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By considering adiabatic contraction of the dark matter (DM) during the star formation, we
estimate the amount of DM trapped in stars at their birth. If the DM consists partly of primordial
black holes (PBHs), they will be trapped together with the rest of the DM and will be finally
inherited by a star compact remnant — a white dwarf (WD) or a neutron star (NS), which they will
destroy in a short time. Observations of WDs and NSs thus impose constraints on the abundance of
PBH. We show that the best constraints come from WDs and NSs in globular clusters which exclude
the DM consisting entirely of PBH in the mass range 1016g − 3× 1022g, the strongest constraint on
the fraction ΩPBH/ΩDM . 10−2 being in the range of PBH masses 1017g − 1018 g.

PACS numbers:

I. INTRODUCTION

Various observational evidences point at the existence
of a new matter component in the Universe, the dark
matter (DM) (for a recent review see, e.g., [1, 2]). Obser-
vations of the cosmic microwave background imply that
DM comprises ∼ 23% of the total energy budget of the
Universe, thus dominating in the matter sector, where
baryonic component sums up to only 4% [3]. However,
the nature of DM remains unknown and masses of pos-
sible candidates range over many orders of magnitude
from a fraction of eV to many solar masses. Although
most popular candidates are new stable particles, other
possibilities are not excluded.

In the Early Universe density perturbations with high
initial amplitude could collapse forming black holes [4].
If some of these black holes survive until now they could
constitute (at least) a fraction of DM. Properties of these
primordial black holes (PBHs) make them a suitable DM
candidate: they are nonrelativistic and have subatomic
size r ∼ 10−8 cm (mBH/1020g) which makes them effec-
tively collisionless. Unlike most of other DM candidates,
PBHs do not require the existence of new particle species.

The initial mass function of PBHs is flat in the case of
a flat power spectrum of primordial density fluctuations.
However, models with strongly non-flat mass function of
PBHs can be constructed, see, e.g., Refs. [5, 6]. The
constraints at different masses, therefore, should be con-
sidered independently.

The PBHs with masses mBH ≤ 5×1014 g have lifetimes
due to Hawking evaporation [7] shorter than the present
age of the Universe. Such PBHs thus cannot contribute
to the DM.

PBHs with slightly larger masses emit γ−rays with
energies around ∼ 100 MeV [8]. Observations of the
extragalactic gamma-ray background with the Energetic

Gamma Ray Experiment Telescope (EGRET) [9] set an
upper limit on the cosmological density ΩPBH of such
PBHs as a function of their mass, e.g. ΩPBH ≤ 10−9 for
mBH = 1015 g [10]. These observations show that PBHs
with masses mBH ≤ 1016 g can not constitute more than
1% of DM. However, the constraints coming from the pro-
cess of Hawking evaporation disappear for PBH masses
larger than mBH & 7× 1016 g.

The PBHs in the mass range mBH . 1019 − 1020 g
can be constrained with the so-called “femto-lensing” of
the gamma-ray bursts [11]. Present day observations of
gamma-ray bursts constrain the mass fraction of PBHs
in the narrow mass range around mBH ∼ 1018 g at sev-
eral percent level [12]. The abundance of more massive
PBHs can be constrained from microlensing surveys. The
EROS microlensing survey sets an upper limit of 8% on
the fraction of the Galactic halo mass in the form of PBHs
with masses in the range of 1026 g < mBH < 3 × 1034 g
[13]. At even higher mass scales, 1033 g < mBH < 1040 g,
the analysis of the Cosmic Microwave Background can
be used to constrain PBHs at the level of 10−7 [14].

