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Collisions between cosmic bubbles of different vacua are a generic feature of false vacuum eternal
inflation scenarios. While previous studies have focused on the consequences of a single collision
event in an observer’s past, we begin here an investigation of the more general scenario allowing for
many “mild” collisions intersecting our past light cone (and one another). We discuss the general
features of multiple collision scenarios and consider their impact on the cosmic microwave back-
ground (CMB) temperature power spectrum, treating the collisions perturbatively. In a large class
of models, one can approximate a multiple collision scenario as a superposition of individual colli-
sion events governed by nearly isotropic and scale-invariant distributions, most appearing to take
up less than half of the sky. In this case, the shape of the expected CMB temperature spectrum
maintains statistical isotropy and typically features a dramatic increase in power in the low multi-
poles relative to that of the best-fit ΛCDM model, which is in tension particularly with the observed
quadrupole. We argue that this predicted spectrum is largely model-independent and can be used to
outline features of the underlying statistical distributions of colliding bubbles consistent with CMB
temperature measurements.

I. INTRODUCTION

The theory of cosmological inflation has been very suc-
cessful in providing potential answers to several deep
questions in early universe cosmology, as well as testable
(and tested) cosmological predictions. However, a crucial
“side effect” of many versions of inflation is that the ex-
ponential expansion tends to continue on eternally into
the future, with only pockets of the universe ceasing to
inflate locally. This scenario is known as eternal inflation
(see e.g. Refs [1–3] for reviews).
Eternal inflation can be driven by several mechanisms.

In the present study, we concern ourselves with the “false
vacuum” variety, in which inflation occurs as a result of
an inflaton (usually taken to be an effective scalar field,
ϕ) being trapped in a metastable false vacuum. Infla-
tion ends locally when the field transitions to a nearby
“truer” vacuum on the potential. If the probability per
unit four-volume of such a transition, λ, is small com-
pared to the Hubble scale of the inflating false vacuum
H4
F (as typically assumed), then false vacuum inflation

is eternal. For many potentials, the dominant transition
mechanism is bubble nucleation [4], which can quite nat-
urally produce open FRW universes much like our own.
In this study, we will work under the assumption that
we live in one such universe, dubbed “the observation
bubble”.
A fascinating consequence of false vacuum eternal in-

flation is that other bubbles inevitably form in the four-
volume to the past of the observation bubble wall. These
bubbles collide with the observation bubble wall, poten-
tially leading to detectable signatures of “cosmic bub-
bles” outside of our own, provided that an observer can
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exist to the future of the collision. Much recent work
has been dedicated to the study of such relics [5–24] (for
a general review, see e.g. Ref. [25]). In particular,
it has been shown that if a collision is “mild” enough,
it can potentially be compatible with the formation and
survival of observers in the post-collision region [7, 8]
while producing testable predictions for observations of
the Cosmic Microwave Background (CMB)[10, 17, 19],
bulk galactic flow [12], and possibly other cosmological
observables (see e.g. Ref. [26] for a discussion).
While the observation bubble wall undergoes a diver-

gent number of collisions, whether or not these collisions
lie within the observer’s past lightcone at decoupling de-
pends on several factors, such as the position of the ob-
server and the cosmology inside the observation bubble,
which we review in more detail in Sec. II. Previous stud-
ies have focused on the outcome of a single observable
collision, or a few collisions whose affected post-collision
regions do not intersect. In these cases, the azimuthal
symmetry of the collisions’ perturbations to the obser-
vation bubble spacetime is maintained and one expects
to see an azimuthally symmetric disk on the CMB sky
corresponding to each collision [10, 17]. Recent studies
[19, 20] have searched for these disk-like patterns in the
WMAP7 CMB temperature data and have found a few
candidates for collision events.
As we will see in Sec. II, however, for arbitrary choices

of the various parameters, the number of observable bub-
bles N can potentially range from zero to very large num-
bers, and there is no particular reason to expect ∼ one
observable collision rather than none or many. When
N ≫ 1, the picture differs from that of previous studies
in several respects:

1. The future light cones of the different collisions will
tend to intersect one another. Thus, the effects aris-
ing from various collisions can potentially interact.

2. One must address the possibility that some bubbles
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may in fact collide with each other before impacting
the observation bubble wall, leading to a qualita-
tively different collision scenario than before.

3. Since any given part of an observer’s LSS will have
been affected by several different collisions, the az-
imuthal symmetry of an isolated collision is no
longer evident.

4. With a large number of bubble collisions, one may
be able to make meaningful statistical predictions
about what a given observer can expect to see.

The purpose of this study is to explore these issues and
take the first step towards assessing how many-bubble
scenarios can be constrained by current and future ob-
servations. As a first look, we will focus primarily on
the effect of the collisions on the CMB temperature, de-
ferring an analysis of the other relevant observables to
future study.
Clearly if we are to be living in such a large-N sce-

nario, the effect of each collision must in some sense be
“small” so as not to disrupt the subsequent cosmological
evolution in the observation bubble. As we will discuss
in Sec. IV, the strength of a collision is determined by
the position of the nucleation center of the colliding bub-
ble in the exterior de Sitter (dS) space, as well as the
details of the underlying potential, which are unknown.
Thus, in analyzing scenarios with N > 1, we will simply
start with the assumption that an observer exists with
a large number of collisions intersecting the visible por-
tion of the last scattering surface and study what might
be observed. This is in keeping with previous work on
the CMB temperature profile for single collisions. We
do not consider scenarios in which some collisions might
prevent inflation to the future of the collision, such as
those in small-field type potentials (see the discussion
in Ref. [25]). We also do not address the question of
how general such a mild multi-bubble scenario might be:
since we are only interested in scenarios consistent with
our own universe (and the absence of obvious anomalies
in the sky), it is in a sense irrelevant how rare such situa-
tions are in the landscape (as long as they can occur), for
the same reason that one need not worry about how rare a
universe like ours might be when considering observers in
our own world. While a more in-depth investigation into
the plausibility of mild multi-bubble scenarios would be
beneficial, in many cases the strengths of the various col-
lisions are expected to vary over a small range for a fixed
potential and so we expect that universes with many mild
collisions can indeed exist for a suitably chosen potential.
We return to this issue in Sec. V. When discussing an
observer’s expectations, we therefore mean the expected
value considering only mild collision scenarios.
The current study is organized as follows: in Secs. II-

IV we set up the various parts of the problem and argue
that many scenarios with multiple bubble collisions can
be considered as a superposition of individual impacts,
each appearing to take up less than half of the observer’s
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FIG. 1. Conformal slice of the basic bubble collision setup in
the so-called “steady state frame”. The observation bubble
shown is pure dS with HF /HI ≫ 1. The region out of which
colliding bubbles can nucleate is labelled as such, and the red
line demarcates the initial value surface.

sky. In Sec. V we compute the expected signal in the
CMB temperature power spectrum. Sec. VI contains our
conclusions.

II. BUBBLES, COLLISIONS, AND OBSERVERS

A. The Setup

We begin with a false vacuum, which we take to be dS
space with associated Hubble constant HF . We can de-
scribe the false vacuum dS as a hyperboloid ηµνX

µXν =

H−2
F embedded in a 5-dimensional Minkowski space with

coordinates Xµ and metric ηµν , where µ, ν = 0, . . . , 4.
The most useful coordinatization of dS for our purposes
will be the so-called “global slicing”, with coordinates
(T, η, θ, φ) defined in the embedding space by

X0 = H−1
F tanT

Xi = H−1
F

sin η

cosT
ωi

X4 = H−1
F

cos η

cosT
,

(1)

where −π/2 ≤ T ≤ π/2, 0 ≤ η ≤ π, and ωi =
(cos θ, sin θ cosφ, sin θ sinφ). This induces the metric

ds2 =
1

H2
F cos2 T

(

−dT 2 + dη2 + sin2 η dΩ2
2

)

, (2)
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which covers the entire dS manifold. The 4-volume ele-
ment in these coordinates is

dV4 = H−4
F

sin η

cos4 T
dTdη dΩ2. (3)

The basic setup we consider is the same as that of
Refs. [6–8, 25], to which we refer the reader for further
details. A small, thin-walled observation bubble is nucle-
ated out of the false vacuum via the Coleman-deLuccia
(CDL) process [4] and subsequently expands with a tra-
jectory which we approximate as null.1 The observation
bubble starts off curvature dominated and undergoes a
period of subsequent slow-roll inflation, which we model
as dS space with Hubble constant HI . Throughout this
study, we assume HF /HI ≫ 1 except where noted; this
seems natural, as HI < HF for tunneling to occur, and
there is no obvious reason why the scale of inflation in the
observation bubble should be similar to the scale associ-
ated with the false vacuum. After inflation, we assume a
standard ΛCDM cosmology, although we typically ignore
matter domination and the possibility of late-time accel-
erated expansion in our calculations, which should induce
small corrections. This scenario is sketched in Fig. 1 for a
conformal slice of θ, φ =const. (Note that as drawn, the
observation bubble is pure dS with HF /HI ≫ 1). In this
diagram the bottom (top) boundary of the false vacuum
corresponds to T = −π/2 (π/2), while η ranges from 0
to π from left to right.
The observation bubble interior spacetime is given

by the analytic continuation of the CDL instanton [4],
which, in our approximation, yields an open FRW cos-
mology inside the null cone emanating from the nucle-
ation center, with metric

ds2 = −dτ2 + a2(τ)
(

dξ2 + sinh2 ξdΩ2
2

)

. (4)

Spacelike surfaces of constant τ are 3-hyperboloids, H3,
reflecting the SO(3, 1)-invariance of the CDL instanton.
The observation bubble and false vacuum dS spacetimes
can be joined together by gluing across the bubble wall,
as described in Ref. [6].
Along with the observation bubble, other bubbles can

also nucleate out of the false vacuum with associated
probability per unit 4-volume λi, where i represents the
bubble’s corresponding vacuum. The region of dS that
can nucleate colliding bubbles is labelled in Fig. 1 in the
“steady state” frame in which the distribution of bub-
bles is statistically independent of position and time, and
the conformal diagram is independent of angle. Bubbles
nucleated above the top boundary of this region never
intersect the observation bubble wall, while the lower
boundary ensures that the observation bubble was in-
deed nucleated out of the false vacuum and not some

