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Abstract

The effective theory for baryons with combined 1/Nc and chiral expansions is analyzed for non-

strange baryons. Results for baryon masses and axial couplings are obtained in the small scale

expansion, to be coined as the ξ-expansion, in which the 1/Nc and the low energy power countings

are linked according to 1/Nc = O(ξ) = O(p). Masses and axial couplings are analyzed to O(ξ3)

and O(ξ2) respectively, which correspond to next-to-next to leading order evaluations, and require

one-loop contributions in the effective theory. The spin-flavor approximate symmetry, consequence

of the large Nc limit in baryons, plays a very important role in the real world with Nc = 3 as shown

by the analysis of its breaking in the masses and the axial couplings. Applications to the recent

lattice QCD results on baryon masses and the nucleon’s axial coupling are presented. It is shown

that those results are naturally described within the effective theory at the order considered in the

ξ-expansion.
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I. INTRODUCTION

The low energy effective theory for baryons is a topic that has evolved over time through

several approaches and improvements. The early version of baryon Chiral Perturbation

Theory (ChPT) [1] evolved into the various effective field theories based on effective chiral

Lagrangians [2–4], starting with the relativistic version [5, 6] or Baryon ChPT (BChPT),

followed by the non-relativistic version based in an expansion in the inverse baryon mass

[6, 7] or Heavy Baryon ChPT (HBChPT), and by manifestly Lorentz covariant versions based

on the IR regularization scheme [8–10]. In all these versions of the baryon effective theory

a consistent low energy expansion can be implemented. The most important issue, which

became apparent quite early, was the convergence of the low energy expansion. Being an

expansion that progresses in steps of O(p) in contrast to the expansion in the pure Goldstone

Boson sector where the steps are O(p2), it is natural to expect a slower rate of convergence.

However, a key factor with the convergence has to do with the important effects due to the

closeness in mass of the spin 3/2 baryons. It was realized [11], that the inclusion of those

degrees of freedom play an important role in improving the convergence of the one-loop

contributions to certain observables such as the π-N scattering amplitude and the axial

currents and magnetic moments. There have been since then numerous works including

spin 3/2 baryons [12–20]. The key enlightenment resulted from the study of baryons in

the large Nc limit of QCD [21]. It was realized that in that limit baryons behave very

differently than mesons [22], in particular because their masses scale like O(Nc) and the π-

baryon couplings are O(
√
Nc). These properties were shown to require for consistency, that

at large Nc baryons must respect a dynamical contracted spin-flavor symmetry SU(2Nf ),

Nf being the number of light flavors [23–26], broken by effects ordered in powers of 1/Nc

and in the quark mass differences. The inclusion of the consistency requirements of the

large Nc limit into the effective theory came naturally through a combination of the 1/Nc

expansion and HBChPT [27], which is the framework followed in the present work. The

study of one-loop corrections in that framework was first carried out in Refs. [27–29]. In

the combined theory one has to deal with the fact that the 1/Nc and Chiral expansions do

not commute [30]. The reason is due to the presence of the baryon mass splitting scale of

O(1/Nc) (∆ − N mass difference), for which it becomes necessary to specify its order in

the low energy expansion. Thus the 1/Nc and Chiral expansions must be linked. Particular
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emphasis will be given to the specific linking in which the baryon mass splitting is taken

to be O(p) in the Chiral expansion, and which will be called the ξ-expansion. Following

references [27–29], the theoretical framework is presented here in detail, in particular the

power countings, the renormalization, and the linked 1/Nc and low energy expansions, along

with observations that further clarify the significance of the framework.

The very significant contemporary progress in the calculations of baryon observables in

lattice QCD (LQCD) [31–33] opens new opportunities for further understanding the low

energy effective theory of baryons. The determination of the quark mass dependence of the

various low energy observables, such as masses, axial couplings, magnetic moments, elec-

tromagnetic polarizabilities, etc., are of key importance as a significant test of the effective

theory, in particular its range of validity in quark masses, as well as for the determination

of its low energy constants (LECs). Lattice results for the N and ∆ masses [34–41] and

the axial coupling gA of the nucleon [42–47] at varying quark masses are analyzed with the

purpose of testing the effective theory presented here. This in turn can give insights on

LQCD results, in particular an understanding on the role and relevance of including the

spin 3/2 baryons consistently with large Nc requirements.

This work is organized as follows. In Section II the framework for the combined 1/Nc

and HBChPT expansions is presented. Section III presents the evaluation of the baryon

masses and Section IV the one for axial couplings at the one-loop level. Section V is de-

voted to applying those results in the ξ-expansion to LQCD results. Finally, Section VI is

devoted to observations and conclusions . Several appendices present useful material used

in the calculations, namely, Appendix A on spin-flavor algebra, Appendix B on symmetries,

Appendix C on the construction of effective Lagrangians, and Appendix D on useful matrix

elements of spin-flavor operators.

II. FRAMEWORK FOR THE COMBINED 1/Nc EXPANSION AND BARYON

CHIRAL PERTURBATION THEORY

In this section the framework for the combined 1/Nc and chiral expansions in baryons is

presented in some detail along similar lines as in the original works [27–29]. The symme-

tries that the effective Lagrangian must respect in the chiral and large Nc limits are chiral
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SUL(Nf )×SUR(Nf ) and contracted dynamical spin-flavor symmetry SU(2Nf )[23–26] 1. Nf

is the number of light flavors, and in this work Nf = 2. In the limit Nc →∞ the spin-flavor

symmetry requires baryons to belong into degenerate multiplets of SU(4). In particular, the

ground state (GS) baryons belong into a symmetric SU(4) multiplet, which consists of states

with I = S, where S the baryon spin and I its isospin. At finite Nc the spin-flavor symmetry

is broken by effects suppressed by powers of 1/Nc, and the baryon mass splittings in the GS

multiplet are proportional to (S + 1)/Nc. The effects of finite Nc are then implemented as

an expansion in 1/Nc at the level of the effective Lagrangian. Because baryon masses scale

as proportional to Nc, it becomes natural to use the framework of HBChPT [7, 48], where

the expansion in inverse powers of the baryon mass becomes part of the 1/Nc expansion.

The framework presented next follows that of Refs. [27, 28].

The non-relativistic baryon field, denoted by B, consists of the symmetric spin-flavor

SU(4) multiplet with states I = S, S = 1/2, · · · , Nc/2 (Nc odd). Chiral symmetry is

realized in the usual non-linear way on B, namely [2–4]:

(L,R) : B = h(L,R, u)B, (1)

where L(R) is a SUL(R)(2) transformation, u is given in terms of the pion fields πa by

u = exp(iπaIa/Fπ), where the isospin generators Ia are normalized by the commutation

relations [Ia, Ib] = iεabcI
c, Fπ = 92.4 MeV, and h(L,R, u) is an SUI(2) isospin transformation

which in any representation of Isospin satisfies Ruh†(L,R, u) = h(L,R, u)uL†. The chiral

covariant derivative DµB is given by:

DµB = ∂µB− iΓµB,

Γµ =
1

2
(u†(i∂µ + rµ)u+ u(i∂µ + lµ)u†), (2)

where lµ = vµ− aµ and rµ = vµ + aµ are gauge sources. Another necessary building block of

the effective chiral Lagrangian is the axial Maurer-Cartan one-form:

uµ = u†(i∂µ + rµ)u− u(i∂µ + lµ)u†, (L,R) : uµ = h(L,R, u)uµh
†(L,R, u). (3)

For later use, the following notation will be used: 〈A〉 ≡ TrA for flavor traces, and the

definition Aa ≡ 1
2
〈τaA〉, where A is in the fundamental representation, which implies that

1 See also Appendix B.
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in an arbitrary isospin representation A = 2AaIa (since in the fundamental representation,

Ia = τa/2). The definition τ 0 = I2×2 is used.