The range of PBH masses from roughly 1017g to 1026g
remains essentially unconstrained, apart from the above-
mentioned narrow region around 1018 g. The aim of this
paper is to constrain PBHs as the DM candidates in this
still allowed mass range. To this end, we investigate the
effect of PBHs on the evolution of compact stars – neu-
tron stars (NSs) and white dwarfs (WDs). The main
idea is as follows. PBHs may be captured by a star in
the process of its formation. This leads to no observa-
tional consequences until the evolution of the star reaches
the stage of a neutron star or a white dwarf. Then the
accretion onto a PBH becomes sufficiently fast to destroy
the compact star in a short time [15–17]. The region of
PBH masses and abundances where this happens with
large probability is thus excluded by observations of the
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existing neutron stars and white dwarfs.

The paper is organized as follows. In Sect. II we dis-
cuss the gravitational capture of DM during the process
of star formation. In Section III we derive the constraints
on the fraction of PBHs in the DM from the existence of
WDs and NSs. In Section IV we summarize the results
and present our conclusions. Throughout the paper, we
use the units ~ = c = 1.

II. CAPTURE OF DARK MATTER DURING
STAR FORMATION

In this section we study the capture of dark matter
during the star formation process, neglecting all the DM
interactions except the gravitational one. The purpose
is to estimate the total amount of DM captured inside
newly formed stars.

A. Star formation stages

Star formation occurs mainly in giant molecular clouds
(GMCs). GMCs are dense regions of the interstellar
medium composed primarily of molecular hydrogen (H2)
with typical mass M ∼ 3× 105M� and average density
ρ ∼ 550 GeV cm−3, which would imply a radius of 17pc
in the case of a spherical shape. A GMC is usually com-
posed of smaller overdense sub-clouds, i.e., clumps. In
gravitationally bound cores inside the clumps, individual
stars are formed.

The formation of stars involves different stages. The
first one corresponds to the fragmentation of a GMC into
gravitationally bound regions that are initially supported
against gravity by a combination of rotation, magnetic
and turbulent pressures [18, 19]. At some point, as the
cloud core loses its magnetic and turbulent support by
still poorly understood mechanisms like ambipolar diffu-
sion [19], the growing central concentration becomes un-
stable to the gravitational collapse. At the initial stage
of the collapse, the cloud has a uniform temperature, is
rotating slowly and has an almost flat density profile in
the central part. At the end of this phase an opaque pro-
tostellar object in hydrostatic equilibrium is formed at
the center [20–22].

When the protostar is formed, it accretes from the sur-
rounding disk increasing its temperature. When the cen-
tral object has accumulated most of its main-sequence
mass and the surrounding disk disperses, it is considered
a pre-main-sequence star. The main energy source for
such an object is the gravitational contraction, contrary
to nuclear fusion for main sequence stars. Therefore it is
evolving on a Kelvin-Helmholtz timescale GM2

∗/(R∗L∗),
where M∗, R∗ and L∗ are the mass, the radius and the
luminosity of the pre-main-sequence star, respectively.
This time is longer than the free fall time (R3

∗/GM∗)1/2.

B. Adiabatic contraction

The main mechanism of the capture of DM by stars at
the time of formation is the adiabatic contraction. Con-
sider first this mechanism in general terms.

In this paper we will be interested in systems that are
dominated by baryons. In this case the adiabatic contrac-
tion is easy to understand. When baryons contract los-
ing energy by non-gravitational mechanisms, their time-
dependent gravitational potential pulls the DM particles
along. The DM distribution thus develops a peak cen-
tered at the baryon distribution.

If the change of the baryonic gravitational potential is
slow, that is, if the characteristic time of the baryonic
contraction is much larger than the free fall time tff =
(Gρ0)−1/2, where ρ0 is the baryonic density of a cloud,
the DM distribution is determined by the (approximate)
conservation of the adiabatic invariant∮

pdq = ET (1)

where p and q are the phase space coordinates of a DM
particle of energy E and orbital period T . Moreover, the
angular momentum is conserved for each DM particle as
long as the potential is central. From these conserved
quantities, a relation between the initial orbital radius
and the final one can be derived [23–26].