1 We note that, while this small-bubble, thin-wall limit [6] is conve-
nient and used here for both collision and observation bubbes, it
is not necessarily natural and future work is needed to go beyond
this approximation.

other bubble.2 Bubbles formed to the right of the red
boundary will have future light cones that encompass fu-
ture infinity of the false vacuum dS space, and so as in
previous studies we postulate a “no bubble” initial con-
dition surface as shown.
While the diagram in Fig. 1 depicts the situation in

the steady-state frame, there are other reference frames
that will be useful to consider. One can define a frame
in which the observer is at the center of the observation
bubble ξ = 0 (the “observation frame”), as well different
“collision frames” in which the observation bubble and a
given colliding bubble nucleate at the same global slic-
ing time T = 0. To boost between these different frames
in both the observation bubble and exterior dS, one can
apply the appropriate Lorentz transformation in the em-
bedding space 3. As discussed in detail in Ref. [6], in the
observation frame the distance from the observation bub-
ble wall to the initial value surface is angle-dependent.
This fact plays an important role when computing the
distribution of bubbles an observer expects to see, as we
will discuss in the following subsection.
Since a collision preserves an SO(2, 1) symmetry, it can

be fully described in 1+1 dimensions, with each point
representing a 2-hyperboloid with line element dH2. The
dS false vacuum can be conveniently foliated according
to this symmetry, yielding the metric

ds2 = −(1+H2z2)−1dz2+(1+H2z2)dx2+ z2dH2
2 . (5)

We can then place the observation and colliding bub-
ble nucleation centers in the x − z plane, and describe
the kinematics of the collision by (x0, z0), the nucleation
center of the colliding bubble (the observation bubble
is at the origin). In the collision frame (which we de-
note by primed coordinates), this simplifies further: since
both bubbles, by construction, nucleate at z′0 = 0, all of
the kinematics are described by x′0 or, alternatively, z′c,
the z-value at which the collision occurs in this frame.
The quantity z′c corresponds uniquely to the de Sitter-
invariant distance (ηC in the collision frame) separat-
ing the bubbles and is responsible for determining the
strength of a given collision, as we will discuss in Sec. IV.
In what follows, we drop the prime on zc as this quantity
is always understood to be determined in the collision
frame.

B. Probabilities And Observer Expectations

Ascertaining the general features of a multiple colli-
sion scenario requires information about the various pa-
rameters that enter into the theory – in particular, the

2 Throughout this study we work in the approximation in which no
bubbles can nucleate within another bubble. This approximation
is discussed in more detail in Sec. IV.

3 One should note that in general once there are collisions it will
take more dimensions to embed the spacetime and boost.
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expected number of observable bubbles intersecting the
observer’s last scattering surface, as well as the distribu-
tions of the angular sizes and strengths of the collisions
that would enter into e.g. the CMB temperature profile.
This section reviews the extensive recent progress made
in understanding these distributions, focusing on what
is relevant to the task at hand and offering some novel
insights. We refer the reader to Ref. [25] for a good sum-
mary and for details of many of the calculations discussed
here.
We begin in the observation frame, in which ξ0 = 0.

Under our assumptions, the number of bubbles intersect-
ing part or all of the observer’s last scattering surface is

N = λV obs4 , (6)

where V obs4 is the 4-volume in the false vacuum dS space-
time out of which such a bubble can nucleate, computed
by integrating the 4-volume element Eq. 3 over the rele-
vant region. There are two regions in the exterior dS in
which dV4 can potentially greatly exceed its natural scale
of H−4

F , and hence contribute the most to V obs
4 and the

total count of bubbles.
First, for observers with ξ0 → ∞, there is a large con-

tribution to N from portions of V obs
4 near past infinity

of the false vacuum. This results in an anisotropic peak
in the distribution of bubbles in the direction towards
the initial value surface (defined as θ = 0), which can
be thought of as the time dilation of the observer’s time
relative to the “steady state” cosmological time. This
anisotropy was first recognized in Ref. [5] and dubbed
the “persistence of memory”. Bubbles nucleated in the
region near past infinity will cover essentially the full sky
and enter the observer’s past light cone at small τ and
were thus dubbed “early time” collisions in Ref. [6]. As
discussed in previous work these collisions will be hard
or impossible to observe, and we will exclude them from
our analysis, while noting that they still comprise some-
thing of an open problem as to precisely how this infinity
should be regulated (see e.g. Ref. [24] for recent progress
in this regard).
A second sizable contribution to V obs

4 results for large
HF /HI from bubbles appearing on the conformal dia-
gram near future infinity of the false vacuum. This en-
ters the observer’s past lightcone when the “hat” in the
conformal diagram (Fig. 1) extends high enough, which
in turn happens for HF ≫ HI . This effect is largely in-
dependent of ξ0 and corresponds to “late time” collisions
of all angular scales, and nearly uniformly distributed in
cos θ.
Note that many late-time collisions will result in ef-

fects on scales greater than the observer’s full sky. To
see why this is the case, we can coordinatize the exte-
rior dS in terms of angular scale and zc. This was done
in Ref. [25] which showed that in the observation frame,
each bubble intersecting part of the observer’s LSS (but
not encompassing the entire surface) with angular scale
ψ and dS-invariant distance corresponding to zc can be
mapped uniquely to a nucleation point (ηn, Tn) in the ex-

terior dS. A straightforward generalization of Appendix
D of Ref. [25] allows us to exchange the angular coordi-
nate ψ for one describing the size of greater than full-sky
bubbles as well; this quantity, which we call ρ, is defined
via

ρ ≡ −1

sinhHIτls sinh ξls

[

(

1 +H2
I z

2
c

)

2HIzcγ

−
(

1−H2
I z

2
c

)

coshHIτls

2HIzcγ
+ v sinhHIτls cosh ξls

]

(7)
where ξls =

∫ τ0
τls
dτ/a(τ) is the comoving radius out

to which the observer can see on the LSS 4 and γ ≡
sin ηn√

sin2 ηn−sin2 Tn
, v ≡ sinTn

sin ηn
. For −1 ≤ ρ ≤ 1, ρ corre-

sponds exactly to − cosψ/2. The coordinate ρ effectively
measures the distance out on the observer’s last scatter-
ing surface to its intersection with the future light cone of
a given collision in the observation frame. Values ρ < −1
correspond to late-time collisions which do not intersect
any of the observer’s LSS, while ρ > 1 corresponds to a
greater-than-full-sky collision.

The foliation5 of the exterior dS in terms of (ρ, zc) is
shown in Fig. 2 for HF /HI = 10, ξls = 1 on the left,
and for HF /HI = 100, ξls = 0.05 on the right. The col-
ored solid lines correspond to ρ values such that |ρ| ≤ 1,
i.e. nucleation centers of bubbles with angular scales
0 ≤ ψ ≤ 2π. The (θ-dependent) initial value surface
is not shown. Notice that for small values of ξls (as re-
quired by observation) and HF /HI ≫ 1, bubbles of vir-
tually all angular scales (including ρ > 1) receive a large
4-volume contribution from points near future infinity of
the exterior dS space. This is true regardless of the po-
sition of the initial value surface and hence of the angles
θ, φ. Thus, neglecting early-time bubbles and for values
of HF /HI , ξls we are interested in, an observer should
expect to see a nearly scale-invariant, isotropic distribu-
tion of collision bubbles, regardless of his or her position
in the observation bubble. (This typically includes many
greater-than-full-sky late-time bubbles, as is evident from
Fig. 2.) As the relevant constant-ρ curves are compressed
into a very thin region in this case, from Fig. 2 one would
expect the scale-invariance to hold true independent of
zc, although the distribution of bubbles itself will have
zc-dependence.

Explicitly calculating the distribution of bubbles over
angular size by integrating the 4-volume element over the

4 Measurements of the curvature density [25, 27] dictate that ξls ∼
2
√
Ωc

<∼ 0.18. In what follows, we thus assume ξls is small,
typically taking ξls ≈ 0.05 as an illustrative value.

5 For ρ > 1 there can be two points in the false vacuum cor-
responding to the same value of (zc, ρ) as seen on the LHS of
Fig. 2. However, we are most often interested in |ρ| ≤ 1, for
which the foliation is one-to-one.
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Decrease ξls

Increase HF
HI

FIG. 2. Foliation of a θ = 0 conformal slice of the external de Sitter spacetime for an observer at ξ0 = 0 with lines of constant
ρ, zc for the (unrealistic) values ξls = 1 and HF /HI = 10 on the left, and for ξls = .05 and HF /HI = 100 on the right. The
observer’s LSS is sketched by the dashed black line in the observation bubble (this curve will be compressed up towards the
tip of the observation bubble for the case shown on the right). Solid black curves correspond to different values of zc, with
the vertical line in the center corresponding to zc = H−1

F
in both cases. The dot-dashed curves represent different values of ρ,

with ρ = −1, 0, 1 denoted by the solid green, red, and blue curves, respectively. The effect of decreasing ξls and increasing
HF /HI is shown on the right. The same range of ρ values are plotted, only now all constant-ρ curves depicted on the left are
compressed into the thin colored region.

constant-ρ contours in the relevant region yields

dN

dρdΩ2
≃ λH−4

F

(

HF

HI

)2

ξls (8)

for ξls → 0, which is indeed flat in ρ. This distribution
was first obtained by Ref. [11] and dubbed the “disinte-
gration of the persistence of memory” due to its isotropy.
Integrating the 4-volume element over all values of

ρ ≥ −1 and zc in the region depicted in Fig. 1 yields
the expected total number of bubbles intersecting the
observer’s LSS, given by

N ≃ 4πλ

3H4
F

(

H2
F

H2
I

)

ξ0 (9)

for observers at ξ0 → ∞ 6. Limiting the integration to
−1 ≤ ρ ≤ 1 removes greater-than-full-sky bubbles from
the count and yields

Nobs ≃
16πλ

3H4
F

(

H2
F

H2
I

)

√

Ωc., (10)

where Ωc is the current curvature energy density, con-
strained by observation to be Ωc <∼ 0.084 [25, 27]; this
bound can be interpreted to yield a lower limit on the

6 Virtually all observers, except a set of measure zero, are expected
to fall into this category.

number of slow-roll inflationary e-folds in the observa-
tion bubble.

