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Resonance parameters of the rho-meson from asymmetrical lattices

C. Pelissier, A. Alexandru
Physics Department, The George Washington University, Washington, DC 20052, USA

We present a lattice QCD calculation of the parameters of the ρ meson decay. The study is carried
out on spatially asymmetric boxes using nHYP-smeared clover fermions with two mass-degenerate
quark flavors. Our calculations are carried out at a pion mass mπ = 304(2) MeV on the set of
lattices V = 242 × η24 × 48 with η = 1.0, 1.25, and 2.0 with lattice spacing a = 0.1255(7) fm. The
resonance mass mρ = 827(3)(5) MeV and coupling constant gρππ = 6.67(42) are calculated using
the P-wave scattering phase shifts. We construct a 2×2 correlation matrix to extract the energy
of the scattering states and compute the phase shifts using the finite volume formula. By varying
the degree of asymmetry, we are able to compute a set of phase shifts that are evenly distributed
throughout the spectral region where the ρ decays.

PACS numbers: 11.15.Ha,12.38.Gc

I. INTRODUCTION

The study of multi-particle systems is an important
step for lattice QCD and our understanding of the strong
force. Experimentally, the interaction of elementary par-
ticles is studied using scattering methods. Due to bet-
ter algorithms, more efficient codes, and an increase in
computational resources, it is finally possible to use lat-
tice QCD to compute scattering observables. Of par-
ticular interest are the scattering channels that exhibit
resonances. In this work, we focus on the light vector
meson ρ(770) seen as a resonance in the elastic scatter-
ing of two-pions in the IG(JPC) = 1+(1−−) channel.

Currently, the method of choice to carry out lattice
studies of scattering phase shifts is the Lüsher method [1–
4]. Lüsher showed that scattering phase shifts can be
computed from the spectrum of two-particle states on a
torus. This method circumvents the “Maiani-Testa no-
go theorem” for Euclidean field theories [5]. To mea-
sure scattering phase shifts then requires the computa-
tion of the energies of the two-particle states. While it
is known how to compute the energies of the scattering
states, the task can be quite challenging and is computa-
tionally costly. In the case of the ρ decay, as the physical
pion mass is approached, the scattering states get closer
together, and we have to carefully disentangle the rele-
vant two-pion states. Additionally, when the four-pion
states become dynamically relevant, the formula is no
longer valid.

Lüsher’s formula was developed for lattices with cu-
bic symmetry. Two notable extensions were worked out:
(1) systems with non-zero total momentum where the cu-
bic symmetry is lost due to the relativistic boost to the
center-of-mass frame [6] and (2) systems with zero to-
tal momentum on asymmetrical lattices [7, 8]. The first
method can be used to investigate the ρ decay on lattices
where the zero-momentum ρ cannot decay due to kine-
matical constraints. This was used recently to study the
ρ resonance [9–11]. Using this method, different phase
shifts can be extracted by varying the total momentum
of the system. While it has been successful for studying

the ρ resonance, the ability to tune the momentum of the
two-pion system is limited by the finite step size of the
momenta.

In this work we chose to use the second extension.
This method offers a finer control over the two-pion mo-
mentum. With a finer control over the momentum, it
is possible to map out narrower resonances, and as will
be discussed later, the overall increase in computational
cost is not that significant. Another reason for using
asymmetrical lattices is that the projection onto the rele-
vant irreducible representation can be performed cleanly.
This projection is always performed in the center-of-
mass, which coincides with the lattice frame when the
interpolators have zero momentum. For systems with
non-zero momentum, the boost mixes representations,
and we have to rely on dynamics to disentangle the states
of interest.

In this work we employ nHYP-smeared clover fermions
with two mass-degenerate quarks. The simulation is car-
ried out with a pion mass mπ = 304(2) MeV at a lattice
spacing a = 0.1255(7) fm. We construct a 2 × 2 cor-
relation matrix and extract the ground and first excited
state energies on dynamically generated ensembles of 300
gauge configurations for the three lattice volumes

V = 242 × η24× 48 , η = 1.0, 1.25, 2.0 . (1)

We extract six scattering phase shifts well distributed
throughout the resonance region and compute the reso-
nance mass and coupling constant. The methods used
here were first tested on a set of quenched configurations
for similar quark masses and lattice sizes [12].