Regardless of whether the contraction of DM is adia-
batic or not, the phase-space density of DM has to be
preserved all along the contraction process, as dictated
by Liouville’s theorem. For an initial Maxwellian velocity
distribution of DM with the dispersion v̄, the maximum
phase space density is at zero velocity and equals [27]

Qmax =

(
3

2π

)3/2
ρ̄DM

m4
DMv̄

3
(2)

where ρ̄DM is the space density of DM and mDM is the
DM mass. The effect of the adiabatic contraction is to
fill all the allowed phase-space with the density close to
the maximum value.

In the case of circular orbits the conservation of the an-
gular momentum and the adiabatic invariant (1) implies
the conservation of the quantity rM(r), where M(r) is
the mass within the radius r. Suppose a baryonic cloud,
which was initially a uniform sphere of radius R̄, con-
tracts to a compact object of a negligible size. Assuming
that the DM particles move on circular orbits, the initial
uniform DM density ρ̄DM is modified as follows [28]:

ρDM(r) =
1

4
ρ̄DM

(
R̄

r

)9/4

, (3)

provided the adiabatic approximation holds.
In realistic cases the orbits of DM particles are not

circular. The question thus arises whether eq. (3) is a
good approximation in realistic situations. An exact cal-
culation has been performed in another limiting case of
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FIG. 1: DM density profile obtained from the simulation after
the adiabatic formation of a star. The inner part of the profile
has the slope close to −3/2 as expected from the Liouville’s
theorem for the uniform initial velocity distribution.

purely radial orbits [29, 30]. The result were found to
be roughly compatible with the case of circular orbits.
However, this is not a realistic case either. Another ques-
tion of practical importance is the domain of validity of
the adiabatic approximation. Formally, it requires the
time of collapse tc to be much longer that the free-fall
time tff . In Ref. [31] high-resolution numerical simula-
tions have been performed and it has been shown that
the adiabatic contraction may remain a good approxima-
tion, depending on the potential, even when tc ' tff .

To clarify these issues we have performed the following
numerical simulation. For the baryonic distribution that
is responsible for the time-varying external gravitational
potential we took the sum of a uniform spherical cloud
and a point mass in the center. The point mass was zero
at the initial moment of time and then increased linearly
with time, while the mass of the spherical part, always
uniform in density, decreased in such a way that its sum
with the point mass remained constant. The time tc over
which all the mass was transferred from the cloud to the
central object was treated as a free parameter.

The DM particles were injected at t = 0 with an initial
uniform distribution in position and velocity. The initial
density profile was taken to be constant over the volume
of the cloud to mimic the physical properties of prestellar
cores. The particles were injected one by one, which cor-
responds to neglecting the DM contribution to the grav-
itational potential. Those particles which have positive
total energy at t = 0 (and thus are not gravitationally
bound to the system) were discarded; the remaining ones
were evolved numerically in the time-dependent gravita-
tional potential. At a random time t > tc the positions of
these particles were sampled in order to reconstruct, after
many simulations, the final density profile. As a consis-
tency test, we have also performed an identical simulation
with initial velocities of DM particles generated in such
a way that the particles move on circular orbits.

In the case of circular orbits we have reproduced the

density profile (3), even for a relatively rapid change of
the external potential, tc = 3 tff . In the case of random
initial velocities, however, the inner profile was found to
have a slope close to −3/2,

ρDM(r) =
1

2
ρ̄DM

(
R̄

r

)3/2

(4)

as represented in Fig. 1. These results are in agreement
with Liouville’s theorem, since the final DM velocity goes
as v(r) ∝ r−1/2. Since random initial velocities appear to
be a better approximation to realistic initial conditions
than the circular ones, and because the profile (4) gives
more conservative estimates, in the rest of this paper we
use the profile (4).

C. DM bound to a baryonic cloud

As is clear from the above discussion, only DM grav-
itationally bound to a baryonic cloud is subject to the
adiabatic contraction when the cloud collapses. There-
fore, to set the initial conditions for the adiabatic con-
traction we need to estimate the amount of DM that is
gravitationally bound to a cloud.