Comparing N to Nobs we see explicitly that for each

late time sub-horizon bubble, there will be ∼ ξ0Ω
−1/2
c >

1 full-sky bubbles to account for when computing the
effects of bubble collisions; this was first pointed out in
Ref. [24]. As we will argue in the following sections, how-
ever, collisions that encompass the entire visible portion
of the LSS will result in adiabatic superhorizon pertur-
bations to the gravitational potential at the LSS and
hence not contribute significantly to the CMB temper-
ature spectrum.

From Eq. 10, there are many possible potentials and
nucleation rates giving rise to any particular value of
Nobs. Our approach will be to treat Nobs as a free pa-
rameter when computing the expected CMB temperature
spectrum and we will not attempt to address how feasible
or likely scenarios with a given Nobs might be, aside from
the following general comments. First, from Eq. 10, even
for λH−4

F � 1, one can still expect Nobs ≫ 1 as long
as HF /HI is large enough to compensate for the small
nucleation rate. Physically, this compensation arises be-
cause for large HF /HI , the surface area of the observa-
tion bubble wall accessible to a late-time observer be-
comes large and will be impacted by a larger number of
colliding bubbles. Second, it is clear from Eq. 10 that
Nobs = 1 is likely a very special case, requiring the pre-
cise balance between features of the potential through
HF , HI , Ωc, and λ as mentioned previously.

Finally, one can also compute the distribution of col-
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liding bubbles with respect to zc. This calculation was
carried out by the authors of Refs. [7, 25] who found that
the distribution dN/dzcdΩ2 is peaked sharply around
zc ∼ H−1

F and falls off as ∼ z−3
c for large zc.

III. THE PROFILE: SINGLE BUBBLE CASE

Calculating the CMB temperature spectrum resulting
from a multiple collision scenario requires an understand-
ing of the temperature profile associated with a single
bubble collision, which we discuss here, as well as how
to combine many such collisions, which is discussed in
the next section. For more detailed derivations of the
single-collision temperature profile we refer the reader to
Refs. [10, 17, 26].

A. The Single-Bubble Profile As A Small Potential

Perturbation

As noted above and in previous studies, the symmetry
of a bubble collision leads to an azimuthally symmetric
perturbation on an observer’s LSS, filling a disk that con-
stitutes the triple-intersection of the last-scattering sur-
face, the observer’s past lightcone, and the future light
cone of the bubble collision. Within this disk, given the
necessary slow-roll inflation in the observation bubble
and the lack of large anomalies on the actual CMB, the
effect of the collision is necessarily small, and can be de-
scribed as a perturbation to the gravitational potential
Φ(~x) at the reheating time τrh. In conformal Newtonian
gauge and retaining only the term linear in slow roll (see
Ref. [17]), the gravitational potential resulting from the
inflaton perturbation is given by

Φ(τrh, ~x) = ᾱξrh(cos θ − cos
ψ

2
)Θ(cos θ − cos

ψ

2
) (11)

where coordinates are chosen so that the collision is cen-
tered around θ, φ = 0 with θ = ψ/2 the causal boundary
of the collision, Θ(x) is the Heaviside step function, and
ξrh is the comoving distance at which the observer’s past
light cone intersects the reheating surface. The param-
eter ᾱ contains all the information about the inherent
strength of the perturbation, which depends on the kine-
matics and the shape of the inflationary potential.
Equivalently, the gravitational potential Eq. 11 can be

exchanged for the gauge-invariant curvature perturba-
tion, which at late times during inflation is simply ζ ∝ Φ;
the proportionality constant here depends on the infla-
tionary potential and ᾱ. Once ζ is known, one can use the
Sachs-Wolfe approximation [28] ∆T/T ∝ ζ(x, τls) to de-
termine the CMB temperature spectrum resulting from
the collision. Here the factors relating ζ to ∆T/T de-
pend only on the background cosmology. Absorbing ᾱ
and the other relevant parameters fixed by the poten-
tial and intra-bubble cosmology into the parameter α,

and neglecting (temporarily) the inflationary tempera-
ture fluctuations, as well as the evolution of the pertur-
bation between reheating and decoupling,7 we arrive at
the approximate CMB temperature profile for a single
collision

T (θ, φ) = T ′
0 [1 + αξls(µ− µ0)Θ(µ− µ0)] (12)

where µ = cos θ, µ0 = cosψ/2 for a collision centered at
the north pole and T ′

0 is the average temperature of the
unaffected portion of the LSS.
In sum, the form of the perturbation in the current ap-

proximation depends only on the residual SO(2, 1) sym-
metry of the post-collision spacetime, and all the infor-
mation about the microphysics of the collision, including
the details of the underlying potential and background
cosmology, is encoded into a single parameter α describ-
ing the inherent “brightness” of the collision on the CMB.
This fact will simplify the calculation of the expected
CMB temperature spectrum for a multiple collision sce-
nario in Sec. V.

B. The Frame Shift

The derivation of the temperature profile Eq. 12 is
valid for scenarios in which the observer is born comoving
with respect to the unperturbed portion of the last scat-
tering surface. In this case, the perturbation from the
collision enters the past lightcone of the observer at late
times. However, it was shown in Ref. [8] that O(3, 1)-
invariance can be spontaneously re-generated in the re-
gion to the future of a collision, thus “just as many” ob-
servers can potentially form comoving with the perturbed
portion of the last scattering surface. (Such observers
were dubbed “foreign-born” in [25].) As described be-
low, these observers are typically those that would see a
bubble with ρ > 0 (covering more than half of the sky).
By the arguments of the last section, most observers who
witness any bubble collisions at all will see many with
ρ > 1, and hence be of this type.
We argue, however, that the effects of ρ > 1 bubbles

will be largely invisible, and that the effects of ρ > 0
bubbles will be degenerate with (and convertible into)
those of ρ < 0 bubbles.
To see this, we can adapt the arguments set forth in

Ref. [29] as follows: in a ΛCDM universe, the total tem-
perature anisotropy in a direction n̂ on the sky is given
by a sum of the Sachs-Wolfe (including integrated effects)

7 Technically one should take into account the evolution of ζ be-
tween reheating and decoupling by using the appropriate transfer
functions. This was carried out in Ref. [17] which found that the
results are in good agreement with Eq. 12. (This is expected,
since for HF /HI ≫ 1 the conformal time elapsed between re-
heating and decoupling is negligible.) For the remainder of this
study we thus approximate the reheating time τrh ≈ τls.
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and Doppler anisotropies in conformal Newtonian gauge

[

∆T

T
(n̂)

]

SW+ISW

∼ Φ(τls, n̂ξls) +

∫ τ0

τls

dΦ

dτ
dτ (13)

[

∆T

T
(n̂)

]

D

∼ n̂ ·
[

~v(τ0,~0)− ~v(τls, n̂ξls)
]

+O(v2) (14)

where the velocity ~v induced by a superhorizon pertur-
bation is given by

~v(τ, ~x) ∼ ∇Φ+
d

d ln a
∇Φ (15)

(note that we have neglected the curvature of the last
scattering surface, a good approximation for ξls � 1).
Since the above expressions for the temperature differ-
ence are linear in Φ and its derivatives, to lowest order in
velocity and considering only the linear piece of Φ(~x), the
various contributions for a gravitational potential of the
form Φ = Φ1 + Φ2 are simply the sum of the individual
contributions:

∆T

T
(n̂) =

∆T

T
(Φ1) +

∆T

T
(Φ2). (16)

Consider a particular collision intersecting the ob-
server’s LSS with angular scale ψ. Neglecting the cur-
vature of the last scattering surface, one can imagine the
collision inducing a planar perturbation

Φ(x) = ᾱ(x− xint)Θ(x− xint) (17)

at τls, where both nucleation centers lie along the x-axis,
and xint denotes the intersection of the future light cone
of the collision with the LSS. Foreign born (native born)
observers then correspond to observers born at x > xint
(x < xint). One can rewrite Eq. 17 as a superposition of
two modes Φ1(x), Φ2(x) as

Φ(x) = ᾱ(x−xint)+ᾱ(xint−x)Θ(xint−x) ≡ Φ1(x)+Φ2(x).
(18)

Here Φ1(x) is a superhorizon mode while Φ2(x) is equiv-
alent to that of a collision centered around the antipodal
point of the original collision on the celestial sphere with
angular scale ψ′ = 2π − ψ and strength ᾱ.
A foreign born observer emerging from the last scat-

tering surface at x > xint that is initially comoving with
the perturbed LSS only sees the superhorizon mode Φ1

at early times, with Φ2 only entering his or her past light
cone at late times. As a result, the contribution of Φ1 to
the observed CMB temperature spectrum will vanish as
in Ref. [29] and using Eq. 16, the resulting CMB temper-
ature fluctuation will be

∆T

T
=

∆T

T
(Φ2). (19)

The effect of a collision on the CMB temperature profile
for a foreign-born observer from a collision centered at
(θ0, φ0) with angular scale ψ is therefore equivalent to
the profile seen by a native-born observer for a collision

A 

B 

C 

x
int

 x 

FIG. 3. The universe with one bubble collision at decoupling.
The shaded region corresponds to the part of the LSS affected
by the collision. We show three different observers who see
a collision with profile Eq. 17 taking up (A) half of the sky,
(B) more than half of the sky, and (C) less than half of the
sky. Their present-day last scattering surfaces are shown by
the blue circles, corresponding to the intersection of their past
lightcones with the decoupling time slice. Unless the observers
have acquired a large peculiar velocity along the x direction,
the last scattering surfaces at some earlier time are approx-
imately given by the dashed blue lines for each observer. In
this case, observer B is foreign born and sees a frame shifted
collision while C does not. Observer A is a boundary case
and could have emerged from either portion of the LSS. In
our approximation, we take all observers born with x > xint

to observe a frame shifted collision

centered at the antipodal point (π − θ0, 2π − φ0) with
scale ψ′ = 2π − ψ; the observed perturbation is shifted
by going between the native and foreign born observers’
reference frames.
The above argument applies to observers whose past

worldlines intersect the perturbed portion of the last scat-
tering surface for a given collision. This will clearly be
the case for collisions encompassing the observer’s entire
LSS (ρ > 1), whose perturbations consequently vanish
in our approximation. This allows us to neglect the po-
tentially large number of full-sky collisions accompany-
ing Nobs ≥ 1 in calculating the CMB temperature power
spectrum.8

This “frame shift” will also tend to apply to collisions
with ρ < 1 that cover more than half of the observer’s
sky. For a native born, comoving observer originating
from x ≈ xint, the collision will nearly bisect the LSS.

