error is equivalent to that of 1000 SN statistically.
Toward each patch we solve the light propagation in

the anisotropic cosmology using the Raychaudhuri equa-
tion. First, the background expansion is given by the
evolution equations

Ḣa + H2
a +

HaHb

2
+

HaHc

2
−

HbHc

2
= −4πG[Pb + Pc − Pa] (16)

Ḣb + H2
b +

HbHa

2
+

HbHc

2
−

HaHc

2
= −4πG[Pa + Pc − Pb] (17)

Ḣc + H2
c +

HcHa

2
+

HcHb

2
−

HaHb

2
= −4πG[Pa + Pb − Pc] (18)

ρ̇m + (Ha +Hb +Hc)ρm = 0 (19)

ρ̇de + (1 + wa)Haρde + (1 + wb)Hbρde

+ (1 + wc)Hcρde = 0 , (20)

which are basically Eqs. (2)–(6). These are solved start-
ing with isotropic initial conditions a = b = c = ai and
Ha = Hb = Hc = Hiso at ai = 2.5× 10−3 and evolved to
the present, defined as Ωde,0 = 0.72.
Once we have Ha,b,c and a, b, c this provides the red-

shift to each SN as a function of sky direction z(θ, φ), and
the Raychaudhuri equation can be used to determine the
propagation of light rays through an arbitrary spacetime:

(A1/2)λλ
A1/2

+
ζ2

A2
= −

1

2
Rµνk

µkν (21)

ζλ = AΘcos(φ⋆ − φ) (22)

ζφλ = AΘsin(φ⋆ − φ) , (23)

where A1/2 is the cross sectional area of the beam, ζ the
amplitude of the shear, and φ its phase. Subscripts λ
denote derivatives with respect to the affine parameter
λ, the photon four-momentum kµ is defined by kµ =
dxµ/dλ, Rµν is the Ricci tensor and

Θeiφ⋆ = Rµανβk
µkν(t∗)α(t∗)β , (24)

where Rµανβ is the Riemann tensor and tµ is a complex
null vector, defined via tµtµ = tαkα = 0 and tα(t∗)α = 1.

We use initial conditions A1/2 = 0, ζ = 0.
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The area of the light ray bundle A1/2 is linearly propor-
tional to the angular diameter distance. For an isotropic
spacetime Eq. (21) reduces to the standard result

dA =
η

1 + z
=

1

1 + z

∫ z

0

dz̄

H(z̄)
. (25)

However, when we introduce anisotropy this relation is
no longer correct due to the shear on the beam and the
anisotropic part of the energy-momentum tensor (recall
Rµνk

µkν = Tµνk
µkν). The relation dL = (1 + z)2dA

does hold though regardless of the anisotropy, and we
use this to construct the luminosity distance to each SN.
For simplicity, we use the reasonable approximation that
the globally anisotropic (Bianchi) expansion is effectively
isotropic within each 10 deg2 patch of the sky (i.e. within
this 2.5× 10−4 of the full sky).
Note that the redshift now contains a non-trivial an-

gular dependence

1 + z(θ, φ, a, b, c) =

(

[

a(t0)

a

]2

sin2 θ cos2 φ (26)

+

[

b(t0)

b

]2

sin2 θ sin2 φ+

[

c(t0)

c

]2

cos2 θ

)1/2

,

so we must obtain the luminosity distances as a function
of redshift in each patch of the sky independently. In
addition, we do not set a(t0) = b(t0) = c(t0) = 1 at the
present, instead we choose isotropic initial conditions for
the scale factors.
We perform an MCMC analysis to confront the

anisotropic model with the simulated SN data. Fig-
ures 2–3 exhibit the constraints placed on the dark energy
equation of state anisotropy. We have fixed Ωde,0 = 0.72
(and always assume spatial flatness), both to reflect the
constraints coming from the much wider part of the sur-
veys (i.e. the wide fields, rather than deep SN fields) and
to find the maximum constraint on the anisotropy. Vary-
ing over more cosmological parameters would inevitably
widen the uncertainty on (wa, wb, wc) and hence obfus-
cate our point; to find the ceiling on how well a future
supernova experiment could constrain the anisotropy.
In Fig. 2 we consider the patches to lie in the

same quadrant of the sky, specifically (θ, φ) = (0, 0),
(0.15, 0.15), (0.25, 0.25), with the angles measured in ra-
dians. We do not expect such a setup to be optimal for
constraining global anisotropy; if all of the patches con-
strain (∆wa,∆wb,∆wc) in a similar direction then de-
generacies should arise. However, surveys do sometimes
select deep, cadenced fields within a restricted sky area.
The optimal constraint, using fields in orthogonal di-

rections (θ, φ) = (0, 0), (0, π/2), (π/2, π/2) is shown in
Fig. 3. We see that the constraints are much tighter and
less degenerate. Generically we expect maximal degener-
acy between the equation of state parameters when the
patches align in the sky, and we require at least three
patches to ensure that the degeneracy is broken.