Since Fπ = O(
√
Nc), u, uµ and Γµ contain different orders in the expansion in pow-

ers of 1/Nc. The contracted SU(4) transformations (see Appendix A) are generated by

{Si, Ia, X ia}, where X ia = Gia/Nc are semiclassical at large Nc, i.e., commute with each

other. The ordering in Nc of the matrix elements of the spin-flavor generators in states

with S = O(N0
c ) are as follows: Si = O(N0

c ), Ia = O(N0
c ), and Gia = O(Nc). While

infinitesimal SU(4) transformations generated by Ia correspond to the usual isospin trans-

formations when acting on pions, the ones generated by X ia affect only the baryons (one can

define these generators to not affect the pion field as shown in Appendix B). The effective

Lagrangian can be systematically written as a power series in the low energy expansion or

Chiral expansion, and simultaneously in 1/Nc. It is most convenient to write the Lagrangian

to be manifestly chiral invariant as is usually done. The low energy constants (LECs) will

themselves admit an expansion in powers of 1/Nc. For the HBChPT expansion the large

mass of the expansion is taken to be the spin-flavor singlet component of the baryon masses,

M0 = Ncm0 (m0 can be considered here to be a LEC defined in the chiral limit and which

will have itself an expansion in 1/Nc). To O(1/Nc) baryon masses will read [25, 26]:

mB(S) = M0 +
CHF
Nc

S(S + 1) + c1NcM
2
π + · · · . (4)

In the following we will define

δm(S) ≡ CHF
Nc

S(S + 1) + c1NcM
2
π , (5)

which will be useful in the implementation of the expansion discussed later. The baryon

mass splittings due to the hyperfine term, second term in Eq. (4), must be considered to be

a small energy scale. It becomes necessary to establish of what order that term is in the

low energy expansion, as it naturally appears in combinations with powers of Mπ when loop

diagrams are calculated. This fact makes that the low energy and 1/Nc expansions do not

commute [30, 49], and the natural way to proceed is therefore to link the two expansions.

For the purpose of organizing the effective Lagrangian it is convenient to establish the link

between the two expansions. In the real world with Nc = 3 the ∆−N mass splitting is about

300 MeV, and therefore it is reasonable to count that quantity as O(p) in the low energy

expansion: the expansion where 1/Nc = O(p) = O(ξ) will be adopted in what follows, and
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it will be called ξ-expansion. This power counting corresponds to the so called small scale

expansion (SSE) [13], now consistently implemented in the context of the 1/Nc expansion.

Whenever appropriate, it will be indicated which aspects of the analysis are general and

which are only valid in that expansion. Up to O(ξ) the baryon effective Lagrangian reads

[27]:

L(1)
B = B†

(
iD0 + g̊Au

iaGia − CHF
Nc

~S2 − c1

2
Nc χ+

)
B, (6)

where g̊A is the axial coupling in the chiral and large Nc limits (it has to be rescaled by a

factor 5/6 to coincide with the usual axial coupling as defined for the nucleon), χ+ is the

source containing the quark masses: specifically χ+ = 2M2
π + · · · (see Appendix C ). Here

one notes an important point which will be present in other instances as well: the baryon

mass dependence on the current quark mass behaves at O(Nc M
2
π) (c1 is of zeroth order in

Nc), and this indicates that in a strict large Nc limit the expansion in the quark masses of

certain quantities such as the baryon masses cannot be defined due to divergent coefficients

of O(Nc).

The Lagrangian is manifestly invariant under chiral transformations, translations and

rotations (the latter also involving obviously the action of the Si generators of SU(4)). Under

an infinitesimal transformation generated by the spin-flavor generators X ia, the Lagrangian

(6) is transformed according to:

δL(1)
B = −i δαia [X ia,L(1)

B ]. (7)

According to this, and using the commutation relations in Appendix A, the kinetic term

changes by termsO(1/N2
c ), the term proportional to g̊A, which contains the πBB′ interaction

and the leading order terms of the axial currents, changes by terms which are a factor

O(1/N2
c ) smaller than the original term, and the term proportional to c1, which gives the

leading order (LO) σ-term in the baryon masses, is a spin-flavor singlet and thus invariant

under spin-flavor transformations. Finally, the hyperfine term proportional to CHF is the

one providing the dominant spin-flavor symmetry breaking effects, because it is modified

by terms O(1/Nc), which is the same order as the hyperfine term itself (this is so because

[~S2, X ia] = O(N0
c )). The construction of higher order Lagrangians can be accomplished

using the tools provided in Appendix C.

The operators appearing in the effective Lagrangian are normalized in such a way that

all the LECs are of zeroth order in Nc. Therefore, the 1/Nc power of a Lagrangian term
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with nπ pion fields is given by [50]:

n− 1− κ+
nπ
2
, (8)

where the spin-flavor operator is n-body (n is the number of factors of SU(4) generators

appearing in the operator), and κ is basically the number of factors of the generators Gia

remaining after reducing the operator using commutators. The last term, nπ/2, stems

from the factor (1/Fπ)nπ carried by any term with nπ pion fields. It is opportune to point

out that commutators of spin-flavor operators will always reduce the n-bodyness of the

product of operators: e.g., let G be any generator of SU(4), and consider the commutator

[G, ~S2] = {Si, [G, Si]}. In principle this looks like a three-body operator, but because [G, Si]

is a 1-body operator, [G, ~S2] is actually a 2-body operator.

A. Consistency of the 1/Nc expansion

The consistency of the 1/Nc expansion in QCD gives rise to the dynamical spin-flavor

contracted SU(2Nf ) symmetry in baryons at large Nc. At the baryon level that symmetry

can be deduced as the result of consistency or correct Nc power counting of observables

in which pion-baryon couplings are involved. This is because the pion-baryon coupling is

O(
√
Nc) from Witten’s counting rules [22]. In particular the consistency of pion-baryon

scattering is a direct way of deriving the existence of the dynamical spin-flavor symmetry

[25, 26]. In general, for any quantity there must be cancellations between the terms with the

“wrong”power counting stemming from different Feynman diagrams. For instance, baryon

masses are O(Nc), and therefore pion loop contributions cannot give contributions which

scale with a higher power of Nc. On the other hand, the baryon mass splittings are O(1/Nc),

and loop contributions must respect that scaling. Similarly, in the axial currents, whose

matrix elements are O(Nc) such cancellations occur when loop corrections are calculated.

All this will be illustrated in the application to baryon masses and axial couplings discussed

later. Although certain key cancellations must be exact in the large Nc limit, the analysis of

LQCD results will show that they are very significant in the physical world where Nc = 3.
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B. ξ power counting

The terms in the effective Lagrangian are constrained in their Nc dependence by the

requirement of the consistency of QCD at large Nc. This constraint is in the form of a lower

bound in the power in 1/Nc for each term one could write down in the Lagrangian. This

leads to constraints on the Nc dependencies of the ultra-violet (UV) divergencies, which have

to be subtracted by the corresponding counter-terms in the Lagrangian. One very important

point to mention is that the UV divergencies are necessarily polynomials in low momenta

p (derivatives), in M2
π and in 1/Nc (modulo factors of 1/

√
Nc due to 1/Fπ factors in terms

where pions are attached). Therefore, the structure of counter-terms is independent of any

linking between the 1/Nc and chiral expansions. For this reason, one can simply take the

large Nc and low energy limits independently in order to determine the UV divergencies.