8 It is possible that there are other observable effects associated
with collisions on these scales. We do not consider this possibility
here and in the remainder of this work simply neglect bubbles
with scales ρ > 1, cautioning the reader that the compatibility
of some large-Nobs scenarios with observation may be spoiled by
the inclusion of such effects.
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This situation is depicted by observer A in Fig. 3. As
long as a foreign-born observer’s worldline does not inter-
sect those of native comoving x ≈ xint observers (which
should typically not occur, since late time peculiar veloci-
ties will be dominated by the effects of processes uncorre-
lated with the collision itself), the foreign born observer
will see a greater-than-half sky collision (observer B in
Fig. 3). Conversely, native-born observers will only see a
collision with ρ > 0 if they also acquire a significant pecu-
liar velocity in the direction of the collision (c.f. observer
C in Fig. 3). The farther away from xint the observer
is born, the larger the peculiar velocity will need to be
for him or her to observe a greater than half-sky bubble
that is not frame shifted. In other words, barring large
peculiar velocities, foreign born (native born) observers
should remain at x > xint (x < xint) even at late times,
and hence should observe a ρ > 0 (ρ < 0) collision. We
thus expect that most ρ > 0 collisions will result in frame-
shifted profiles, appearing to take up less than half of the
observer’s sky, while most with ρ < 0 will be unaffected.

For illustrative purposes we will work under the as-
sumption that all greater-than-half sky bubbles corre-
spond to frame-shifted collisions. We implement this in
the bubble profile by mapping all such collisions to less-
than-half sky events centered around the antipodal point
of the original nucleation center on the sky. Relaxing this
assumption does not significantly affect our conclusions,
since this prescription primarily effects the dipole, reduc-
ing it compared to the case where the frame shift is not
taken into account.

IV. MULTIPLE COLLISIONS: GENERALIZING

TO Nobs > 1

A. A Multiple Collision Scenario As The Sum Of

Its Parts

We wish to generalize the results in Secs. II-III to the
case of Nobs > 1. Colliding bubbles that do not overlap
in their influence prior to the last-scattering surface can
simply be treated as independent. Events where bub-
bles do overlap prior to this time can divided into “pre-
collisions” occurring before either bubble intersects the
observation bubble, and overlaps occurring within the
observation bubble, prior to last-scattering. We will first
show that the first category are uncommon and hence
generally unimportant, then discuss the second category.

Consider the disturbance from a pre-collision impact-
ing the observation bubble wall at T0 in the observation
frame. We can model this disturbance as a shell of radi-
ation emanating from the pre-collision event. Observing
this radiation shell implies that one of the Nobs collid-
ing bubbles, which would have impacted the observation
bubble at T0, was intercepted by an intervening bubble
before it could do so. For a given bubble with nucleation

center9 (zc, ρ) colliding with the observation bubble wall
at T0, we can ask how many intervening bubbles of a par-
ticular type it expects to encounter along the way to the
observer’s bubble. We denote this quantity as Nint(zc, ρ);
for a fixed λ, it is given by

Nint(zc, ρ) = λ I(zc, ρ) (20)

where a conformal slice of the 4-volume I(zc, ρ) is de-
picted by the region shaded yellow in Fig. 4. Note that
Nint includes bubbles with ρ > 1 in its count, and that
these bubble need not nucleate at the same (θ, φ) values
as the collision bubble.

The 4-volume I(zc, ρ) corresponds to the portion of
the past light cone from the would-be intersection point
of the collision bubble with the observation bubble wall,
(η0, T0), not also within the past light cones of (zc, ρ)
and the origin. Intervening bubbles nucleated outside of
the past light cone from (η0, T0) cannot produce radia-
tion from the pre-collision observed at T0, while requiring
that the collision and observation bubbles were not born
within the intervening bubble eliminates the 4-volume in
the past light cones from (zc, ρ) and the origin, respec-
tively. Defined this way, I(zc, ρ) will not include pre-
collisions whose radiation enters the observation bubble
farther up the H2 collision surface (i.e. T > T0), but
these events will be counted in Nint for the correspond-
ing intervening bubble. Thus, for a given Nobs, we can
look at Nint for each observable bubble and if this quan-
tity is small in all cases, we can safely neglect the effects
of all pre-collisions on the effective temperature profile.
Using the 4-volume element in Eq. 3, we can estimate

Nint for a given collision bubble nucleated at (zc, ρ). This
calculation is detailed in Appendix A. The results are
illustrated in Fig. 5 where λ is determined by requiring
Nobs = 1. For large HF /HI , the curves of constant-ρ for
a given zc are compressed as in Fig. 2 and so the curves in
Fig. 5 are nearly identical for all ρ in the interval [−1, 1].

From Fig. 5 we see that most bubbles will indeed not
collide with an intervening bubble. This is because al-
though many bubbles can nucleate as T → π/2, very
few of them will have a chance to intersect the collision
bubble wall before it impacts the observer’s bubble. The
past light cone from the intersection point of the collision
bubble with the observation bubble wall contains very lit-
tle 4-volume near the future infinity of dS, only opening
up to enclose more 4-volume for smaller T . As a result,
regions for which dV4 starts to diverge do not contribute
very significantly to I. Note also that smaller values of
zc correspond to smaller values of Nint. This is because
for large HF /HI and the small ξls we consider, the colli-
sion bubble nucleation points corresponding to small zc
are very close to the observation bubble wall, resulting in
a smaller 4-volume I(zc, ρ) and hence smaller Nint. For

9 As discussed in Appendix A, we are free to choose θc = φc = 0
without loss of generality.
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c

T = T0

I(
zc
, ρ
)

(zc, ρ)

FIG. 4. A conformal slice of the 4-volume available to nucleate an intervening bubble for a collision bubble nucleated at (zc, ρ)
(with θ = φ = 0). The region I(zc, ρ) is given by the 4-volume within the past lightcone from the point on the observation
bubble wall with T = T0 (in green), excluding the the 4-volume within the past lightcones from (zc, ρ) and the origin shown in
red.
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FIG. 5. The expected number of intervening bubbles as a
function of HF /HI for one collision bubble (Nobs = 1) nu-
cleating from zc = 0.5, 1, 5 (green, blue, red) and ρ = 1 in
the false vacuum and with ξls = .05. Varying ρ in the in-
terval [−1, 1] has little effect on the curves, as expected from
the discussion surrounding Fig. 2. Increasing Nobs will shift
these curves upward, however for HF /HI ≫ 1 we still expect
Nint ≪ 1.

larger zc, this cancellation is not as severe andNint can be
close to 1 for small HF /HI , however this will necessitate
a large λ which is in tension with the requirement for eter-
nal inflation. Also, increasing Nobs will shift the curves
upward, however for cases of interest with HF /HI ≫ 1,
ξls � 1, we will still expect Nint � 1 unless Nobs is very
large as well. Thus, in what follows we can safely neglect
any interactions between the bubbles before they impact
the observation bubble wall.
Although given our parameters of interest, bubbles

only rarely “pre-collide”, they should commonly overlap
within the observation bubble if Nobs ≫ 1, especially
considering ρ > 1 (“all sky”) collisions. If these over-
laps occur after the effects of the collisions have entered
the perturbative regime, the various perturbations will
simply superpose. This will not necessarily be the case
for large Nobs, however. Consider the 2-sphere defined
by the intersection of the observer’s past light cone with
the observation bubble wall. Given a uniform distribu-
tion of collision bubble nucleation centers, the points of
intersection of the collision bubbles with the S2 will be
distributed with average distance ∼ πR0/Nobs separating
any two of these points, where R0 is the observation bub-
ble radius at the time of intersection. Since R0 ∼ H−1

I ,
one would expect the future light cones from these points
to intersect early on for large Nobs, and so in principle
the effects of the various collisions may interact with each
other before enough inflation has occurred to dilute the
disturbances to the point of being perturbative.

To study these interactions would require details of the
microphysics governing the collisions, as in the numerical
study of Ref. [21]. Such considerations are beyond the
scope of this paper, and so in what follows we neglect
these interactions: in treating the effects of the collisions
inside the observation bubble, we approximate the vari-
ous disturbances as simply superposing on one another.
The resulting effects on the CMB temperature will then
be described by the sum of Sachs-Wolfe contributions
from the individual collisions (including the frame shift).
We intend to test this approximation in future numeri-
cal studies, but for the time being we content ourselves
with this treatment, as we expect it to characterize (at
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least approximately) the effects of overlapping collisions
on the CMB.
With the above assumptions, a multiple collision sce-

nario can indeed be analyzed as a collection of single col-
lision events. Accounting for the frame shift (and thus
neglecting bubbles with ρ > 1), the resulting CMB tem-
perature profile for a given multiple collision scenario can
be written as

T (n̂) =T ′
0 (1 + ∆(n̂))

×
[

1 +
∑

N1

αiξls(µi − cos
ψi
2
)Θ(µi − cos

ψi
2
)

+
∑

N2

αiξls(−µi + cos
ψi
2
)Θ(−µi + cos

ψi
2
)
]

(21)
where we have defined the angular distance for a given
collision as

µi = sin θ sin θ0i (cosφ cosφ0i + sinφ sinφ0i)+cos θ cos θ0i
(22)

and where (θ0i, φ0i) is the angular position of the nu-
cleation center of the ith bubble on the observer’s sky,
N1 (N2) is the number of bubbles affecting less than
(more than) half the sky, αi is the inherent brightness
of a given collision, T ′

0 is the average temperature ne-
glecting any perturbations, and we have included the in-
flationary density perturbations ∆(n̂) which we approx-
imate to be unaffected by the collisions. Note that in
order to treat effects of the collisions on the CMB tem-
perature perturbatively as we have done, we should have
Nobsξls

∑

αi � 1; otherwise, the strength of the total
“perturbation” from the collisions can be comparable to
T ′
0. With a few additional assumptions we can use Eq. 21

to extract some general features of the effects of multiple
collision scenarios on the CMB.

