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I. INTRODUCTION

If the particle of mass 126 GeV recently discovered [1, 2] at the Large Hadron Collider (LHC) turns out (as is widely
expected) to be the Higgs scalar, then particle physics will have at last undeniably moved into the beyond-Standard
Model (BSM) era. The theoretical difficulties of a universe in which the Standard Model (SM) is the ultimate theory of
particle physics are well known: In addition to requiring three complete generations of fermions, and ignoring gravity
but nevertheless incorporating three distinct fundamental interactions, the SM suffers from the famous hierarchy
problem of a scalar particle whose renormalized mass lies quite close to the scale of electroweak symmetry breaking,
rather than being driven to GUT- or Planck-scale values by the exigencies of regularizing a quadratic divergence.
The most popular BSM remedies for the hierarchy problem are also well known: Low-scale supersymmetry (SUSY),
large extra spacetime dimensions, and little Higgs models. As the LHC continues to generate vast amounts of new
experimental data, the constraints of phenomenological viability are pushing each approach into ever smaller regions
of its respective parameter space. The moment of truth for many BSM models is rapidly approaching.

The same can be said for a less well-studied approach, the Lee-Wick Standard Model (LWSM) of Grinstein,
O’Connell, and Wise [3]. Inspired by the Lee and Wick (LW) program [4] of performing renormalization by promoting
the spurious Pauli-Villars regulator to the status of a full, dynamical, negative-norm field, Ref. [3] showed that
introducing LW partners for SM particles with the same gauge couplings eliminates quadratic divergences in loop
calculations. The cancellation between positive- and negative-norm states in loops resembles the cancellation between
fermions and bosons in SUSY, while the fact that the particle and its LW partner share the same statistics but carry
an opposite type of parity is reminiscent of the bottom of a tower of Kaluza-Klein excitations in extra-dimension
models.

The latter analogy becomes more apparent when one realizes that LW models need not terminate with a single
partner. As shown in Ref. [3], the LW Lagrangian is equivalent to a particular higher-derivative (HD) theory; in
particular, it is one in which 4-derivative bosonic and 3-derivative fermionic interaction terms appear, and the full
HD field consists of both the conventional field and its LW partner. Of course, not just any HD Lagrangian produces
an equivalent LW theory; only those that produce propagator poles at real mass values are valid for the purpose.
Labeling theories by N , the number of poles in the HD field propagator, the conventional single-pole theory is labeled
as N = 1, and the original LW theory is labeled as N = 2, but in principle nothing prevents the construction of
N ≥ 3 theories [5]. In such theories, one can show that the partner states alternate in norm as their mass parameters
increase. The cancellation of quadratic divergences requires the participation of all N states through delicate sum
rules among their couplings that seem conspiratorial at the level of the LW theory, but merely reflect the improved
power counting of the equivalent HD theory.

While not as thoroughly studied as other BSM approaches, the original LWSM approach [3] has nevertheless inspired
research leading to numerous publications in several different areas, including early universe models, quantum gravity,
thermodynamics, and formal studies of field theory. The last of these deserves special mention because negative-norm
states in field theory are peculiar objects. As has been known for decades [6], the apparent violation of unitarity
induced by such states can be traded for the imposition of future boundary conditions that introduce causality
violation at microscopic levels. To date, no logical argument precludes the existence of such exotic behavior, and
the existence of microcausality violation can only be bounded experimentally by measurements at successively higher
energy scales.

For the purposes of this paper, we avoid such thorny issues and adopt instead the pragmatic viewpoint that LW
theories (or their HD equivalents) should merely be treated as effective theories good to scales of at least 14 TeV, the
upper limit of physics to be probed at the LHC in the near future. The question of the viability of LWSM variants then
relies upon whether the new states can be produced and observed directly, and for what mass ranges they satisfy the
stringent experimental constraints imposed by electroweak precision tests (EWPT). Both of these questions have been
studied in some detail in the original N = 2 LWSM; in the case of direct production, Refs. [7, 8] find that N = 2 LW
gauge bosons, for example, can readily be produced at the LHC, but may be difficult to distinguish from novel states
from other scenarios such as extra-dimension models. Precision observables in the N = 2 theory, on the other hand,
have been examined in a succession of improvements [9–12] (by scanning the LW parameter space in [9]; by including
only LW masses for the fields most important for the hierarchy problem [10]; by using not just oblique parameters
S, T , but also the “post-LEP” parameters W , Y [11]; by including bounds from the Zbb̄ direct correction [12]), with
the consensus conclusion that LW gauge boson masses must be well over 2 TeV, and in such cases, the LW fermion
masses must be substantially higher (perhaps as much as 10 TeV). If all LW masses are comparable, then the lower
bound on this scale is typically ∼ 7 TeV. The LW Higgs partners, on the other hand, appear to be much less tightly
constrained and produce milder constraints on collider phenomenology [13–16].

In comparison, only one collider physics study of the N = 3 LWSM has thus far appeared [17], a paper by the
present authors generalizing the study of W boson production in Ref. [7], and showing not only that such bosons
can readily be produced, but also that their mass spectrum generates a signature likely unique among known BSM
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models. The next logical step is, of course, a study of EWPT in the N = 3 LWSM, which is the purpose of this paper.
On general principles, one naturally expects the N = 3 LWSM to allow for less stringent lower bounds on new

particle masses compared to the N = 2 model, making for earlier discovery potential at the LHC. Of course, simply
by adding new degrees of freedom to the theory (extending from N = 2 to N = 3) and then fitting to EWPT, one
expects the bounds to relax; however, in LW models, one might expect the effect to be more pronounced because the
negative-norm states and the new positive-norm states can produce a substantial numerical cancellation just between
themselves (although the SM state must also be included in order to cancel the quadratic divergences). Since the
N = 2 LWSM may be thought of as an N = 3 model in which the masses of the negative-norm states are fixed and the
masses of the additional positive-norm states are taken to infinity, one expects a substantial relaxation of tension in
EWPT compared to the N = 2 LWSM when the positive-norm masses are adjusted to lie not excessively higher than
the negative-norm masses. In detailed fits, we find that this reasoning holds up to scrutiny in the scalar sector, while
the addition of N = 3 fermions generates much more nuanced changes, sometimes even moving in the same direction
as the N = 2 contribution. After a detailed analysis, one finds that a large parameter space of LHC-accessible masses
remains open to LW partner states, making the N = 3 LWSM phenomenologically viable and attractive.