For a connected diagram with nB external baryon legs, nπ external pion legs, ni vertices of

type i which has nBi baryon legs and nπi pion legs, and L loops, the following topological

relations hold [51, 52]:

L = 1 + Iπ + IB −
∑

ni, 2IB + nB =
∑

ni nBi , 2Iπ + nπ =
∑

ni nπi , (9)

where Iπ is the number of pion propagators and IB the number of baryon propagators.

The chiral or low energy order of a diagram, where νpi is the chiral power of the vertex

of type i, is then given by [51]:

νp = 2− nB
2

+ 2L+
∑
i

ni (νpi +
nBi
2
− 2), (10)

Note that nBi is equal to 0 or 2 in the single baryon sector.

On the other hand, the 1/Nc power of a connected diagram is determined by looking

only at the vertices: the order in 1/Nc of a vertex of type i is given according to Eq. (8)

by: νOi +
nπi
2

, where νOi is the order of the spin-flavor operator. Thus, the 1/Nc power of a

diagram, upon use of the third Eq. (9), is given by:

ν1/Nc =
nπ
2

+ Iπ +
∑

ni νOi , (11)

where nπ is the number of external pions, and νOi the 1/Nc order of the spin-flavor operator

of the vertex of type i. Since νOi can be negative (due to factors of Gia in vertices), one

can think of individual diagrams with ν1/Nc negative and violating large Nc consistency,
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requiring cancellation with other diagrams. Such a sum will have to respect the mentioned

lower bound on the 1/Nc power corresponding to the sum of such diagrams. The explicit

example of such cancellation in the axial currents at one-loop is given in Section IV.

One can determine now the nominal counting of the one-loop contributions to the baryon

masses and axial currents. The LO baryon masses are O(Nc), Eq. (4).The one loop correc-

tion shown in Fig. 1 has: (L = 1, nB = 2, nπ = 0, n1 = 2, νO1 = −1, nB1 = 2, νp1 = 1)

giving νp = 3 as it is well known, and ν1/Nc = −1. Since there is only one possible diagram,

this must be consistent by contributing O(Nc) to the spin-flavor singlet component of the

masses, which is the case as shown in the next section. For the axial currents one has the

diagrams in Fig. 2. The current at tree level is O(Nc), and the sum of the diagrams cannot

scale like a higher power of Nc. Performing the counting for the individual diagrams one

obtains: νp(j) = 2 for j = 1, · · · , 4, and ν1/Nc(j) = −2, j = 1, 2, 3 and ν1/Nc(4) = 0. Thus

a cancellation must occur of the O(N2
c ) terms when the contributions to the axial currents

by diagrams 1, 2 and 3 are added. Since the acceptable bound is that the sum be O(Nc),

one concludes that the axial current has, at one-loop, corrections O(p2Nc) or higher.

One can consider the case of two-loop diagrams, in particular diagrams where the same

pion-baryon vertex Eq.(6) appears four times. For the masses one has νp(j) = 5, and

individual diagrams give ν1/Nc = −2. A cancellation must occur to restore the bound on

the Nc counting for the masses, i.e., O(Nc). Thus, at two-loops the UV divergencies of the

masses must be O(p5Nc) or higher. For the axial currents a similar discussion requires that

counter-terms to the axial currents must be O(p4Nc) or higher.

Defining the linked power counting ξ by: O(1/Nc) = O(p) = O(ξ), the ξ order of a given

Feynman diagram will be simply equal to νp + ν1/Nc as given by Eqs.(10) and (11), which

upon use of the topological formulas Eq.(9) leads to:

νξ = 1 + 3L+
nπ
2

+
∑
i

ni (νOi + νpi − 1). (12)

The ξ-power counting of the UV divergencies is obvious from the earlier discussion. At

one-loop one finds that the masses have O(ξ2) and O(ξ3) counter-terms, while the axial

currents will have O(ξ) and O(ξ2) counter-terms. To two loops one expects O(ξ4) and

O(ξ5), and O(ξ3) and O(ξ4) counter-terms for masses and axial currents respectively. The

non-commutativity of limits is manifested in the finite terms where Mπ and or momenta

and δm appear combined in non-analytic terms, and are therefore sensitive to the linking of
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the two expansions.

III. BARYON MASSES

In this section baryon masses are analyzed to order ξ3, or next-to-next to leading order

(NNLO), in the limit of exact isospin symmetry. To that order the mass of the baryon of

spin S reads:

mB(S) = Ncm0 +
CHF
Nc

S(S + 1) + c1NcM
2
π + δm1−loop+CT

B (S), (13)

where δm1−loop+CT
B (S) involves contributions from the one-loop diagram in Fig. 1, and CT

denotes counter-terms. From both types of contributions, there are O(ξ2) and O(ξ3) terms,

and the calculation is exact at the latter order, as can be deduced from the previous discus-

sion on power counting. Notice that CHF is equal to the LO term in M∆ −MN in the real

world Nc = 3.

p0

k

FIG. 1: One-loop contribution to baryon self energy. The thick propagator indicates sum over all

possible baryons that can contribute.

The leading 1-loop correction to the baryon self energy, diagram in Fig. 1, can be calculated

through the matrix element 〈B | δΣ(1−loop) | B〉, with:

δΣ(1−loop) = i
g̊2
A

F 2
π

1

d− 1

∑
n

GiaPnGia I(1−loop)(δmn − p0,Mπ) , (14)

where n indicates the possible intermediate baryon spin-isospin states in the loop, Pn are

the corresponding spin-flavor projection operators, δmn = δm(Sn), and the loop integral is
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calculated in dimensional regularization with the result,

I(1−loop)(Q,Mπ) =

∫
ddk

(2π)d

~k2

k2 −M2
π + iε

1

k0 −Q+ iε

=
i

16π2

{
Q

(
(3M2

π − 2Q2)(λε − log
M2

π

µ2
) + (5M2

π − 4Q2)

)
+ 2π(M2

π −Q2)3/2 + 4(Q2 −M2
π)3/2 tanh−1 Q√

Q2 −M2
π

}
, (15)

where Q = δmn − p0, λε = 1
ε
− γ + log 4π, and µ is the renormalization scale which will

be taken later to be of the order of mρ. For the specific evaluation of δΣ(1−loop) for a given

baryon state denoted by in, p0 = δmin−p0, where p0 is a residual energy (when evaluated on

an on-shell baryon it is the kinetic energy which is O(p2/Nc)). The non-commutativity of the

1/Nc and Chiral expansions of course resides in the non-analytic terms of the loop integral

through their dependence on the ratio Q2/M2
π . Notice that when the one loop integrals are

written in terms of the residual momentum p0, they do not depend on the spin-flavor singlet

piece of δm, namely the σ-term in Eq.(5).

Appendix D provides all the necessary elements for the evaluation of the spin-flavor

matrix elements in Eq. (14) as well as in the calculation of the one-loop corrections to the

axial currents below. The explicit final expressions for the self energy are not given here

because they are too lengthy, but with those elements the reader can easily obtain them.

The one-loop contribution to the wave function renormalization constant is given by:

δZ1−loop =
∂

∂p0
δΣ(1−loop)


p0→0

. (16)

The explicit evaluation of the ultraviolet divergent pieces of the self energy gives:

δΣUV
(1−loop) =

λε
16π2

g̊2
A

F 2
π

(17)

×
{
CHF
24Nc

(
−3M2

π(3Nc(4 +Nc)− 20~S2) + 8
C2
HF

N2
c

(Nc(4 +Nc)(3 + 5~S2)− 4~S2(6 + 7~S2))

)
+ p0

(
M2

π

2
(
3

8
Nc(4 +Nc)− ~S2)− C2

HF

4N2
c

(Nc(4 +Nc)(3 + 2~S2)− 8~S2(3 + ~S2))

)
+O(p02

)

}
.