B. Additional Assumptions

Several more useful observations and simplifications
can applied to the picture above:

• We neglect the possibility of (ρ < 1) bubbles form-
ing within other (late time) bubbles. For small λ
this is reasonable, for similar reasons as the neglect
of pre-collisions: the overlap between the past of an
observer’s last-scattering surface and the future of a
given bubble collision is generally of order H−4

F , so
the number of nucleations from that region, which
would constitute bubbles-in-bubbles, is small un-
less λ > H−4

F . Arguments along these lines have
been realized in the past (see e.g. Refs. [6, 11]).

• We assume that only one decay channel is rele-
vant for nucleating colliding bubbles from the par-
ent vacuum. For a long-lived vacuum this does not
seem unreasonable: since λ = Ae−SE , where SE is
the Euclidean action of the CDL instanton and A

is a prefactor containing quantum corrections, field
trajectories resulting in small differences in SE will
tend to engender rather large differences in λ so
that one dominates. For a recent discussion along
this line of thought, see Ref. [30]. This assump-
tion allows us to consider only one type of collision
bubble relevant for the multiple collision scenario.

• We imagine that the potential V (ϕ) in the neigh-
borhood of ϕ after any of the collisions is relatively
featureless, i.e. V (ϕ+ δϕi) ≈ V (ϕ+ δϕj) and like-
wise for V ′. Since we require a period of slow roll
inflation to the future of all collisions, which implies
a flat potential near the post collision field values,
this assumption is typically satisfied a posteriori.
We note that it is difficult to see how this assump-
tion, or even that of a multiple collision scenario,
could be satisfied for small-field inflationary mod-
els (i.e. models where the width of the inflationary
trajectory ∆ϕ < Mpl) without very small values
of δϕ, since even small perturbations will tend to
cause the inflaton to overshoot the inflationary re-
gion of V (ϕ) [21].

The main consequence of the above assumptions for
our purposes is that the brightness parameters αi only
depend on zc and ρ, by the following reasoning. For a
fixed potential with colliding bubbles of only one type,
the strength ᾱi of the perturbation at τrh depends on
the kinematics through δϕ. In the collision frame, δϕ
is determined only by the parameter zc, while the boost
back into the observation frame generally depends on ρ.
However, since we are most interested in cases where
HF /HI ≫ 1, collision bubbles with ρ in the interval
[−1, 1] are all mapped to a very small range of η, T for a
given zc, and hence all receive virtually the same boost.
Also, α is related to δϕ by factors which depend on the
background cosmology as well as V (ϕ), V ′(ϕ), but by the
third assumption above, this factor should be similar for
all collisions. Consequently, α ≃ α(zc) and the brightness
parameters in Eq. 21 in our approximation depend only
on the kinematic variable zc and the underlying poten-
tial, up to some overall normalization. We will exploit
this fact in taking observer expectation values for the
temperature spectrum in the following section.

V. EFFECTS ON CMB TEMPERATURE

POWER SPECTRUM

Given that, in many cases of interest, the effects of
multiple bubble collisions may be approximated by su-
perposition, it is worth considering the observational con-
sequences of such scenarios by generalizing previous work
to the case of many bubbles. Armed with the tempera-
ture profile Eq. 21, the remainder of the paper constitutes
a first look at multiple collision signatures, by computing
their effects on the CMB temperature power spectrum.
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Our setup and framework follows that suggested in
Refs. [10, 31], with the appropriate generalizations to
multiple collisions. Denoting the sky-averaged observed
temperature as T0, we expand the observed temperature
fluctuations for a given set of collisions in terms of spher-
ical harmonics

δT (n̂)

T0
=
T − T0
T0

=
∑

l,m

tlmYlm(n̂). (23)

We define

A(n̂) ≡ f(1 + w(n̂))− 1 (24)
B(n̂) ≡ ∆(n̂) (25)

w(n̂) ≡
∑

i

wi(n̂) =
∑

N1

αiξls(µi − cos
ψi
2
)Θ(µi − cos

ψi
2
)

+
∑

N2

αiξls(−µi + cos
ψi
2
)Θ(−µi + cos

ψi
2
)

(26)
where f = T ′

0/T0, and ∆(n̂) is the standard inflationary
temperature fluctuation in direction n̂. (We assume T0 =
2.725 K throughout our calculations.)
Using these definitions we can recast Eq. 23 as

δT (n̂)

T0
= A(n̂) + f (1 + w(n̂))B(n̂). (27)

Here the notation is chosen to facilitate comparison with
Ref. [10]. Like the temperature contrast of Eq. 23, we can
expand the functions w, A, B in spherical harmonics with
corresponding coefficients wlm, alm, blm. Then, using
the properties of products of spherical harmonics, the
coefficients tlm are given by

tlm = alm+fblm+f
∑

l1m1

∑

l2m2

wl1m1
bl2m2

Rl1m1l2m2

lm (28)

where the R terms are Gaunt coefficients, given in terms
of Wigner 3− j symbols by

Rl1m1l2m2

lm =(−1)m
√

(2l1 + 1)(2l2 + 1)(2l + 1)

4π

×
(

l1 l2 l
0 0 0

)(

l1 l2 l
m1 m2 −m

) . (29)

The conventions we use here are those found in Ref. [32],
to which we refer the reader for additional details. Note
that the isotropy in the corresponding expressions in
Ref. [10] is broken as a result of including more than
one collision.

A. The Two-Point Function

We are interested in the expected angular temperature
power spectrum for a CMB sky affected by many bub-
bles. To compute this quantity, one must evaluate the
two-point function 〈tlmt∗lm〉, using Eq. 28 and averaging
over both the ensemble of density fluctuations from infla-
tion (hereafter “ensemble averages”), as well as over the
distributions governing the various collision parameters.

1. Ensemble Averages

First let us perform the ensemble averages. Consider
a given set of collisions B arising from a fixed potential
and Nobs. Following previous work, we approximate the
inflationary density perturbations as being unaffected by
the collisions. The only terms affected by the ensemble
average for a given set of collisions are those containing
blm in Eq. 28. Since the density perturbations are as-
sumed to be Gaussian with zero mean, the one point

functions 〈blm〉B vanish for any given set of collisions

and only terms with two-point functions 〈blmb∗lm〉B will

survive (here the brackets 〈〉B denote ensemble averages
with B fixed). If the density perturbations are unaffected
by the collisions, the corresponding two-point function is
given by

〈blmb∗lm〉B = Cbbl (30)

where Cbbl is the correlation function in the absence of

any collisions (note that
〈

bl1m1
b∗l2m2

〉B
= 0 for l1 6= l2).

We obtain the Cbbl from CMBEASY [33] using concordance
WMAP7 values [34] for the relevant cosmological param-
eters. Performing the ensemble average for this set of
collisions yields

〈tlmt∗lm〉B =alma
∗
lm + f2

(

Cbbl +
∑

l1m1

wl1m1
Rl1m1lm
lm Cbbl + cc.+

∑

limi

wl1m1
w∗
l3m3

Rl3m3l2m2

lm Rl1m1l2m2

lm Cbbl2

)

(31)
where the sum in the third line is over i = 1, 2, 3. From
Eq. 31 we can calculate the CMB angular temperature
power spectrum CB

l for a set of collisions B via

CB
l =

1

2l + 1

∑

m

〈tlmt∗lm〉B . (32)

2. Averages Over Collision Scenarios

To understand the generic features of a multiple colli-
sion scenario, we wish to average Eqs. 31, 32 over the set
of possible collision scenarios, {B(Nobs)} with the under-
lying potential and Nobs fixed. This yields

〈tlmt∗lm〉 = 〈alma∗lm〉+
〈

f2
〉

(

Cbbl +
∑

l1m1

〈wl1m1
〉Rl1m1lm

lm Cbbl + cc.+

∑

limi

〈

wl1m1
w∗
l3m3

〉

Rl3m3l2m2

lm Rl1m1l2m2

lm Cbbl2

)

(33)
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where the brackets now denote averages over {B(Nobs)}
for a given potential and Nobs. From this, one can com-
pute the expected CMB angular temperature power spec-
trum via

〈Cl〉 =
1

2l + 1

∑

m

〈tlmt∗lm〉 . (34)

B. Performing The Averages

To perform the averages over the various B(Nobs) in
Eqs. 33, 34 requires averaging the one- and two-point
functions of wlm over the distributions of collision pa-
rameters, which we now address.
Consider an observer with Nobs collisions intersecting

the visible portion of the LSS. Any one of the Nobs col-
lision bubbles can be thought of as being selected out of
a probability distribution P(zc, ψ, θ, φ) that corresponds
to the distribution over nucleation events (as discussed
above, we will also assume that this suffices to determine
the overall effect of all collisions). Neglecting the effect
of bubbles in bubbles (by effectively allowing bubbles in
bubbles that superpose) renders each nucleation event
statistically independent and so P should be the same
for each bubble, given by normalizing dN/dzcdρdΩ2 to
1. For large HF /HI and small ξls, the 4-volume element
dV4(zc, ρ, θ, φ) at a given zc is very nearly independent of
ρ, θ and φ. Thus we can write

dN(zc, ρ, θ, φ) ≃ λH−4
F j̄(zc)dzcdρdΩ2, (35)

where j̄(zc) is a known function of zc which one can com-
pute from the definition of zc. From the discussion in
Sec. II, j̄(zc) is peaked around zc ∼ H−1

F , and decreases
for larger values of zc. Since we are concerned only with
bubbles such that |ρ| ≤ 1, we change variables back to ψ
and normalize Eq. 35 to yield

P(zc, ψ, θ, φ) =
1

16π
j(zc) sin

ψ

2
. (36)

Here j(zc) denotes the normalized j̄(zc).
The probability density P governs a single collision,

but we can use it to average over particular realizations
of multiple collision scenarios with Nobs fixed. This is be-
cause the various quantities entering into Eq. 33 consist of
the sums of contributions from Nobs individual collisions
and, if each nucleation event is statistically independent,
the averages over {B(Nobs)} and the sums over bubbles
commute. Thus, the expectation values of the one- and
two-point functions for many bubbles are the sums of the
corresponding expectation values for individual bubbles,
which are averaged over P. For example, the expectation
value of the one-point function wlm for a scenario with
Nobs collisions is given by

〈wlm〉 =
〈

∑

i

wilm

〉

=
∑

i

〈

wilm
〉

= Nobs

〈

w0
lm

〉

(37)

where
〈

w0
lm

〉

is the expectation value for a single collision,
which is the same for all collisions because of statistical
independence. Similarly for the two point function,

〈

wl1m1
w∗
l2m2

〉

=

〈

∑

i,j

wil1m1
w∗j
l2m2

〉

=
∑

i,j

〈

wil1m1
w∗j
l2m2

〉

= Nobs

〈

w0
l1m1

w∗0
l2m2

〉

+Nobs(Nobs − 1)
〈

w0
l1m1

〉 〈

w∗0
l2m2

〉

.