This paper is organized as follows. In Sec. II we review the formalism of the N = 3 LWSM. Section III defines the
oblique EWPT parameters used in the fits, while Sec. IV considers an important non-oblique EWPT variable, the
ZbLb̄L coupling. In Sec. V we analyze the effects of EWPT and present bounds on the N = 3 LWSM particle masses.
Section VI offers discussion and concluding remarks.

II. REVIEW OF THE N = 3 LEE-WICK STANDARD MODEL

A Lee-Wick theory of degree N for a given field φ̂ is a particular higher-derivative theory in which the original
Lagrangian with a canonical kinetic energy term is augmented by the addition of terms containing up to 2N additional
covariant derivatives. Such a Lagrangian may be re-expressed in terms of an equivalent auxiliary field formalism in

which φ̂ is a linear combination of N fields φ(1),(2),...,(N) that alternate in the sign of their quantum-mechanical norm.
As shown in Ref. [5] and summarized in this section, this construction can be implemented independently for fields

φ̂ that are real or complex scalars, fermions, or gauge fields. In particular, no obvious theory constraint fixes the
mass parameters that appear with each additional pair of derivatives acting upon each field, so that one may consider
scenarios, for example, in which only some of the SM particles have one LW partner, some have two, and some have
none.

In the N = 2 LW theory, the opposite-sign norms are incorporated by the fields corresponding to particles and

their partners that appear in the Lagrangian with a relative sign, i.e., φ̂ = φ(1) − φ(2). For any integer N > 2, the
origin of the equivalence between the LW theory and its HD form is imposed by means of a set of fixed parameters
η1,2,...,N . For N = 3 they read [5]

η1 ≡
Λ4

(m2
2 −m2

1)(m2
3 −m2

1)
, (2.1)

η2 ≡
Λ4

(m2
1 −m2

2)(m2
3 −m2

2)
, (2.2)

η3 ≡
Λ4

(m2
1 −m2

3)(m2
2 −m2

3)
, (2.3)

where m1 < m2 < m3 are the masses of the original state and its two LW partners, and Λ4 ≡ m2
1m

2
2 +m2

1m
2
3 +m2

2m
2
3.

The parameters satisfy a variety of sum rules,

3∑

i=1

m2n
i ηi = 0 (n = 0, 1), (2.4)

3∑

i=1

m2n
i ηi = Λ4 (n = 2), (2.5)

m2
1m

2
2η3 +m2

2m
2
3η1 +m2

3m
2
1η2 = Λ4 . (2.6)

that provide the means by which cancellations of quadratic loop divergences are guaranteed. They appear in slightly
different permutations in fields of different spin.
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A. Neutral Scalar Fields

Upon writing

φ̂ =
√
η1 φ

(1)−√−η2 φ
(2) +

√
η3 φ

(3) , (2.7)

an N = 3 HD Lagrangian of the general form

LN=3
HD = −1

2
φ̂� φ̂− 1

2M2
1

φ̂�2φ̂− 1

2M4
2

φ̂�3φ̂− 1

2
m2
φφ̂

2 + Lint(φ̂) (2.8)

is equivalent at the quantum level to the LW Lagrangian (note the alternation of norm):

LN=3
LW = −1

2
φ(1)(� + m2

1)φ(1) +
1

2
φ(2)(� + m2

2)φ(2) − 1

2
φ(3)(� + m2

3)φ(3) + Lint(φ̂) , (2.9)

provided one identifies

m2
φ = (m2

1m
2
2m

2
3)/Λ4 , (2.10)

M2
1 = Λ4/(m2

1 +m2
2 +m2

3) , (2.11)

M2
2 = Λ2 . (2.12)

B. Yang-Mills Fields

The analogue to Eq. (2.7) reads

Âµ = Aµ1 −
√−η2

η1
Aµ2 +

√
η3

η1
Aµ3 , (2.13)

with m1 set to zero to guarantee the masslessness of the gauge field Aµ1 . One defines the field strength and covariant
derivative acting upon an adjoint representation field X in the usual way:

F̂µν ≡ ∂µÂν − ∂νÂµ − ig [Âµ, Âν ] , (2.14)

D̂µX ≡ ∂µX − ig [Âµ, X] . (2.15)

Then the N = 3 HD Lagrangian,

LN=3
HD = −1

2
Tr F̂µν F̂

µν −
(

1

m2
2

+
1

m2
3

)
TrF̂µνD̂

µD̂αF̂
αν − 1

m2
2m

2
3

TrF̂µνD̂
µD̂αD̂

[αD̂βF̂
βν] , (2.16)

where the superscript brackets indicate antisymmetrization of just the first and last indices (α and ν here), is equivalent
to the LW Lagrangian

LN=3
LW = −1

2
TrFµν1 F1µν +

1

2
Tr(DµA2ν −DνA2µ)2 − 1

2
Tr(DµA3ν −DνA3µ)2

−m2
2 TrAµ2A2µ +m2

3 TrAµ3A3µ , (2.17)

which includes all of the kinetic and mass terms, plus more involved but still fairly compact expressions for cubic and
quartic terms given explicitly in Ref. [5]. The alternation of norm is again apparent.