We will assume that the matter density is dominated
by baryons, as is the case in the star forming regions.
When the overdensity of baryons is formed, some amount
of DM ends up gravitationally bound to the baryonic
cloud. Consider the formation of a spherical cloud of ra-
dius R0 and baryonic density ρ0. Our goal is to estimate
the density of DM bound to the cloud, ρDM, bound, given
the mean density of DM, ρ̄DM. We will assume that orig-
inally the DM particles have the Maxwellian distribution
in velocities with the dispersion v̄,

dn = n̄DM

(
3

2πv̄2

)3/2

exp

{
−3v2

2v̄2

}
d3v, (5)

where n̄DM = ρ̄DM/m, m being the mass of the DM
particle. We will see that in the cases of interest the
velocities of bound particles are much smaller than v̄, and
thus the precise shape of the distribution is not essential.

After the formation of a baryonic cloud, the gravita-
tional potential felt by DM particles becomes of order

φ ∼ φ0 = 2πGρ0R
2
0.

Those particles with kinetic energies smaller than φ0

(equivalently, velocities v < v0 =
√

2φ0) become grav-
itationally bound. Their number density is obtained by
integrating eq. (5) up to v = v0. Multiplying by the DM
mass, one has

ρDM, bound = ρ̄DM
4π

3

(
3|φ0|
πv̄2

)3/2

(6)

= ρ̄DM
4π

3

(
6Gρ0R

2
0

v̄2

)3/2

, (7)
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M∗/M� ρ0, GeV cm−3 R0, AU

1 106 4300

2 1.8 × 106 4450

3 2.4 × 106 4620

4 3.1 × 106 4710

5 3.6 × 106 4780

6 4.2 × 106 4840

7 4.8 × 106 4880

8 5.3 × 106 4930

10 6.4 × 106 5000

12 7.4 × 106 5060

15 8.8 × 106 5130

TABLE I: The parameters of prestellar cores used in the es-
timates.

where we have assumed v0 � v̄ and thus set the expo-
nential to 1.

D. Globular clusters

Globular clusters (GCs) are gravitationally bound sys-
tems consisting of 104 to 107 stars with average diam-
eters ranging from 20 to 100 pc. There are about 100
GCs known in our Galaxy. A typical GC has a baryonic
mass of (a few) × 105M� and a core radius of 1 − 2 pc.
The age of GCs is about 8 to 13.5 Gyr [32], and as such
they are the oldest surviving stellar subsystems in the
galaxy, made up of the population II stars, white dwarfs,
neutron stars and black holes.

There are two classes of scenarios for GC formation.
According to the primordial, or “DM-dominated” one,
GCs were formed by the infall of baryonic matter into the
gravitational wells of the DM density peaks at redshifts
z > 10 [33–38]. The second is the “baryon-dominated”
scenario, according to which GCs were formed in predom-
inantly baryonic processes like major mergers, hydrody-
namical shocks and so on mostly in proto-galaxies that
later assembled into the Milky Way [39–42]. Moreover,
both mechanisms could be at work because the observed
distribution of metallicity in GCs is clearly bimodal, so
that metal-poor GC could be of cosmological origin, while
metal-rich GCs could be formed in the course of mergers
[43]. Although there is no evidence of DM presence in the
GCs now [44], it was shown that it could be present at
the formation time and subsequently tidally stripped due
to interactions with the host galaxy [45]. We will assume
in what follows that at least some of the GCs resided in
DM minihaloes in the past, and concentrate on those.