The UV divergent pieces start at O(ξ2). Note that the UV divergencies in the mass (term

independent of p0) is produced by the contribution of the partner baryon and is proportional

to the mass splitting. As is well known, they are absent in HBChPT without explicit

∆. The O(N0
c ) UV divergence is spin-flavor singlet and proportional to M2

π , while the
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contributions to mass splittings are O(1/N2
c ). Notice that the leading UV divergence of

δZ1−loop is O(M2
πNc): this is necessary as shown later for rendering the one-loop calculation

of the axial currents consistent in the large Nc limit. Since the calculation is accurate

to O(ξ3), additional terms in the effective Lagrangian up to that order are necessary for

renormalization. The terms necessary for renormalizing the self energy are therefore the

following:

LCTΣ = B†
{
m1(Nc)

Nc

+
CHF1(Nc)

N2
c

~S2 +
CHF2(Nc)

N3
c

~S4 + µ1(Nc)χ+ +
µ2(Nc)

Nc

χ+
~S2 (18)

+

(
w1(Nc)

Nc

+
w2(Nc)

Nc

~S2 +
w3(Nc)

N3
c

~S4 + (z1(Nc)Nc +
z2(Nc)

Nc

~S2)χ+

)
(iD0 − δm)

}
B,

where the residual energy p0 has been identified with the operator (iD0−δm). All LECs are

here of the form X(Nc) = X0 + X1/Nc + · · · . Writing X = X(µ) + γ
X
λε, one renormalizes

the self energy to O(ξ3). The coefficients γ
X

are determined from δΣUV
(1−loop) given above.

While the counter-terms are defined such that X(µ) is O(N0
c ), it is possible that γ

X
is of

higher order in 1/Nc. Notice that among the higher order terms there are terms which can

be simply absorbed into 1/Nc corrections to the LECs of the lowest order Lagrangian, and

into m0.

Finally, the baryon masses are given by:

mB = 〈B | Ncm0+
CHF
Nc

~S2+c1NcM
2
π+(δΣUV finite

(1−loop) +δΣCT )|p0=0 (1+δZUV finite
1−loop +δZCT ) | B〉.

(19)

Note that the correction to the wave function renormalization factor enters in the expression

for the mass corrections: this is because δΣ(p0 = 0) starts with terms O(ξ2) and δZ starts

at O(ξ), therefore the O(ξ3) terms of the mass correction involve these lower order terms of

the wave function renormalization.

The one-loop corrections and corresponding counter-terms contribute to the masses at

O(ξ2) and O(ξ3), while in a strict large Nc limit the following ordering is found:

MB = O(Nc) +O(NcM
2
π) +O(N0

cMπ) + · · · ,

MB −M ′
B = O(

1

Nc

) +O(
1

MπN2
c

). (20)

Obviously the term O( 1
MπN2

c
) stems from the 1/Nc expansion of non-analytic terms and

shows the non-commutativity of limits.
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The one loop correction with the vertex proportional to c1 in Eq.(6) gives O(ξ4) contri-

butions to the masses, and is therefore beyond the accuracy considered here.

The σ-terms for N and ∆, defined by σB = m̂∂mB
∂m̂

(m̂ = 1
2
(mu +md)), are O(ξ) with the

one-loop corrections contributing up to O(ξ3). The difference σB −σB′
is O(ξ2) and at that

order it receives only finite contributions from the loop. This implies that the slopes of the

N and ∆ masses as functions of Mπ are the same up to O(ξ2) deviations. This seems to be

closely followed by the lattice QCD results analyzed later. In the large Nc limit, obviously

σ = O(Nc). The terms of that order are necessarily spin-flavor singlet, and taking the limit

at fixed Mπ one finds σ∆ − σN = O(1/N2
c ), a result similar to the one in the ξ-expansion.

IV. AXIAL COUPLINGS

In this section the evaluation of the axial couplings including corrections O(ξ2) is pre-

sented. At that order the one-loop corrections must be calculated.

The matrix elements of interest for the axial currents are 〈B′ | Aia | B〉 evaluated at

vanishing external 3-momentum. The axial couplings are then defined by:

〈B′ | Aia | B〉 = gBB′

A

5

6
〈B′ | Gia | B〉 . (21)

The axial couplings defined here are O(N0
c ). The O(Nc) of the matrix elements of the axial

currents is due to the operator Gia. The factor 5/6 mentioned earlier is included so that gNNA

at Nc = 3 exactly corresponds to the usual nucleon gA, which has the value 1.2701± 0.0025

[53]. This definition of the axial couplings is convenient in the context of the 1/Nc expansion,

as the differences between the different axial couplings are O(1/N2
c ).

(1) (2) (3)

FIG. 2: Diagrams contributing to the 1-loop corrections to the axial-currents. The crossed circle

denotes the axial-current operator.

The determination of the axial couplings to O(ξ2) require the calculation of the 1-loop

corrections to the axial current. Only the contributions with no pion pole are necessary,

13



and they are given by the diagrams in Fig. 2. The resulting 1-loop contribution to the axial

currents reads:

δAia1−loop = δAia1−loop(1) + δAia1−loop(2 + 3) + δAia1−loop(4) , (22)

where δAia1−loop(2 + 3) is given by a factor 1/2 times the no-baryon-pole contributions of

diagrams (2+3). The different contributions read as follows, where one needs to take the

limits p0, p′0 → 0:

δAia1−loop(1) = −i g̊
3
A

F 2
π

1

d− 1

×
∑
n,n′

GjbPn′GiaPnGjb I1−loop(δmn − p0,Mπ)− I1−loop(δmn′ − p′0,Mπ)

p0 − p′0 − δmn + δmn′
,

δAia1−loop(2 + 3) =
g̊A
2

(
GiaδZ1−loop + δZ1−loopG

ia
)
,

δAia1−loop(4) = − g̊A
3F 2

π

∆(Mπ)Gia. (23)

Obviously, Gia and δZ1−loop do not commute in general. The pion tadpole integral in the

last term is given by:

∆(Mπ) = − M2
π

16π2
(λε − log

M2
π

µ2
). (24)

Notice that the contribution by diagram (4) is actually O(ξ4), and thus beyond the degree

of accuracy of the present calculation. It can serve however as a measure of the size of the

NNNLO corrections.

The corrections to the axial currents must scale as O(Nν
c ) with ν ≤ 1. While diagram

(4) is O(N0
c ) and therefore consistent in itself, diagrams (1) and (2+3) above are O(N2

c ).