The paper is organized as follows: In Section II we
describe the methods used and collect the relevant for-
mulas. In Section III we present our results for the two-
pion spectrum, compute the phase shifts, extract the res-
onance parameters, and compare our results with other
studies. In Section IV we present our conclusions and
discuss future plans.
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II. METHODS

A. Phase shift formulas

To compute the elastic scattering phase shifts, we use
the well-known Lüsher’s formula [1–4]. In particular, we
make use of its extension to asymmetrical lattices [7, 8].
In the following we list the relevant formula needed to
determine the scattering phase shifts δl(k) for two pions
with back-to-back momentum in the angular momentum
l = 1 channel.
In this work we consider lattices with one spatial di-

rection elongated. Since we work on a spatial torus, the
symmetry group for zero-momentum states is reduced
from SO(3) to a discrete subgroup. In this case the rel-
evant symmetry group is D4h. For concreteness we take
the z-direction to be elongated. The decomposition of the
irreducible representations of SO(3) into D4h are listed
in Table I. From the table we see that l = 1 is the low-
est angular momentum mode which couples to the A−

2

and E− representations; therefore, either representation
is suitable. In the following we present the formula for
these two channels.
Following [8], we introduce the generalized zeta func-

tions

Zlm(s, q2; η2, η3) =
∑

n∈Z3

Ylm(ñ)

(ñ2 − q2)s
(2)

where Ylm(ñ) are the harmonic polynomials

Ylm(ñ) = ñlYlm(Ωñ) (3)

and

ñ = (n1, n2/η2, n3/η3), n ∈ Z . (4)

The series in Eq. (2) is convergent for Re 2s > l + 3 and
can be analytically continued to the half plane Re 2s >
1/2. To compute the scattering phase shifts, we need to
evaluate Zlm(s = 1, q2; η2, η3). The details are given in
Appendix A. The parameter q is related to the invariant
energy W of the two-pion system through the relation

q =
kL

2π
(5)

where k, the pion “momentum”, is determined by

W = 2
√

m2
π + k2 . (6)

The 3D torus geometry and spatial volume is V = L ×
η2L × η3L. For notational simplicity, we also introduce
the quantity

Wlm(1, q2; η2, η3) =
Zlm(1, q2; η2, η3)

π3/2η2η3ql+1
. (7)

Since our lattices are elongated only in one direction, we
set η2 = 1 and η3 ≡ η ≥ 1. The phase shift formula for

TABLE I: Resolution of the 2J + 1 spherical harmonics into
the irreducible representations of Oh and D4h.

J Oh D4h

0 A+

1 A+

1

1 F−

1 A−

2 ⊕ E−

2 E+
⊕ F+

2 A+

1 ⊕B+

1 ⊕B+

2 ⊕ E+

3 A−

2 ⊕ F−

1 ⊕ F−

2 A−

2 ⊕B−

1 ⊕B−

2 ⊕ 2E−

4 A+

1 ⊕ E+
⊕ F+

1 ⊕ F+

2 2A+

1 ⊕ A+

2 ⊕B+

1 ⊕B+

2 ⊕ 2E+

the two representations are then given by

A−
2 : cot δ1(k) = W00 +

2√
5
W20 , (8)

E− : cot δ1(k) = W00 −
1√
5
W20 , (9)

where contributions from angular momenta l ≥ 3 are
assumed to be negligible.
We note that our formulation is slightly different

than [8], which defines the lattice volume as V = η1L ×
η2L×L. The phase shift formulas in either case are equiv-
alent. Additionally, our formula for the E− channel dif-
fers by the exclusion of the term ±

√

3/10(W22 +W2−2),
which vanishes due to symmetry under rotations around
the elongated direction.
Lastly, we consider the case of a cubic lattice. The

symmetry group is Oh, and the relevant representation
is F−

1 (see Table I). In this caseW20 vanishes, Eq. (8) and
Eq. (9) become equivalent, and the phase shift formula
is given by setting the right hand side equal to W00.