The DM density in the central regions of GCs has been
estimated in Ref. [46] by making use of the formalism
developed in Refs. [35, 45]. The conclusion was that the
present-day DM density close to the core of a GC is of or-
der ρDM ∼ 2×103 GeV cm−3, the estimate being rather
insensitive to the original halo mass. This result is in con-

cordance with the N-body simulations [35, 45] suggesting
that the inner part of DM halos survive successive tidal
interactions with the host galaxy. As has been stressed in
Ref. [46], the number cited includes the effect of dynam-
ical heating of DM by the stars comprising the cluster,
which reduces the DM density. In our estimates this ef-
fect is irrelevant since we are interested in the evolution
stage prior to the star formation. With no heating, the
DM density in the core would be ρDM ∼ 104 GeV cm−3,
which we adopt in what follows.

Another important parameter is the value of the DM
velocity dispersion in GCs. As stars in the GC are col-
lisionless and behave essentially as DM particles, this
parameter can be extracted directly from observations.
Although there is quite a bit of scatter, typical observed
GCs have the velocity dispersion around v̄ = 7 km s−1

[47].
Let us now turn to the prestellar cores. Their typical

parameters are known from observations carried out with
the SCUBA instrument [48]. The dataset is well fitted by
the Bonnor-Ebert profile [48] which, for our purposes, can
be approximated by the flat core of radius R0 containing
the baryonic mass M∗ of the future star.

Two cases will be of interest in what follows: stars with
masses 1M� ≤M∗ ≤ 7M� which are typical progenitors
of a WD, and supermassive stars of masses, M∗ ≥ 8M�
progenitors of NSs. In all cases the gravitational poten-
tial of the prestellar core is (much) smaller than that of
the GMC, so one may use again eq. (6) to estimate the
density of DM gravitationally bound to the core. We use
the parameters of prestellar cores that are listed in Ta-
ble I. As has been already mentioned, the formation of
the prestellar cores relies on the non-gravitational energy
loss mechanisms and thus is expected to be slower than
the free fall.

Making use of eq. (4), one obtains the total DM mass
contained in a star formed within the GCs as listed in Ta-
ble II. These values were calculated with the DM density
and velocity dispersion given above; for different values
of these parameters the mass of the bound DM should
be rescaled by the factor(

v̄

7 km/s

)−3
(

ρ̄DM

104 GeV/cm
3

)
(8)

which may be different for different GCs.

III. CONSTRAINTS ON PRIMORDIAL BLACK
HOLES

So far the discussion has been general and did not de-
pend on the DM nature. Consider now specifically the
case of primordial black holes. The PBHs that end up in-
side a star when the latter is formed start accreting and
gravitationally pulling on the surrounding matter, lose
their momentum and gradually sink to the center. The
sinking process is slow, so that the characteristic time
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M∗/M� ρPSC, GeV cm−3 Mbound, g

1 2 × 101 4.4 × 1019

2 5.2 × 101 2.5 × 1020

3 9.2 × 101 7.2 × 1020

4 1.4 × 102 1.5 × 1021

5 1.9 × 102 2.6 × 1021

6 2.4 × 102 4.2 × 1021

7 3 × 102 6.2 × 1021

8 3.6 × 102 8.7 × 1021

10 5 × 102 1.6 × 1022

12 6.4 × 102 2.4 × 1022

15 8.7 × 102 4.3 × 1022

TABLE II: Density of DM bound to the prestellar core, ρPSC,
and the total mass Mbound of DM contained in a star right
after its formation in a GC with the central DM density
ρDM ∼ 104 GeV cm−3 and velocity dispersion v̄ = 7 km s−1

for different star masses.

may exceed the age of the star. Because of their slow
accretion and small number, the presence of BH has no
observable effects on the star evolution at this stage.

When a star polluted by PBHs evolves into a compact
object (WD or NS), some of the BHs get inside the com-
pact remnant. Because of a much higher density, the
accretion is now more efficient and the PBHs, if present
inside the remnant, rapidly consume the latter. The ob-
servation of WDs and NSs thus implies constraints on
the abundance of PBHs, which has to be such that the
probability to get a PBH inside NS or WD is much less
than 1.