As shown in Ref. [28], the offending terms cancel upon adding the diagrams. To test

the cancellation it is sufficient to take the large Nc limit at fixed Mπ. A straightforward

evaluation leads to:

δAia1−loop(1)+δAia1−loop(2+3)
∣∣∣
Nc→∞

= −i g̊
3
A

F 2
π

1

d− 1

{
1

2
[[Gjb, Gia], Gjb]

∂

∂p0
I1−loop(p

0,Mπ) + · · ·
}
,

(25)

where · · · indicate further terms which are consistent with the Nc power counting. The

suppression of the O(N2
c ) terms is direct consequence of the appearance of the commutator

of two generators G, which is O(N0
c ), when the diagrams are added up. In consequence the

displayed terms are O(N0
c ).
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The UV divergent contributions of the individual diagrams read (using the notation

~Sn ≡ (S(S + 1))n):

δAia1−loop(1)UV = − λε
48π2

g̊3
A

F 2
π

{
3M2

πG
jbGiaGjb

− 2

(
CHF
Nc

)2 (
GjbGia

[[
Gjb, ~S2

]
, ~S2
]

+
[
~S2,
[
~S2, Gjb

]]
GiaGjb

+
[
~S2, Gjb

]
Gia

[
Gjb, ~S2

] )}
,

δAia1−loop(2 + 3)UV =
λε

96π2

g̊3
A

F 2
π

{
3M2

π{Gia, G2}

− 2

(
CHF
Nc

)2 (
GiaGjb[[Gjb, ~S2], ~S2] + [~S2, [~S2, Gjb]GjbGia

)}
,

δAia1−loop(4)UV =
λε

48π2

g̊A
F 2
π

M2
π G

ia. (26)

One notices that only the terms proportional to M2
π in diagrams (1) and (2+3) diverge as

proportional to N2
c , while the terms proportional to C2

HF are O(N0
c ). Thus, only the O(N2

c )

terms proportional to M2
π need to be cancelled to give consistency. One can easily check

that such a cancellation indeed occurs, leaving only terms O(N0
c ). An explicit evaluation of

these UV divergent terms using the results from Appendix D finally gives:

δAia1−loop
UV

=
λε

32π2

g̊A
F 2
πN

2
c

{
(
2

3
+ g̊2

A)M2
πN

2
cG

ia

+
C2
HF g̊

2
A

3

(
4− 2Nc(4 +Nc)G

ia − 7[~S2, [~S2, Gia]] + 4{~S2, Gia}
)}
. (27)

The terms in the Lagrangian needed to renormalize the axial currents are then the fol-

lowing:

LCTA = B†uia
(
CA

0

Nc

Gia +
CA

1

4
{χ+, G

ia}+
CA

2

N2
c

{~S2, Gia}+
CA

3

Nc

[~S2, Gia] +
CA

4

Nc

SiIa
)
B . (28)

These are all the terms which can contribute to the axial currents up to O(ξ), which will

determine the axial couplings up to O(ξ2), i.e., NNLO, which is what is needed for our

purpose. There are several very important observations concerning the ξ-power counting.

The corrections to the axial couplings start at O(ξ), and the individual contributions of the

different baryons in the loop diagrams are also O(ξ). Even the difference of different axial

couplings gBB
′

A − gB
′′B′′′

A starts at O(ξ). These latter differences are UV finite. The large

Nc cancellations do not seem manifest. However, at Nc = 3, where the ξ-expansion is used,

cancellations do occur numerically as shown by Fig. 4 in Section V. Thus, the smallness of
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O(ξ) terms in the axial couplings is a result of the incipient manifestation of the cancellations

in the large Nc limit. If one would consider the strict large Nc limit, the one loop corrections

and counter-terms considered give the following 1/Nc power counting:

gBB
′

A − 5

6
g̊A = O(M2

π) + log

(
M2

π

µ2

)
O(

M2
π

Nc

) + · · · ,

gBB
′

A − gB′′B′′′

A = O(
1

N2
c

) +O(
Mπ

N2
c

), (29)

where, as expected, the latter differences are UV finite as in the ξ expansion.

The explicit expression for gNNA at O(ξ2) is give here for completeness:

gNNA =
5

6
g̊A +

5

12N2
c

(3CA
2 + 2Nc(C

A
0 + CA

1 M
2
πNc))

+
5̊g3

A(4 +Nc)

6CHFF 2
πN

2
c (36π)2

{
−18C3

HF − 12CHFM
2
πN

2
c − 9πC2

HF

√
−9C2

HF +M2
πN

2
c

+ 2πM2
πN

2
c (MπNc −

√
−9C2

HF +M2
πN

2
c ) + 27C3

HF log
M2

π

µ2

+ 2
√

9C2
HF −M2

πN
2
c (9C2

HF + 2M2
πN

2
c ) tanh−1

(
3CHF√

9C2
HF −M2

πN
2
c

)}
. (30)

While in next section a discussion of the nucleon’s gA in the context of LQCD results is

given, one can readily make an estimate of the spin-flavor symmetry breaking terms in the

axial couplings gNNA vs g∆N
A using the result for the ∆ width:

Γ∆→πN =
1

12π

(
6

5

g∆N
A

Fπ

)2

((m∆ −mN)2 −M2
π)3/2. (31)

Using the experimental value Γ∆→πN(Exp) = 116 − 120 MeV [53], one obtains g∆N
A =

1.235± 0.011, which is remarkably close to gNNA = 1.2701± 0.0025 [53].

V. ANALYSIS OF LATTICE QCD RESULTS FOR BARYON MASSES AND THE

NUCLEON’S AXIAL COUPLING

As an application of the present framework of the ξ-expansion, this section presents an

analysis of LQCD results for baryon masses and the nucleon’s axial coupling.

Lattice QCD calculations of the non-strange ground state baryon masses (both of N and

∆ baryons) have opened the possibility of determining the quark mass dependencies, and

similarly for the axial coupling of the nucleon. These calculations represent a very fruitful
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ground of applications for ChPT, allowing in particular for a study of the convergence of

the low energy expansion. Current dynamical two- and three-light-flavor calculations of the

hadron spectrum, and in particular of baryon masses, with fixed strange quark mass and

variable mu = md [34–41] are achieving remarkably accurate results in a range of quark

masses where extrapolations to the physical limit are now possible using effective theory.

All calculations present similar results for the N and ∆ masses, namely, roughly linear

dependencies of the masses as a function of Mπ, and extrapolations to the correct physical

value within a few percent. For the nucleon axial coupling gNNA the results are particularly

interesting [42–47] because they show small dependence in a broad range of Mπ. The most

recent LQCD calculations for Nf = 2 [42, 44, 47] and Nf = 2 + 1 [43, 45, 46], all agree

on that observation. An open issue is that all calculations give an underestimation for the

value of gNNA of about 12% below the experimental value.

Effects due to finite volume of the lattice have been studied for the observables considered

here. Those effects are determined primarily by the value of the product LMπ, where L is

the length of the lattice. For the baryon masses, the rule LMπ & 4 [33] seems to be

sufficient for the volume effects to be negligibly small. On the other hand, for gNNA the

LQCD understanding of the finite volume effects is not yet complete. According to Ref. [45],

gNNA clearly exhibits scaling in LMπ and in lattices with LMπ ∼ 4 − 5 the effect on gNNA

is a 9 % reduction in calculations with 2 + 1 flavors of domain wall fermions and a 25 %

reduction in calculations with two flavors of Wilson fermions. This has led to the current

view that LMπ & 5 − 6 or even higher may in fact be needed to reliably determine gNNA .

Finite-volume effects for mases and the nucleon axial coupling have been studied in effective

theories [54–63]. A detailed study of these effects in the present formalism is beyond the

scope of this work, and will be presented elsewhere [64].

In the following, combined fits to LQCD results for N and ∆ masses and the nucleon gA

as functions of Mπ are carried out. For the N and ∆ masses the results used are those from

the PACS-CS collaboration of Ref. [36] and the LHP collaboration of Ref. [35]. For gNNA the

results used are those from the LHP collaboration [43] and from the ETM collaboration [44].