B. Selecting lattices

In order to extract the resonance parameters for ρ, we
need to compute the scattering phase shifts in the spec-
tral region where the resonance appears. To minimize
statistical errors, it is preferable to compute the phase
shifts using the lowest lying states in the channel. To
achieve this, we have to select appropriate lattice vol-
umes and, for practical purposes, make a selection which
is computationally economic. This choice is difficult since
the resonance mass and coupling constant are generally
not known a priori for unphysical pion masses. However,
using recent lattice results [9, 11, 13] and predictions from
unitarized chiral perturbation theory [14], a reasonably
good guess can be made. In the following we describe
the method we used to select lattices.
To estimate the two-pion energies, we use the effective

range formula [15]

cot δ1(W ) =
6π

g2ρππ

W (m2
ρ −W 2)

(

W 2

4 −m2
π

)3/2
, (10)
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which is known to parameterized the ρ resonance well
at the physical pion mass. Using the equation above
together with Eqs. (8) and (9), we can compute the ex-
pected spectrum as a function of η provided we can es-
timate the values of mρ and gρππ. From recent lattice
studies we know that the coupling constant has little
pion mass dependence and is close to the physical value
gρππ ≈ 6 for pion masses mπ < 350 MeV [9, 11, 13]. As
a result, we start with the assumption that gρππ = 6.
To estimate the value of mρ, we use the result from uni-
tarized chiral perturbation theory which shows reason-
able agreement with the lattice results [14]. Note that
this picture can be refined as we collect data from lattice
simulations. When choosing subsequent lattices, we use
estimates for mρ and gρππ based on the available lattice
data.
In Fig. 1 we plot the expected spectrum for a pion mass

of 300 MeV. Note that the two-dimensional E− represen-
tation corresponds to the two states with non-zero back-
to-back momentum in the transversal directions, and the
A−

2 representation is the one-dimensional representation
corresponding to the state with the momentum along the
longitudinal/elongated direction. For the E− represen-
tation the spectrum depends very little on η. The reason
is that the relative momentum of the two-pion state de-
pends on the size of the transversal direction, which does
not change. Thus, computing the energy of the states
in the E− representation will produce phase shifts very
similar to the ones on a cubic lattice. The A−

2 repre-
sentation shows a strong dependence on the value of η
and offers good control over the value of the ground and
first excited state energies. To generate additional phase
shifts, one then needs to work in the A−

2 channel and
select appropriate values of η. We see that by choosing
η = 1, 1.25, and 2.0, we should get a good scan of the
resonance region.
Lastly, we make a few remarks about our choice to use

lattices with a single direction elongated. It may seem
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FIG. 1: Estimated spectrum for mπ = 300 MeV, gρππ = 6,
and mρ = 830 MeV. The lattice size is set to L = 3 fm. The
two curves indicate the ground and first excited states. The
shaded region is the resonance region, i.e., mρ ± Γρ.

that a better choice for these types of studies are or-
thorhombic lattices, i.e., lattices in which all three sides
have different lengths. In this case six different phase
shifts can be computed from one ensemble using only the
ground and first excited state energies. Choosing appro-
priate values for L, η2, and η3, we could get all of these
phase shifts in the resonance region. Since the computa-
tional effort scales with V 5/4 [16], the computational cost
is (η2η3)

5/4×τ where τ denotes the cost for the cubic lat-
tice. If instead we choose a lattice with only one direction
elongated and generate the two ensembles with η = η2
and η = η3, the cost is (η

5/4
2 + η

5/4
3 ) × τ . The overall

computational cost of the two choices is similar when the
elongation parameters η2,3 are small. Additionally, using
two different ensembles reduces the correlation between
phase shifts and allows for studies of finite volume effects
of other observables. In light of these considerations, we
choose to generate lattices with only a single direction
elongated.

C. Variational analysis

To compute the low-lying two-pion energies with the
quantum numbers IG(JPC) = 1+(1−−) of the ρ, we em-
ploy the variational method proposed by Lüscher and
Wolff [17]. We use a two-dimensional variational basis
and construct the correlation matrix

C(t)ij = 〈Oi(t)O†
j (0)〉 (11)

to extract the ground and first excited states. We com-
pute the eigenvalues of

C(t0)
−1/2C(t)C(t0)

−1/2ψ(n)(t, t0) = λ(n)(t, t0)ψ
(n)(t, t0)

(12)
for each time slice t. The two-pion energies are then
determined from the long-time behavior of the eigenval-
ues [18]

λ(n)(t, t0) ∝ e−Ent(1 +O(e−∆Ent)) , n = 1, 2 (13)

where ∆En = E3 − En. For the variational basis we use
the interpolators

O1 =
1√
2

{

π+(pz)π
−(−pz)− π−(pz)π

+(−pz)
}

(14)