To quantify this statement we calculate the number
NBH of BHs that would sink down to the future radius
rf of the compact remnant by the end of the star evolu-
tion and, thus, would end up inside the star remnant. If
NBH < 1 no constraints arise. If NBH > 1, the maximum
allowed fraction of BHs in the total amount of DM is

ΩPBH

ΩDM
≤ 1

NBH
. (9)

Thus, in the range of PBH masses where NBH > 1, PBHs
cannot constitute all of the DM.

The PBHs that are eventually trapped by the compact
remnant initially occupy some spherical volume of radius
rc which we call the “collection region”. Knowing rc as a
function of the PBH mass mBH and the DM distribution
inside the star at the time of formation allows one to
calculate NBH as follows,

NBH = MDM(rc)/mBH, (10)

where MDM(r) is the DM mass contained in the radius r
at the time of the star formation.

The sinking of the PBH inside the star has been con-
sidered in Ref. [30]. The dynamical friction force per unit
PBH mass is given by the Eq. (16) of Ref. [30]. Multi-
plied by the PBH velocity, this gives the PBH energy

r 
  /

R
*

c

BH mass, g

 0.01

 0.1

 1

 1e+15  1e+16  1e+17  1e+18  1e+19

FIG. 2: The dependence of the size rc of the collection region
(the region from which the PBHs captured by the star at its
formation have enough time to sink to within the radius of
the future compact remnant, WD or NS) on the PBH mass,
corresponding to the case of WD for M∗ = M�.

loss rate dE/dt. On the other hand, assuming circular
orbits, dE/dt can be expressed in terms of the change of
the orbit radius. Equating the two gives a closed first
order differential equation for the orbit radius as a func-
tion of time, r(t). We derive and solve the corresponding
equation numerically in Appendix A, assuming the star
model with the polytrope index n = 3.

Having found the dependence r(t) for a given BH mass,
we fix the final radius rf = r(t∗) to be the size of the
compact object (NS or WD). Here t∗ is the lifetime of
the star. We then determine the collection radius as
rc = r(0). (In practice, it is more convenient to run
the evolution equations backwards in time starting from
r = rf .) The dependence of rc on the BH mass is shown
in Fig. 2 for M∗ = M� and rf = rWD = 104 km.

At small BH masses the dynamical friction is inefficient
and the collection radius rc is not very different from
rf . As the BH mass gets larger the friction becomes
more efficient, so that rc grows and eventually becomes
close to the star radius. The transition is quite rapid;
the value of mBH = mtrans at which it occurs can be
understood analytically from the behavior of eq. (A8),
see Appendix A for details. It corresponds to the smallest
mBH for which the collection radius is still close to the
star size (i.e., the lifetime of the star is still sufficient for
a BH to sink to r = rf starting near the surface). By an
order of magnitude, it is given by

mtrans ∼ 4× 1017 g

×
(

t∗
10 Gyr

)−1(
M∗

M�

)1/2(
R∗

R�

)3/2

. (11)

Note that there is no dependence on rf because the final
stages of the BH sinking are exponential, and these are
the (longer) initial stages that set the overall time scale.

The number of BHs inside the collection region NBH

can be found from the total DM mass trapped by the
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FIG. 3: Constraints on the fraction ΩPBH/ΩDM. Purple
shaded region is excluded by observations of WDs and NSs in
the centers of globular clusters. Thin curves show the exclu-
sions from different star masses.

star (see Table II) and the DM density profile inside the
star. The DM profile inside the star after the adiabatic
contraction is determined by eqs. (3) and (4) and the
baryonic density, for which we assume the density profile
of the polytrope n = 3 model. From eq. (4), the DM and
baryonic masses are related as follows,

MDM(r) = Mbound

(
M(r)r3

M∗R3
∗

)1/2

, (12)

where M(r) and MDM(r) are the baryonic and DM mass
within the radius r, respectively. The number of BH
within rc is then given by eq. (10).