All collaborations obtain results satisfying the constraint LMπ & 4 and for quark masses

reaching down close to the physical point, in particular for the baryon masses. The fits are

carried out only including results where LMπ & 4. The analysis of these LQCD results is

carried out up to O(ξ3) for the masses and O(ξ2) for gNNA . The set of Lagrangian counter-
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terms is the one displayed in Eqs. (19) and (28), which are summarized by the following

equations:

δΣCT (p0 = 0)(S) =
m1

Nc

+
CHF1

N2
c

~S2 +
CHF2

N3
c

~S4 + µ1M
2
π +

µ2

Nc

~S2M2
π ,

δZCT (S) =
w1

Nc

+
w2

Nc

~S2 +
w3

N3
c

~S4 + z1NcM
2
π +

z2

Nc

~S2M2
π ,

δgCTA (S, S ′) =
CA

0

Nc

+ CA
1 M

2
π +

CA
2

N2
c

(~S2 + ~S ′2) +
CA

3

N2
c

(~S2 − ~S ′2)

+
4CA

4

Nc(2 +Nc)
δSS′ ~S2 . (32)

There are several LECs, which in order to be determined, require knowledge of results at

different values of Nc. With the LQCD results at fixed Nc = 3, those LECs combine with

existing ones at lower order, making their determination impossible. Because LQCD results

on gN∆
A are not analyzed and the lack of results for g∆∆

A , LECs which split the values of the

different gA’s cannot be fixed either. For instance, the LECs m1 and w1 give the sub-leading

Nc dependence of m0, and therefore at fixed Nc = 3 they are absorbed into the fitted value

of m0. The same will happen with CHF1 and w2 with CHF . The LEC µ1 is a correction

to the LO σ-term LEC c1. Similarly, one cannot separate CA
0 from g̊A. Therefore, without

loss of generality at fixed Nc = 3, the redundant LECs can be set to vanish. In addition,

since the current fits only involve the nucleon’s axial coupling, gNNA , not all LECs affecting

the axial currents can be determined as mentioned earlier. In particular, counter-terms with

commutators in Eq. (28) only appear in gN∆
A . Of course, depending on the order in the

ξ-expansion, the number of LECs varies. Specifically, at leading order (LO), that is O(ξ)

for the mass and O(ξ0) for the axial coupling, the LECs are m0, g̊A, CHF and c1, at NLO

the additional LECs CHF1, µ1 and CA
0 appear. Finally, at NNLO, that is O(ξ3) for the mass

and O(ξ2) for the axial coupling, the additional LECs µ2, z1 and CA
1 , which are fitted, and

µ3, w1, w2 and CA
2,3,4 that cannot be determined, make their appearance.

The combined fits to N and ∆ masses and to gNNA up to NNLO for the four possible

combinations of LQCD results from the collaborations considered here are presented in

Table I, which shows the values for LECs obtained from the fits and the extrapolated

values for mN , m∆ and gA to the physical point. To estimate the theoretical errors, the

original lattice results are bootstrapped by Montecarlo, and the errors correspond to a 68%

confidence interval. In the fits, for the masses the range Mπ < 600 MeV is used while for

the axial coupling of the nucleon the range Mπ < 700 MeV is used. It is expected that the
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radius of convergence of the low energy expansion is smaller for the baryon masses than for

gA; this is because in the latter case the discussed cancellations reduce the Mπ dependence,

while the lack of such cancellations for the loop contribution to the masses is magnified by

Nc. The combined fits are displayed in Fig 3, which shows the LO to NNLO fits of LQCD

results from the PACS-CS and LHP collaborations.
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FIG. 3: Combined fits to PACS-CS [36] and LHP [43] corresponding to the results shown in the first

row of Table I. The diamonds depict the physical values. The fits correspond to: LO (long-dashed

line), NLO (short-dashed line) and NNLO (solid line). The bands correspond to the theoretical

68% confidence interval.

The following remarks on the fits are in order:

1. All fitted LECs are of natural size when the renormalization scale is taken to be

µ ∼ mρ.

2. Parameters appearing at lower orders, namelym0, g̊A and CHF , remain stable at higher

orders, except c1 that changes by more than the estimated 30% when increasing the

order in ξ of the fit by one unit.

3. For baryon masses, LQCD data and physical point values are consistent even at LO,

where with only three parameters one can extrapolate to the physical values and get

a good fit up to Mπ ∼ 350 MeV as shown in Fig. 3. For larger values of Mπ an

approximate linear fit is consistent [35] in the range Mphys
π < Mπ < 450 MeV. Since at

LO there are contributions to the baryon masses which are proportional to Nc c1M
2
π ,
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FIG. 4: Finite parts of the one-loop contributions to gNNA : the upper left panel shows the individual

contributions of the diagrams in Fig. 2 up to O(ξ3), and the right panel shows the effect of switching

off the contribution of the ∆ in the loops. The third panel shows the effect of removing the

contributions of the counter-terms to the masses. Throughout µ = 700 MeV.

the NLO and NNLO effects are necessary to give the approximate linear behavior in

that range of Mπ.

4. For the case of the axial current, cancellations of large contributions from individual

loop diagrams are very pronounced and the almost flat behavior of gNNA as a function

of Mπ obtained in LQCD is naturally explained. This is shown in the upper left panel

of Fig. 4 which depicts the finite one-loop contributions to gNNA from each diagram

(µ = 700 MeV). As stated in Eq. (25) this cancellation is exact in the large Nc limit.

However, at Nc = 3 this cancellation is not exact but still quite pronounced (solid

curve in upper left panel of Fig. 4), and plays the key role in explaining the small
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dependence in Mπ. A similar cancellation occurs between the contributions of N and

∆ in the loop contributions. This is shown in the upper right panel of Fig. 4.

5. The physical gNNA cannot be fitted along with the lattice results, instead the lattice

results and the expansion to NNLO extrapolate to a value 12% smaller than the

physical one, as clearly shown in Fig. 3. The recent LQCD results [65] which reach

further down in Mπ continue that trend. On the other hand, recent LQCD results

for gNNA from the CLS collaboration [66] can be made compatible with the physical

value, but the error bars for Mπ < 400 MeV are quite large, and thus they cannot be

considered to be significantly different than the ones of the LHP collaboration depicted

in Fig. 3. It seems therefore, that the LQCD calculations are still evolving and it is

possible that soon the origin of the mentioned discrepancy will be elucidated.

The argument that the current LQCD results are correct and that the failure to extrap-

olate to the correct physical value is a problem of the effective theory seems unlikely on

the following grounds. It is evident from Fig. 3 that in that case the effective theory

should give up to a 12% enhancement below Mπ < 300 MeV. Since that does not

occur at the order calculated here, namely NNLO, it should be provided by NNNLO

contributions. The latter contributions are O(ξ3), and estimating that the effective

value of the expansion parameter ξ in the mass range of the physical pion mass is 1/3

to 1/4, one concludes that NNNLO corrections cannot be larger than a few percent.

6. A fit restricted only to masses gives too small a value for gNNA , namely, gNNA ∼ 0.5−0.8.

A realistic value can only be obtained with the combined fit.

7. Predictions for gN∆
A and g∆∆

A cannot be made without the corresponding LQCD results.

However, the results at the physical point from Eq. (31) suggest that these are going

to be very similar in value to gNNA . Further efforts to study these couplings in LQCD

will be very useful.

8. In the masses one finds that above Mπ > 350 − 400 MeV there is a significant can-

cellation between the contributions of the one-loop diagram and the counter-terms as

shown in Fig 4, which must be taken as an indicator of the range of convergence of

the expansion. Note that the mass counter-terms are O(M2
πN

0
c ) = O(ξ2).
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LQCD Input Order σN [MeV] σ∆ [MeV]

PACS-CS + LHP
LO 27 27

NLO 58 68

NNLO 66 (4) 90 (5)

LHP + LHP
LO 21 21

NLO 55 66

NNLO 76 (4) 99 (4)

TABLE II: Results for the N and ∆ σ-terms. These results correspond to the fits in the first two

rows of Table I.

