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We discuss some possible signals of CPT violation in the Bs system that may be probed at the
Large Hadron Collider (LHC). We show how one can construct combinations of observables coming
from tagged and untagged decay rates of Bs → D

±
s
K

∓ that can unambiguously differentiate between
CPT violating and CPT conserving new physics (NP) models contributing in B

0

s
− B̄

0

s
mixing. We

choose this particular mode as an illustrative example for two reasons: (i) In the Standard Model,
there is only one decay amplitude, so it is easier to untangle any new physics; (ii) Bs being a neutral
meson, it is possible to unambiguously identify any sign of CPT violation that occurs only in mixing
but not in decay. We define an observable which is useful to extract the CPT violating parameter
in Bs decay, and also discuss how far the results are applicable even if CPT violation is present in
both mixing and decay.
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I. INTRODUCTION

The combined discrete symmetry CPT, taken in any order, is an exact symmetry of any axiomatic quantum field
theory (QFT). CPT conservation is indeed supported by the experiments; all tests for CPT violation (CPTV) that
have been done so far [1] have yielded null results, consistent with no CPTV, and very stringent limits on CPTV
parameters have been obtained [2] in different systems. The only possible exception is the apparent mass difference
between the top quark and its antiparticle as obtained by the CDF collaboration in Fermilab [3]:

mt −mt̄ = −3.3± 1.7 GeV , (1)

but other experiments got results which are consistent with zero, and so is the world average [4]:

mt −mt̄ = [−0.44± 0.46 (stat.)± 0.27 (syst.)] GeV . (2)

What, then, should be the motivation to investigate the possibility of CPTV particularly in the B system? There are
three main reasons:

• Any symmetry which is supposed to be exact ought to be questioned. We may get a surprise, just like the
discovery of CP violation. CPTV may very well be flavor-sensitive, and so the constraints obtained from the
K system [5] may not be applicable to the B systems. There is still the possibility of a sizable CPTV in the B
systems. If there is some tension between the data and the Standard Model (SM) expectations, we should ask
whether this is due to CPTV, or a more canonical CPT conserving new physics (NP).

• For the bound systems like mesons, asymptotic states, whose existence is a prerequisite for the CPT theorem,
are not uniquely defined [6]. Quarks and gluons are bound inside the hadrons and cannot be considered, in a
true sense, asymptotic states.

• Some nonlocal and nonrenormalizable string-theoretic effects may appear at the Planck scale with a possible
ramification at the weak scale through the effective Hamiltonian [7]. CPTV through such non-local interacting
QFT does not necessarily lead to the violation of Lorentz symmetry [8].

Recently the issue of CPTV has received more attention due to the growing phenomenological importance of
CPT violating scenarios in neutrino physics and in cosmology [9]. It is also necessary to find some observables that
will clearly discriminate CPT violating signals from CPT conserving ones. A comprehensive study of CPTV in the
neutral K meson system, with a formulation that is closely analogous to that in the B system, may be found in [10].



2

CPTV in the B systems, and its possible signatures, have been already investigated by several authors [11, 12].
It was shown that the lifetime difference of the two mass eigenstates, or the direct CP asymmetries and semileptonic
observables, may be affected by such new physics. The experimental limits are set by both BaBar, who looked for
diurnal variations of CP-violating observables [13], and Belle, who looked for lifetime difference of Bd mass eigenstates
[14]. This makes it worthwhile to look for possible CPTV effects in the Bs system (by Bs we generically mean both
B0

s and B̄0
s mesons).

In this paper, we would like to investigate the signatures of CPT violation in the Bs system, both in B0
s − B̄0

s

mixing and in Bs decays. We would like to emphasize that this is a model-independent approach in the sense that
we do not specify any definite model that might lead to CPT violation; in fact, as far as we know, all studies on CPT
violation are based on some phenomenological Lagrangian to start with.