(38)
We can then use the distribution P to perform the single-
bubble averages in the last equalities of Eqs. 37, 38. The
details of these calculations can be found in Appendix B

Consider first the averages over zc. As discussed in
Sec. IVB, the dependence of the temperature profile on
zc for HF /HI ≫ 1, ξls � 1 arises only through α,
which additionally depends on the underlying potential
and microphysics but is independent of ψ in this limit.
Therefore we can absorb all of the uncertainty and model-
specific information pertaining to the averages of α over
zc into two parameters,

α1 ≡ 〈α〉 =
∫

α(zc)j(zc)dzc (39)

α2 ≡
〈

α2
〉

=

∫

α2(zc)j(zc)dzc. (40)

Doing so allows us to treat α1,2 (along with Nobs) as free
parameters and work out 〈Cl〉 in terms of these quan-
tities; we defer a study of realistic ranges of α1,2 to fu-
ture work. As a consequence, our computed 〈Cl〉 will
describe the expected power spectrum in terms of Nobs,
α1,2, assuming that a scenario described by these values
can occur. Recent numerical studies [21] suggest that the
strength of the inflaton perturbation from a collision (and
hence α) are primarily dependent on the underlying po-
tential, with only a mild dependence on the kinematics.
If this is the case, then for a fixed potential the averaged
parameters α1, α2 should provide a good characteriza-
tion of the expected signal for most observers. Note that
by Jensen’s inequality, α2 ≥ α2

1.

Performing the averages over P, the expectation value
of the one-point function 〈wlm〉 is given by

〈wlm〉 =
√
π

6
Nobsα1ξlsδl0δm0. (41)

Only the monopole contributes to the one-point functions
by the orthogonality of the spherical harmonics. This
monopole piece enters at all l-values by multiplying the
contribution of the inflationary perturbations in Eq. 33.

Moving on to the two-point function, and motivated
by the discussion in Appendix B, we define the quantity
wl as

wl =

∫

|wl′0′(ψ)|2 sin
ψ

2
δll′dψ (42)
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FIG. 6. Left: The dimensionless quantity wl which enters into our final expression for 〈Cl〉, plotted for 0 ≤ l ≤ 40. wl encodes
the shape of the spectrum resulting for the isotropic and scale-invariant distribution of ρ; its contribution to 〈Cl〉 is multiplied
by π2Nobsα2ξ

2

ls. Right: The red points denote the quantity Rl from Eq. 45 plotted for 2 ≤ l ≤ 40. Rl also enters into Eq. 47
carrying a factor of π2Nobsα2ξ

2

ls. Note that the dips for l = 2, 40 are a result of excluding l2 < 2 and l2 > 40 in the sum in
Eq. 45. The theoretical values Cbb

l obtained for a concordance ΛCDM cosmology from CMBEASY are shown by the large black
points.

where

wl′0′(ψ) =

∫ 1

cos ψ
2

Y ∗
l′0′(cos

−1 x)

(

x− cos
ψ

2

)

dxΘ(π − ψ)

+

∫ 1

− cos ψ
2

Y ∗
l′0′(cos

−1 x)

(

x+ cos
ψ

2

)

dxΘ(ψ − π)

.

(43)
As detailed in Appendix B, primed indices as in Eq. 43
signify quantities evaluated in the polar frame, in which
a collision is centered at the north pole of the celes-
tial sphere. The quantity wl isolates the l-dependence
of
〈

wl1m1
w∗
l2m2

〉

. We plot wl for multipoles l ≤ 40 on
the left in Fig. 6. In terms of wl and neglecting the
monopole contribution to alm, the two point function
〈

al1m1
a∗l2m2

〉

=
〈

f2
〉 〈

wl1m1
w∗
l2m2

〉

where (see Appendix
B)

〈wl1m1
w∗
l2m2

〉

=
π2Nobsα2ξ

2
ls

2l1 + 1
wl1δl1l2δm1m2

+

Nobs(Nobs − 1)

(

α1ξls
√
π

6

)2

δl10δl20δm10δm20

.

(44)
The first piece contains the expectation value of the in-
dividual two-point functions and the second piece cor-
responds to products of the one-point functions. This
contribution is statistically isotropic.

It remains to average the Gaunt coefficient piece of
Eq. 33 as well as to compute the quantity

〈

f2
〉

. Consid-

ering the last term in Eq. 33, we define

Rl =
∑

m

∑

l1,m1,l2,m2

wl1
2l1 + 1

(

Rl1m1l2m2

lm

)2

Cbbl2 . (45)

We plot Rl on the right in Fig. 6 along with Cbbl for
reference. Clearly, Rl � wl since by Eq. 45 it involves
the product of perturbation terms wlC

bb
l , and the Gaunt

coefficients are typically O(10−1) or smaller in our com-
putations. In addition to Rl, there is also a contribution
π2α2

1ξ
2
lsR

0
l (Nobs) to Cl where

R0
l (Nobs) =

Nobs(Nobs − 1)

144π2
Cbbl . (46)

This term arises from the second line of Eq. 44 when
inserted into Eq. 33.
To compute

〈

f2
〉

we must take the ensemble average of
the inverse of the sky-averaged temperature. We provide
an explicit integral expression for

〈

f2
〉

in Appendix B
which depends on Nobs, j(zc), and the unknown function
α(zc). This contribution will simply result in an overall
scaling of 〈Cl〉. A lower bound on this quantity can be
derived by Jensen’s inequality (see Appendix B), which
yields

〈

f2
〉

>∼ 1/(1+Nobsα1ξls/6). The behavior of
〈

f2
〉

will generally depend on the sign of α1, since a multi-
ple collision scenario producing mostly cold spots on the
CMB will tend to lower T0 with respect to T ′

0, driving
〈

f2
〉

> 1 while the opposite is true if α1 > 0. Regard-

less, we expect
〈

f2
〉

≈ 1 in the perturbative regime with
which we are concerned, since Nobsα1ξls � 1 in this case.
We are now in position to evaluate 〈Cl〉 in terms of the

relevant parameters of the theory. Using Eqs. 21, 32, 41,
44, 45, 46 and performing the sums involving the Gaunt
coefficients, we arrive at:
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〈Cl〉 =
〈

f2
〉

[

π2Nobsα2ξ
2
ls

2l + 1
(wl +Rl) + Cbbl

(

1 +
Nobsα1ξls

6
+
Nobs(Nobs − 1)α2

1ξ
2
ls

144

)]

. (47)

(Note that we have dropped the l = 0 piece and writ-
ten out R0

l (Nobs) explicitly as the last term.) This is
our main result, and characterizes the effects of mul-
tiple collisions on the CMB power spectrum under our
assumptions. The expected angular power spectrum de-
pends only on three parameters, Nobs, α1, and α2 which
encode the model-specific information. The shape of the
power spectrum itself results from the isotropic and scale-
invariant distribution of bubbles which should apply re-
gardless of the model potential, as long as HF /HI ≫ 1
and ξls � 1.
As one would expect, the most significant contribution

to 〈Cl〉 beyond the inflationary perturbations is that of
wl. From Fig. 6, Rl � wl so its contribution is negligible.
There is a scale-invariant contribution in Eq. 47 propor-
tional to Nobsα1 which enters at first order in the pertur-
bations (see Eq. 41), and so one might imagine it becom-
ing comparable to that of wl for small α1,2. However, this
occurs only for very small values of α2 in which case the
effects of the collisions would be very difficult to discern
except for very large Nobs. Even if it were there, this
contribution would be degenerate with a slightly differ-
ent power in the primordial perturbations, at least for the
2-point function. Note that if we had not approximated
the inflationary density perturbations as being “painted
on” the last scattering surface (i.e. unaffected by the col-
lisions), there would be other second order terms present
in addition to the contributions appearing in Eq. 47 cor-
responding to e.g. non-linear interactions between the
bubble and inflationary perturbations.
Since the scale-invariant piece and second order terms

in Eq. 47 are negligible, and using
〈

f2
〉

≈ 1, the expected
power spectrum describing a multiple collision scenario
can be characterized to a good approximation by

〈Cl〉 ≃
π2Nobsα2ξ

2
ls

2l + 1
wl + Cbbl . (48)

This spectrum is plotted in Fig. 7 for Nobs = 100 and
various values of α2, along with the approximate error
bars from the WMAP 7 year results [34]. In this scenario,
the effective power spectrum depends only on α2 and
Nobs. From Eq. 44, the collisions will not contribute any
statistical anisotropy to the expected spectrum.
An important feature of the resulting spectrum in

Fig. 7 is the dramatic increase in power of the low multi-
poles. This behavior can already be seen in the quantity
wl as in Fig. 6 and has a physical origin: the flat proba-
bility distribution over bubble scales yields an equal num-
ber of large and small bubbles, and the bubble profile is
“smooth” so that large bubbles contribute only to rela-
tively low-l multipoles. Yet larger bubbles both take up a
larger fraction of the sky (per bubble), and have a larger
central amplitude. (The larger the affected disk on the

sky, the farther out on the affected portion of the last
scattering surface – and hence the closer to the collision
event – the observer can see; this is evident in the temper-
ature profile Eq. (21), since the maximum amplitude of
the temperature perturbation for a given collision scales
as |Tmax| ∼ |αi| ξls(1 − cosψi/2).) Since larger bubbles
tend to be brighter, searches for collision disks on the
CMB temperature map, such as those of Ref. [19], may
still be able to discern several distinct disks, correspond-
ing to the brightest collisions, as long as Nobs is not too
large.
The peak in power occurs regardless of the sign of

α(zc), since this effect arises from terms proportional
to α2. For there to be a decrease in power, the scale-
invariant contribution to Eq. 47 would have to be large
with α1 < 0. Even if this were the case, from Eq. B14
the product with

〈

f2
〉

will still tend to increase 〈Cl〉 with
respect to Cbbl .
As Nobs becomes large, the observed spectrum will

tend to converge to its expectation value Eq. 47, pro-
viding an increasingly sharp prediction for a given mul-
tiple collision scenario. This is simply a statement of
Bernoulli’s Theorem. Consider, for example, the one
point function: neglecting bubbles within bubbles ren-
ders the individual wilm statistically independent and a
multiple collision scenario can then be thought of as nu-
cleating Nobs bubbles according to the distribution P. In
this case, Bernoulli’s Theorem suggests that with more
successive nucleation events, the mean value of the vari-
ous wilm should converge to the expectation value

〈

w0
lm

〉

,
i.e.

