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1 Introduction

Violation of lepton flavor is an important indicator of new physics beyond the standard

model. In the absence of a CKM type matrix in the leptonic sector, flavor violations can

only arise due to new physics and thus decays such as li → ljγ (i 6= j) are important probes

of new physics. We focus here on the decay τ → µ + γ on which Babar Collaboration [1]

and Belle Collaboration [2] have put new limits on the branching ratio. Thus The current

experimental limit on the branching ratio of this process from the BaBar Collaboration [1]

based on 470fb−1 of data and from the Belle Collaboration [2] using 535 fb−1 of data is

B(τ → µ+ γ) < 4.4× 10−8 at 90% CL (BaBar)

B(τ → µ+ γ) < 4.5× 10−8 at 90% CL (Belle) (1)

At the SuperB factories[3, 4, 5] (for a review see [6]) the limit is expected to reach B(τ →
µ+γ) ∼ 1×10−9 as shown in Fig.(1). Thus it is of interest to see if theoretical estimates for

this branching ratio lie close to the current experimental limits to be detectable in improved

experiment.

Here we explore this process in the presence of a new vector like generation in an extension

of MSSM. Vector like multiplets arise quite naturally in a variety of grand unified models[7]

and some of them can escape supermassive mass growth and can remain light down to the

electroweak scale. Recently an analysis was given of the EDM of the tau in the framework of

an extension of the minimal supersymmetric standard model with a vector like multiplets [8].

Specifically mixing of the standard model leptons with the mirror leptons, and mixing of the

sleptons with mirror sleptons, were considered and it was found that such contributions could

put the tau EDM in the detectable range. Here we extend this analysis to investigate the

contributions from a vector like lepton multiplet to the flavor changing process τ → µ + γ.

This decay is forbidden at the tree level due to vector current conservation and can only

arise at the loop level. The current work is a logical extension of the previous works where

mixings with a vector like multiplet and with mirrors were considered [9, 10, 8, 11, 12].

Implications of additional vector multiplets in other contexts have been explored by many

previous authors (see, e.g.,[13, 14, 15, 16]). Several studies already exist on the analysis of

τ → µγ decay [17, 18, 19, 20, 21, 22, 23, 24]. However, none of them explore the class of

models discussed here.
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Figure 1: A display of the upper limits on the branching ratio B(τ− → µ−γ) (and for
τ− → µ−γ, µ−µ+µ−) from the previous experiments and for the anticipated experiments as
a function of the integrated luminosity. Figure is taken from Ref. [4].

2 Extension of MSSM with a Vector Multiplet

We begin with a brief discussion on extension of MSSM where we include vector like lepton

multiplets since such a combination is anomaly free. First under SU(3)C × SU(2)L×U(1)Y

the leptons of the three generations transform as follows

ψiL ≡
(
νiL
liL

)
∼ (1, 2,−1

2
), lciL ∼ (1, 1, 1), νciL ∼ (1, 1, 0), i = 1, 2, 3 (2)

where the last entry on the right hand side of each ∼ is the value of the hypercharge

Y defined so that Q = T3 + Y . These leptons have V − A interactions. We can now add

a vector like multiplet where we have a fourth family of leptons with V − A interactions

whose transformations can be gotten from Eq.(2) by letting i run from 1-4. A vector like

lepton multiplet also has mirrors and so we consider these mirror leptons which have V +A

interactions. Their quantum numbers are as follows

χc ≡
(
Ec
L

N c
L

)
∼ (1, 2,

1

2
), EL ∼ (1, 1,−1), NL ∼ (1, 1, 0). (3)

The vector like extension also has a quark sector which in addition to the usual sequential

generation of quarks

qiL ≡
(
tiL
biL

)
∼ (3, 2,

1

6
), bciL ∼ (3∗, 1,

1

3
), tciL ∼ (3∗, 1,−2

3
), i = 1, 2, 3 (4)
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also has a corresponding mirror generation

Qc ≡
(
Bc
L

T cL

)
∼ (3∗, 2,−1

6
), BL ∼ (3∗, 1,−1

3
), TL ∼ (3, 1,

2

3
). (5)

The MSSM Higgs doublets as usual have the quantum numbers

H1 ≡
(
H1

1

H2
1

)
∼ (1, 2,−1

2
), H2 ≡

(
H1

2

H2
2

)
∼ (1, 2,

1

2
). (6)

As mentioned already we assume that the vector multiplet escapes acquiring mass at the

GUT scale and remains light down to the electroweak scale. As in the analysis of Ref.[8]

interesting new physics arises when we consider the mixing of the first three generations of

leptons with the mirrors of the vector like multiplet. Actually we will limit ourselves to the

second and third generations since only these are relevant for the computation of the decay