As an illustrative example, we consider the nonleptonic B0
s (B̄

0
s ) → D+

s K
− and B0

s (B̄
0
s ) → D−

s K
+ decays. The

B̄0
s decays are mediated by color-allowed tree-level transitions b → uc̄s and b → cūs. These are single-amplitude

processes in the SM, so that any non-trivial contribution beyond the SM expectations, like direct CP asymmetry, is a
clear signal of NP. This set of channels is also of interest as in the SM, both the amplitudes are of same order, O(λ3)
in the standard Wolfenstein parametrization of the CKM matrix (so that the event rates are comparable), and same
final states can be reached both from B0

s and B̄0
s . The importance of such modes to unveil any NP has already been

emphasized; e.g., see [15–18]. The decay was first observed by the CDF and the Belle collaborations [19, 20], and
recently the LHCb collaboration has measured the branching ratio to be [21]

Br(Bs → D∓
s K

±) = (1.90± 0.23)× 10−4 (3)

where the errors have been added in quadrature. We also note that flavor-specific NP in these channels is relatively
unconstrained [22]. LHCb has also measured several time-dependent CP violating observables in Bs → D∓

s K
± using

flavor-tagged and flavor-untagged observables [23].

Here we do a more general analysis considering both the CPT violating and CPT conserving NP contributions
to B0

s − B̄0
s mixing. We show how one can construct combinations of observables coming from tagged and untagged

decay rates that can unambiguously differentiate between CPT violating and CPT conserving NP models. On the
other hand, if there is some CPTV contribution only to Bs decays, it might be difficult to differentiate it from CPT
conserving NP in this approach. We define an observable which is useful to extract the CPT violating parameter in
decay.

We will consider both these cases separately: first, when CPTV (or CPT conserving NP) is present only in the
operators responsible for decay but not in those responsible for the mixing; and second, when the same is present also
in the B0

s − B̄0
s mixing amplitude. As we will show explicitly, the extraction of CPTV in mixing is independent of the

CPTV in decay and any other CPT conserving NP either in decay or mixing.

The first possibility of NP (including CPT violation) only in decay can arise if the NP operators are strongly flavor-
dependent, like those in R-parity violating supersymmetry, or leptoquark models. As we are considering final states
that can be accessed both from B0

s and B̄0
s , any such NP will necessarily contribute in B0

s − B̄0
s mixing, in particular

to its absorptive part, and will change the decay width difference ∆Γs. Apart from the short-distance contributions
to the absorptive part, there can be non-negligible long-distance effects too, coming from mesonic intermediate states
[25]. However, the accuracy of the present data on ∆Γs, the lifetime difference of two Bs mass eigenstates, is relatively
weak. The most accurate result comes from the LHCb collaboration [26]: ∆Γs/Γs = 0.176 ± 0.028. Even the SM
prediction [27] has a large uncertainty. Thus, as a first approximation, one can consider such NP effects only in decay
and not in mixing, where it is in all probability subleading.

For the second case, one can construct several observables from the time-dependent tagged and untagged decay
rates, and some of them are identically zero if there is no CPTV in mixing, irrespective of whether there is any CPTV
in decay, or some CPT conserving NP.

The Belle Collaboration [14] places limits on the CPTV parameters in mixing, but no such limits exist for CPTV
in decay. Also, the Belle limits are valid for the Bd system, but one can expect similar numbers for the Bs system
too, even if CPTV is flavor-dependent. Like the experimental tests on CP-violation, various independent cross-checks
on CPTV are also essential. Needless to say, one can play the same game with decays like Bs → D0φ and Bs → D̄0φ,
and can form more observables (although not independent of the original ones) out of the CP-eigenstates of D0 and
D̄0 in the final state.

The paper is arranged as follows. In the next section, we outline the necessary formalism for CPTV in decay,
vis-a-vis that for the SM as well as CPT conserving NP. We also construct observables that may indicate the presence
of CPT violation (or any NP in general). In Section III, we do the same for CPT violation in B0

s − B̄0
s mixing,

including the construction of observables that can differentiate CPTV and CPT conserving NP. In Section IV, we
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summarize and conclude.