9. Evaluating the σ terms at the physical pion mass using the fits in Table I, the results

shown in Table II are obtained.

It is evident from the important change in the results from NLO to NNLO that the

σ terms cannot yet be very accurately determined from the current LQCD results.

One finds that the σ terms do not depend significantly on the choice of LQCD results

for gNNA . σ terms were obtained in other analyses of LQCD results in the framework

of SU(3) BChPT with ∆ included in Ref. [67]. The present results at NLO are

compatible with theirs, but are substantially larger at NNLO. However, if the fit is

required to pass through the physical baryon masses, for σN the NNLO is similar to

that in [67], however, the result obtained here where σN < σ∆, is opposite to the one

in [67]. This indicates that the σ terms are sensitive to the particular formulation of

the effective theory and also to the order of the expansion, an issue which remains to

be clarified.

10. It must be emphasized that the results obtained here have many similarities with those

obtained in works where the ∆ has been included explicitly [16, 19, 20, 67–69]. The

main advantage of the present approach of the ξ-expansion is its systematic character,

which in particular will be more prominently shown when carrying out higher order

calculations than the ones considered here.
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VI. DISCUSSION AND CONCLUSIONS

Chiral symmetry and the large Nc limit are of fundamental conceptual importance in

QCD. The former is known to play a crucial role in light hadrons, and there are multi-

ple indications that the latter is also important, in particular for baryons. It is therefore

very important to have a theoretical framework where both of these aspects of QCD are

consistently incorporated. This is possible with the combined 1/Nc and Chiral expansions

of QCD, which in the baryon sector is implemented with the effective theory discussed in

this work. A particular power counting, the ξ-expansion, which links the 1/Nc and low

energy expansions as 1/Nc = O(ξ) = O(p) is proposed as the most realistic one for studying

baryons at Nc = 3. Results for the masses and axial couplings at NNLO have been given,

and applied to current LQCD results.

The ξ-expansion at NNLO clearly provides a satisfactory description of the LQCD results,

and in particular it illuminates the mild dependence of the axial couplings on the quark

masses as a result of important cancellations, which had been realized in various previous

analysis by various groups. It is important to complete the study in SU(3), in particular

because the one-loop contributions to the baryon masses become larger in magnitude, and

a smaller range of convergence is expected. These results will be presented elsewhere [70]

The deficit in gNNA at the physical point seems to be a LQCD issue rather than a problem

of convergence of the effective theory. In particular because the ξ-expansion is especially

well behaved for gA. Possible sources of systematic errors in the extraction of gA from LQCD

calculations might be the finite volume effects and/or the contamination in the three-point

functions by excited baryon states.

In addition to the tests LQCD can provide on quark mass dependencies, it is also an

ideal tool to test the Nc behavior of QCD. Baryon LQCD is becoming accessible at varying

values of Nc [71], which is a promising development.
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Appendix A: Spin-flavor Algebra

The 4N2
f − 1 generators of the spin-flavor group SU(2Nf ) consist of the three spin gener-

ators Si, the N2
f − 1 flavor SU(Nf ) generators T a, and the remaining 3(N2

f − 1) spin/flavor

generators Gia. The commutation relations are:

[Si, Sj] = iεijkS
k, [T a, T b] = ifabcT

c, [T a, Si] = 0 ,

[Si, Gja] = iεijkG
ka, [T a, Gib] = ifabcG

ic ,

[Gia, Gjb] = i
4
δijfabcT c + i

2Nf
δabεijkSk + i

2
εijkdabcGkc . (A1)

For two flavors one has the isospin generators Ia a = 1, 2, 3.

In representations with Nc indices (baryons), the generators Gia have matrix elements

O(Nc) on states with S = O(N0
c ). A contracted SU(4) algebra is defined by the generators

{Si, Ia, X ia}, where X ia = Gia/Nc. In large Nc, the generators X ia become semiclassical as

[X ia, Xjb] = O(1/N2
c ), while having matrix elements O(1) in baryon representations.

Appendix B: Non-linear realization of chiral symmetry and spin-flavor transforma-

tions

In the symmetric representations of SU(4) the baryon spin-flavor multiplet consists of

the baryon states with I = S. In particular, isospin transformations will act on the spin-

flavor multiplet in an obvious way. This permits a straightforward implementation of the

non-linear realization of chiral SUL(2) × SUR(2) on the spin-flavor multiplet. Defining as

usual the Goldstone Boson fields πa through the unitary parametrization u = exp(iπ
aIa

Fπ
)

(note that in the fundamental representation Ia = τa/2), for any isospin representation one

defines a non-linear realization of chiral symmetry according to [3, 4]:

(L,R) : u = u′ = Ruh†(L,R, u) = h(L,R, u)uL†, (B1)

where (L,R) is a SUL(2) × SUR(2) transformation. This equation defines h, and since h

is an isospin SU(2) transformation itself, it can be written as h = exp(icaIa). The chiral

transformation on the baryon multiplet B is then given by:

(L,R) : B = B′ = h(L,R, u)B. (B2)
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On the other hand, spin-flavor transformations of interest are the contracted ones, namely

those generated by {Si, Ia, X ia = 1
Nc
Gia}. While the isospin transformations act on the

pion fields in the usual way, and the spin transformations must be performed along with the

corresponding spatial rotations. The transformations generated by X ia are defined to only

act on the baryons.

Appendix C: Tools for building effective Lagrangians

The effective baryon Lagrangian can be expressed in the usual way as a series of terms

which are SUL(2) × SUR(2) invariant (upon introduction of appropriate sources; see for

instance [72] for details). In addition, implemented in the effective Lagrangian is the ap-

proximate SU(4) symmetry and its breaking as a power series in 1/Nc [27]. The fields in the

effective Lagrangian are the Goldstone Bosons parametrized by the unitary SU(2) matrix

field u and the baryons given by the symmetric SU(4) multiplet B of I = S fields.

The building blocks for the effective theory consist of low energy operators, and spin-flavor

operators.

The low energy operators are the usual ones, namely:

Dµ = ∂µ − iΓµ, Γµ = Γ†µ =
1

2
(u†(i∂µ + rµ)u+ u(i∂µ + `µ)u†),

uµ = u†µ = u†(i∂µ + rµ)u− u(i∂µ + `µ)u†,

χ = 2B0(s+ ip), χ± = u†χu† ± uχ†u,

F µν
L = ∂µ`ν − ∂ν`µ − i[`µ, `ν ], F µν

R = ∂µrν − ∂νrµ − i[rµ, rν ], (C1)

whereDµ is the chiral covariant derivative, s and p are scalar and pseudo-scalar sources, χ± =

2M2
π + · · · , and `µ and rµ are gauge sources. The spin-flavor operators are tensor operators

consisting of products of the spin-flavor generators. These operators can be reduced by

means of the commutation relations to forms which only contain anti-commutators. A set

of identities shown in Table III permits one to arrive at sets of basis operators at each order

in 1/Nc for a given spin/isospin tensor type of operator. The 1/Nc order νO of an operator O,

reduced as mentioned, is νO = n−1−κ [50], where n is the number of generators appearing

as factors in the operator (one then says that the operator is an n-body operator), and κ is

the number of generators Gia in the product.
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The leading order equations of motion can be used in the construction of the higher order

terms, namely, iD0B = (CHF
Nc

S(S + 1) + c1
2
Ncχ+)B, and ∇µu

µ = i
2
χ−.