τ → µγ. Thus the superpotential of the model may be written in the form

W = −µεijĤ i
1Ĥ

j
2 + εij[f1Ĥ

i
1ψ̂

j
Lτ̂

c
L + f ′1Ĥ

j
2ψ̂

i
Lν̂

c
τL + f2Ĥ

i
1χ̂

cjN̂L + f ′2H
j
2χ̂

ciÊL

+h1H
i
1ψ̂

j
µLµ̂

c
L + h′1H

j
2ψ̂

i
µLν̂

c
µL] + f3εijχ̂

ciψ̂jL + f ′3εijχ̂
ciψ̂jµL + f ′4µ̂

c
LÊL + f ′5ν̂

c
µLN̂L (7)

where ψ̂L stands for ψ̂3L and ψ̂µL stands for ψ̂2L. Here we assume a mixing between the

mirror generation and the third lepton generation through the couplings f3, f4 and f5. We

also assume mixing between the mirror generation and the second lepton generation through

the couplings f ′3, f
′
4 and f ′5. The above six mass terms are responsible for generating lepton

flavor changing process, τ → µγ.

If we assume a mixing between the mirror generation and the first lepton generation

through additional set of parameters f ′′3 , f ′′4 and f ′′5 , one can have the corresponding process

of µ → eγ. However, since the mixings with the first generation are independent of the

mixings with the second and the third generation, the µ → eγ decay is not correlated with

the τ → µγ decay. For this reason we limit our analysis to the τ → µγ decay. We will

focus here on the supersymmetric sector. Then through the terms f3, f4, f5, f
′
3, f

′
4, f

′
5 one can

have a mixing between the third generation and the second generation leptons which allows

the decay of τ → µγ through loop corrections that include charginos, neutralinos and scalar

lepton exchanges with the photon being emitted by the chargino (see the left diagram of

Fig.(2)) or by a charged slepton (see the right diagram of Fig.(2)). The mass terms for the

leptons and mirrors arise from the term

L = −1

2

∂2W

∂Ai∂Aj
ψiψj +H.c. (8)
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where ψ and A stand for generic two-component fermion and scalar fields. After spontaneous

breaking of the electroweak symmetry, (< H1
1 >= v1/

√
2 and < H2

2 >= v2/
√

2), we have

the following set of mass terms written in the 4-component spinor notation

−Lm =
(
τ̄R ĒR µ̄R

)f1v1/√2 f4 0

f3 f ′2v2/
√

2 f ′3
0 f ′4 h1v1/

√
2

 τL
EL
µL

+

+
(
ν̄τR N̄R ν̄µR

)f ′1v2/√2 f5 0

−f3 f2v1/
√

2 −f ′3
0 f ′5 h′1v2/

√
2

ντLNL

νµL

+H.c. (9)

Here the mass matrices are not Hermitian and one needs to use bi-unitary transformations

to diagonalize them. Thus we write the linear transformations

 τR
ER
µR

 = Dτ
R

τ1Rτ2R
τ3R

 ,

 τL
EL
µL

 = Dτ
L

τ1Lτ2L
τ3L

 , (10)

uch that

Dτ†
R

f1v1/√2 f4 0

f3 f ′2v2/
√

2 f ′3
0 f ′4 h1v1/

√
2

Dτ
L = diag(mτ1 ,mτ2 ,mτ3). (11)

The same holds for the neutrino mass matrix

Dν†
R

f ′1v2/√2 f5 0

−f3 f2v1/
√

2 −f ′3
0 f ′5 h′1v2/

√
2

Dν
L = diag(mν1 ,mν2 ,mν2). (12)

In Eq.(11) τ1, τ2, τ3 are the mass eigenstates and we identify the tau lepton with the

eigenstate 1, i.e., τ = τ1, and we identify τ2 with a heavy mirror eigenstate with a mass

in the hundreds of GeV and τ3 is identified as the muon. Similarly ν1, ν2, ν3 are the mass

eigenstates for the neutrinos, where we identify ν1 as the light tau neutrino, ν2 as the heavier

mass eigen state and ν3 as the muon neutrino. The scalar mass2 matrices of the model are

calculated in Appendix A, where we show that they are 6 × 6 hermitian matrices. If we
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assume a mixing between the mirror generation and the three lepton generations, the lepton

mass matrices would be 4× 4 and the scalar lepton mass2 matrices would be 8× 8 hermitian

matrices.

3 Interactions of Charginos and Neutralinos

The chargino exchange contribution to the decay of the tau into a muon and a photon arises

through the left loop diagram of Fig.(2). The relevant part of Lagrangian that generates

this contribution is given by

−Lτ−ν̃−χ+ =
3∑

α=1

2∑
i=1

6∑
j=1

τ̄α[CL
αijPL + CR

αijPR]χ̃ciν̃j +H.c. (13)

where

CL
αij = g[−κτU∗i2Dτ∗

R1α
D̃ν

1j − κµU∗i2Dτ∗
R3α

D̃ν
5j

+U∗i1D
τ∗
R2α

D̃ν
4j − κNU∗i2Dτ∗

R2α
D̃ν

2j],

CR
αij = g[−κντVi2Dτ∗

L1α
D̃ν

3j − κνµVi2Dτ∗
L3α
D̃ν

6j

+Vi1D
τ∗
L1α
D̃ν

1j + Vi1D
τ∗
L3α
D̃ν

5j − κEVi2Dτ∗
L2α
D̃ν

4j], (14)

where D̃ν is the diagonalizing matrix of the scalar 6× 6 mass2 matrix for the scalar neutrino

as defined in Appendix A. κN , κτ etc that enter in the equation above are defined by