C. Chiral Fermion Fields

Chiral fermions are only slightly more complicated because their LW partners have explicit LW Dirac mass partners.
For a conventional left-handed Weyl fermion field φL, the analogue of Eq. (2.7) reads

φ̂L = φ
(1)
L −

√−η2

η1
φ

(2)
L +

√
η3

η1
φ

(3)
L , (2.18)
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and the LW partner fields φ
(2),(3)
L possess their own chiral partners φ

(2),(3)
R that arise from the process of converting

the HD Lagrangian into an equivalent LW form. Defining then for each LW partner the combined field φ ≡ φL + φR
and noting that m1 = 0, the HD form reads

LN=3
HD =

1

m2
2m

2
3

φ̂L

[
(iD̂/ )2 −m2

2

] [
(iD̂/ )2 −m2

3

]
iD̂/ φ̂L , (2.19)

where D̂/ includes both the gauge bosons and their LW partners. The equivalent LW Lagrangian then reads

LN=3
LW = φ

(1)

L iD̂/ φ
(1)
L − φ

(2)
(iD̂/ −m2)φ(2) + φ

(3)
(iD̂/ −m3)φ(3) . (2.20)

In the case of a fundamental right-handed Weyl field φR contained in a HD Lagrangian field φ̂R, the definitions
proceed exactly as above, with the substitution L↔ R. However, one should note that the R chiral partners induced

in the φ̂L construction are distinct fields from those appearing directly in the definition φ̂R, and vice versa for L chiral
partners.

The original paper [3] adopts the notation of placing a prime on fields that appear not through HD superfields but
rather through their Dirac mass terms1; for example, in the third generation, the SM fields tL, bL transforming under
SU(2)×U(1) as (2, + 1

6 ) are joined by N = 2 LW partners t̃L, b̃L, and the latter have Dirac mass partners (mass

parameter Mq) t̃
′
R, b̃′R, respectively, all of which transform as (2, + 1

6 ). The SM fields tR and bR, transforming as (1,

+ 2
3 ) and (1, − 1

3 ), respectively, have N = 2 LW partners t̃R, b̃R, which in turn have Dirac mass partners t̃′L (mass

Mt), b̃
′
L (mass Mb), respectively. For N > 2, we retain the prime convention of [3], replace the tildes with superscripts

(2), (3), . . . , and attach corresponding subscripts to the masses (e.g., Mq2, Mb3). For purposes of numerical analysis,
the fields are more conveniently collected [10] by flavor and chirality, rather than by SU(2)×U(1) quantum numbers.
In the N = 3 case,

TTL,R ≡
(
t
(1)
L,R, t

(2)
L,R, t

′ (2)
L,R , t

(3)
L,R, t

′ (3)
L,R

)
,

BTL,R ≡
(
b
(1)
L,R, b

(2)
L,R, b

′ (2)
L,R , b

(3)
L,R, b

′ (3)
L,R

)
. (2.21)

D. Complex Scalar Fields

The generalization of the real scalar field φ to a complex scalar multiplet H transforming in the fundamental
representation of a non-Abelian gauge group requires only the promotion of ordinary derivatives to covariant ones.
The analogue of Eq. (2.7) reads

Ĥ =
√
η1H

(1) −√−η2H
(2) +

√
η3H

(3) , (2.22)

and relates the HD form,

LN=3
HD = D̂µĤ

†D̂µĤ −m2
HĤ

†Ĥ − 1

M2
1

Ĥ†(D̂µD̂
µ)2Ĥ − 1

M4
2

Ĥ†(D̂µD̂
µ)3Ĥ + Lint(Ĥ) , (2.23)

to the equivalent LW form

LN=3
LW = −H(1)†(D̂µD̂

µ +m2
1)H(1) +H(2)†(D̂µD̂

µ +m2
2)H(2) −H(3)†(D̂µD̂

µ +m2
3)H(3)

+Lint(Ĥ) , (2.24)

with the mass parameters related as in Eqs. (2.10)–(2.12), with mφ → mH .
In the particular case of the SM Higgs multiplet, m1 = 0, and the lightest scalar obtains mass only through

spontaneous symmetry breaking with vacuum expectation value v. Writing

LN=3
HD = LN=3

HD (m2
H = 0) + L̃int(Ĥ) , (2.25)

−L̃int(Ĥ) ≡ λ

4

(
Ĥ†Ĥ − v2

2

)2

, (2.26)

1 In contrast, Ref. [12] uses primes exclusively for the right-handed HD superfields and Dirac mass partners of its component fields.
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the equivalent LW Lagrangian reads

LN=3
LW = D̂µH

(1)†D̂µH(1) − D̂µH
(2)†D̂µH(2) + D̂µH

(3)†D̂µH(3)

+m2
2H

(2)†H(2) −m2
3H

(3)†H(3) + L̃int(Ĥ) . (2.27)

In unitary gauge,

H(1) =

(
0

1√
2
(v + h1)

)
, H(2) =

(
ih+

2
1√
2
(h2 + iP2)

)
, H(3) =

(
ih+

3
1√
2
(h3 + iP3)

)
, (2.28)

where the fields hi, Pi, and h+
i denote the scalar, pseudoscalar, and charged Higgs components, respectively, the mass

terms in Eq. (2.27) read

LN=3
mass =

1

2
m2

2 (2h−2 h
+
2 + h2

2 + P 2
2 )− 1

2
m2

3 (2h−3 h
+
3 + h2

3 + P 2
3 )

−1

2
m2(h1 −

√−η2h2 +
√
η3h3)2 , (2.29)

with m2 = λv2/2. The pseudoscalar and charged scalar fields therefore have mass eigenvalues m2,3, while the neutral
scalar fields are mixed. The mass eigenvectors h0 in the mixed sector are obtained by a symplectic transformation S
that preserves the relative signs of the kinetic terms via a metric η = diag(+,−,+) but diagonalizes the mass matrix
M in h†Mηh:

h0 = S−1h , S†ηS = η , (2.30)

so that

M0η = S†MηS . (2.31)

In the N = 2 case [3], the elements of S consist of sinhφ and coshφ of a single “Euler angle” φ. For higher N ,
S is similarly expressible as the symplectic analogue to a multidimensional Euler rotation matrix. In any case, the
transformation S for any given mixing matrix M is easily found numerically.