II. CPT VIOLATION IN DECAY

A. B
0

s
− B̄

0

s
mixing and Bs → D

±
s
K

∓ in the SM

The B0
s − B̄0

s mixing is controlled by the off-diagonal term H12 =M12− (i/2)Γ12 of the 2×2 Hamiltonian matrix,
with the mass difference between two mass eigenstates BH and BL given by (in the limit |Γ12| ≪ |M12|)

∆Ms ≡MsH −MsL ≈ 2|M12| , (4)

and the width difference by

∆Γs ≡ ΓsL − ΓsH ≈ 2|Γ12| cosφs , (5)

where φs ≡ arg(−M12/Γ12). CPT conservation ensures H11 = H22.

The eigenstates are defined as

|BH(L)〉 = p|B0
s 〉+ (−)q|B̄0

s 〉 , (6)

where |p|2 + |q|2 = 1 is the normalization, and one defines

α ≡ q/p = exp(−2βs) (7)

where 2βs is the mixing phase of the B0
s − B̄0

s box diagram.

For the single-amplitude decays Bs → D±
s K

∓, the amplitudes are of the form

A(B0
s → D+

s K
−) = T1e

iγ , A(B0
s → D−

s K
+) = T2 ,

A(B̄0
s → D+

s K
−) = T2 , A(B̄0

s → D−
s K

+) = T1e
−iγ , (8)

where T1 and T2 are real amplitudes times the strong phase, which we parametrize as

arg

(

T1
T2

)

= ∆ , (9)

and γ = arg(−VudV ∗
ub/VcdV

∗
cb), so that to a very good approximation, Vub ≈ |Vub| exp(−iγ). The quantity ξf ≡

αĀf/Af , where Af ≡ A(B0
s → D+

s K
−) and Āf ≡ A(B̄0

s → D+
s K

−), carries a weak phase of −(2βs + γ).

Let us define, following [15],

〈Br(Bs → D+
s K

−)〉 = Br(B0
s → D+

s K
−) + Br(B̄0

s → D+
s K

−) ,

〈Br(Bs → D−
s K

+)〉 = Br(B0
s → D−

s K
+) + Br(B̄0

s → D−
s K

+) , (10)

so that these untagged rates are the same in the SM, even though a future measurement of the time-dependent
branching fractions at the LHCb may show nonzero CP violation.

B. CPT violation in Bs decay

In order to take into account CPTV in decay, we parametrize various transition amplitudes for the decay Bs →
D±

s K
∓ as [28, 29]

A(B0
s → D+

s K
−) = T1e

iγ (1− yf ) , A(B0
s → D−

s K
+) = T2

(

1 + y∗f
)

,

A(B̄0
s → D+

s K
−) = T2 (1− yf ) , A(B̄0

s → D−
s K

+) = T1e
−iγ

(

1 + y∗f
)

, (11)

where CPT violation (in decay) is parametrized by the complex parameter yf , and yf is real if T is conserved. The

CPT violation is proportional to the difference A(B0
s → D+

s K
−)∗−A(B̄0

s → D−
s K

+) or A(B̄0
s → D+

s K
−)∗−A(B0

s →
D−

s K
+).
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We define the complete set of four relevant amplitudes, with |f〉 ≡ |D+
s K

−〉 and |f̄〉 ≡ |D−
s K

+〉,

Af = 〈f |H |B0
s 〉 , Af̄ = 〈f̄ |H |B0

s 〉 ,
Āf = 〈f |H |B̄0

s 〉 , Āf̄ = 〈f̄ |H |B̄0
s 〉 , (12)

so that the ratios

ξf = αĀf/Af , ξf̄ = αĀf̄/Af̄ , (13)

are independent of yf ; the CPTV effect in the decays cancels in the ratio. We also have |ξf | = 1/|ξf̄ | and arg(ξf(f̄)) =

−(2βs + γ + (−)∆) where ∆ is defined in eq. (9).

