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Thermal dark matter that couples more strongly to electrons and photons than to neutrinos will
heat the electron-photon plasma relative to the neutrino background if it becomes nonrelativistic
after the neutrinos decouple from the thermal background. This results in a reduction in Neff

below the standard-model value, a result strongly disfavored by current CMB observations. Taking
conservative lower bounds on Neff and on the decoupling temperature of the neutrinos, we derive
a bound on the dark matter particle mass of mχ > 3− 9 MeV, depending on the spin and statistics
of the particle. For p-wave annihilation, our limit on the dark matter particle mass is stronger than
the limit derived from distortions to the CMB fluctuation spectrum produced by annihilations near
the epoch of recombination.

Roughly 20−25% of the total energy content of the uni-
verse is in the form of non-baryonic dark matter. While
a dark matter particle mass in the GeV range is often
assumed, there has also been interest in masses in the
MeV range. Dark matter with a mass in this range was
invoked to explain the 511 keV γ-rays observed by INTE-
GRAL [1], and to explain the cosmic γ-ray background
at 1 − 20 MeV [2]. Supersymmetric models with MeV
dark matter have been proposed [3], and MeV dark mat-
ter can arise in the context of the WIMPless dark matter
model [4]. MeV dark matter can have interesting effects
on large-scale structure [5].

We note here that a thermal MeV dark matter particle
that couples more strongly to electrons and photons than
to neutrinos will heat the electron-photon plasma when
it becomes nonrelativistic before its abundance freezes
out. If this occurs after the neutrinos decouple from
the thermal background, then the ratio of the neutrino
temperature to the photon temperature will be reduced,
a process similar to the heating that occurs when the
electron-positron pairs become nonrelativistic. The final
result is a decrease in the effective number of neutrino de-
grees of freedom. This effect was first explored by Kolb
et al. [6] and more recently by Serpico and Raffelt [7] in
the context of primordial nucleosynthesis. Recent CMB
observations [8–10] place severe lower bounds on Neff ,
allowing us to constrain this process. (See also the earlier
work of Ref. [11], which examined heating of the photons
relative to the neutrinos from decaying particles).

At recombination, the energy density in relativis-
tic particles includes photons, whose temperature, Tγ ,
and therefore energy density is extremely well-measured,
and a neutrino background with temperature Tν =
(4/11)1/3Tγ . The theoretical prediction for the effective
number of neutrinos (assuming slight reheating of the
neutrinos from early e+e− annihilation) is Neff = 3.046
[12, 13]. The neutrino density cannot be measured di-
rectly, but it can be inferred from measurements of the
CMB. (For a discussion of the effect of Neff on the CMB
fluctuations, see Refs. [14, 15]). The values of Neff from
recent CMB observations, in combination with other cos-
mological data, are Neff = 4.34+0.86

−0.88 (68% CL) from
WMAP [8], Neff = 4.56 ± 0.75 (68% CL) from the At-

acama Cosmology Telescope [9], and Neff = 3.86± 0.42
(68% CL) from the South Pole Telescope [10]. Archidi-
acono et al. [16] used combined datasets to derive
Neff = 4.08+0.71

−0.68 (95% CL). Clearly, the data favor val-
ues of Neff larger than the standard-model theoretical
prediction, rather than smaller.

The extent of the heating from dark matter annihila-
tion in the early universe can be derived from entropy
conservation (see Refs. [17, 18], from which our discus-
sion is derived). Our paper assumes a dark matter par-
ticle that couples much more strongly to electrons and
photons than to neutrinos. The most natural example of
such a particle is one that interacts with ordinary matter
through an electromagnetic form factor, such as an elec-
tric or magnetic dipole [19–32], or an anapole moment
[33]. Dark matter particles in this category annihilate
into Standard Model particles through the mediation of
photons, while the models considered by Refs. [1–5] re-
quire the mediation of a new fermion or vector boson. In
fact, the dark matter particles considered in Refs. [1–
4] could be relevant if their coupling with neutrinos is
postulated to be suppressed. However, the model con-
sidered by Ref. [5] requires that the dark matter particle
couples to electrons and neutrinos equally, and so it is
not relevant.