1

Nobs

∑

wilm →
〈

w0
lm

〉

(49)

as Nobs → ∞. Multiplying through by Nobs, the sum on
the LHS of Eq. 49 is simply a particular realization of
a multiple collision scenario, while the quantity on the
RHS is the expectation value 〈wlm〉 (c.f. Eq. 37). Thus,
the expectation value 〈wlm〉 should describe the observed
wlm with increasing accuracy for large Nobs. Similar ar-
guments apply to the two-point functions. Therefore, for
large Nobs, the observer should expect to see a spectrum
very close to 〈Cl〉. To quantify this assertion and inves-
tigate the theoretical uncertainty of Eq. 47 across real-
izations of multiple collision scenarios, one might imag-
ine computing the variance of the 〈Cl〉. However, doing
so would require knowledge of the distribution of α(zc)
which we have not attempted to compute and so we do
not perform this analysis here.
Whether or not scenarios with Nobs ≫ 1 are plausible

depends on the underlying potential and microphysics.
From the discussion surrounding Eq. 10, there would
seem to be cases where a large Nobs is quite natural.
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FIG. 7. Expected temperature anisotropy angular power spectrum for multiple collision scenarios from Eq. 48 with Nobs = 100,
ξls = .05, and for α2 = 10−6, 10−7, 10−8 in red, green, and orange, respectively. The Cbb

l are shown by the dotted black line
for reference. Points in the shaded blue region lie within the approximate WMAP7 error bars [34]. The increase in power on
large angular scales is apparent.

In treating Nobs as a free parameter, we have avoided
the subtleties of this issue and expect the profile Eq. 47
to provide a good description of the effect of multiple
collisions on the CMB spectrum for large Nobs.

C. CMB Constraints On Multiple Collisions: A

First Look

Using the results of Eqs. 47, 48, we can preliminarily
assess how scenarios with Nobs fare in light of observa-
tions of the CMB temperature spectrum. Of course con-
straining models based on only one set of observations is
difficult and a much more in-depth study is required to
determine how likely it is that we live in a multiple colli-
sion scenario. We simply wish to answer the question: if
multiple collisions have impacted our bubble producing
precisely the expected spectrum, Eq. 48, what do obser-
vations of the CMB data tell us about the parameters
Nobs and α2?
From Fig. 7, we expect that the strongest constraints

on Nobs > 1 in our approximation10 will arise from ob-
servations of the CMB quadrupole, since its observed
value is low compared to the best-fit ΛCDM cosmology
and multiple collisions will tend to exacerbate this dis-
crepancy. A detailed statistical analysis in Ref. [35] has
concluded that the best fit ΛCDM quadrupole is in fact

10 We stress that our analysis applies only to angular scales >∼ 1◦,

corresponding roughly to l <∼ 70. To determine the effects of
collisions on smaller scales requires going beyond the Sachs-Wolfe
approximation, which we defer to future work.

well within the 95% C.L. of the WMAP7 observed value.
Comparing 〈C2〉 with the 95% C.L. upper bound on Cobs2 ,
we find that the parameters Nobs and α2 should satisfy

Nobsα2Ωc <∼ 3.5× 10−9. (50)

Note that this also constrains the magnitude of α1, since
α2
1 ≤ α2, but not its sign.
The observed CMB dipole does not constrain the pa-

rameters Nobs, α2 as strongly as the quadrupole. If we
imagine that all of the observed dipole has arisen from
the intrinsic perturbation to the gravitational potential
from collisions, consistency with the observed value of
the dipole dictates Nobsα2Ωc <∼ 1.5 × 10−6. Without
taking the frame shift into account for |ρ| ≤ 1 bubbles,
the bound would be slightly strengthened, Nobsα2Ωc <∼
2.5 × 10−7, but still not competitive with that provided
by the quadrupole.
A few notes on this result are in order:

• This result is, of course, dependent upon the de-
tailed assumptions explained in previous sections
- namely, the radial profile of a single bubble, the
flat distribution in bubble angular sizes, the “frame
shift”, and the approximation that bubbles super-
pose. However, all of these are unlikely to be dra-
matically incorrect in a realistic scenario.

• It is also not necessarily the case that the CMB
temperature power spectrum is the best observa-
tional constraint on multiple collision scenarios.
Observations of e.g. large scale structure, as well
as CMB polarization and non-Gaussianity, will also
be affected by the collisions and should be investi-
gated. These signatures are left for future exten-
sions of this work.
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• Our results are useful primarily for large Nobs; for
a small number of bubbles, searching for disk tem-
plates on the sky should provide much stronger con-
straints.

VI. SUMMARY AND CONCLUSIONS

In this study, we have begun to address the possibility
of having many cosmic bubble collisions influencing the
visible portion of our last scattering surface. This can oc-
cur despite vanishingly small nucleation rates as long as
it is compensated for by a large ratio of Hubble constants
between the false vacuum and the presumed inflationary
phase in the observation bubble. For such a scenario to
be compatible with the existence of observers (and to not
produce effects clearly inconsistent with observation), the
effects of the collisions must be mild, suggesting that one
should be able to treat the effects of collisions perturba-
tively for models of interest. We were thus led to consider
a scenario where many bubbles collide with the obser-
vation bubble while leaving the interior FRW foliation
intact, supporting inflation and a standard background
cosmology to the future of the collisions and allowing us
to study the effects of the collisions on the last scattering
surface and CMB temperature spectrum.
Given a number of reasonable simplifying assumptions,

we are led to a model for these perturbations with the
following characteristics.

• The overall effect on the last-scattering surface and
on the CMB temperature is necessarily small (as-
sumed for compatibility with observations.)

• The total perturbation on the last-scattering sur-
face is a superposition of individual bubble per-
turbations (see Sec. IVA) resulting from collisions
with bubbles decaying to the same vacuum (which
may or may not match that of the observation bub-
ble.)

• Each bubble appears to cover less than half of the
sky (see Sec. III B), with a size distribution that
is flat in cosψ, where ψ is the angular size of the
perturbed disk (see Sec. II B).

• Each bubble’s profile is a ‘truncated dipole’, with
central amplitude dependent on ψ and zc, a ‘kine-
matic’ parameter describing the (dS-invariant) dis-
tance between the bubbles’ nucleation points (see
Sec. III A).

• The details of the kinematics and the inflaton po-
tential that determine the perturbation strength
can be folded into two parameters α1,2. The other
relevant quantity is the total number Nobs of (less
than full-sky) bubbles on the last-scattering sur-
face. These three parameters are sufficient to de-
scribe the effects of many collisions on the CMB
temperature.

We put this picture forward as a scenario that is both
sufficiently simple that predictions can be computed in
detail from it, and including enough aspects of a realistic
scenario so that it should give an accurate overall picture
of the expected effect of a many-bubble scenario.
The above picture, to a good approximation, yields a

contribution to the l <∼ 70 power spectrum of

〈Cl〉 ≃
π2Nobsα2ξ

2
ls

2l + 1
wl, (51)

where ξls ∼ 2
√
Ωc, α2 encodes features of the inflaton po-

tential that determine the amplitude of a given collision
perturbation, and wl is a fixed function given by Eq. 42
and shown in Fig. 6. This equation holds with increas-
ing accuracy as Nobs becomes large. The resulting power
spectrum contribution is very red-tilted (see Fig. 7), so
that the strongest limit on a multi-bubble scenario comes
from the quadrupole.
In our universe, a multiple collision scenario with Nobs

visible bubbles and average brightness described by α2

consistent with observations of the CMB power spectrum
would require roughly α2Ωc <∼ 3.5 × 10−9/Nobs. This
bound can in turn be used to constrain a given well-
specified scenario by developing in detail the link between
the inflaton potential and the parameters α2, Ωc, and
Nobs.
We emphasize that this is a first study aimed at laying

the groundwork for such scenarios and computing con-
straints using the power spectrum. It is quite possible,
and even likely, that other observables like polarization
or non-Gaussianity could give significantly stronger con-
straints, or provide a cleaner method for the actual de-
tection of bubble effects. This set of methods comprises
a complement for those already developed to investigate
scenarios with a few bubble impacts. In either case, re-
finement of these tests will soon provide real constraints
on the parameter space of eternal inflation, and might
even produce evidence for eternal inflation itself.
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Appendix A: Intervening Bubbles

In this Appendix we detail the calculation of the ex-
pected number of intervening bubbles to intersect a col-
liding bubble with nucleation center (zc, ρ). Since we are
interested in intervening bubbles intercepting late-time
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collision bubbles, we can neglect the angular dependence
of the initial value surface and choose θc = φc = 0 with-
out loss of generality.
By the discussion in Sec. IVA, we must calculate the

4-volume I(zc, ρ) with the cosmologies fixed. I(zc, ρ) is
given by

I(zc, ρ) =V PLC4 [η0(zc, ρ), T0(zc, ρ)]

− V PLC4 [ηc(zc, ρ), Tc(zc, ρ)]− V PLC4 [0, 0]
(A1)

where V PLC4 [η, T ] denotes the 4-volume in the past
light cone (PLC) from the point (η, T ) and (η0, T0) is
the point of intersection of the future light cone from
(ηc(zc, ρ), Tc(zc, ρ)) and the observation bubble wall.
It remains to determine whether a point x2 =

(η2, T2, θ2, φ2) is within the past light cone of x1 =
(η1, T1, θ1, φ1). In the embedding space, two points Xµ

1 ,
Xµ

2 are timelike or null separated if and only if

ηµνX
µ
1X

ν
2 ≥ 1. (A2)

Restricting this relation to the dS hyperboloid gives an
equivalent relation

P (x1, x2) ≡− tanT1 tanT2 +
sin η1 sin η2
cosT1 cosT2

ωi(x1)ωj(x2)δij

+
cos η1 cos η2
cosT1 cosT2

≥ 1

(A3)
for timelike or null separated points, where the ωi are
defined as in Eq. 1. We can then numerically integrate
over the 4-volume to the past of each of the points xi in
Eq. A1, weighted by the step function Θ(P (xi, x)− 1) to
obtain I(zc, ρ). The integration within the set of points
PLC[0, 0] can be done analytically, however the angular
dependence of the lightcones away from the origin makes
it difficult to do so for the other points. We cut off the nu-
merical integration at T corresponding to the intersection
of the PLC from (ηc, Tc) and that from the origin. This
does not count regions near past infinity (corresponding
to early time bubbles), however these portions of the false
vacuum are typically included in PLC[ηc, Tc]∪PLC[0, 0]
and so will not contribute to Nint.
To obtain Nint we use Eq. 20 with a particular choice

of λ. In Fig. 5 we use λ such that Nobs = 1 from Eq. 10.
Increasing Nobs will correspond to increasing either λ or
ξls, however we still find Nint � 1 for cases of interest.