O2 =
∑

x

1√
2

{

ū(x)γ3u(x)− d̄(x)γ3d(x)
}

(15)

where pz = 2π
ηL ẑ is the lowest lattice momentum in the

elongated direction and

π−(p) =
∑

x

ū(x)γ5d(x)e
ipx , (16)

π+(p) =
∑

x

d̄(x)γ5u(x)e
ipx . (17)

Lastly, we note that as defined above O1 and O2 are
hermitian and anti-hermitian, respectively.
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D. Evaluation of the correlation matrix

To evaluate the correlation matrix, one needs to com-
pute the following diagrams:

C11(t)

C12(t) C21(t) C22(t)

Above, we used a compressed notation; more explicitly,
we have

γ5

(−p,ti)
γ5

(p,ti)

(−p,tf )
γ5

(p,tf )
γ5

= Tr [e−ipγ5M
−1(ti, ti)e

ipγ5M
−1(ti, tf )×

eipγ5M
−1(tf , tf )e

−ipγ5M
−1(tf , ti)] , (18)

where the square matrices

(γ5)x,a,α;y,b,β ≡ δ(x− y)(γ5)abδαβ ,

(eip)x,a,α;y,b,β ≡ eipxδ(x− y)δabδαβ , (19)

M−1(tf , ti)x,a,α;y,b,β ≡ M−1(x, tf , a, α;y, ti, b, β) ,

have 12 × Ns rows with Ns the number of points in a
time slice. Above, M is the quark matrix and thus M−1

is the regular quark propagator. All four-point diagrams
are defined in a similar manner. The diagrams with three
points can be written using the following template:

γ5

(−p,ti)
γ5

(p,ti)

(0,tf)
γ3

= Tr [e−ipγ5M
−1(ti, ti)×

eipγ5M
−1(ti, tf)γ3M

−1(tf , ti)] . (20)

For a given configuration, using the γ5-hermiticity of
the quark propagator, i.e., M−1(t, t′)† = γ5M

−1(t′, t)γ5,
we can show that the four-point diagrams are purely
real, and the three-point diagrams are purely imaginary.
Moreover, using parity we can show that

〈 〉

U

= −
〈 〉

U

,

〈 〉

U

= −
〈 〉

U

,

〈 〉

U

=

〈 〉

U

,

〈 〉

U

=

〈 〉

U

.

(21)

Time reversal symmetry allows us to connect the quark
diagrams required for C12 with the ones for C21. In par-
ticular, one can show that

〈 〉

U

=

〈 〉

U

. (22)

Above we use 〈·〉U to denote the average with respect to
the gauge configurations. All together, the four compo-
nents of the correlation matrix can be constructed from

C11(t) =

〈

2 − 2 + −
〉

U

,

C12(t) = −C21(t) =

〈 〉

U

, (23)

C22(t) =

〈 〉

U

.

Note that C12 and C21 are related. To save time, we
compute only C21 and use it to determine C12. C22 can
be evaluated using standard methods, but the terms for
C11 and C21 require the all-to-all propagator. As a result,
they must be computed stochastically. Our calculation
follows the steps described in a study by the CP-PACS
collaboration [11]. We introduce a random Z(4) noise
time-slice vector ξ (with color and spinor components),
satisfying the condition

〈

ξξ†
〉

ξ
= 1 (24)

where 1 is the identity matrix in 12×Ns dimensions and
〈·〉ξ denotes the average over the noise. Using these noise
vectors, we define the time-slice vectors

u(t|p, t2, ξ) = M−1(t, t2)e
ipξ (25)

v(t|p1, t1|p2, t2, ξ) = M−1(t, t1)e
ip1γ5u(t1|p, t2, ξ) .

With the above definitions unbiased estimators for the
quark diagrams for C11(t) and C21(t) can be constructed
as

=
〈

v(tf |p, ti| − p, ti, ξ)
†e−ipv(tf |p, tf |0, ti, ξ)

〉

ξ,U
,

=
〈

v(tf | − p, ti|p, ti, ξ)†e−ipv(tf |p, ti|0, ti, ξ)
〉

ξ,U
,

=
〈

〈

u(tf |0, ti, ξ)†e−ipu(tf |p, ti, ξ)
〉

ξ
×

〈

u(tf |0, ti, η)†eipu(tf | − p, ti, η)
〉

η

〉

U
,

=
〈

〈

u(tf |0, ti, ξ)†e−ipu(tf | − p, ti, ξ)
〉

ξ
×

〈

u(tf |0, ti, η)†eipu(tf |p, ti, η)
〉

η

〉

U
, (26)

=
〈

u(tf |0, ti, ξ)†γ5γ3v(tf | − p, ti|p, ti, ξ)
〉

ξ,U
,

=
〈

u(tf |0, ti, ξ)†γ5γ3v(tf |p, ti| − p, ti, ξ)
〉

ξ,U
.