(κN , κτ , κµ) =
(mN ,mτ ,mµ)√

2MW cos β
, (κE, κν) =

(mE,mν)√
2MW sin β

. (15)

In Eq.(14) U and V are the matrices that diagonalize the chargino mass matrix MC so that

U∗MCV
−1 = diag(m+

χ̃1
,m+

χ̃2
). (16)

The neutralino exchange contribution to the tau decay arises through the right loop

diagram of Fig. (2). The relevant part of Lagrangian that generates this contribution is

given by

−Lτ−τ̃−χ0 =
3∑

α=1

4∑
i=1

6∑
j=1

τ̄α[C ′LαijPL + C ′RαijPR]χ̃0
iτ̃j +H.c., (17)
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Figure 2: The diagrams that allow decay of the τ into µ + γ via supersymmetric loops
involving the chargino and the sneutrino (left) and the neutralino and the stau (right) with
emission of the photon from the charged particle inside the loop.

where as stated earlier τ = τ1 and µ = τ3. In Eq.(17) C ′L and C ′R are defined by

C ′Lαij =
√

2[ατiD
τ∗
R1α

D̃τ
1j − δEiDτ∗

R2α
D̃τ

2j − γτiDτ∗
R1α

D̃τ
3j

+βEiD
τ∗
R2α

D̃τ
4j + αµiD

τ∗
R3α

D̃τ
5j − γµiDτ∗

R3α
D̃τ

6j],

C ′Rαij =
√

2[βτiD
τ∗
L1α
D̃τ

1j − γEiDτ∗
L2α
D̃τ

2j − δτiDτ∗
L1α
D̃τ

3j

+αEiD
τ∗
L2α
D̃τ

4j + βµiD
τ∗
L3α
D̃τ

5j − δµiDτ∗
L3α
D̃τ

6j], (18)

where D̃τ is the diagonalizing matrix of the 6× 6 slepton mass2 matrix.

αEj =
gmEX

∗
4j

2mW sin β
, βEj = eX

′

1j +
g

cos θW
X
′

2j(
1

2
− sin2 θW ),

γEj = eX
′∗
1j −

g sin2 θW
cos θW

X∗
′

2j, δEj = − gmEX4j

2mW sin β
, (19)

and

ατj =
gmτX3j

2mW cos β
, αµj =

gmµX3j

2mW cos β
, βτj = βµj = −eX ′∗1j +

g

cos θW
X
′∗
2j(−

1

2
+ sin2 θW ),

γτj = γµj = −eX ′1j +
g sin2 θW
cos θW

X ′2j, δτj = −
gmτX

∗
3j

2mW cos β
, δµj = −

gmµX
∗
3j

2mW cos β
,(20)

where

X ′1j = (X1j cos θW +X2j sin θW ), X ′2j = (−X1j sin θW +X2j cos θW ), (21)
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and where the matrix X diagonalizes the neutralino mass matrix so that

XTMχ̃0X = diag(mχ0
1
,mχ0

2
,mχ0

3
,mχ0

4
). (22)

4 The analysis of τ → µ + γ Branching Ratio

The decay τ → µ+γ is induced by one-loop electric and magnetic transition dipole moments,

which arise from the diagrams of Fig.(2). In the dipole moment loop, the incoming muon

is replaced by a tau lepton. For an incoming tau of momentum p and a resulting muon of

momentum p′, we define the amplitude

< µ(p′)|Jα|τ(p) >= ūµ(p′)Γαuτ (p) (23)

where

Γα(q) =
F τµ
2 (q)iσαβq

β

mτ +mµ

+
F τµ
3 (q)σαβγ5q

β

mτ +mµ

+ ..... (24)

with q = p′ − p and where mf denotes the mass of the fermion f . The branching ratio of

τ → µ+ γ is given by

B(τ → µ+ γ) =
24π2

5G2
Fm

2
τ (mτ +mµ)2

{|F τµ
2 (0)|2 + |F τµ

3 (0)|2} (25)

where the form factors F τµ
2 and F τµ

3 arise from the chargino and the neutralino contributions

as follows

F τµ
2 (0) = F τµ

2χ+ + F τµ
2χ0

F τµ
3 (0) = F τµ

3χ+ + F τµ
3χ0 (26)

The chargino contribution F τµ
2χ+ is given by

F τµ
2χ+ =

2∑
i=1

6∑
j=1

[
mτ (mτ +mµ)

64π2m2
χ̃i

+

{CL
3ijC

L∗
1ij + CR

3ijC
R∗
1ij}F1(

M2
ν̃j

m2
χ̃i

+

)