From Eq. (11) we get

|A(B0
s → D+

s K
−)|2 + |A(B̄0

s → D+
s K

−)|2 = (|T1|2 + |T2|2) |1− yf |2 ,
|A(B0

s → D−
s K

+)|2 + |A(B̄0
s → D−

s K
+)|2 = (|T1|2 + |T2|2)

∣

∣1 + y∗f
∣

∣

2
. (14)

Thus we can define an asymmetry

ACPT
br =

〈Br(Bs → D+
s K

−)〉 − 〈Br(Bs → D−
s K

+)〉
〈Br(Bs → D+

s K−)〉+ 〈Br(Bs → D−
s K+)〉

= −2
Re(yf )

1 + |yf |2
≈ −2Re(yf ) , for |yf |2 ≪ 1 (15)

We have already seen that this asymmetry is zero in the SM. Using Eq. (15), the real part of the CPTV parameter
yf can be directly probed from the difference of the untagged rates (as the initial state Bs flavor is summed over)
Br(Bs → D+

s K
−) and Br(Bs → D−

s K
+).

One can have a rough idea of the LHCb reach in measuring Re(yf ). With 1 fb−1 of integrated luminosity, LHCb
has obtained 1390 ± 98 events [23]. With full LHCb upgrade to an integrated luminosity of 50 fb−1, total number
of events should go up by a factor of about 200, as a twofold gain in the yield is expected when the LHC reaches√
s = 13-14 TeV (as the cross section of pp → bb̄X scales almost linearly with

√
s), and another twofold gain is

expected in the trigger efficiency when the detector is upgraded. These 0.28 million events should be roughly equally
divided between D+

s K
− and D−

s K
+. The advantage is that there is no need to tag the flavor of the initial Bs. The

statistical fluctuation for each channel is about 375, and detection of CPT violation over such fluctuations results in
a sensitivity of 375/140000 ≈ 0.0027 for Re(yf ). Note that LHCb already has a plan to measure CPT violation in
the decay B0 → J/ψ[→ π∓µ±ν(ν̄)]K0 [24]. However, in this estimate we have only concerned ourselves with the
statistical reach; we leave it to the experimentalists to address the systematic errors.

Let us compare this to a case where there is no CPT violation, but some CPT conserving NP is present which
contributes to either b → uc̄s or b → cūs transitions, or maybe both. If this NP leads to observable CP violating
effects, we can write the various amplitudes for the Bs → D±

s K
∓ decays as

A(B0
s → D+

s K
−) = T1e

iγ
(

1 + a ei(θ−γ+σ)
)

, A(B0
s → D−

s K
+) = T2

(

1 + a′ ei(θ
′+σ′)

)

,

A(B̄0
s → D+

s K
−) = T2

(

1 + a′ e−i(θ′−σ′)
)

, A(B̄0
s → D−

s K
+) = T1e

−iγ
(

1 + a e−i(θ−γ−σ)
)

. (16)

The amplitudes, obviously, are related by CP conjugation. The NP is parametrized by the (relative) amplitudes a,
a′, the new weak phases θ, θ′, and the new strong phase differences σ, σ′. Therefore, the asymmetry defined in Eq. 15
is given by

ANP
br = −2

a |T1|2 sin(θ − γ) sinσ + a′ |T2|2 sin θ′ sinσ′

|T1|2 (1 + a2 + 2 a cos(θ − γ) cosσ) + |T2|2 (1 + a′2 + 2 a′ cos θ′ cosσ′)
. (17)

Hence, a nonzero value of Abr could be due to either CPTV or CPT conserving NP (which, perhaps, is flavor-
dependent, and definitely not of the minimal flavor violation type). As both the decays are color-allowed, one can
even invoke the color-transparency argument [30] to claim that all strong phases are small; but CPTV effects are not
expected to be large either.