E. Fermion Mass Diagonalization

Since the Yukawa couplings appear as

LYuk = −yt ˆ̄qLĤb̂R − yb ˆ̄qL(εĤ†) t̂R + H.c. , (2.32)

where ε ≡ iσ2, the fermion mass terms may be expressed in terms of the ratios of η’s appearing in Eq. (2.18). In the

case of t quarks for N = 3, one may abbreviate mt ≡ ytv/
√

2 and:

coshφq =
Mq3√

M2
q3 −M2

q2

, sinhφq =
Mq2√

M2
q3 −M2

q2

,

coshφt =
Mt3√

M2
t3 −M2

t2

, sinhφt =
Mt2√

M2
t3 −M2

t2

, (2.33)

which give mass terms, using the notation of Eq. (2.21), of the form

LN=3
tmass = −TLηM†tTR + H.c. , (2.34)

where

MN=3
t η =




mt −mt coshφq 0 mt sinhφq 0
−mt coshφt mt coshφq coshφt −Mt2 −mt sinhφq coshφt 0

0 −Mq2 0 0 0
mt sinhφt −mt coshφq sinhφt 0 mt sinhφq sinhφt +Mt3

0 0 0 +Mq3 0


 , (2.35)
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where the metric η = diag(+,−,−,+,+) reflects the norms of the component states, and thus also appears in the
corresponding kinetic terms. The diagonalization of the mass matrix to a formMt0 with positive eigenvalues therefore
requires independent transformation matrices StL,R for each quark flavor (here, t) satisfying the constraints

S†LηSL = η , S†RηSR = η , M0η = S†RMηSL , (2.36)

so that the mass eigenstates are obtained as

T 0
L,R = (StL,R)−1TL,R , (2.37)

and similarly for the B sector. Obtaining numerical solutions for StL,R is most efficiently accomplished by converting

this system into an equivalent eigenvalue problem [16].

III. BOUNDS ON OBLIQUE PARAMETERS

A. Formalism and Tree-Level Contributions

Bounds on BSM physics are typically expressed in terms of oblique (flavor-universal, arising from gauge boson
vacuum polarization loops) and direct (flavor-specific, arising from vertex, box, etc., corrections) parameters [18].
The best-known oblique electroweak observables are the dimensionless Peskin-Takeuchi (PT) parameters [19] S, T ,
U , which represent all independent finite combinations obtained from differences of the vacuum polarization functions
and their first derivatives. As better data (particularly from LEP2) became available in the 1990s, probing the oblique
corrections to second-derivative order became possible; Barbieri et al. [20] developed a complete set of such “post-

LEP” parameters, Ŝ, T̂ , Û (the PT parameters with different normalizations2), V , W , X, Y , and Z. Just as Ref. [19]

argued that U is numerically small, Ref. [20] argued that V , X, and Z can be neglected in EWPT, leaving only Ŝ,

T̂ , W , and Y as the important independent oblique parameters. As argued in Ref. [20], the post-LEP parameters are
essential for describing EWPT in all “universal” models, defined as those in which deviations from the SM appear
only in gauge boson self-energy contributions, and are coupled to the light fermion currents in the usual gJ·A manner;
as shown in Ref. [11], the (N = 2) LWSM is of this type.

The primitive electroweak parameters are obtained in Ref. [20] as:

1

g′2
≡ Π′

B̂B̂
(0) ,

1

g2
≡ Π′

Ŵ+Ŵ−
(0) , (3.1)

1√
2GF

= −4ΠŴ+Ŵ−(0) = v2 . (3.2)

In the tree-level SM, these just give the usual parameters g′ = g1, g = g2 and v; however, these relations persist in
the LWSM as well. The reciprocal powers of coupling constant arise from the choice of a noncanonical normalization
of the field strengths [20] designed to give a convenient separation of g′, g, and v in Eqs. (3.1)–(3.2). From Eq. (2.16)

one quickly extracts for the N = 3 model [where, e.g., M
(3)
1 indicates the 3rd LW partner mass for the U(1) SM gauge

group]:

ΠŴ+Ŵ−(q2) = ΠŴ 3Ŵ 3(q2) =
q2

g2
2

− (q2)2

g2
2

[
1

M
(2) 2
2

+
1

M
(3) 2
2

]
− v2

4
,

ΠŴ 3B̂(q2) =
v2

4
,

ΠB̂B̂(q2) =
q2

g2
1

− (q2)2

g2
1

[
1

M
(2) 2
1

+
1

M
(3) 2
1

]
− v2

4
, (3.3)

2 Note that the vacuum polarization functions Π(q2) of Ref. [20] are opposite in sign to those as defined in Ref. [19].
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from which one sees that the relations g′ = g1, g = g2, and Eq. (3.2) are preserved. In addition, one can easily
compute the tree-level oblique electroweak parameters as done for the N = 2 model in Ref. [11]:

Ŝ ≡ g2 Π′
Ŵ 3B̂

(0) = 0 , (3.4)

T̂ ≡ g2

m2
W

[
ΠŴ 3Ŵ 3(0)−ΠŴ+Ŵ−(0)

]
= 0 , (3.5)

W ≡ 1

2
g2m2

W Π′′
Ŵ 3Ŵ 3(0) = −m2

W

[
1

M
(1) 2
2

+
1

M
(2) 2
2

]
, (3.6)

Y ≡ 1

2
g′ 2m2

W Π′′
B̂B̂

(0) = −m2
W

[
1

M
(2) 2
1

+
1

M
(3) 2
1

]
. (3.7)

Here, the first equality in each equation defines the corresponding post-LEP parameter [20]. The absence of tree-level

contributions to Ŝ and T̂ was first noted in Ref. [11]. Moreover, Ref. [12] noted that the scheme defining Eq. (3.7)
precludes fermionic one-loop corrections to Y , while W (which is defined in terms of ΠŴ 3Ŵ 3 rather than ΠŴ+Ŵ− ,
even when loop corrections are included) was found to have fermionic one-loop corrections that are numerically small
compared to the tree-level value given in Eq. (3.6). At this level of analysis, one therefore only needs to compute

one-loop contributions to Ŝ and T̂ , as was done for the N = 2 LWSM in Ref. [12].

B. Fermion Loop Contributions

After the tree-level contributions, the most important contributions to the oblique parameters (indeed, the leading

ones for Ŝ and T̂ ) arise from one-loop diagrams of the t and b quarks, as depicted in Fig. 1.