Let χχ̄ denote the pair of dark matter particles. To
make our study general, we will allow a range of possibili-
ties for the dark matter, including a self-conjugate scalar,
a non-self-conjugate scalar, a spin-1/2 Majorana fermion
or a spin-1/2 Dirac fermion. Thus, for the cases with
self-conjugate and non-self-conjugate scalars, the nota-
tion χχ̄ really means χχ and χχ∗ respectively. But for
simplicity, we will keep the notation χχ̄ throughout the
paper.

Consider first the case where the dark matter annihi-
lates entirely after the neutrinos decouple, which occurs
at a temperature of Td ≈ 2 − 3 MeV [12, 34]. The total
entropy prior to χχ̄ annihilation is proportional to

S =
R3

T
(ρe+e− + ργ + ρχχ̄ + pe+e− + pγ + pχχ̄), (1)
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while after χχ̄ annihilation it is

S =
R3

T
(ρe+e− + ργ + pe+e− + pγ). (2)

For a relativistic particle, p = ρ/3, so following Ref. [18],
we can write the total entropy density as

s =
ρtot + ptot

T
=

2π2

45
g∗ST

3, (3)

where g∗S is the total number of spin degrees of freedom
for bosons, and 7/8 times the total number of spin de-
grees of freedom for fermions. Then the total entropy
is

S =
2π2

45
g∗S(RT )3, (4)

which is conserved through the process of any particle
becoming nonrelativistic and annihilating. So the ratio
of the final value of RT after annihilation to the initial
value of RT prior to annihilation is

(RT )f
(RT )i

=

(

g∗Si

g∗Sf

)1/3

, (5)

where g∗Si and g∗Sf are the values of g∗S for the rela-
tivistic particles in thermal equilibrium before and after
annihilation, respectively. When the χχ̄ pairs annihilate
after neutrino decoupling, the neutrinos do not share in
the heating, so that RTν is constant and Tν ∝ R−1, while
the photons and electron-positron pairs are heated as in
Eq. (5). Therefore, for the χχ̄ pairs with g internal
degrees of freedom, the ratio of Tν to Tγ after χχ̄ anni-
hilation is:

Tν/Tγ =

[

(7/8)4 + 2

(7/8)4 + 2 + (7/8)g

]1/3

, (6)

if χ is a fermion, and

Tν/Tγ =

[

(7/8)4 + 2

(7/8)4 + 2 + g

]1/3

, (7)

if it is a boson. Taking, for example, the χ particle to
be a spin-1/2 Majorana fermion gives g = 2, so that
Tν/Tγ = (22/29)1/3. Subsequent e+e− annihilation fur-
ther heats the photon temperature relative to the neu-
trino temperature by a factor of (11/4)1/3, so that the
final ratio of the neutrino temperature to the photon tem-
perature would be (88/319)1/3.

In terms of Neff , the energy density for neutrinos is
given by

ρν = Neff

(

7

8

)

(2)

(

π2

30

)(

Tν

Tγ

)4

T 4
γ . (8)

Since ρν at fixed Tγ is the quantity that is inferred from
CMB observations, a change in Tν/Tγ will be interpreted
as a change in Neff , with Neff ∝ (Tν/Tγ)

4. In this case,
χχ̄ annihilation reduces the value of Tν/Tγ relative to its

value in the standard model by a factor of (22/29)1/3,
which corresponds to Neff = 3(22/29)4/3 = 2.1, a value
clearly excluded by the CMB observations.

This value of Neff corresponds to a dark matter parti-
cle with a mass well below the neutrino decoupling tem-
perature. However, to derive a useful limit, we must con-
sider what happens when χ annihilates during neutrino
decoupling. Neutrino decoupling is not a sudden process,
but for the purposes of our simplified calculation, we will
take it to occur abruptly at a fixed temperature Td, and
we will assume that dark matter annihilations before Td

fully heat the neutrinos, while those after Td heat only
the photons and e+e− pairs. Let I(Tγ) be given by (see,
e.g., Ref. [17] for a similar calculation):

I(Tγ) ≡
S

(RTγ)3
=

1

T 4
γ

(ρe+e− + ργ + ρχχ̄ + pe+e− + pγ + pχχ̄),

=
11

45
π2 +

g

2π2

∫

∞

x=0

x2dx

(

√

x2 + (mχ/Tγ)2 +
x2

3
√

x2 + (mχ/Tγ)2

)

[

exp(
√

x2 + (mχ/Tγ)2 ± 1)

]

−1

, (9)

where the plus (minus) sign is for a fermionic (bosonic)
dark matter particle, and the variable of integration is
x = pχ/Tγ . In the limit where all particles are fully
relativistic, I reduces to (2π2/45)g∗S; the integral in Eq.
(9) just quantifies the contribution to I from χχ̄ as they
become nonrelativistic.