Appendix D: Matrix elements of spin-flavor operators in the symmetric represen-

tations of SU(4)

The evaluation of the matrix elements of spin-flavor operators in the present work can be

carried out starting from the following matrix elements of the spin-flavor generators in the

totally symmetric representation of SU(4) corresponding to the Young tableux with a single

row of Nc boxes. The basis states of the symmetric representation consists of the states with

I = S, namely | S S3I3〉, where S3 and I3 are the spin and isospin projections respectively.

〈S′ S′3I ′3 | Si | S S3I3〉 =
√
S(S + 1)δSS′δI3I′3〈S S3, 1i | S′ S′3〉,

〈S′ S′3I ′3 | Ia | S S3I3〉 =
√
S(S + 1)δSS′δS3S′

3
〈S I3, 1a | S′I ′3〉,

〈S′ S′3I ′3 | Gia | S S3I3〉 =
1

4

√
2S + 1

2S′ + 1
ζ(Nc, S, S

′)〈S S3, 1i | S′ S′3〉〈S I3, 1a | S′I ′3〉, (D1)

where ζ(Nc, S, S
′) =

√
(2 +Nc)2 − (S − S ′)2(S + S ′ + 1)2 [73]. The products of generators

can be reduced by means of the use of the commutation relations, and further, for matrix

elements in the symmetric representation, via the reduction rules [50], which for convenience

are displayed in the following Table III.

TABLE III: SU(4) operator identities in the totally symmetric irreducible representation (Nc, 0, 0)

of SU(4). The last column gives the operator’s quantum numbers (J, I) under SU(2)× SU(2)

{Si, Si} − {Ia, Ia} = 0 (0,0)

{Si, Si}+ {Ia, Ia}+ 4{Gia, Gia} = 3
2Nc(4 +Nc) (0,0)

2{Si, Gia} = (2 +Nc)I
a (0,1)

2{Ia, Gia} = (2 +Nc)S
i (1,0)

1
2{S

k, Ic} − εijkεabc{Gia, Gjb} = (2 +Nc)G
kc (1,1)

εijk{Si, Gjc} = εabc{Ia, Gkb} (1,1)

4{Gia, Gib}|I=2 = {Ia, Ib}|I=2 (0,2)

4{Gia, Gja}|J=2 = {Si, Sj}|J=2 (2,0)
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Useful matrix elements:

It is always convenient to express matrix elements in terms of reduced matrix elements

(RMEs) defined in the ordinary Wigner-Eckart fashion [74]. The RMEs defined here are

with respect to SUspin(2)× SUI(2). For matrix elements in the symmetric representation of

spin-flavor the Wigner-Eckart theorem reads:

〈S ′ S ′3I ′3 | O
JJ3
II3
| S S3I3〉 =

〈S ′ || OJ
I || S〉

2S ′ + 1
〈SS3,JJ3 | S ′S ′3〉〈SI3, II3 | S ′I ′3〉, (D2)

where O is an SUS(2) × SUI(2) irreducible tensor operator, and 〈S ′ || OJ
I || S〉 is the

reduced matrix element. Note that the notation || S〉 indicates the spin-flavor states in the

symmetric representation (Nc, 0, 0) with I = S. The reduced matrix elements of the SU(4)

generators read:

〈S ′ || S || S〉 = δSS′(2S + 1)
√
S(S + 1),

〈S ′ || I || S〉 = δSS′(2S + 1)
√
S(S + 1),

〈S ′ || G || S〉 = δ{S,S′,1}
1

4

√
(2S + 1)(2S ′ + 1)ζ(Nc, S, S

′), (D3)

where δ{S,S′,1} = 1 if | S − S ′ |≤ 1 and otherwise vanishes.

Reduced matrix elements of the operators involving the projects Pn are easily obtained

using that Pn =
∑

Sn3,In3
| Sn, Sn3In3〉〈Sn, Sn3In3 |, and the SU(2) re-coupling results [74].

For the masses the relevant such RME becomes:

〈S || GiaPnGia || S〉 =
1

2S + 1
〈Sn || G || S〉2. (D4)

For the axial currents the following RME is needed, namely:

〈S ′ || GjbPn′GiaPnGjb || S〉 =

 S Sn 1

Sn′ S ′ 1


2

× 〈S ′ || G || Sn′〉〈Sn′ || G || Sn〉〈Sn || G || S〉. (D5)

Various reduced matrix elements which appear in the evaluation of the UV divergent

pieces of the one-loop contributions to the self energy and to the axial currents are given

below. They are obtained using the results given in the above Eqs. (D4) and (D5):

〈S ′ || G2 || S〉 =
1

2
δSS′(2S + 1)(−S(S + 1) +

3

8
Nc(4 +Nc)), (D6)
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where G2 = GiaGia.

〈S ′ || G~S2G || S〉 =
1

2
δSS′(2S+1)

(
3

4
Nc(4 +Nc) +

1

8
(−40 + 12Nc + 3N2

c )S(S + 1)− (S(S + 1))2

)
,

(D7)

〈S ′ || G~S4G || S〉 =
1

2
δSS′(2S + 1)

(
3

4
Nc(4 +Nc) + (−6 + 5Nc +

5

4
N2
c )S(S + 1)

+ (−7 +
3

4
Nc +

3

16
N2
c )(S(S + 1))2 − 1

2
(S(S + 1))3

)
. (D8)

In the following, S ′ = S or S ± 1. With obvious notation:

〈S ′ || {Si, Gia} || S〉 = δSS′(1 +
Nc

2
)(2S + 1)

√
S(S + 1), (D9)

obtained using the corresponding reduction relation in Table III.

〈S ′ || SiIa || S〉 = δSS′(2S + 1)S(S + 1), (D10)

〈S ′ || SGiaS || S〉 =
1

2
(S(S + 1) + S ′(S ′ + 1)− 2)〈S ′ || G || S〉, (D11)

〈S ′ || GGiaG || S〉 =
1

16
〈S ′ || G || S〉

× (3Nc(4 +Nc)− 4(2 + S(S + 1) + S ′(S ′ + 1))) , (D12)

〈S ′ || GGia~S2G || S〉 =
1

2
〈S ′ || G || S〉

(
3

4
Nc(4 +Nc)

+ S(S + 1)(−S(S + 1)− 5 +
3

8
Nc(4 +Nc) +

1

2
S ′(S ′ + 1))

− S ′(S ′ + 1)(1 +
1

2
S ′(S ′ + 1)

)
, (D13)

〈S ′ || GGia~S4G || S〉 =
1

2
〈S ′ || G || S〉

×
(

3

2
Nc(4 +Nc) + (S(S + 1))2(−16 +

3

8
Nc(4 +Nc)− 3S ′(S ′ + 1))

+ (S ′(S ′ + 1))2(1− 3

2
S ′(S ′ + 1))

+ S(S + 1)(−12 +
5

2
Nc(4 +Nc) +

7

2
(S ′(S ′ + 1))2)

)
, (D14)

〈S ′ || G~S2Gia~S2G || S〉 =
1

4
〈S ′ || G || S〉

×
(

(2 +Nc)
2 +

1

2
(−16 + 5Nc(4 +Nc))(S(S + 1) + S ′(S ′ + 1))

− (S(S + 1))2(9 + S(S + 1))− (S ′(S ′ + 1))2(9 + S ′(S ′ + 1))

+
3

4
(−16 +Nc(4 +Nc))S(S + 1)S ′(S ′ + 1)

)
. (D15)
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Finally, using that for any spin and isospin singlet operator (not necessarily an SU(4) singlet)

Q, 〈S ′ || QOJ
I || S〉 = 1

2S′+1
〈S ′ || Q || S ′〉〈S ′ || OJ

I || S〉, one can easily obtain the rest of the

matrix elements involved in the calculation of the axial currents.
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