+
(mτ +mµ)

64π2mχ̃i
+

{CL
3ijC

R∗
1ij + CR

3ijC
L∗
1ij}F2(

M2
ν̃j

m2
χ̃i

+

)] (27)

where

F1(x) =
1

3(x− 1)4
{−2x3 − 3x2 + 6x− 1 + 6x2 lnx} (28)
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and

F2(x) =
1

(x− 1)3
{3x2 − 4x+ 1− 2x2 lnx} (29)

The neutralino contribution F τµ
2χ0 is given by

F τµ
2χ0 =

4∑
i=1

6∑
j=1

[
−mτ (mτ +mµ)

192π2m2
χ̃i

0

{C ′L3ijC ′L∗1ij + C ′R3ijC
′R∗
1ij }F3(

M2
τ̃j

m2
χ̃i

0

)

−(mτ +mµ)

64π2mχ̃i
0

{C ′L3ijC ′R∗1ij + C ′R3ijC
′L∗
1ij }F4(

M2
τ̃j

m2
χ̃i

0

)] (30)

where

F3(x) =
1

(x− 1)4
{−x3 + 6x2 − 3x− 2− 6x lnx} (31)

and

F4(x) =
1

(x− 1)3
{−x2 + 1 + 2x lnx} (32)

The chargino contribution F τµ
3χ+ is given by

F τµ
3χ+ =

2∑
i=1

6∑
j=1

(mτ +mµ)mχ̃i
+

32π2M2
ν̃j

{CL
3ijC

R∗
1ij − CR

3ijC
L∗
1ij}F5(

m2
χ̃i

+

M2
ν̃j

) (33)

where

F5(x) =
1

2(x− 1)2
{−x+ 3 +

2 lnx

1− x
} (34)

The neutralino contribution F τµ
3χ0 is given by

F τµ
3χ0 =

4∑
i=1

6∑
j=1

(mτ +mµ)mχ̃i
0

32π2M2
τ̃j

{C ′L3ijC ′R∗1ij − C ′R3ijC ′L∗1ij }F6(
m2
χ̃i

0

M2
τ̃j

) (35)

where

F6(x) =
1

2(x− 1)2
{x+ 1 +

2x lnx

1− x
} (36)

If we consider a mixing of the mirror generation with the three lepton generations, the

phenomenologically parallel quantity B(µ → e + γ) would be possible. The corresponding

expression can be obtained from Eq.(25) by replacing every µ by e and every τ by µ. However,

the denominator does not have the number 5 in it in this case. The reason for this is that

in the case of τ decay we have three extra possible channels into µ+ ντ + ν̄µ, s+ ντ + ū and

d+ ντ + ū besides the process e+ ντ + ν̄e that is similar to the ones that occurs in the case of
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Figure 3: An exhibition of the dependence
of B(τ → µγ) on m0 when mN = 120,
mE = 150, |f3| = |f ′3| =90, |f4| =
|f ′4| =100, |f5| = |f ′5| =80, |A0| =150,
m̃1 = 50, m̃2 = 100, µ = 150, χ3 =
χ′3 =0.6, χ4 = χ′4 =0.4, χ5 = χ′5 =0.6,
αE =0.5, αN =0.8, and tan β =5, 10, 15,
20 (in ascending order atm0 = 300). Here
and in Figs.(4-7) masses are in GeV and
angles are in rad.

Figure 4: An exhibition of the dependence
of B(τ → µγ) on |f3| when m0 =900,
mN = 150, mE = 180, |f ′3| =100, |f4| =
|f ′4| =100, |f5| = |f ′5| =70, |A0| =100,
m̃1 = 50, m̃2 = 100, µ = 150, χ3 =
χ′3 =0.6, χ4 = χ′4 =0.4, χ5 = χ′5 =0.6,
αE =0.5, αN =0.8, and tan β =5, 10, 15,
20 (in ascending order at |f3| = 100.)

µ decay e + νµ + ν̄e. We note that since the mixings of the mirror with the first generation

are independent of the mixings of the mirror with the second and the third generations, the

branching ratio of µ→ eγ is not directly correlated to the branching ratio τ → µγ. For this

reason we focus on the decay τ → µγ without trying to correlate it with the decay µ→ eγ.

5 Estimate of size of B(τ → µγ)

In this section we give a numerical analysis of B(τ → µγ) for the model where we include a

leptonic vector multiplet. As discussed in the previous sections the flavor changing processes

arise from the mixings between the standard model leptons and the mirrors in the vector mul-

tiplet. The mixing matrices between leptons and mirrors are diagonalized using bi-unitary

transformations with matrices Dτ
R and Dτ

L. The input parameters for this sector of the pa-

rameter space are mτ ,mE,mµ, f3, f4, f
′
3, f

′
4 where f3, f4, f

′
3 and f ′4 are complex masses with

CP violating phases χ3, χ4, χ
′
3 χ
′
4. For the slepton mass2 matrices we need the extra input

parameters of the susy breaking sector, M̃τL, M̃E, M̃τ , M̃χ, M̃µL , M̃µ, Aτ , AE, Aµ, AN , µ, tan β.