We see that in the optimal case the constraints that
upcoming SN surveys will be able to place on the global
anisotropy are of order ∆w ∼ O(10−2). This is still sig-
nificantly weaker than the ISW bound considered in [31–
33]. Due to the prohibitive nature of the CMB limit for
anisotropic expansion, barring fine tuning, in what fol-
lows we fix the global dynamics as isotropic and explore
possible local, line of sight effects (including those due to
systematics).

IV. LINE OF SIGHT APPROACH TO

ANISOTROPY

Going from an anisotropic theoretical model to obser-
vational predictions is relatively straightforward, but we
often want to proceed from (possibly anisotropic) obser-
vations to learn about the underlying cosmology. This
entails some subtleties, which we begin by discussing
before assessing the sensitivity of observational probes.
Note that one of the points of interest is that tests of
anisotropic measurements apply not only to non-FRW
models but to isotropic universes with anisotropic as-
trophysical systematics (such as patchy extinction and
others discussed below).

A. Testing Isotropy and Anisotropy

The previous sections discussed a simple anisotropic
model of dark energy, and considered how a future sur-
vey might place constraints on the cosmological parame-
ters characterizing the anisotropy (the three orthogonal
equations of state). Since we had a definite cosmological
model and a closed system of equations, we were able to
directly relate expansion observables to the cosmological
parameters.
Typically however, a different approach is taken when

constraining anisotropy. The method in [16, 17] for exam-
ple is to observe different patches of the sky, and assume
an FRW-like evolution in each direction. Specifically, the
luminosity distance in each direction n̂ is taken to be

dL(n̂) =
1 + z

H0

∫ z

0

dz′
√

Ωm,0(1 + z′)3 +Ωde,0(1 + z′)3[1+w(n̂)]
.

(27)
Isotropy is tested by comparing the best fit parameter
values w in each patch (usually other parameters such as
Ωm,0 are taken to be direction independent).
If the Universe (or more precisely, the data) is

anisotropic, then it is important to realise that constrain-
ing the effective expansion history along a line of sight
using a Friedmann equation is not a self consistent proce-
dure. In the above example, if there were an anisotropic
signal in the expansion data (the SN distances, say) then
w along each line of sight in Eq. (27) does not correspond
to the actual cosmological equation of state parameter
that drives the expansion.
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FIG. 2. 68% and 95% confidence level constraints on anisotropies (∆wa,∆wb,∆wc) obtained through MCMC analysis of
distance measurements are shown for the case of three patches in the same quadrant of the sky. Such clustered fields yield
large degeneracies. The isotropic input cosmology is denoted by the green square.
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FIG. 3. As Fig. 2 but for the case of three patches in orthogonal sky directions. Note the change in scale. Now the equation
of state estimations are strongly constrained and much less degenerate.

One can think of this approach as a “line of sight”
method, similar in spirit to the Dyer-Roeder model [25]
to test homogeneity. There, one takes a globally Fried-
mann expansion history but posits that along certain
lines of sight the light bundles will feel a different mat-
ter distribution. In Eq. (27) one also assumes a glob-
ally Friedmann expansion, and yet allows w to vary with
direction. This is an acceptable procedure as a consis-
tency test of whether the isotropic FRW cosmology can
fit the data. However to explore anisotropic models, and
robustly deal with anisotropic signals in the data, one
must find a way of relating the purely phenomenological
w(n̂) in Eq. (27) to the physical expansion (i.e. the actual
equation of state) in the proposed anisotropic model.