Lastly, we make a few comments on the variance of
the stochastic estimators. As is common practice, we
chose to use spin-color dilution. To check its effective-
ness, we compared the variance of C11(t) and C21(t) with
and without dilution in the temporal range where the fit-
ting is performed. Using spin-color dilution, we found an
order of magnitude decrease in the variance for the same
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FIG. 2: Left panel: ground state energies for the three different elongations extracted using different methods. Right panel:
ground and first excited state energies compared to the effective range formula using the parameters extracted from our fits.
The dashed lines represent the expected two-pion energies in the absence of interaction, i.e., Wn = 2

√

m2
π + (2πn/ηL)2.

numerical effort. Another decision to make is the size of
the noise ensembles. Using a simple model, we can show
that the overall variance of the estimator is

σ2 ≈ σ2
U

N

(

1 +
σ2
ξ/σ

2
U

M

)

(27)

where σ2
U and σ2

ξ are the contributions to the overall vari-
ance from the gauge and noise fluctuations, N is the
number of gauge configurations, and M the number of
noises per configuration. In the temporal region where
the fits were performed, we found that the ratio σ2

ξ/σ
2
U is

small and that the variance is dominated by gauge fluc-
tuations. As a result, the variance is not significantly
decreased even after a single noise. This is similar to the
results found by [11] where no substantial decrease in the
variance was found after two noises. In this work, we also
chose to use two noises.
The stochastic estimator requires thousands of inver-

sions for each configuration making the numerical cost
of the analysis comparable with the cost of generating
the dynamical configurations. To carry out these calcu-
lations, we used our own GPU BiCGstab inverters [19].

III. RESULTS

A. Two-pion spectrum

To compute the two-pion spectrum, we generated three
dynamical ensembles of 300 gauge configurations. We
employed the Lüsher-Weiss action with β = 7.1, κ =
0.1282, and u0 = 0.868. The simulation was carried
out using nHYP-smeared clover fermions with two mass-
degenerated quarks and the standard smearing parame-
ters α1 = 0.75 , α2 = 0.6 , and α3 = 0.3 [20]. The spatial
volume of the the three lattices was

24× 24× η24 , η = 1.0 , 1.25, 2.0 , (28)

with temporal extent Nt = 48. The lattice spacing for
all three ensembles was determined to be a = 0.1255(7)
using the Sommer scale (see Appendix B), and the com-
puted value for the pion mass was mπ = 304(2) MeV.
We only computed the energies in the A−

2 channel since
the energies in the E− channel are not significantly differ-
ent than those obtained in the F− channel on the cubic
lattice. The numerical values are listed in Table II. In
the left panel of Fig. 2, we show the ground state ener-
gies obtained using solely the ππ and ρ interpolators, as
well as the energy obtained using the variational method.
The results show consistent behavior. As expected, the
energy decreases as the lattice size is increased and the
back-to-back momentum of the pions becomes smaller.
Note that the individual correlators, extracted separately
from C11(t) and C22(t), have larger error bars. For our
fits we use the energies extracted using the variational
method. This energy is expected to be lower than the
one extracted using individual correlators; in our plot
the central value for η = 2 seems to contradict this ex-
pectation, but the deviation is comparable with the error
bar and most likely due to a statistical fluctuation.

In the right panel of Fig. 2, we show our results for
the ground and first excited states, as well as the spec-
tral behavior as predicted by the effective range formula
Eq. (10) using our fit results. We see that the effective
range formula describes the lattice data well and that
the lattice data resolves clearly the effect of the pions’
interaction.