For the sneutrino mass2 matrices we have more input parameters, M̃N , M̃ντ , M̃νµ , Aνµ , AN , Aνe ,

mN , f5, f
′
5. The chargino and neutralino sectors need the extra two parameters m̃1, m̃2. In

the analysis we will include phases since dipole moments are sensitive to phases (for a review
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Figure 5: An exhibition of the dependence
of B(τ → µγ) on χ3 when tan β =10,
mN = 170, mE = 200, |f3| = |f ′3| =250,
|f4| = |f ′4| =400, |f5| = |f ′5| =90,
|A0| =130, m̃1 = 90, m̃2 = 80, µ = 120,
χ′3 =0.8, χ4 = χ′4 =0.9, χ5 = χ′5 =1.6,
αE =1.0, αN =0.9, and m0 =900, 800,
700, 600, 500 (in ascending order at χ3 =
0.0.)

Figure 6: An exhibition of the dependence
of B(τ → µγ) on χ4 when m0 =800,
tan β =15, mN = 160, mE = 220,
|f ′3| =150, |f4| = |f ′4| =200, |f5| =
|f ′5| =100, |A0| =160, m̃1 = 100, m̃2 =
90, µ = 150, χ3 = χ′3 =0.6, χ′4 =0.8,
χ5 = χ′5 =1.0, αE =.4, αN =0.8, and
|f3| =300, 250, 200, 150 (in ascending or-
der at χ4 = 0.0.)

see [25]). Here for simplicity we assume that the only parameters that are complex in the

above matrix elements are AE, AN , Aτ , Aµ, Aν , f5 and f ′5 which have the phases αE, αN ,

ατ , αµ, αν , χ5 and χ′5. To simplify the analysis we set αν = αµ = ατ = 0. Thus the CP

violating phases that would play a role in this analysis are

χ3, χ4, χ5, χ
′
3, χ

′
4, χ

′
5, αE, αN . (37)

With the above in mind, the electric dipole moments of the electron, the neutron and of

the Hg atom vanish and we do not need to worry about them satisfying their upper limit

constraints. To reduce the number of input parameters we assume equality of the scalar

masses and of the trilinear couplings so that M̃a = m0, a = τL, E, τ, χ, ν, µ, µL, N and |Ai| =
|A0|, i = E,N, τ, ν, µ.

Fig.(3) gives an analysis of B(τ → µγ) as a function ofm0 for values of tan β = 5, 10, 15, 20

with other inputs as given in the caption of Fig.(3). The branching ratio depends on the

chargino and neutralino exchange contributions to F τµ
2 (0) and F τµ

3 (0) defined in Eq.(26)

which depend on m0 through the slepton masses that enter the loops. Fig.(3) exhibits a
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Figure 7: An exhibition of the dependence of B(τ → µγ) on tan β when m0 =700, mN = 200,
mE = 300, |f3| = |f ′3| =180, |f4| = |f ′4| =100, |f5| = |f ′5| =150, |A0| =360, m̃1 = 120,
m̃2 = 80, µ = 140, χ3 = χ′3 =0.7, χ4 = χ′4 =0.9, χ5 = χ′5 =.6, αE =.9, αN =0.4, and
χ3 =1.2, 0.8, 0.5, 0.1 (in ascending order at tan β = 30.)

sharp dependence on tan β which enters F τµ
2 (0) and F τµ

3 (0) also via the slepton masses as

well as through the chargino and neutralino mass matrices. Further, the couplings CL,R

and C ′L,R are also affected by variations in m0 and tan β. The analysis of Fig.(3) shows

that there is a significant part of the parameter space where B(τ → µγ) lies in the range

O(10−8) consistent with the upper limit of Eq.(1). Fig.(4) gives an analysis of B(τ → µγ) as

a function of |f3|, where f3 is an off diagonal term in the mass matrix of Eq.(9), for tan β

values as in Fig.(3) and the other inputs are as given in the caption of Fig.(4). As in Fig.(3)

one finds a sharp dependence on tan β. This dependence of |f3| arises since it enters in

the matrix elements diagonalizing matrices Dτ
L,R and this way it affects both chargino and

neutralino exchange contributions. The entire parameter space exhibited in this figure is

consistent with the upper limits of Eq.(1).