For the Bianchi I spacetime, the connection between
the anisotropic distance-redshift relation and the dark en-
ergy equation of state is straightforward; it is provided by
Eqs. (16-24). Note that even if we can relate w(n̂) to an
actual cosmology, we still cannot generically use the stan-
dard relationship Eq. (27). This expression does not take

into account the redshift angular dependence z = z(θ, φ)
of Eq. (26) or the beam shear that alters the angular di-
ameter distance in the presence of an anisotropic fluid
component. For astrophysical origins of anisotropy (see
the next subsection for examples), adjustments must of-
ten be made quite early in the data analysis, e.g. extinc-
tion corrections enter in the lightcurve parameter fitting
stage for SN rather than in the final distances.

Given the above issues, two questions should be ad-
dressed concerning the line of sight approach: 1) False
positives – if the data is genuinely isotropic how accu-
rately will the analysis be able to verify this and con-
strain anisotropies?, 2) False negatives – if the data is
actually anisotropic, how accurately will the analysis be
able to measure this, and rule out isotropy, given that
the method is only consistent for isotropic data? Finally,
if the method behaves well enough that we accept its for-
mal shortcomings, then how sensitive are the various late
time cosmological probes to anisotropies in the data.

The first question can be addressed by populating our
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mock supernova sample using an isotropic cosmological
model, and then performing an MCMC analysis using
the full Bianchi machinery to fit (wa, wb, wc) of the space-
time, or using the line of sight approach to fit (w1, w2, w3)
of the patches, and testing each for isotropy. The rel-
ative magnitudes of the errors obtained using the two
methods will inform us as to the reliability of the line of
sight approach. The input cosmology is ΛCDM and we
use similar SN data characteristics as in Sec. III. Both
approaches reproduce the input cosmology, as expected,
and the errors are of the same order of magnitude, al-
though the line of sight approach gives ∼ 50% larger un-
certainties on ∆w (6× 10−3 rather than 4× 10−3, likely
due to treating the parameters as independent in each
field). We conclude that the line of sight approach is a
viable method of testing isotropic data, despite the fact
that it does not consistently take into account cosmolog-
ical anisotropy.

The second question, that of false negatives, i.e. de-
riving isotropy spuriously because of using an (isotropic)
FRW expression for distance, can be addressed by popu-
lating three patches in the sky using an anisotropic cos-
mological model, and then performing an MCMC anal-
ysis of the parameter space for the two different ap-
proaches. Specifically, we use the full Bianchi I equa-
tions to construct the magnitudes of 3000 supernovae
in three orthogonal patches in the sky, using equation
of state parameters (∆wa,∆wb,∆wc) = (−0.04, 0, 0.04),
with respect to w̄ = −1. We then employ the full Bianchi
I equations in the first approach, and the line of sight
equations in the second. Figure 4 exhibits the results.
The gray shaded confidence contours are obtained us-
ing the full anisotropic equations; as expected the best
fit is very close to the input cosmology and we are able
to distinguish this model from isotropic ΛCDM at high
confidence.

The contours corresponding to the line of sight ap-
proach are presented as dashed lines; here we see a sig-
nificant bias in the best fit value obtained in the analy-
sis. This is due to the fact that the Hubble parameters
Ha,b,c along each line of sight are not simply sourced by
wa,b,c individually and independently, but rather by lin-
ear combinations of them (see Eqs. (16 − 18)). Hence
we are effectively constraining (wb +wc −wa, wa +wc −
wb, wa + wb − wc), though we only realize that by us-
ing the Bianchi analysis not the Friedmann, and hence
the best fit is biased. This is not the only difference
between the methods however; the line of sight approach
also does not take into account anisotropic effects such as
beam shear or the non-trivial relationship between z and
a, b, c, θ, φ. These differences account for the fact that the
errors obtained using the two methods are different, and
the line of sight approach yields perfectly non-degenerate
contours.

In spite of the problems with the line of sight approach,
it is clear that if there is anisotropy in the data then
the method should detect it. That is, no triplet of the
linear combinations of wi will have all the same elements

unless all individual wi are identical, so false negatives
are avoided. How one interprets the anisotropy signal
without knowing the underlying cosmological model is
not clear however. In this work, we can roughly relate the
line of sight method to cosmological parameters since we
have created the data using a specific anisotropic model.
With real data, we no longer have the luxury of knowing
the source of the anisotropy.

∆ 
w
c

∆ w
a

0

0.03

0.06

0.09

0.12

-0.12 -0.09 -0.06 -0.03 0

FIG. 4. 68% and 95% CL contours are presented for fit-
ting for an anisotropic input cosmology when solving the full
Raychaudhuri cosmological equations (gray shaded contours)
and when using the line of sight approach (unfilled dotted
contours). Both approaches accurately reject the isotropic,
w̄ = −1 case (green square) and the Raychaudhuri method
recovers the input cosmology (yellow dot). The line of sight
method actually constrains combinations of the wi (but this is
not realized without knowing the true cosmology). The other
2D projections not shown look similar.