B. Phase shifts and resonance parameters

To compute the resonance parameters, we evaluate the
scattering formula Eq. (8) with the energies obtained for
the ground and first excited states. The resonance mass
and coupling constant are then computed by fitting the
scattering phase shifts with the effective range formula
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FIG. 3: Left panel: scattering phase shifts computed in this study, effective range formula fit, and the results from unitarized
χPT [14]. The dashed lines describe the energy dependence of the phase shift according to Eq. (8). Right panel: cross section
as a function of the center-of-mass energy. The dashed line indicates the ρ mass, the narrow dark band its error, and the
shadowed box indicates the resonance region mρ ± Γ.

given in Eq. (10). We use a correlated χ2-fit since the en-
ergies for the ground and first excited states are extracted
from the same ensemble and construct the covariance ma-
trix with two-by-two blocks, one per ensemble.
Note that the standard χ2 method needs to be modi-

fied for our fit: the statistical errors affect both x and y
coordinates in our plot since the phase shifts are related
to the energy. Referring to the left panel of Fig. 3, as the
energy is varied the phase shifts move along the dashed
lines indicated in the figure. The solid lines indicate the
error bars obtained by varying the energy in theW ±σW
interval. The χ2 function is defined to be

χ2 =
1

2
∆TC−1∆ (29)

where ∆ is the difference vector

∆i =Wi −W 0
i , (30)

Wi indicates the computed value, and W 0
i the value at

the intersection of the dashed line and the fit curve.
The decay width is determined using the fit results and

the relation

Γ =
g2ρππ
6π

(

m2
ρ/4−m2

π

)3/2

m2
ρ

. (31)

TABLE II: Two pion energies in then A−

2 sector.

η 1.0 1.25 2.0

aE0 0.516(10) 0.511(4) 0.442(4)

aE1 0.660(6) 0.606(10) 0.549(12)

δ1(E0) 1.71(11) 0.822(65) 0.242(31)

δ1(E1) 2.99(10) 2.64(13) 2.04(18)

amπ 0.1925(7) 0.1944(6) 0.1946(8)

We find

gρππ = 6.67(42) , mρ = 827(3)(5) MeV ,

Γ = 76.6(20)(5) MeV , Γph = 184(23) MeV ,
(32)

where Γph is computed using the computed value of gρππ
and the physical values of mρ and mπ. The first quoted
uncertainty indicates the statistical uncertainty, and the
second indicates the uncertainty associated with the de-
termination of the lattice spacing.
In Fig. 3 we show the scattering phase shifts and

the fit curve we obtained using the effective range for-
mula. With the exception of the left-most and right-most
points, the data are not more than one standard devia-
tion away from the curve. However, the confidence level
of the fit is Q ≈ 8%, and it is not clear whether the ef-
fective range formula is reliable for mπ = 304(2) MeV.
Assuming the effective range formula is reliable, the value
we computed for the coupling constant is in reasonably
good agreement with the physical value quoted by the
PDG gphysρππ = 5.975(16) [15].
In Fig. 4 we compare our results to other recent lattice

studies [9, 13, 21]. Our result for the coupling constant
is in good agreement with other studies and was deter-
mined with similar precision. The value of mρ is also
compatible with the value reported by the other studies,
but our error bar is significantly smaller. We note that
the results reported by Lang and collaborators [13] differ
significantly from our results and the ones of other lattice
studies. This is presumed to be due to the fact that the
volume used in their study is too small.
The phase shifts and the values we obtained formρ and

gρππ are also in good agreement with one-loop unitarized
chiral perturbation theory [14]. To show the agreement,
in the left panel of Fig. 3 we plot the phase shift expected
from unitarized χPT to O(p4) for mπ = 304 MeV. Note
that this is not a fit to our data – the only input from our
study to this expression is the pion mass. Another check
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FIG. 4: Left panel: mρ versus mπ from recent lattice studies. We use lattice units to remove the uncertainty associated with
setting the scale. The band represents the prediction from unitarized χPT [14] (note that this is not a fit to our data). Right
panel: coupling as a function of mπ from recent lattice studies. The dot-dashed line is the PDG result [15].

is presented in the left panel of Fig. 4 where we plot the
expectation for the mass of the ρ as a function of the
pion mass. Our datapoint falls directly on top of the
predicted band in the region where the unitarized χPT
prediction has the smallest uncertainty. This is not a
trivial agreement since this band has no input from our
study.