We discuss now the effect of CP phases on B(τ → µγ). As mentioned above the phases

of Eq.(37) have no effect on the EDMs of the electron, on the EDM of the neutron or on

EDM of the Hg atom and these phases only affect phenomena related to the second and

the third generation leptons. Fig.(5) gives a display of B(τ → µγ) as a function of χ3 for

values of m0 = 900, 800, 700, 600, 500 GeV (in ascending order) when tan β = 10 and the

other inputs are as shown in the caption of Fig.(5). Here one finds that B(τ → µγ) has a

significant dependence on χ3. Thus, for instance, for the case m0 = 500 GeV (top curve)

one finds that B(τ → µγ) can vary in the range (1 × 10−8 − 4 × 10−8) as χ3 varies in the

range (0, π). Again B(τ → µγ) displayed in this analysis is consistent with the upper limit

of Eq.(1) over the entire range of parameters exhibited.
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Another analysis on the dependence of B(τ → µγ) on CP phases is exhibited in Fig.(6)

where a plot of B(τ → µγ) as a function of χ4 is given for the case when |f3| = (300, 250,

200, 150) GeV (in ascending order), tan β = 15 and other inputs are as given in the caption

of Fig.(6). Again a very significant variation in B(τ → µγ) is seen as χ4 varies in the

range (0, π). Specifically one finds that for the case |f3| = 150, B(τ → µγ) varies in the

range (8 × 10−9 − 3 × 10−8). Further, over the entire parameter space analysed in Fig.(6)

B(τ → µγ) is consistent with the upper limit of Eq.(1). Finally, in Fig.(7) we exhibit the

dependence of B(τ → µγ) on tan β when χ3 = 1.2, 0.8, 0.5, 0.1 (in ascending order) with other

parameters as defined in the caption of Fig.(7). A sharp dependence of B(τ → µγ) on tan β

can be seen. Specifically one finds that for the case χ3 = 0.1 (the top curve) B(τ → µγ) varies

in the range (1 × 10−10 − 3 × 10−8) which is more than an order of magnitude variation as

tan β varies in the range (5-30).

In summary in the analyses presented in Fig.(3-7), one finds that B(τ → µγ) can be quite

large often lying just below the current experimental limits which implies that this part of

the parameter space will be accessible to future experiments, specifically SuperB factories

which can probe B(τ → µγ) as low as 10−9. We note that the flavor changing interactions

of Eq.(7) also contribute to the muon anomalous magnetic moment gµ − 2 which is very

precisely determined experimentally. This can come about by the exchange of a tau and a

photon in the loop but since each vertex is one loop order, the contribution is three loop

order which would be tiny compared to other standard model electroweak contributions.

One should also consider the constraints arising from the S and T parameters. However, the

S and T constraints are not very stringent for a vector like multiplet, see e.g., [26]. The

choice of parameters in our analysis is consistent with this work.

6 Conclusion

Lepton flavor changing processes provide an important window to new physics beyond the

standard model. In this work we have analyzed the decay τ → µ + γ in extensions of the

MSSM with vector like leptonic multiplets which are anomaly free. Specifically we con-

sider mixings between the standard model generations of leptons with the mirror leptons in

the vector multiplet. It is because of these mixings which are parametrized by f3, f4, f5 and

f ′3, f
′
4, f

′
5 as defined in Eq.(7) that lepton flavor violations appear. We focus on the supersym-

metric sector and compute contributions to this process arising from diagrams with exchange
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of charginos and sneutrinos in the loop and with the exchange of neutralinos and staus in the

loop. These loops do not preserve lepton flavor. A full analytic analysis of these loops was

given which constitute the main result of this work. A numerical analysis was also carried

out and it is found that there exists a significant part of the parameter space where one can

have the branching ratio for this process in the range 4.4 × 10−8 − 10−9, where 4.4 × 10−8

at 90% CL is the upper limit from BaBar (see Eq.(1)) and the lower limit is the sensitivity

that the SuperB factories will achieve. Thus it is very likely that improved experiment with

a better sensitivity may be able to probe this class of models.

Finally we wish to remark on the implications of the recent LHC data specifically as it

relates to the Higgs boson discovery for the present analysis. Here we note that the precise

determination of the Higgs mass achieved in recent LHC data has no direct implication

on the analysis. However, the new vector like multiplet could have an effect on the loop

corrections to the Higgs decay branching ratios such as h → τ τ̄ ,W+W− etc. Computation

of such corrections are outside the scope of this work. The current work also has implications

for collider phenomenology. Some of the collider phenomenology for this class of models

specifically as relates to the mirrors was discussed in [11] (see also [27]). The signatures for

a vector like lepton multiplet would arise from a Drell-Yan process such as in pp→ Z∗ +X

with Z∗ → Ec + Ēc with Ec + Ēc decaying into τ τ̄ . Thus one should see an excess of τ τ̄

events. However, the detection efficiency of taus is poorer than the detection efficiency for

the muons and for this reason the detection of the vector like leptons and vector like sleptons

will be more difficult than the detection of, for example, smuons produced by the Drell-Yan

process. A more detailed discussion of this issue requires a separate analysis and is outside

the scope of this work.