There is one final effect that must be considered. In the
above analysis we have taken the supernova deep fields to
lie in orthogonal directions. This will provide a maximal
constraint on the anisotropy of the data, however it is also
expected to be the setup for which the two approaches
will have closest agreement. This is due to the fact that
in the line of sight approach, we are assuming that the
directional dependent equation of state parameters are
uncorrelated. However, if the fields are all located in
the same region, then we expect an additional deviation
between the two methods as a result of the correlation
between the fields’ equations of state, although such fields
will also deliver poorer constraints.
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B. Sensitivity to Anisotropy

The line of sight approach is therefore adequate for
testing isotropy and (the presence of) anisotropy. More-
over, it permits exploration not only of anisotropy from
the cosmological model but from astrophysical systemat-
ics. For example, measurements of supernova distances
in directions with different extinctions would imply dif-
ferent cosmological parameters for the distance-redshift
relation if the patchy extinction was not fully recognized.
Indeed, at the levels of accuracy required for future dis-
tance measurements, work is still ongoing in mapping in-
homogeneous dust extinction in our Milky Way galaxy
[38]. Another example is baryon acoustic oscillation
(BAO) scale distances measured through galaxy clus-
tering. Anisotropic stellar density can either obscure or
augment the galaxy clustering correlation function if not
fully recognized [39]; indeed before correction this gives
a 2.6σ difference between the BAO scale measured from
Northern Galactic Cap and Southern Galactic Cap fields
(see Appendix A of [40]). Other possible astrophysical
anisotropies include a locally anisotropic electron optical
depth in CMB measurements (e.g. see [41] and references
therein) and patchy reionization, which can affect CMB,
21 cm, and even BAO cosmology inferences [42–46].
The question we consider now is how sensitive various

late time cosmological probes are to any such anisotropy,
and over which redshifts. We emphasize that ∆w is
merely a proxy, a common language, for comparing such
sensitivities, and may have nothing to do with a phys-
ical equation of state. The probes considered are the
distance-redshift relation d(z), e.g. as measured through
Type Ia supernovae or baryon acoustic oscillations, the
Hubble parameter H , e.g. through radial BAO, and the
reduced distance to CMB last scattering dlss. We also
consider probes of growth variables such as the growth
factor g = D/a = (δρm/ρm)/a normalized to one at high
redshift, e.g. as measured from weak gravitational lensing
or galaxy surveys, and the growth rate f = d lnD/d lna
in the products fσ8(z) ∼ fD and fσ8/σ8,0, calibrated
to high redshift and low redshift, respectively, e.g. from
redshift space distortions.
Figure 5 exhibits the sensitivities to anisotropies ∆w

between lines of sight as a function of the redshift z of
the measurement, for 1% accuracy on different observable
quantities O. That is,

∆w1% =

(

∂O

∂w

1

0.01O

)

−1

. (28)

Again, ∆w means that level of variation in the observ-
able from any anisotropy source equivalent to a change
∆w. Seeing anisotropies that have smaller ∆w than in
the Figure would require better than the 1% measure-
ment accuracy. The assumption here is that this is a dif-
ferential measurement on the sky, and the overall wide
field survey determines the background values of all other
cosmological parameters. Thus the figure gives lower lim-

its on the sensitivity to anisotropy ∆w between different
lines of sight.

One must fold into the figure the level of accuracy
which a particular observable quantity would actually at-
tain. For example, the CMB distance dlss may be mea-
sured by the Planck satellite to 0.2% [47], while H is
generally measured less well than d from BAO. Further-
more, the precisions must be scaled to reflect the area
of sky used to compare lines of sight. The 0.2% preci-
sion for dlss is for full sky, but to look for anisotropy
one must split up the area into patches, so the precision
would degrade.

FIG. 5. Each curve represents the sensitivity ∆w to dark
energy anisotropy made possible by 1% measurements of the
labeled observable, as function of measurement redshift. The
CMB dlss sensitivity is shown on the right axis by the purple
filled circle.