Eq. (15) is in general true for all decays which are either (i) single-amplitude in the SM, be it tree or penguin, or
(ii) multi-amplitude in the SM but with one amplitude highly dominant over the others. Single-amplitude decays are

preferred simply because any nonzero asymmetry as in Eqs.̃(15) or (17) can be unambiguously correlated with NP.
The same observable ACPT

br can be defined for charged B decays, or even D and K decays. However, in all cases, CPT
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conserving (but necessarily CP violating) NP can always mimic the asymmetry, unless there are strong motivations for
the corresponding amplitudes to be highly subdominant, or the strong phase difference between the two amplitudes
to be zero or vanishingly small.

On the other hand, if there is CPT violation in mixing too, this formalism does not hold, because the definition
of the mass eigenstates also contains CPT violating parameters (see later). In that case, we suggest using single-
amplitude charged B meson decay modes, like B+ → D0K+ and B+ → D0K+.

If there is no other CPT conserving NP, but the B0
s − B̄0

s mixing matrix has CPTV built in, the asymmetry is
still nonzero, as the individual branching fractions are functions of the CPTV parameter δ (see below) in the mixing
matrix [12].

III. CPT VIOLATION IN MIXING

This subsection closely follows the formulation developed in [12], but let us quote some relevant expressions for
completeness. CPT violation in the Hamiltonian matrix is introduced through the complex parameter δ:

δ =
H22 −H11√
H12H21

, (18)

so that the Hamiltonian matrix looks like

H =

[(

M0 − Re(δ′) M12

M∗
12 M0 +Re(δ′)

)

− i

2

(

Γ0 + 2Im(δ′) Γ12

Γ∗
12 Γ0 − 2Im(δ′)

)]

, (19)

where δ′ is defined by

δ =
2δ′√
H12H21

. (20)

One could even relax the assumption of H21 = H∗
12. However, there are two points that one must note. First, the

effect of expressing H12 = h12 + δ̄, H21 = h∗12 − δ̄ appears as δ̄2 in
√
H12H21, the relevant expression in Eq. (18), and

can be neglected if we assume δ̄ to be small. The second point, which is more important, is that CPT conservation
constrains only the diagonal elements and puts no constraint whatsoever on the off-diagonal elements. It has been
shown in [10] that H12 6= H∗

21 leads to T violation, and only H11 6= H22 leads to unambiguous CPT violation. Thus,
we will focus on the parametrization used in Eqs. (18) and (19) to discuss the effects of CPT violation.

In the review on CPT violation in [1], the authors have used a formalism which is close to ours. While their
treatment is for the KS-KL pair, this can be generalized to any neutral meson system. The mass eigenstates are
defined as

|KS(KL)〉 =
1

√

2(1 + |ǫs(L)|2)
[

(1 + ǫS(L))|K0〉+ (1 − ǫS(L))|K0〉
]

(21)

where

ǫS(L) =
−iIm(M12)− 1

2 Im(Γ12)∓ 1
2

[

M11 −M22 − i
2 (Γ11 − Γ22)

]

ML −MS + i(ΓS − ΓL)/2

≡ ǫ± δ̃ . (22)

Note that δ̃ and δ are not the same, but related; both parametrize CPT violation. On the other hand, ǫS(L) is not
truely a CPT conserving quantity, as the expression contains the mass and width differences of the two eigenstates,
and both depend on the CPT violating parameter δ that we have used here.

The Belle collaboration [14] recently put stringent limits on the real and imaginary parts of δ,

Re(δd) = (−3.8± 9.9)× 10−2 , Im(δd) = (1.14± 0.93)× 10−2 , (23)

where we have added the errors in quadrature, and used the straightforward translation valid for small δ, viz., δ = −2z
(the subscript emphasizes that these results are for the Bd system). The CPT violating parameter z is defined as

|BL(H)〉 = p
√

1− (+)z|B0〉+ (−)q
√

1 + (−)z|B0〉 . (24)
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We can see that within the error bars data are consistent with no CPTV case i.e Re(δd) = Im(δd) = 0. However, more
precise measurements are important and essential. In any case it is safe to assume |δ| ≪ 1, even for the Bs system.
In ∆Ms and ∆Γs the CPT-violating effects are quadratic in δ and hence negligible.