Consider the one-loop fermionic contributions to the self-energy connecting generic gauge bosons Â and B̂ (the

latter not to be confused with the actual B̂ field in the Standard Model). To do so, we begin with mass-diagonalized
fermion fields labeled by i, j, and write the interaction Lagrangian:

L = Ψ̄0
i γ
µ[Âµ(AL,Ψij PL +AR,Ψij PR) + B̂µ(BL,Ψij PL +BR,Ψij PR)]Ψ0

j . (3.8)

The fermionic mass eigenstate fields (Ψ0
i )
T are defined by combining Eqs. (2.21) and (2.37). The coupling matrices

are the charges in mass basis, e.g., AL,Ψij = SΨ †
L QΨ

A,LηS
Ψ
L . Here, QΨ

A is the matrix of fermion charges under the gauge

group A, and the superscript Ψ may refer to a single flavor (as for γ, Z0) or a specific flavor transition (as for W±).
The right-handed coupling matrices are obtained by exchanging L↔ R.

In accord with the noncanonical normalization of fields inherited by the polarization functions in Eqs. (3.1)–(3.2),
the fermionic one-loop contribution to the self-energy contains no gauge coupling constants, and is expressed as:

ΠAB(q2) =
C

8π2

×
∑

Ψ=T,B

∑

i,j

ηiiηjj

[
(AL,Ψij BL,Ψji +AR,Ψij BR,Ψji )I1(q2) + (AL,Ψij BR,Ψji +AR,Ψij BL,Ψji )I2(q2)mimj

]
,

(3.9)

where C is a color factor (= Nc for quarks coupling to colorless gauge bosons). Defining ∆ ≡ −q2x(1− x) + m2
ix +

m2
j (1− x) for the usual two-propagator factor, and using primes to indicate q2 derivatives and subscript 0 to indicate

a function evaluated at q2 = 0 so that ∆0 = m2
ix+m2

j (1− x), ∆′0 = −x(1− x), and ∆′′0 = 0, the integrals are defined
as follows:

I1(q2) ≡
∫ 1

0

dx (2∆−∆0) ln(∆/M2) , (3.10)

I2(q2) ≡ −
∫ 1

0

dx ln(∆/M2) . (3.11)
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Πf

Ŵ+Ŵ−(q2) =
∑

ij
q →

ti

q →

bj

Ŵ+ Ŵ+

Πf

Ŵ 3Ŵ 3
(q2) =

∑

ij


 q →

ti

q →

tj

Ŵ 3 Ŵ 3
q →

bi

q →

bj

+ Ŵ 3 Ŵ 3




Πf

Ŵ 3B̂
(q2) =

∑

ij


 q →

ti

q →

tj

Ŵ 3 B̂
q →

bi

q →

bj

+ Ŵ 3 B̂




Πf

B̂B̂
(q2) =

∑

ij


 q →

ti

q →

tj

B̂ B̂
q →

bi

q →

bj

+ B̂ B̂




FIG. 1: Fermion vacuum polarization Feynman diagrams that provide the dominant contributions to the electroweak precision
observables Ŝ and T̂ .

One then obtains the moments of the integrals relevant to the oblique parameters:

I10 =

∫ 1

0

dx ∆0 ln(∆0/M
2) , (3.12)

I20 = −
∫ 1

0

dx ln(∆0/M
2) , (3.13)

I ′10 =

∫ 1

0

dx ∆′0[1 + 2 ln(∆0/M
2)] , (3.14)

I ′20 = −
∫ 1

0

dx ∆′0/∆0 , (3.15)

I ′′10 = 3

∫ 1

0

dx (∆′0)2/∆0 , (3.16)

I ′′20 =

∫ 1

0

dx (∆′0/∆0)2 . (3.17)

The factor M2 contains the parameter of the logarithmic divergence and various subtraction constants associated with
the regularization procedure. Of course, M2 must cancel from the complete expressions for the oblique parameters,
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since they are observables. The individual integrals are straightforward and give:

I10 = −1

4
(m2

i +m2
j ) +

1

2

m4
i ln(m2

i /M
2)−m4

j ln(m2
j/M

2)

m2
i −m2

j

,

→ m2
i ln

m2
i

M2
, mj → mi ; (3.18)

I20 = 1−
m2
i ln(m2

i /M
2)−m2

j ln(m2
j/M

2)

m2
i −m2

j

,

→ − ln
m2
i

M2
, mj → mi ; (3.19)

I ′10 = −1

3

{
m4
i (m

2
i − 3m2

j )

(m2
i −m2

j )
3

ln

(
m2
i

M2

)
−
m4
j (m

2
j − 3m2

i )

(m2
i −m2

j )
3

ln

(
m2
j

M2

)
+
m4
i − 8m2

im
2
j +m4

j

3(m2
i −m2

j )
2

}
,

→ −1

6

[
1 + 2 ln

(
m2
i

M2

)]
, mj → mi ; (3.20)

I ′20 = − (mimj)
2

(m2
i −m2

j )
3

ln

(
m2
i

m2
j

)
+

m2
i +m2

j

2(m2
i −m2

j )
2
,

→ 1

6m2
i

, mj → mi ; (3.21)

I ′′10 =
3(mimj)

4

(m2
i −m2

j )
5

ln

(
m2
i

m2
j

)
+

(m2
i +m2

j )(m
2
j − 8m2

im
2
j +m4

i )

4(m2
i −m2

j )
4

,

→ 1

10m2
i

, mj → mi ; (3.22)

I ′′20 = −
2(mimj)

2(m2
i +m2

j )

(m2
i −m2

j )
5

ln

(
m2
i

m2
j

)
+
m4
i + 10m2

im
2
j +m4

j

3(m2
i −m2

j )
4

,

→ 1

30m4
i

, mj → mi . (3.23)

These expressions are inserted into Eq. (3.9) to produce the full results for the fermionic one-loop contributions;
however, the SL,R matrices enter the couplings A,B (and both SL,R are required [Eq. (2.36)] to produce the fermion
mass eigenvalues). While analytic expansions for SL,R appear in the literature [9, 13], in practice we perform the
calculations numerically and therefore do not present the full cumbersome expressions for the oblique parameters.