IV. CONCLUSIONS

We presented the first study of the ρ meson decay
using asymmetrical lattices. The calculation was car-
ried out using nHYP-smeared clover fermions with two
mass-degenerate quark flavors at a pion mass of mπ =
304(2) MeV. We used three ensembles of 300 dynamical
gauge configurations and computed the P-wave scatter-
ing phase shifts for the isospin I = 1 channel. Fitting the
phase shifts using the effective range formula, we found
a coupling constant gρππ = 6.67(42) and resonance mass
mρ = 827(3)(5) MeV. Using the computed value for the
coupling constant and assuming that it does not change
significantly as the quark mass is lowered towards the
physical point, we estimate the physical decay width to
be Γph = 184(23) MeV, which is compatible with the
experimental value Γexp = 149.1(8) MeV.
To compute the scattering phase shifts, we chose lattice

volumes with one spatial direction elongated. By varying
the elongation parameter, we were able to compute a set
of scattering phase shifts evenly distributed throughout
the spectral region where the ρ decays. While the moving
frame formalism has been successfully used to study the
ρ decay for as low asmπ = 266 MeV on cubic lattices, the
finer momentum control offered by asymmetrical lattices
will be needed to study narrower resonances.
We found that both the ππ(t) and ρ(t) interpolators

couple to the two-pion scattering states and can be used
to extract the ground state. However, using the varia-

tional method allows both the ground and first excited
state to be computed and gives a more precise determi-
nation of the ground state.
To compute the quark diagrams required for the two-

pion operator, we had to employ stochastic methods.
When employing spin-color dilution for the noise, we
found that the gauge variance of the estimators is sub-
stantially larger than the noise variance. It is then suffi-
cient to use only two independent noise vectors per con-
figuration – additional vectors will add significantly to
the analysis cost without reducing the final error bars.
To compute the resonances parameters, we used the

effective range formula. While this formula described the
overall phase shift profile well, the confidence level for our
fit was only Q ≃ 8%. We find that the effective range
formula cannot reliably describe the phase shifts for the
entire momentum range used in our study. However, the
data points in the resonance region are well described by
this formula.
Our results are compatible with most recent lattice

studies and our error bars are comparable or better.
Moreover, our results were in very good agreement with
the predictions of unitarized chiral perturbation theory.
For future studies, we plan to increase the size of the

variational basis as proposed by [10], include smeared
quarks, and compute the resonance parameters at a pion
mass mπ ≃ 200 MeV. The systematic effects due to lat-
tice spacing, finite volume, and the inclusion of strange
quark dynamics will be determined in further studies.

Acknowledgments

We would like to thank Frank Lee for suggesting this
project and constant encouragement, Anna Hasenfratz
for providing us the codes for generating nHYP dynami-
cal configurations, Sinya Aoki for useful discussions, and
Guillermo Rios and Jose Pelaez for providing us with



8

the unitarized χPT data. This work has been performed
on the IAC cluster supported by the National Center for
Supercomputing Applications, the HPCL clusters at The
George Washington University, and the Keeneland Com-
puting Facility at the Georgia Institute of Technology,
which is supported by the National Science Foundation
under Contract OCI-0910735. This work is supported in
part by the U.S. Department of Energy grant DE-FG02-
95ER-40907 and NSF CAREER grant PHY-1151648.

Appendix A: Numerical evaluation of Zlm(s, q2; η2, η3)

In the following we describe the numerical evaluation
of the generalized zeta functions defined by

Zlm(s, q2; η2, η3) =
∑

n∈Z3

Ylm(ñ)

(ñ2 − q2)s
(A1)

for

Re 2s < l + 3 . (A2)

We use the same strategy originally proposed by Lüsher
in [3]. Its extension to asymmetrical lattices is given
in [7]. In the following, we give the relevant formulas,
describe the numerical procedure used in this work, and
give a list of values for comparison.
We begin by introducing the heat kernel

K(t,x) =
1

(2π)3

∑

n∈Z3

eiñ·x−tñ2

(A3)

=
η2η3

(4πt)3/2

∑

n∈Z3

e−
1
4t (x−2πn̂)2 (A4)

where n̂ = (n1, η2 n2, η3 n3) and ñ = (n1, n2/η2, n3/η3).
The first form is the definition of the heat kernel.
Eq. (A4) follows from Eq. (A3) by applying the Poisson
summation formula

∑

n∈Z3

f(n) =
∑

k∈Z3

∫ ∞

−∞

f(x)ei2πk·xd3x (A5)

and will be useful for small times t. The derivatives of
the heat kernel are defined by

Klm(t,x) = Ylm(−i∇x)K(t,x) (A6)

where the expression Ylm(−i∇x) is to be understood as
the replacement of the homogeneous polynomial