7 Appendix A

In this appendix, we consider the mixings of the charged sleptons and the charged mirror

sleptons. The mass2 matrix of the slepton - mirror slepton comes from three sources, the F

term, the D term of the potential and soft susy breaking terms. Using the superpotential

of Eq.(7) the mass terms arising from it after the breaking of the electroweak symmetry are

given by LF and LD
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−LF = (m2
E + |f3|2 + |f ′3|2)ẼRẼ∗R + (m2

N + |f3|2 + |f ′3|2)ÑRÑ
∗
R

+(m2
E + |f4|2 + |f ′4|2)ẼLẼ∗L + (m2

N + |f5|2 + |f ′5|2)ÑLÑ
∗
L

+(m2
τ + |f4|2)τ̃Rτ̃ ∗R + (m2

ντ + |f5|2)ν̃τRν̃∗τR + (m2
τ + |f3|2)τ̃Lτ̃ ∗L

+(m2
µ + |f ′4|2)µ̃Rµ̃∗R + (m2

µ + |f ′3|2)µ̃Lµ̃∗L + (m2
ντ + |f3|2)ν̃τLν̃∗τL

+(m2
νµ + |f ′3|2)ν̃µLν̃∗µL + (m2

νµ + |f ′5|2)ν̃µRν̃∗µR
+{−mτµ

∗ tan βτ̃Lτ̃
∗
R −mNµ

∗ tan βÑLÑ
∗
R −mντµ

∗ cot βν̃τLν̃
∗
τR

−mµµ
∗ tan βµ̃Lµ̃

∗
R −mνµµ

∗ cot βν̃µLν̃
∗
µR

−mEµ
∗ cot βẼLẼ

∗
R + (mEf

∗
3 +mτf4)ẼLτ̃

∗
L

+(mEf4 +mτf
∗
3 )ẼRτ̃

∗
R + (mEf

′∗
3 +mµf

′
4)ẼLµ̃

∗
L

+(mEf
′
4 +mµf

′∗
3 )ẼRµ̃

∗
R + (mντf5 −mNf

∗
3 )ÑLν̃

∗
τL

+(mNf5 −mντf
∗
3 )ÑRν̃

∗
τR + (mνµf

′
5 −mNf

∗
3 )ÑLν̃

∗
µL

+(mNf
′
5 −mνµf

′∗
3 )ÑRν̃

∗
µR + f ′3f

∗
3 µ̃Lτ̃

∗
L + f4f

′∗
4 µ̃Rτ̃

∗
R

+f ′3f
∗
3 ν̃µLν̃τ∗L + f5f

′∗
5 ν̃µRν̃

∗
τR +H.c.}. (38)

Similarly the mass terms arising from the D term are given by

−LD =
1

2
m2
Z cos2 θW cos 2β{ν̃τLν̃∗τL − τ̃Lτ̃ ∗L + ν̃µLν̃

∗
µL − µ̃Lµ̃∗L + ẼRẼ

∗
R − ÑRÑ

∗
R}

+
1

2
m2
Z sin2 θW cos 2β{ν̃τLν̃∗τL + τ̃Lτ̃

∗
L + ν̃µLν̃

∗
µL + µ̃Lµ̃

∗
L

−ẼRẼ∗R − ÑRÑ
∗
R + 2ẼLẼ

∗
L − 2τ̃Rτ̃

∗
R − 2µ̃Rµ̃

∗
R}. (39)

In addition we have the following set of soft breaking terms

Vsoft = M̃2
τLψ̃

i∗
τLψ̃

i
τL + M̃2

χχ̃
ci∗χ̃ci + M̃2

µLψ̃
i∗
µLψ̃

i
µL + M̃2

ντ ν̃
c∗
τLν̃

c
τL

+M̃2
νµ ν̃

c∗
µLν̃

c
µL + M̃2

τ τ̃
c∗
L τ̃

c
L + M̃2

µµ̃
c∗
L µ̃

c
L + M̃2

EẼ
∗
LẼL + M̃2

NÑ
∗
LÑL

+εij{f1AτH i
1ψ̃

j
τLτ̃

c
L − f ′1AντH i

2ψ̃
j
τLν̃

c
τL + h1AµH

i
1ψ̃

j
µLµ̃

c
L − h′1AνµH i

2ψ̃
j
µLν̃

c
µL

+f2ANH
i
1χ̃

cjÑL − f ′2AEH i
2χ̃

cjẼL +H.c.} (40)
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From LF,D and by giving the neutral Higgs their vacuum expectation values in Vsoft we can

produce the the mass2 matrix M2
τ̃ in the basis (τ̃L, ẼL, τ̃R, ẼR, µ̃L, µ̃R). We label the matrix