We can write

|BH〉 = p1|B0
s 〉+ q1|B̄0

s 〉 , |BL〉 = p2|B0
s 〉 − q2|B̄0

s 〉 . (25)

with the normalization conditions |p1|2 + |q1|2 = |p2|2 + |q2|2 = 1, so that with CPT violation, p1 6= p2 and q1 6= q2.
The time evolutions of BH and BL are controlled by λ1 ≡ m1 − iΓ1/2 and λ2 ≡ m2 − iΓ2/2 respectively. We also use

∆Ms = m1 −m2 , ∆Γs = Γ2 − Γ1 . (26)

Let us define,

y =

√

1 +
δ2

4
; η1 ≡ q1

p1
=

(

y +
δ

2

)

α ; η2 ≡ q2
p2

=

(

y − δ

2

)

α ; ω =
η1
η2
, (27)

where α =
√

H21/H12. For |δ| ≪ 1, we can approximate y with unity.

The time-dependent flavor eigenstates are given by

|B0
s (t)〉 = h+(t)|B0

s 〉+ η1h−(t)|B̄0
s 〉

|B̄0
s (t)〉 =

h−(t)

η2
|B0

s 〉+ h̄+(t)|B̄0
s 〉 , (28)

where

h−(t) =
1

(1 + ω)

(

e−iλ1t − e−iλ2t
)

,

h+(t) =
1

(1 + ω)

(

e−iλ1t + ωe−iλ2t
)

,

h̄+(t) =
1

(1 + ω)

(

ωe−iλ1t + e−iλ2t
)

. (29)

and we refer the reader to [12] for detailed expressions. Note that in the absence of CPTV, η1 = η2, ω = 1, and hence
h+(t) = h̄+(t). In the limit |δ| ≪ 1, ω ≈ 1 + δ.

With our convention of |f〉 ≡ |D+
s K

−〉 and |f̄〉 ≡ |D−
s K

+〉, where both the states are directly accessible to B0
s

and B̄0
s , the time dependent decay rates are [12]

Γ(B0
s (t) → f) =

[

|h+(t)|2 + |ξf1 |2|h−(t)|2 + 2Re
(

ξf1h−(t)h
∗
+(t)

)]

|Af |2 ,

Γ(B̄0
s (t) → f) =

[

|h−(t)|2 + |ξf2 |2|h̄+(t)|2 + 2Re
(

ξf2 h̄+(t)h
∗
−(t)

)]

∣

∣

∣

∣

Af

η2

∣

∣

∣

∣

2

,

Γ(B0
s (t) → f̄) =

[

|h+(t)|2 + |ξ′f1 |
2|h−(t)|2 + 2Re

(

ξ′f1h−(t)h
∗
+(t)

)]

|Af̄ |2 ,

Γ(B̄0
s (t) → f̄) =

[

|h−(t)|2 + |ξ′f2 |2|h̄+(t)|2 + 2Re
(

ξ′f2 h̄+(t)h
∗
−(t)

)]

∣

∣

∣

∣

Af̄

η2

∣

∣

∣

∣

2

, (30)

where,

ξf1 = η1
Āf

Af

=

(

1 +
δ

2

)

ξf , ξf2 = η2
Āf

Af

=

(

1− δ

2

)

ξf ,

ξ′f1 = η1
Āf̄

Af̄

=

(

1 +
δ

2

)

ξf̄ , ξ′f2 = η2
Āf̄

Af̄

=

(

1− δ

2

)

ξf̄ . (31)

Dropping terms O(δ2) or higher, we get the following expressions for the tagged and untagged time-dependent
decay rates:

Γ(B0
s (t) → f)− Γ(B̄0

s (t) → f) = [P1 sinh(∆Γst/2) +Q1 cosh(∆Γst/2)