Ylm(x) = xlYlm(Ωx) , (A7)

using the rule xi → ∂
∂xi

. Lastly, we define the truncated
heat kernel and its derivatives as

KΛ(t,x) = K(t,x)− 1

(2π)3

∑

|ñ|≤Λ

eiñ·x−tñ2

, (A8)

and

KΛ
lm(t,x) = Ylm(−i∇x)KΛ(t,x) . (A9)

A valid representation of the generalized zeta function,
analytically continued to the half plane Re 2s > 1/2, can
be written in terms of the truncated heat kernel as

Zlm(s, q2; η2, η3)

=
∑

|ñ|≤Λ

Ylm(ñ)

(ñ2 − q2)s
+

(2π)3

Γ(s)

{

δl0δm0η2η3
(4π)2(s− 3/2)

+

∫ 1

0

dt ts−1

[

etq
2KΛ

lm(t,0)− δl0δm0η2η3
(4π)2t3/2

]

+

∫ ∞

1

dt ts−1etq
2KΛ

lm(t,0)

}

(A10)

where the cutoff Λ is chosen such that Λ2 > Re q2. In
order to compute the scattering phase shifts, we need to
evaluate Zlm(1, q2; η2, η3) numerically. In the following
we describe the procedure used in this work.
For the case of interest, s = 1, we have

Zlm(1, q2; η2, η3)

=
∑

|ñ|≤Λ

Ylm(ñ)

(ñ2 − q2)
+ (2π)3

{

−δl0δm0η2η3
8π2

+

∫ 1

0

dt

[

etq
2KΛ

lm(t,0)− δl0δm0η2η3
(4π)2t3/2

]

+

∫ ∞

1

dt etq
2KΛ

lm(t,0)

}

. (A11)

In order to evaluate Zlm(1, q2; η2, η3), the infinite sums
appearing in KΛ

lm(t,0) must be truncated. In the inte-
gration region [1,∞], we use Eq. (A3) to define Klm(t,0).
In this case subsequent terms in the sum are suppressed

by Re e−t(ñ2−q2), and the sum converges the slowest for
t = 1. In the integration region [0, 1], we use the alterna-
tive definition of the heat kernel to define KΛ

lm(t,0). In

this case one has to approximate etq
2Klm(t,0). Again,

the sum converges the slowest at t = 1 with succes-

sive terms being suppressed by Re e−
(πn̂)2

t
+tq2 . The cut-

off is then chosen such that the integrands are approx-
imated to a desired precisions for t = 1. In Table III
we list some values for comparison, and in Figure 5
we plot Z00(1, q

2; 1, 2) and Z20(1, q
2; 1, 2) in the range

0 < q2 < 4.

q2 Z00(1, q
2, 1, 2) Z20(1, q

2, 1, 2)

0.2 6.35553 5.62348

0.41 -5.08222 -2.90547

0.62 1.16621 -2.22911

0.83 10.9025 -2.85516

1.04 -33.5287 -5.64013

TABLE III: A few values for Z00(1, q
2, 1, 2) and

Z20(1, q
2, 1, 2).
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FIG. 5: Z00(1, q
2, 1, 2) and Z20(1, q

2, 1, 2).

Appendix B: Determination of the lattice spacing

To determine the lattice spacing, we use the Sommer
scale [22]. We work in the Coulomb gauge and extract
the heavy quark potential from the relation

〈

W †
T (x, t)WT (x+ r, t)

〉

U
≈ ce−V (r)T , (B1)

which is valid for large T with Wilson line WT defined
by

WT (x, t) =
T−1
∏

i=0

U4(x, t+ i) . (B2)

To fit the data, we use the functional form

V (r) = C +
B

r
+ σr + λ

(

1

r

∣

∣

∣

∣

latt

− 1

r

∣

∣

∣

∣

)

(B3)

where C is part of the quarks’ self-energy, σ is the string
tension, B = − 3

4αs, and the last term is the difference
between the lattice and continuum potentials. The Som-
mer parameter is then determined through

r0/a =

√

1.65 +B

σ
. (B4)

Using a combined fit to all three ensembles and averaging
over all space-time points, we find

C = 0.919(4) , B = −0.430(5) , σ = 0.077(1), (B5)

and

r0/a = 3.984(21) . (B6)

To fix the lattice spacing, we take r0 = 0.5 fm and obtain
a = 0.1255(7) fm.
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