elements of these as (M2
τ̃ )ij = M2

ij where

M2
11 = M̃2

τL +m2
τ + |f3|2 −m2

Zcos2β(
1

2
− sin2 θW ),

M2
22 = M̃2

E +m2
E + |f4|2 + |f ′4|2 +m2

Zcos2β sin2 θW ,

M2
33 = M̃2

τ +m2
τ + |f4|2 −m2

Zcos2β sin2 θW ,

M2
44 = M̃2

χ +m2
E + |f3|2 + |f ′3|2 +m2

Zcos2β(
1

2
− sin2 θW ),

M2
55 = M̃2

µL +m2
µ + |f ′3|2 −m2

Zcos2β(
1

2
− sin2 θW ),

M2
66 = M̃2

µ +m2
µ + |f ′4|2 −m2

Zcos2β sin2 θW ,

M2
12 = M2∗

21 = mEf
∗
3 +mτf4,

M2
13 = M2∗

31 = mτ (A
∗
τ − µ tan β),

M2
14 = M2∗

41 = 0,M2
15 = M2∗

51 = f ′3f
∗
3 ,

M2∗
16 = M2∗

61 = 0,M2
23 = M2∗

32 = 0,

M2
24 = M2∗

42 = mE(A∗E − µ cot β),M2
25 = M2∗

52 = mEf
′
3 +mµf

′∗
4 ,

M2
26 = M2∗

62 = 0,M2
34 = M2∗

43 = mEf4 +mτf
∗
3 ,M

2
35 = M2∗

53 = 0,M2
36 = M2∗

63 = f4f
′∗
4

M2
45 = M2∗

54 = 0,M2
46 = M2∗

64 = mEf
′∗
4 +mµf

′
3,

M2
56 = M2∗

65 = mµ(A∗µ − µ tan β) (41)

Here the terms M2
11,M

2
13,M

2
31,M

2
33 arise from soft breaking in the sector τ̃L, τ̃R, the terms

M2
55,M

2
56,M

2
65,M

2
66 arise from soft breaking in the sector µ̃L, µ̃R, and the terms M2

22,M
2
24,

M2
42,M

2
44 arise from soft breaking in the sector ẼL, ẼR. The other terms arise from mix-

ing between the staus, smuons and the mirrors. We assume that all the masses are of the

electroweak size so all the terms enter in the mass2 matrix. We diagonalize this hermitian

mass2 matrix by the unitary transformation D̃τ†M2
τ̃ D̃

τ = diag(M2
τ̃1
,M2

τ̃2
,M2

τ̃3
,M2

τ̃4
,M2

τ̃5
,M2

τ̃6
).

There is a similar mass2 matrix in the sneutrino sector. In the basis (ν̃τL, ÑL, ν̃τR, ÑR, ν̃µL, ν̃µR)

we can write the sneutrino mass2 matrix in the form (M2
ν̃ )ij = m2

ij where
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m2
11 = M̃2

τL +m2
ντ + |f3|2 +

1

2
m2
Zcos2β,

m2
22 = M̃2

N +m2
N + |f5|2 + |f ′5|2, m2

33 = M̃2
ντ +m2

ντ + |f5|2,

m2
44 = M̃2

χ +m2
N + |f3|2 + |f ′3|2 −

1

2
m2
Zcos2β,

m2
55 = M̃2

µL +m2
νµ + |f ′3|2 +

1

2
m2
Zcos2β,

m2
66 = M̃2

νµ +m2
νµ + |f ′5|2,

m2
12 = m2∗

21 = mντf5 −mNf
∗
3 ,

m2
13 = m2∗

31 = mντ (A
∗
ντ − µ cot β), m2

14 = m2∗
41 = 0,

m2
14 = m2∗

41 = 0,m2
15 = m2∗

51 = f ′3f
∗
3 ,m

2
16 = m2∗

61 = 0,

m2
23 = m2∗

32 = 0,m2
24 = m2∗

42 = mN(A∗N − µ tan β),m2
25 = m2∗

52 = −mNf
′
3 +mνµf

′∗
5 ,

m2
26 = m2∗

62 = 0, m2
34 = m2∗

43 = mNf5 −mντf
∗
3 ,

m2
35 = m2∗

53 = 0,m2
36 = m2∗

63 = f5f
′∗
5 ,m

2
45 = m2∗

54 = 0

m2
46 = m2∗

64 = −mνµf
′
3 +mNf

′∗
5 ,m

2
56 = m2∗

65 = mνµ(A∗νµ − µ cot β). (42)

As in the charged slepton sector here also the terms m2
11,m

2
13,m

2
31,m

2
33 arise from soft break-

ing in the sector ν̃τL, ν̃τR, the terms m2
55,m

2
56,m

2
65,m

2
66 arise from soft breaking in the sector

ν̃µL, ν̃µR , and the terms m2
22,m

2
24, m

2
42,m

2
44 arise from soft breaking in the sector ÑL, ÑR. The

other terms arise from mixing between the physical sector and the mirror sector. Again as

in the charged lepton sector we assume that all the masses are of the electroweak size so all

the terms enter in the mass2 matrix. This mass2 matrix can be diagonalized by the unitary

transformation D̃ν†M2
ν̃ D̃

ν = diag(M2
ν̃1
,M2

ν̃2
,M2

ν̃3
,M2

ν̃4
,M2

ν̃5
,M2

ν̃6
). The states τ̃i, ν̃i; i = 1− 6

are the slepton and sneutrino mass eigenstates.
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