The resulting constraints on the fraction of PBHs in
the total amount of DM are shown in Fig. 3. Purple
shading shows the region excluded by the observations
of WDs and NSs in the globular clusters. Thin curves
show the exclusion regions resulting from different star
masses. One can see that the constraints from WDs and
NSs complement each other and together cover the range
of masses from 1016 g to 3× 1022 g.

The shape of the excluded regions is similar in all cases
shown in Fig. 3. It can be understood from the mass
dependence of the collection radius rc, Fig. 2, as follows.
At large PBH masses the size of the collection region is
close to the star size, so that MDM(rc) ' Mbound and
the maximum PBH fraction ΩPBH/ΩDM scales like mBH,
i.e., the constraints improve at smaller masses. However,
at some point around mBH ∼ mtrans the collection radius
rc decreases (cf. Fig. 2) and the constraints get relaxed
very rapidly.

IV. CONCLUSIONS

We have derived the constraints on the abundance of
PBH from observations of the existing WDs and NSs.
The origin of these constraints is as follows. If PBHs were
present at the time of star formation, i.e., at z . 10, they

would pollute the newly-formed stars and, after sinking
to the center, would end up in the compact remnant re-
sulting from the star evolution (WD or NS). Once inside
the remnant, PBHs would rapidly destroy it by accretion.
Mere observations of WDs and NSs, therefore, impose
constraints on the abundance of PBHs.

We have found that the most stringent constraints
come from observations of WDs and NSs in globular
clusters. WDs and NSs are sensitive to the mass ranges
1016 g . mBH . 1021 g and 1021 g . mBH . 3 × 1022 g,
respectively, thus complementing each other. Every-
where in this mass range the PBHs are excluded as com-
prising all of the DM. The best constraint on the PBH
fraction ΩPBH/ΩDM . 10−2 was found for mBH in the
range 1017 g − 1018 g.

The constraints derived from the globular clusters are
based on the assumption that at least some of those were
formed in a primordial DM-dominated environment. As
a word of warning, it should be noted that this issue is
still debated in the literature. For instance, observations
of a low-metallicity cluster NGC 2419 [49, 50] seem to
indicate that its mass-to-light ratio is in a good agree-
ment with what is expected for a pure baryonic system.
However, NGC 2419 has a number of extreme properties
[51–53] that make the globular cluster nature of this ob-
ject questionable. In addition, high-resolutions N-body
simulations [35, 45] indicate that the mass-to-light ratio
may not be sensitive to the presence of the DM compo-
nent in GCs.

In order to derive the constraints on the PBH abun-
dance we have investigated the baryonic contraction of
the DM during the star formation process. In particular,
we have calculated numerically the resulting DM profile
and found the slope close to −3/2. We also estimated
the total amount of DM that is trapped inside the star
at the time of its formation. This part of our results is
not specific to any particular form of the DM.
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Appendix A: Sinking of BH in the star

Here we consider the energy loss by a BH that is or-
biting inside a star gradually sinking to the center. The
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star is assumed to have an r-dependent density ρ(r) and
temperature T (r), and the mass M(r) enclosed inside the
radius r. Our purpose is to derive the equation that gov-
erns the evolution of the BH orbit due to the dynamical
friction, assuming the orbit is circular and changes slowly.
The question of dynamical friction was considered in a
general context , e.g., in Refs.[54, 55].

The BH moving through a star experiences a dynami-
cal friction force [55] that can be written as follows,

f

mBH
= −γ(v)v, (A1)

where

γ(v) = 4πG2ρ(r)mBH ln(Λ)
F (X)

v3
,

F (X) = erf(X)− 2X exp(−X2)/
√
π, (A2)

X = v/(
√

2σ),

ρ(r) is the density of the baryonic gas comprising the star,

σ is the velocity dispersion of the particles σ =
√
T/m

with temperature T and mean molecular weight m
(m ' 1.6 GeV for a main sequence star), and ln(Λ) '
ln(M∗/mBH) ' 30 is the Coulomb logarithm [55]. Multi-
plying Eq. (A1) by v gives the total BH energy loss rate
per unit mass, dE/dt = −γ(v)v2.