+R1 cos(∆Mst) + S1 sin(∆Mst)] e
−Γst|Af |2 ,

Γ(B0
s (t) → f) + Γ(B̄0

s (t) → f) = [P2 sinh(∆Γst/2) +Q2 cosh(∆Γst/2)

+R2 cos(∆Mst) + S2 sin(∆Mst)] e
−Γst|Af |2 , (32)
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with

P1 = −1

2
Re(δ)

(

1 + |ξf |2
)

,

Q1 = −|ξf | cos(γ + 2βs +∆)Re(δ) ,

R1 = 1− |ξf |2 + |ξf | cos(γ + 2βs +∆)Re(δ) ,

S1 = 2 |ξf | sin(γ + 2βs +∆)− 1

2
Im(δ)

(

1 + |ξf |2
)

,

P2 = 2 |ξf | cos(γ + 2βs +∆)− 1

2
Re(δ)

(

1− |ξf |2
)

,

Q2 = 1 + |ξf |2 − |ξf | sin(γ + 2βs +∆)Im(δ) ,

R2 = |ξf | sin(γ + 2βs +∆)Im(δ) ,

S2 = −1

2
Im(δ)

(

1− |ξf |2
)

. (33)

It is clear from Eq. (33) that CPT violating effects in decay will not affect the determination of these 8 coefficients.
Whatever the effects are, they will be lumped in the overall normalization |Af |2 and will not appear in the coefficients
of the trigonometric and hyperbolic functions.

All the 8 coefficients can theoretically be extracted from a fit to the time-dependent decay rates, but admittedly
the coefficients of the hyperbolic functions are harder to extract and need more statistics. The coefficients P1 - S1

are to be extracted from the tagged measurements, and P2 - S2 from untagged measurements. Note that whether or
not any CPT-conserving NP is present, absence of CPT violation definitely means δ = 0, so P1 = Q1 = R2 = S2 = 0.
If any of these four observables are found to be nonzero, that is a sure signal of CPT violation. (While P1 and
S2 depend only on δ, Q1 and R2 also have an implicit dependence on the B0

s − B̄0
s mixing phase 2βs, which might

depend on CPT conserving NP effects.) Therefore, if CPT is conserved, the tagged measurements are sensitive only
to the trigonometric functions, and the untagged measurements only to the hyperbolic functions, but we urge our
experimental colleagues to perform a complete fit.

If at least P1 or S2 be nonzero (maybe with nonzero Q1 and R2), one gets

Im(δ) = − 2S2

R1 +Q1
, Re(δ) = − 2P1

R2 +Q2
, (34)

which is theoretically clean, i.e. free from hadronic uncertainties. The overall normalization can be extracted from
the CP averaged branching fractions.

Even if the experiment is not sensitive enough to extract unambiguously nonzero values of P1, Q1, R2, or S2,
one can still find signals of CPTV, from the fact that P2, Q2, R1, and S1 contain CPTV terms over and above CPT
conserving but CP violating terms. For example, one can extract the following analogous quantities from the tagged
and untagged Bs → f̄ decays:

P̄2 = 2 |ξf | cos(γ + 2βs −∆) +
1

2
Re(δ)

(

1− |ξf |2
)

,

Q̄2 = 1 + |ξf |2 − |ξf | sin(γ + 2βs −∆)Im(δ) ,

R̄1 = −1 + |ξf |2 + |ξf | cos(γ + 2βs −∆)Re(δ) ,

S̄1 = 2 |ξf | sin(γ + 2βs −∆)− 1

2
Im(δ)

(

1 + |ξf |2
)

. (35)

It is easy to derive Eq. (35) from Eq. (33). First, note that the relevant expressions contain |Af̄ | and ξf̄ . Eq. (35)

follows when one substitutes |ξf̄ | = 1/|ξf | and |Af̄ |2/|ξf |2 = |Af |2. However, the strong phase changes sign because
of the definitions of ξf and ξf̄ .