IV. CONSTRAINTS FROM THE ZbLb̄L COUPLING

One of the more interesting direct electroweak precision observables in terms of the tension between the experimental
measurement and its SM prediction is the ZbLb̄L coupling. As noted long ago [21], its leading contribution in the
gaugeless limit [i.e., ignoring effects suppressed by (mZ0/mt)

2] is most easily obtained by computing the triangle loop
diagram of Fig. 2, in which a Goldstone boson φ0 (the one eaten by the Z0) of momentum p splits into a tt̄ pair,
which subsequently (via exchange of a charged scalar) decays to bLb̄L. The invariant amplitude for this triangle loop
diagram in the p→ 0 limit can be parametrized as

iM = −2

v
(δgbb̄L )p/PL . (4.1)

The coupling gbb̄L is derived from a combination of the Z0 → bb̄ branching fraction Rb and its forward-backward
asymmetry Ab; an indication of its sensitivity to small changes in both is given in Ref. [22]:

δgbb̄L ≡ gbb̄, exp
L − gbb̄, SM

L

= −1.731 δRb − 0.1502 δAb , (4.2)

where the normalization has been adjusted [i.e., removing the e/(sin θW cos θW ) coefficient] to match that used

elsewhere in this section. Its most recent experimental value gbb̄, exp
L = −0.4182(15) has not changed since the
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δgbb̄L ∼
∑

ijk

p→

ti
p

h+
k

t̄jφ0

bL

b̄L

FIG. 2: Dominant diagram contributing to the ZbLb̄L coupling. φ0 is the Goldstone boson eaten by the Z0, and indices i,j,k
denote mass eigenstates. The coupling is defined in the limit p→ 0.

combined LEP/SLD 2005 analysis [23]. The SM value gbb̄, SM
L = −0.42114+45

−24 from [23] gives δgbb̄L = +2.94(157) ·10−3,

meaning that the SM value was ≈ 2σ low, thus strongly disfavoring any new physics contribution with δgbb̄L < 0. The
current Particle Data Group [24] values for RSM

b and ASM
b , however, lead [via Eq. (4.2)] to a somewhat relaxed bound,

δgbb̄L = +2.69(157) · 10−3 , (4.3)

which we use in our analysis.
The effect of N = 2 LWSM states on δgbb̄L has been considered twice in the literature. The central result of Ref. [14]

is that current precision bounds allow LW Higgs partner masses to be significantly lighter than other LW states.
Therefore, [14] effectively compute δgbb̄L including only a LW Higgs partner in the triangle loop diagram, giving (in
our normalization):

δgbb̄L = − m2
t

16π2v2

[
R

R− 1
− R lnR

(R− 1)2

]
, (4.4)

where R = (mt/mh2
)2, so that δgbb̄L < 0. δgbb̄R in the LWSM is driven by mb and hence is numerically much smaller.

Since δgbb̄L and δRb are anti-correlated [Eq. (4.2)], and since δRb is positive [23, 24], Ref. [14] then states that the LW

Higgs partner contribution acts in the direction of reconciling the discrepancy, and concludes that δgbb̄L analysis gives

no meaningful bound on the LW scalar mass. However, Eq. (4.2) shows that δgbb̄L also depends strongly upon δAb,

and the combined effect is to create the situation described above, in which new physics δgbb̄L < 0 contributions are
actually more difficult to accommodate. We take this additional effect into account in our analysis.

On the other hand, Ref. [12] uses the full δgbb̄L bound from [23, 24] described above, but includes only LW t-quark
partners in the triangle diagram, thus producing the result

δgbb̄L = − m4
t

32π2v2M2
q

[
5 ln

M2
q

m2
t

− 49

6

]
, (4.5)

at leading orders in m2
t/M

2
q . The result of [12] obtained from this observable is the most stringent in their entire

analysis, giving a lower bound of Mq & 4 TeV. However, the LW correction (4.5) is a very shallow function of Mq (see

their Fig. 8), and the small change in the SM value of gbb̄L described above is alone enough to push the bound back
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to about Mq & 1.2 TeV. Obviously, the contribution from the LW Higgs partner must also be included in a global
analysis, and since it is also negative (and indeed, turns out to be comparable in magnitude to the LW t contribution),
all of the mass lower bounds in such a circumstance would be higher, but these multiple considerations should serve
to illustrate that room exists in mass parameter space to accommodate interesting LWSM possibilities even in the
N = 2 case.

Here, we examine the N = 3 LWSM contribution to δgbb̄L ; since the N = 2 effect was computed in Ref. [12], we
closely follow the notation introduced there. The Yukawa Lagrangian

LYuk = −iyt
∑

i,j

{
1√
2
φ̂0 [αij t̄iPRtj − αjit̄iPLtj ] + βij

[
φ̂−b̄iPRtj − φ̂+t̄jPLbi

]}
(4.6)

has couplings α and β closely related to the ones appearing in the mass matrix (2.35) with the Dirac mass parameters
excluded. Specifically,

α ≡ (StL)†α0S
t
R ,

β ≡ (SbL)†β0S
t
R , (4.7)

where, for the example of the N = 3 case,

αN=3
0 = βN=3

0 ≡




1 − coshφq 0 sinhφq 0
− coshφt coshφq coshφt 0 − sinhφq coshφt 0

0 0 0 0 0
sinhφt − coshφq sinhφt 0 sinhφq sinhφt 0

0 0 0 0 0


 . (4.8)

The most important distinction between the expressions here and those in Ref. [12] is actually not the addition of

the N = 3 fermion partners, but rather the presence of the entire HD scalar fields φ̂0, φ̂± whose SM content is the
set of Goldstone bosons, and that enter with the relative weights as in Eq. (2.22). As indicated in Eq. (2.28)–(2.29),

the LW partners to these fields are physical, massive states that must be included in the calculation of δgbb̄L but were
omitted in Ref. [12].