As mentioned above, the χχ̄ annihilation will heat up
photons relative to neutrinos only after neutrino decou-
pling. But this heating ends when the χχ̄ particles drop

out of thermal equilibrium. Thus, the ratio of the neu-
trino temperature to the photon temperature due to χχ̄
annihilation alone is

Tν/Tγ =

[

I(Tf )

I(Td)

]1/3

, (10)

where Tf is the temperature at which the χχ̄ particles
freeze out. Since mχ/Tf ∼ 20 [18], it is obvious from Eq.



3

FIG. 1: The effective number of neutrino degrees of freedom,
Neff , that would be deduced from cosmic microwave back-
ground observations for a thermal dark matter particle with
mass mχ, assuming sudden decoupling of the cosmic neutri-
nos at a temperature Td. Curves correspond, top to bottom,
to a g = 1 boson (short dash), g = 2 fermion (solid), g = 2
boson (dotted), and g = 4 fermion (long dash).

(9) that we can simply set Tf = 0 with negligible error:

Tν/Tγ =

[

I(0)

I(Td)

]1/3

. (11)

The physical reason for this is that the χχ̄ abundance
freezes out at a temperature of Tf ∼ mχ/20, while most
of the entropy from the χχ̄ annihilations is transferred
to the thermal background when T ∼ mχ/3. Of course,
the temperature ratio given by Eq. (11) must then be
multiplied by an additional factor of (4/11)1/3 from e+e−

annihilations to obtain the final ratio of the neutrino tem-
perature to the photon temperature.

In this approximation, the effective number of neutri-
nos as measured by CMB experiments will be given by

Neff = 3.046

[

I(0)

I(Td)

]4/3

. (12)

The value of Neff as a function of mχ/Td is shown in
Fig. 1, for a self-conjugate scalar boson (g = 1), a non-
self-conjugate scalar boson (g = 2), a spin-1/2 Majorana
fermion (g = 2) and a spin-1/2 Dirac fermion (g = 4).

In fact, from Eqs. (6)-(7), we can derive the mχ ≪ Td

limit for Neff , namely

Neff = 3.046

[

11

11 + (7/4)g

]4/3

, (13)

for fermionic χ, and

Neff = 3.046

[

11

11 + 2g

]4/3

, (14)

for bosonic χ.
As noted earlier, neutrino decoupling is not a sudden

process, so Td is not completely well-defined. Ref. [34]
gives a widely cited value of Td = 2.3 MeV for the elec-
tron neutrinos, with the µ and τ neutrinos decoupling
at a higher temperature. However, neutrino oscillations
will tend to equilibrate the decoupling of all three neu-
trinos, an effect discussed in Refs. [13, 35]. Here we
will simply take Td

>
∼ 2 MeV as a conservative lower

bound. Note that the presence of the additional rela-
tivistic energy density from the χχ̄ particles themselves
will increase Td, but this turns out to be a miniscule effect
[36].
Now we must determine a reasonable lower bound on

Neff . The combined results from Refs. [8–10] are barely
consistent with the standard model value of Neff =
3.046. However, we will err on the side of caution and
choose a lower bound of Neff > 2.6, which is excluded
at 2σ by all three sets of CMB observations.
These limits on Neff and Td can be combined with the

results displayed in Fig. 1 to derive a lower bound on mχ.
These bounds are mχ

>
∼ 3 MeV for the self-conjugate

scalar boson, mχ
>
∼ 6 MeV for a two-component boson

or fermion, and mχ
>
∼ 9 MeV for a Dirac fermion.