Therefore, from Eqs. (33) and (35) we can define observables which are only sensitive to the CPTV effect
independent of any other NP effects in mixing,

R1 + R̄1

P2 + P̄2
=

Re(δ)

2
,

Q2 − Q̄2

S1 − S̄1
=

Im(δ)

2
. (36)

From Eq. (36) we note that it is possible to probe the CPTV parameter δ even in the presence of any other generic
NP in mixing or decays (which modifies 2βs); the NP effects in mixing are cancelled in the ratio. In addition we
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note that the strong phase is also exactly cancelled in the ratio, hence the measurement of δ is free from hadronic
uncertainties.

LHCb performs the decay profile fit assuming CPT invariance [23], so it is not easy to predict the reach for the
new CPT violating parameters, or even the CPT conserving ones. For this we need a full fit, assuming the possibility
of CPT violation. Still, one can try to have an estimate of the reach. As there exists no measurement on the CPT
violating parameters, let us use the first relation of Eq. (36). The parameter R1 (called C in [23]) has an error of
about 56% right now; if the data sample increases by a factor of 200, this might come down to 4%. The same is true
for R̄1, which should be measured independently (the central value, in the absence of CPT violation, should be equal
and opposite to that of R1). Thus the total uncertainty, added in quadrature, should be about 6%. Similarly, the
uncertainty in the denominator should be about 6%, and is to be added in quadrature with the numerator. Thus,
Re(δ) ≥ 0.16 should be measurable using this relationship. Of course, we expect a much better reach with a full
4-parameter fit to each decay profile.

We reiterate that even if CPTV is present in decay, the conclusion that a nonzero value of any one of the four
observables P1, Q1, R2, or S2 indicates CPTV in mixing remains valid. Consider the expressions for the tagged
and untagged decay rates, Eq. (32). With enough satistics, one gets the coefficients of the trigonometric and the
hyperbolic functions, as well as the overall normalization |Af |2. If CPTV is present in decay, the expression for |Af |2
will change and be a function of yf , but the eight coefficients of Eq. (32) will remain the same.

The same method is applicable to decays like Bs → D0φ, with b̄→ c̄us̄ and b̄→ ūcs̄ transitions.

IV. SUMMARY AND CONCLUSIONS

While the effects of CPT violation are severely constrained for systems with first and/or second generation
fermions, the B systems, in particular Bs, are relatively less constrained. This opens up the possibility of a CPT
violating action that is flavor-dependent. As a typical example of the effects of CPT violation, we consider the decays
B0

s , B̄
0
s → D±

s K
∓. These decays are excellent probes of any NP; in the SM, they are single-amplitude processes, and

both B0
s → D+

s K
− and B0

s → D−
s K

+ amplitudes are of the same order in Wolfenstein parametrization. Thus, the
number of events for both D+

s K
− and D−

s K
+, summing over parents B0

s and B̄0
s , should be the same in the SM. We

show how this asymmetry becomes nonzero if there is CPT violation in the decay.

At the same time, we see that if there is some NP that conserves CPT but comes with different strong and weak
phases from the corresponding SM amplitude, the asymmetry is again nonzero. So, while this asymmetry serves as
an excellent indicator of any NP, it might be either CPT conserving (but necessarily CP violating) or CPT violating,
and further checks are necessary.

The situation is far better if there is CPT violation in mixing. The best way to put CPTV in mixing is to make the
diagonal terms of the 2× 2 mixing Hamiltonian unequal. With this, the CPTV parameter enters the definition of the
mass eigenstates, and through that, to various time-dependent decay rates. With sufficient statistics, one can extract
the coefficients of the trigonometric and hyperbolic terms of both tagged and untagged time-dependent rates. We
find that there are four coefficients which are zero not only in the SM but also any extension with CPT conservation,
so any nonzero value for any of them is a definite indication for CPT violation. There are several ways to extract
these coefficients, and LHCb should have enough statistics to be able to measure them with sufficient precision. The
argument goes through even if CPTV is present in both decay and mixing; this is because different sets of observables
are extracted for the two different cases.
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