The basic result of the δgbb̄L calculation in Ref. [12] is that the LW t-quark partners in the loop tend to slightly
exacerbate the tension with the measured value, thus forcing an even more stringent lower bound on the LW quark
mass (4 TeV) than that obtained from T̂ . As pointed out in Ref. [14], however, the heavy h±2 can be much lighter
(& 500 GeV) and still satisfy all precision constraints. Noting first from Eq. (2.29) that the charged scalar masses do

not mix, and recalling that the virtual scalar in the δgbb̄L diagram is charged, the extra signs in the h±2,3 propagators can

be used to oppose the contribution from the original diagram with a virtual φ±, thus relieving much of the additional
tension in δgbb̄L . The full expression reads

δgbb̄L =
1

16π2
· y

3
t v

2
√

2

{∑

i

ηkβ
2
0iαii

mti

m2
ti −m2

hk

[
1−

m2
hk

m2
ti −m2

hk

ln

(
m2
ti

m2
hk

)]

+
∑

i 6=j; k

(−1)i+jηkβ0iβ0jαjimtj

[
−1

m2
ti −m2

tj

· 1

2

(
m2
ti

m2
ti −m2

hk

+
m2
tj

m2
tj −m2

hk

)

+
m2
ti

2(m2
ti −m2

tj )2

(
2m2

ti −m2
tj

m2
ti −m2

hk

+
m2
tj

m2
tj −m2

hk

)
ln

(
m2
ti

m2
tj

)

−
m2
hk

2(m2
ti −m2

hk
)(m2

tj −m2
hk

)

[
2m2

ti −m2
hk

m2
ti −m2

hk

ln

(
m2
tj

m2
hk

)
−

m2
hk

m2
tj −m2

hk

ln

(
m2
ti

m2
hk

)]

−
m2
hk

2(m2
ti −m2

tj )
ln

(
m2
ti

m2
tj

)(
m2
ti

(m2
ti −m2

hk
)2
−

m2
tj

(m2
tj −m2

hk
)2

)]}
. (4.9)

The coefficients ηk here are ones that appear in Eq. (2.22). This expression reduces, in the limits mh1
→ 0 and

mh2,3
→∞, to Eq. (A6) of Ref. [12] [which, in turn, reduces to Eq. (4.5) in the further limit mt � mt2,3 ]. Alternately,

it reduces in the limit mt2,3 , mh3
→∞ to Eq. (4.4), as was used in Ref. [14].
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FIG. 3: Bounds on LW gauge boson mass partners from the oblique parameters W and Y . The shaded area (blue online) is
experimentally allowed at 2σ.

V. ANALYSIS

We use the definitions of the post-LEP oblique parameters in Eqs. (3.4)–(3.7). As discussed above, the tree-level
expressions for W and Y are sufficient for our analysis (and provide the most useful bounds on electroweak gauge

boson partner masses), while the leading contributions to Ŝ and T̂ arise from one-loop fermion effects. Since the

sums in Eq. (3.9) include the SM quarks, their effects must be subtracted from the full result, giving Ŝnew ≡ Ŝ− ŜSM

and T̂new ≡ T̂ − T̂SM. In our subsequent discussion, Ŝ, T̂ are understood to mean Ŝnew, T̂new, respectively. As a
benchmark for the magnitude of new physics effects, one finds ŜSM = −1.98 · 10−3, T̂SM = +9.25 · 10−3.

As seen in Ref. [20], the measured values of the parameters Ŝ, T̂ , W , and Y are all of order 10−3, and they are
correlated. However, for simplicity we use the values listed in Table 4 of [20] with 2σ uncertainties:

103 Ŝ = 0.0± 2.6 , (5.1)

103 T̂ = 0.1± 1.8 , (5.2)

103W = −0.4± 1.6 , (5.3)

103 Y = 0.1± 2.4 . (5.4)

To this list we add the bound on δgbb̄L in Eq. (4.3), which serves to constrain both LW fermion masses and scalar
masses, as discussed in the previous section.

First note that the N = 2 and N = 3 gauge boson masses contribute at tree level in Eqs. (3.6)–(3.7) additively,

and therefore the bounds that hold for the N = 2 theory (e.g., M
(2)
1 = M

(2)
2 ≥ 2.4 TeV according to Ref. [12]) are

tightened by the addition of N = 3 partners. In Fig. 3 one sees that taking M
(2)
2 = 2 TeV requires M

(3)
2 & 4 TeV,

the latter likely outside the discovery range of the current LHC. In particular, the discovery scenario described in

Ref. [17] of M
(2)
2 = 2.0 TeV, M

(3)
2 = 2.5 TeV is unlikely unless the bounds on W are not as stringent as given in

Eq. (5.3). Likewise, for Y , Fig. 3 indicates M
(2)
1 = 1.8 TeV is possible for M

(3)
1 & 3.5 TeV. If, however, the N = 2

and N = 3 masses are quasi-degenerate, universal values & 2.5 TeV remain possible.

The constraints from Ŝ are much less restrictive. Unlike in other BSM scenarios where the addition of extra
chiral fermions create insurmountable tension with the measured value of Ŝ, the extra fermions in the LWSM are all
vectorlike, and contribute to Ŝ only through diagonalization with the chiral fermion mass parameters arising through
Yukawa couplings. Assuming for simplicity the degenerate case Mq2 = Mt2 = Mb2 studied in [12] and extending to
Mq3 = Mt3 = Mb3, one finds no meaningful constraint on the fermion mass parameters Mq2 or Mq3.