Making use of the relation

v2 = GM(r)/r, (A3)

the same energy loss rate can be expressed through the
change of the radius r of the BH orbit,

dE

dt
=

d

dt

(
1

2
v2 + U(r)

)
=
dr

dt

v2

2r

{
4πr3

M(r)
ρ(r) + 1

}
,

(A4)
where U(r) is the gravitational potential. Equating the
two quantities and simplifying by v2 one gets

dr

dt

1

2r

{
4πr3

M(r)
ρ(r) + 1

}
= −γ(v). (A5)

By virtue of eq. (A3), this is a closed differential equation
for the BH orbit radius r(t) as a function of time. Note
that this equation is not equivalent to eq. (24) of Ref. [30]
because the contribution of the gravitational potential
(the term U(r) in eq. (A4)) has been missed there.

Let us rewrite this equation in the form convenient for
the numerical solution. Define the dimensionless quanti-
ties

x = r/R∗,
τ = t/t0,

ρ̃(r) = ρ(r)/ρ(0),

M̃(r) = M(r)/M∗,

T̃ (r) = T (r)/T (0),

where

t0 =
M

3/2
∗

2π
√
Gρ(0)mBHR

3/2
∗ ln Λ

(A6)

' 4.2× 103 yr

(
mBH

1022g

)−1(
M∗

M�

)1/2(
R∗

R�

)3/2

. (A7)

The profiles ρ̃(r) and T̃ (r) are determined by the star
model. The normalization parameters ρ(0), T (0), M∗
and R∗ are not independent. They obey the following
two relations,

GM∗m

R∗T (0)
= 1.17

ρ(0)R3
∗

M∗
= 12.9,

where, as before, m is the mean molecular weight. The
scaling in eq. (A7) takes into account these relations.

In terms of the dimensionless quantities, Eq. (A5) be-
comes

dx

dτ
= − x5/2ρ̃(x)

f(x)M̃3/2(x)
F (X). (A8)

Here we have introduced the function

f(x) =
1

4

{
4π
r3ρ(r)

M(r)
+ 1

}
=

1

4

{
163

x3ρ̃(x)

M̃(x)
+ 1

}
which varies between 1 in the star center x = 0 and 1/4
at the star surface x = 1. The variable X is in turn a
function of x which can be expressed as follows,

X =

(
GmM(r)

2rT (r)

)1/2

= 0.765

(
M̃(x)

xT̃ (x)

)1/2

,

while the function F (X) is defined in Eq. (A2). At small
values of X this function behaves as 4X3/(3

√
π); at large

X it asymptotes to 1.
A useful analytical insight into behavior of the eq. (A8)

can be obtained by considering two limiting cases. At
small values of x such that the parameters of the star
can still be approximated by their core values one has

X ' 5.62x.

At small x such that X � 1 eq. (A8) becomes

dx

dτ
= −0.337x,

whose solution is x(t) = exp(−0.337t/t0) with t0 given
by eq. (A6). In this regime, valid for the final approach
by a sinking BH of the radius rf (the radius of a future
compact object), the characteristic time scale is

(∆t)2 ' 3 ln(r0/rf ) t0,
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where r0 is some initial radius.
At moderately small x such that X & 1 eq. (A6) takes

the form

dx

dτ
= − 1

397x2
,

which gives the evolution time (∆t)1 from x1 to x2

(∆t)1 = 132 t0(x3
1 − x3

2) ' 102 × t0,

where we have set x3
1 ∼ 1 and neglected x3

2. We see
that this first stage is typically longer than the second,
(∆t)1 > (∆t)2. Equating (∆t)1 to the lifetime of the star
t∗ and making use of eq. (A6) leads to the estimate (11).
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