For some probes the angular scales of sensitivity to
anisotropy are limited by the nature of the observable.
For example, both CMB acoustic peaks and BAO have
angular sizes of ∼ 1 degree, so they lose sensitivity to
anisotropies on smaller scales. On the other hand, su-
pernovae or weak lensing, for example, can probe down
to smaller scales. We expect higher derivative quanti-
ties such as growth rates relative to growth, or the Hub-
ble parameter relative to distance, to be less accurately
measured.
Taking these various factors into account, from Fig. 5

we anticipate that the most sensitive probe of such
anisotropy will be supernova distance measurements,
with possibly low redshift growth factor measurements
from weak lensing and the growth rate from redshift
space distortions contributing, especially to small scale
anisotropy constraints. Large surveys, both spectro-
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scopic and photometric, play roles in constraining dark
energy anisotropy (including through determining the
other background quantities). Photometric errors prop-
agate through to roughly the same errors in distance, i.e.

∆dl
dl

=
∆z

1 + z

[

1 +
(1 + z)2

Hdl

]

≈
∆z

1 + z
, (29)

so as long as photometric errors in a redshift bin com-
posed of many objects can be constrained well, the dis-
tance uncertainties will be controlled sufficiently to allow
testing anisotropy. Thus, a wide field galaxy, or super-
nova, survey such as LSST could be used to investigate
anisotropic properties of dark energy, as studied empiri-
cally in [16].

V. CONCLUSIONS

The cosmic microwave background radiation delivers
strong evidence for isotropy, restricting global anisotropy
to the ∼ 10−5 level. This severely disfavors anisotropic
models such as a Bianchi I universe. Lower redshift wide
field surveys can deliver constraints at the percent level.
Preserving isotropic expansion dynamics but allowing for
local anisotropy remains a possibility, at least on a phe-
nomenological level. This Ansatz is similar to that of
the Dyer-Roeder model, where global dynamics can stay
Friedmann-Robertson-Walker despite lines of sight hav-
ing differing properties.
We have calculated exact solutions of the anisotropic

Bianchi I cosmology and shown that even in the case
of extreme anisotropy the expansion can retain FRW-
like characteristics. Indeed, the expansion rate in dif-
ferent directions does not have to diverge, but can go
to fixed points. We give analytic expressions for these
through second order in the dark energy equation of state
anisotropy. The average expansion rate equals the expan-
sion rate of the associated FRW universe at first order.
Carrying out Monte Carlo simulations of deep fields

within a wide field survey, à la Dark Energy Survey or
LSST, we study the effect of the configuration of deep
field distance measurements on the global anisotropy con-
straints. Sky areas that are well separated in orthogonal
directions break degeneracies and give tight constraints.
Adopting a phenomenological Ansatz with direction

dependent pressure (or equation of state) but global
isotropy requires careful thought. However, the results
of our Bianchi I analysis help motivate that an Ansatz
retaining a globally isotropic expansion could serve as

a reasonable approximation, and our Monte Carlo re-
sults show that the line of sight approach, handled care-
fully, can give consistent results for isotropy or an alarm
for anisotropy (including astrophysical systematics). We
stress that when using the line of sight approach, one
cannot interpret an anisotropic signal in terms of cosmo-
logical parameters in a straightforward manner.

We then investigated the constraints that different as-
trophysical observations could place on such anisotropy.
For small angular scales, supernova distances and red-
shift space distortions have good leverage, while on large
angular scales BAO and CMB distances impose limits.
Both spectroscopic and photometric surveys can con-
tribute constraints, with next generation surveys capable
of limiting anisotropies (described in the proxy language
of dark energy equation of state ∆w) at the ∼ 5% level
at each redshift (with tighter constraints from summing
over a redshift range).

We emphasize several caveats. A definite model for
anisotropic dark energy that preserves isotropic expan-
sion to the level required by the CMB requires further
work. Standard inhomogeneous perturbations, from a
low sound speed for example, do not suffice. The pres-
sure perturbations may be decoupled though from the
density ones by adopting an infinite sound speed such as
in the cuscuton model [48]. Large surveys give strong
constraints but must be subdivided into patches to com-
pare the equation of state along different lines of sight,
diluting their effective volume. We have outlined a num-
ber of systematics that are direction dependent, such as
patchy extinction or gravitational lensing, and could give
spurious signals for line of sight variation. This article
demonstrates some interesting features and results re-
garding testing dark energy anisotropy but also applies,
probably more realistically, to astrophysical systematics.
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