The bounds from T̂ are much more interesting; they were found in [12] (Fig. 5) to require Mq2 ≥ 1.5 TeV in order

for T̂ to lie no more than 2σ below its measured central value, and provide one of the strongest constraints on LW
quark partner masses. At the inception of this work, it was believed that the opposite signs of the N = 2 and N = 3
LW quark propagators would allow for a near-complete cancellation of their loop effects, essentially removing the T̂
constraint as a significant bound on the quark partners if their masses were sufficiently close. However, the detailed
result in fact requires much greater care in its analysis: While the N = 2 and N = 3 loops do indeed cancel to a
large extent, the propagating fermions in the loops are the mass eigenstates. The act of mass diagonalization not
only shifts mass eigenvalues of the heavy states slightly away from Mq2 and Mq3, but also modifies the strength of
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FIG. 4: Bounds on the oblique parameter T̂ in two scenarios, Mq2 = 1.5 TeV and 1.8 TeV. The shaded area (blue online) is
experimentally allowed at 2σ.

the contribution of the N = 1 (SM) quarks to T̂ . The effect of this shift is pronounced due to the large size of the SM

t Yukawa coupling; it actually serves to push the full value of T̂ slightly further from its measured central value, thus
forcing an allowable N = 2 LW mass Mq2 to be slightly larger than before the addition of the N = 3 state. However,
the effect is not extreme; from Fig. 4, one sees that Mq2 = 1.5 TeV remains viable for Mq3 & 9 TeV, while increasing
Mq2 only slightly, to 1.8 TeV, allows Mq3 to be . 2.8 TeV. The transition between extremely strong and extremely
weak Mq3 bounds occurs in a very narrow window of Mq2 values.

Finally, consider constraints from δgbb̄L , which in Ref. [12] provide the most stringent bounds on the quark partner
masses, Mq2 & 4 TeV. However, as noted in the previous section, the bottom of the 2σ-allowed region has since moved

slightly downward. Since δgbb̄L is a very shallow function of Mq2, this small change dramatically alters the bound to
Mq2 & 1.2 TeV, as seen in the first inset of Fig. 5. The N = 3 theory is used in the second inset of Fig. 5, where one
sees that raising Mq2 only slightly (to 1.4 TeV) allows Mq3 & 2.3 TeV. On the other hand, if the LW quark masses

are assumed sufficiently large to decouple, δgbb̄L provides a lower bound on the N = 2 LW scalar of mh2 & 640 GeV
(first inset of Fig. 6), as would have been found in a more complete calculation (including not only Rb but also Ab
bounds) by Ref. [14]. The fact that the Zbb̄ vertex constrains the masses of heavy t’s more strongly than those of
the scalars appears to follow directly from Eq. (4.9) being ∝ y3

t [and indeed, in certain limits such as in Eq. (4.5),

∝ y4
t ], and because the act of mass diagonalization among the fermions allows ytv/

√
2 to shift substantially from

the physical t mass (as was noted in the analysis of T̂ ). Since mass diagonalization does not mix the charged scalar
parameters, including the N = 3 LW state leads to a dramatic cancellation: For example, in the second inset of Fig. 6
one sees that mh2 = 400 GeV, mh3 . 850 GeV satisfy the δgbb̄L constraint. In retrospect, the bounds on charged
scalar masses in the N = 2 theory obtained by Ref. [14] from BB̄ mixing and b→ sγ now lead to weaker constraints

(mh2 > 463 GeV) than that from δgbb̄L , and the former bounds moreover would also likely be significantly softened by
the addition of an N = 3 charged scalar due to the cancellations described above. When both LW quarks and charged
scalars are included, the bounds again become more constrained, but many interesting scenarios remain possible; for
example, Fig. 7 shows that the combined set Mq2 = 2.5 TeV, Mq3 = 4 TeV, mh2

= 400 GeV, mh3
= 600 GeV satisfies

the δgbb̄L constraint.

VI. DISCUSSION AND CONCLUSIONS

The Lee-Wick approach to extending the Standard Model provides a variety of interesting effects that can be tested
experimentally. Since the couplings of the new particles equal those of the SM fields and only their masses remain as
free parameters, one can obtain bounds on these masses from electroweak precision constraints. For such particles for
which the masses are . 3 TeV, one can even hope to directly produce the particles at the current incarnation of the
LHC. On the other hand, the LWSM was originally motivated by its potential to provide an alternate resolution to
the hierarchy problem, which ideally requires fields with masses in the several hundred GeV range. In our calculations,
we find that only the scalar partners to the Higgs can be so light, and therefore the LWSM does not offer an especially
natural resolution of the hierarchy, although by construction all quadratic divergences in loop diagrams cancel.

Nevertheless, we find that the imposition of precision constraints on the N = 3 LWSM still allows masses for LW
partner states to lie in large swathes of the parameter space directly accessible at the LHC, providing phenomenological
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significance to the LWSM. In particular, we have found that the post-LEP oblique parameters W and Y require the
N = 2 partners of the W and B to be & 2.0 and 1.8 TeV, respectively, and the N = 3 partners to be substantially
heavier, or, by the same bound, they could be quasi-degenerate and all & 2.5 TeV. The LW quark masses are

constrained by custodial isospin (T̂ ) and the Zbb̄ coupling gbb̄L to be at least 1.5 TeV; one of the most interesting
results of this work was the discovery that, as expected, the N = 3 quarks loops do cancel against the N = 2 loops,
but this cancellation is largely nullified by the effects arising from the diagonalization of quark masses amongst the
SM quarks and its LW partners. Even so, LW quark masses in the range Mq2 & 1.8 TeV remain viable if the N = 3
partner is somewhat heavier (& 2.8 TeV). The least constrained masses, like in the original SM, appear to be in the
scalar sector. From the Zbb̄ coupling alone, values in the few hundred GeV range remain viable in the N = 3 theory
due to the presence of a more complete cancellation between the N = 2 and N = 3 states, although a full analysis
including b→ sγ and BB̄ mixing should be undertaken to obtain global constraints. Furthermore, the current LHC
value for the h0 → γγ branching ratio [1, 2] shows a significant excess compared to the SM, while the N = 2 LWSM
prediction differs from the SM value by only a few percent [13, 15]; the N = 3 LWSM, with a larger parameter space,
offers the opportunity to produce a larger effect.

In summary, the LWSM is alive and well, particularly its N = 3 variant. Some of the gauge boson and fermion
partners may be difficult to discern directly at the LHC, but the potential for direct discovery remains. The scalar
sector, whose exploration is arguably the central business of the LHC, is the least constrained and therefore the most
interesting from the immediate phenomenological point of view.
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