Appendix B: Calculating Expectation Values Of

Correlation Functions

In this Appendix we detail the calculations of the ex-
pected one- and two-point correlation functions Eqs. 41,
44. Our conventions follow that of Ref. [32], to which
we refer the reader for further details as well as useful
identities used in the calculations we present.

We are interested in the two-point function of the tem-
perature anisotropy which in turn will involve the one-
and two-point functions of wlm. Our analysis is simpli-
fied by the following observation: for a given function g
expanded in spherical harmonics in a coordinate system
(primed indices), the coefficients in a rotated coordinate
system (unprimed indices) are given by [31, 32]

glm =
∑

m′

gl′m′Dl
m′m(γ, θ, φ)δll′ (B1)

where γ, θ, φ are the Euler angles specifying the transfor-
mation between the two coordinate systems and Dl

m′m is
the Wigner rotation matrix. Since wlm is a sum of the
coefficients corresponding to the individual bubbles, we
can write wlm =

∑

N1+N2
wilm and evaluate each wilm in

a frame in which the collision is centered at the north
pole θ = φ = 0 and rotate them back into the original
coordinate system via the transformation Eq. B1.
Since, in the polar (primed) frame, the profile for each

bubble on the sky by construction is azimuthally sym-
metric about the z-axis, only the m′ = 0 modes con-
tribute and we are left with

wlm =
∑

i

wil′0′D
l
0′m (αi, βi, γi) δll′ (B2)

where

wil′m′ =

∫

Y ∗
l′m′(θ, φ)wi(n̂)|θ0i=0,φ0i=0 dΩ (B3)

Dl
0′m (αi, βi, γi) = (−1)m

√

4π

2l + 1
Y ∗
lm(βi, γi) (B4)

In our calculations it will often be convenient to con-
sider the quantity wl′0′(ψ), corresponding to the coef-
ficient wlm from a collision centered at the north pole
θ = φ = 0 (hence the prime), with angular scale ψ, and
with the strength αξls factored out:

wl′0′(ψi) ≡
1

2παiξls
wil′0′ . (B5)

This is precisely the quantity explicitly defined in Eq. 43.
The relevant Euler angles to rotate from the polar frame
to the original frame are given in our convention by βi =
θ0i, γi = π − φ0i (βi = π − θ0i, γi = π + φ0i) for i ≤ N1

(i > N1). The coefficients alm are related to wlm via
alm = fwlm where we have neglected the monopole piece
arising from the l = 0 integral.
To carry out the ensemble averages for the various cor-

relation functions, we average by the density P defined
in Eq. 36. We use the shorthand

g(ψ) =
1

16π
sin

ψ

2
(B6)

for brevity. In this prescription, the expected one point
function is given by
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〈wlm〉 =
〈

∑

i

wilm

〉

= (−1)m

√

16π3ξ2ls
2l + 1

〈α(zc)〉
(

N1 〈Y ∗
lm(θ, π − φ)〉 〈wl′0′(ψ)〉ψ≤π +N2 〈Y ∗

lm(π − θ, π + φ)〉 〈wl′0′(−ψ)〉ψ≥π
)

δll′

= Nobsα1ξls(−1)m
√

16π3

2l + 1
δll′

∫

wl′0′(ψ)g(ψ)dψ

∫

Y ∗
lm(θ, π − φ)dΩ

=
8π2Nobsα1ξls(−1)m√

2l + 1
δll′δl0δm0

∫

wl′0′(ψ)g(ψ)dψ

.

(B7)

Here the brackets 〈〉ψ≤π(≥π) denote averaging over ψ in

the interval [0, π] ([π, 2π]). In going from the first to sec-
ond line, we use Eqs. B2, B4, and B5 to express the sum
as a collection of averages in the polar frame with the ap-
propriate rotation coefficients. In going from the second
to the third line we use the statistical independence of the
collisions write out the averages explicitly in terms of the
averages for an individual collision (as per Eq. 37) and use
the fact that

∫

Y ∗
l,m(θ, π− φ)dΩ =

∫

Y ∗
lm(π− θ, π+ φ)dΩ

to combine the N1 and N2 terms. The last line follows
from integrating the spherical harmonic.

Only the monopole part contributes to the one-point
function and we can perform the integrals over ψ, using
Eq. (43) to express w0′0′ as

w0′0′(ψ) =
1√
π

[

sin4
ψ

4
Θ (π − ψ) + cos4

ψ

4
Θ (ψ − π)

]

.

(B8)
Inserting this into the last line of B7 and integrating
yields Eq. 41.
Moving on to the expectation value of the two point

function,
〈

wl1m1
w∗
l2m2

〉

, we compute:

〈

wl1m1
w∗
l2m2

〉

= (−1)
m1+m2

16π3ξ2lsδl1l′1δl2l′2
√

(2l1 + 1)(2l2 + 1)

〈

∑

i,j

αiαjwl′
1
0′(ψi)Y

∗
l1m1

(θi, φi)wl′
2
0′(ψj)Yl2m2

(θj , φj)

〉

= (−1)
m1+m2

16π3ξ2lsδl1l′1δl2l′2
√

(2l1 + 1)(2l2 + 1)





∑

i=j

〈

α(zc)
2
〉 〈

wl′
1
0′(ψ)wl′

2
0′(ψ)

〉 〈

Y ∗
l1m1

Yl2m2

〉

+
∑

i 6=j

〈α(zc)〉2
〈

wl′
1
0′(ψi)wl′

2
0′(ψj)

〉 〈

Y ∗
l1m1

(θi, π − φi)Yl2m2
(θj , π − φj)

〉





=
16π3ξ2lsδl1l′1δl2l′2

√

(2l1 + 1)(2l2 + 1)

(

Nobsα2

∫

∣

∣wl′
1
0′(ψ)

∣

∣

2
g(ψ)dψδl1l2δm1m2

+Nobs(Nobs − 1)α2
1

〈

wl′
1
0′
〉 〈

wl′
2
0′
〉 〈

Y ∗
l1m1

〉

〈Yl2m2
〉
)

=
π2Nobsα2ξ

2
ls

2l1 + 1
wl1δl1l2δm1m2

+Nobs(Nobs − 1)

(

α1ξls
√
π

6

)2

δl10δl20δm10δm20

. (B9)

In the first line, we write out the average as a collection
of Nobs collisions in the polar frame with the appropri-
ate rotation coefficients. Note that the function wl′0′(ψ)
is real-valued, hence only the complex conjugate of the
spherical harmonic appears here. The second line follows
from the commutation of the averages. In the third equal-
ity, we use the statistical independence of the individual
collisions to write out the average two-point function ex-
plicitly in terms of the averages for an individual collision
and integrate over α(zc). We don’t write out the one-
point averages explicitly for brevity; they are precisely

as in Eq. B7. Between the third and fourth equality we
perform the remaining integrals, again combining the N1

and N2 terms, since
〈

Y ∗
l1m1

(θ, π − φ)Yl2m2
(θ, π − φ)

〉

=
〈

Y ∗
l1m1

(π − θ, π + φ)Yl2m2
(π − θ, π + φ)

〉

and similarly
for the one-point averages.

Finally, we can compute
〈

f2
〉

. The quantity f relates
the average CMB temperature to the average tempera-
ture without any collisions. One must then average the
spatial temperature profile over the sky, then take the
ensemble average. Let us first consider the quantity f−1
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and write

T0
T ′
0

=
1

T ′
0

〈T (n̂)〉sky = 1 +
∑

i

〈

wi(n̂)
〉

sky. (B10)

The sky average for a given wi is independent of the
collision’s location on the sky and thus depends only on
ψi. We can thus define the α-independent quantity

S(ψ) ≡ 1

4παξls

∫

wi(n̂)|θ0i=0,φ0i=0 dΩ =
1

2
√
π
w0′0′(ψ)

(B11)

in terms of which, f2 is given by

f2 =

(

1 + ξls
∑

i

αiS(ψi)
)−2

. (B12)

Using these definitions, squaring, and averaging by the
distribution Eq. B6, we arrive at our expression for

〈

f2
〉

in terms of Nobs, α(zc), and ξls:

〈

f2
〉

=

∫

(4π)2g(ψ1)g(ψ2)j(zc1)j(zc2)dψ1dψ2dzc1dzc2
1 +Nobsξls (α(zc1)S(ψ1) + α(zc2)S(ψ2)) +Nobs(α(zc1)ξls)2S2(ψ1) +Nobs(Nobs − 1)α(zc1)α(zc2)ξ2lsS(ψ1)S(ψ2)

.

(B13)

A useful lower bound on
〈

f2
〉

can be derived from

Jensen’s inequality, whereby
〈

f2
〉

≥ 〈1/f〉−2
. Dropping

the term quadratic in Nα1ξls results in

〈

f2
〉

>∼
(

1 +
Nobsα1ξls

6

)−1

. (B14)

In our perturbative approach we expect
〈

f2
〉

≈ 1. This
quantity simply results in an overall scaling of the power
spectrum.
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