These limits are relevant for several models in the lit-
erature. As noted by Beacom and Yuksel [37], the model
proposed in Ref. [1] actually requires positron injection
at very low energies ( <

∼ 3 MeV) to produce the 511 keV
γ-rays observed by INTEGRAL [1]. But dark matter
masses low enough to produce such particles from anni-
hilations are ruled out by our limit. Thermal dark matter
with the correct relic abundance interacting through an
electric or magnetic dipole moment must have a mass less
than 1 − 10 GeV to avoid conflict with direct detection
experiments [29]; our results shrink the allowed window
from the other direction.
Our limits are complementary to several others in the

literature. As noted, dark matter particles with masses
in this range also affect primordial nucleosynthesis, and
bounds can be placed from the observed element abun-
dances, particularly helium-4. However, the effect on
Neff as measured by the CMB appears to provide a bet-
ter limit. For example, in the 1−10MeV mass range, Ser-
pico and Raffelt [7] found a maximum reduction of only
0.002 in the primordial helium mass fraction. Using the
results of Ref. [38], this corresponds to ∆Neff = −0.15,
much smaller than the typical values in Fig. 1. How-
ever, there is no contradiction between our results and
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those of Ref. [7]. When Tν/Tγ is reduced prior to pri-
mordial nucleosynthesis, there are actually two effects on
the helium-4 abundance. First, the reduction in the ex-
pansion rate at fixed Tγ reduces the helium-4 abundance,
and this is the dominant effect, as noted by Serpico and
Raffelt. However, there is a second effect which partially
cancels the first: the decrease in the electron neutrino
temperature reduces the weak interaction rates, which
tends to increase the helium-4 abundance. Thus, the ef-
fect on BBN is smaller than if one reduced the overall
expansion rate alone.
Another lower bound on mχ comes from distortions to

the CMB fluctuation spectrum due to annihilations near
the epoch of recombination [39–44]. This effect excludes
dark matter with masses <

∼ 1− 10 GeV, a much tighter
bound than ours (note that such annihilations also dis-
tort the spectrum of the CMB [45, 46], but these bounds
are weaker given present observations). However, the
CMB fluctuation bound only applies to s-wave annihila-
tions, for which 〈σv〉 does not change between the dark
matter particle freeze-out and the epoch of recombina-
tion. For p-wave annihilations, the annihilation rate at
recombination is generally negligible, and the CMB can-
not be used to constrain such models. Therefore, this
CMB constraint is applicable to the model considered
in Ref. [4] and a dark matter particle with a magnetic
dipole moment [19–32]. It is not applicable to the mod-
els considered in Refs. [1–3] and a dark matter particle
with an electric dipole moment [19–32] or an anapole
moment [33], because all of these models can be p-wave
dominated. In these cases our limit provides the better
constraint.
In contrast to the CMB constraint, our bounds do not

depend on the velocity dependence of the annihilation
cross section and therefore provide a good constraint in
the case of p-wave annihilations. Indeed, the values of
Neff derived in Refs. [8–10] assume a standard recombi-
nation history, undistorted by dark matter annihilation,

so it is unclear how s-wave annihilation at the epoch of
recombination would affect the estimated values of Neff .
Of course, the reverse is also true; the bounds derived in
Refs. [39–44] do not take into account the effect we have
outlined in this paper.

The bounds presented here can be evaded if the dark
matter is asymmetric (see, e.g., Ref. [47] and references
therein). Also, our bounds will be weakened to the extent
that the dark matter couples to both the electron-photon
plasma and to neutrinos. In fact, in the extreme oppo-
site limit (coupling to neutrinos only), the χχ̄ annihila-
tion heats the neutrinos instead of the photons, increas-
ing Neff and providing better agreement with current
observations [48].

There is one obvious caveat to the bounds we have de-
rived here. As noted earlier, the CMB limits on Neff

are only in marginal agreement even with the standard
model value for Neff . If future observations show conclu-
sive evidence that the observed Neff disagrees with the
standard model, some mechanism will be required to gen-
erate the additional relativistic degrees of freedom, and
this mechanism could also be invoked to erase the ef-
fects of the annihilating dark matter particle. (See, e.g.,
Ref. [36]). Future PLANCK observations should help
to resolve this issue. More precise observational bounds
on Neff would also justify a more exact treatment of
the effect outlined here, going beyond our simplifying
assumption of sudden neutrino decoupling to a full nu-
merical integration of the equations governing neutrino
evolution in the early universe.
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