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In this work we make a systematic analysis of the correlated processes J/ψ → γη(1440)/f1(1420)
with η(1440)/f1(1420) → KK̄π, ηππ and 3π, where the role played by the so-called “triangle
singularity mechanism” (TSM) is clarified. Our results agree well with the experimental data and
suggest a small fraction of f1(1420) contributions in these processes. This study confirms our
conclusion in [Phys. Rev. Lett. 108, 081803 (2012)] that the dynamic feature of the TSM can be
recognized by the strong narrow peak observed in the ππ invariant mass spectrum of η(1440) → 3π
with anomalously large isospin violations. Nevertheless, we explicitly demonstrate that the TSM
can produce obvious peak position shifts for the same η(1440) or f1(1420) state in different decay
channels. This is a strong evidence that the η(1405) and η(1475) are actually the same state, i.e.
η(1440). We also make an analysis of the radiative decays of η(1440) → γV (V = φ, ρ0 or ω)
which shows that such a one-state prescription seems not to have a conflict with the so-far existing
experimental data. Our analysis may shed a light on the long-standing puzzling question on the
nature of η(1405) and η(1475).

PACS numbers: 13.75.Lb, 14.40.Rt, 13.20.Gd

I. INTRODUCTION

The charmonium hadronic and radiative decays into light hadrons have provided an important way to probe the light
hadron structures. In particular, with high statistics of J/ψ and ψ′ events produced in e+e− annihilation, the light
hadron spectra can be studied closely and dynamic information concerning the light hadron properties can be extracted
from their production and decays. During the past few years, there have been several new resonance structures with
JPC = 0−+ observed by BESII and BESIII in J/ψ and ψ′ decays. They could be candidates of radial excitation
states of the pseudoscalar mesons η and η′, or exotic states such as glueball, multiquark state or hadronic molecule.
For instance, the BES-II Collaboration first reported a resonance structure in J/ψ → γX(1835) → γη′π+π− [1],
which was later confirmed by the BESIII measurement [2] with high statistics. Nevertheless, two additional resonance
structures were identified as X(2120) and X(2370) in the η′ππ invariant mass spectrum [2, 3].
In fact, our understanding of the isoscalar spectrum is still far from well-established. Historically, the study of

the nature of η(1405) and η(1475) has been a hot topic and closely related to the effort of searching for the ground
state pseudoscalar glueball in experiment. Since the first radial excitation states of η and η′ are generally assigned to
η(1295) and η(1475) taking into account their production and decay properties [4], it leaves out the abundant η(1405)
as a possible candidate for the pseudoscalar glueball. However, we would like to emphasize that such an arrangement
still needs further studies, and it is still controversial whether η(1405) and η(1475) are two separated states or just
one state of 0−+ in different decay modes [5].
With the availability of high-statistic J/ψ and ψ′ events from the BESIII Collaboration, it allows us to tackle

the question on the nature of η(1405) and η(1475). One important experimental progress is that the BESIII
Collaboration [6] report the observation of anomalously large isospin violations of the η(1405/1475) → 3π in
J/ψ → γη(1405/1475) → γπ0f0(980) → γ + 3π which, however, can hardly be understood by treating them as
either glueball or qq̄ state. Interestingly, this decay process also explicitly involves the issue of a0(980)-f0(980) mix-
ings. The BESIII data show that the f0(980) signal is only about 10 MeV in width and the lineshape is different from
the Breit-Wigner width of about 40 ∼ 100 MeV [4]. Moreover, the isospin violation turns out to be significant with
BR(η(1405) → f0(980)π

0 → 3π)/BR(η(1405) → a00(980)π
0 → ηππ) = (17.9 ± 4.2)%, which cannot be explained by

the a0 − f0 mixing intensity measured in other channels [7].
An immediate theoretical interpretation is given by Ref. [8], where we propose that a triangle singularity mechanism

(TSM) via the intermediate K∗K̄ + c.c. rescatterings would lead to significant enhancement of the isospin violating
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decay, i.e. η(1405/1475) → K∗K̄ + c.c. → f0(980)π. In this transition, the dominant contributions would come
from such a specific kinematic region that all the intermediate mesons in the triangle loop are literally on-shell. The
identification of such a mechanism seems to be nontrivial since it can naturally explain the narrow width of the f0(980)
observed in the two pion invariant mass spectrum. Consequently, it raises an essential issue concerning the nature
of η(1405/1475) since the TSM can also contribute to the decays of η(1405/1475) → KK̄π and ηππ, and distort
the lineshapes and shift the peak positions of the η(1405/1475) in those decay channels. As a result, a coherent
study of η(1405/1475) → KK̄π, ηππ, and 3π is necessary and could be a key towards a better understanding of the
η(1405/1475) puzzle.
In this work, we shall provide a detailed analysis of η(1405/1475)→ KK̄π, ηππ, and 3π. We shall show that only

one 0−+ isoscalar state, namely η(1440), is needed in this mass region. With this “one state” assumption, we shall
demonstrate that the TSM can lead to different mass spectra for η(1440) → KK̄∗+ c.c., a0(980)π

0, and f0(980)π. In
J/ψ → γη(1440), with η(1440) → KK̄∗ + c.c., a0(980)π

0, and f0(980)π, another possible contribution to the same
final states is via f1(1420). Since the mass of f1(1420) is similar to that of η(1440), we should investigate the role
played by f1(1420) in these processes. In particular, due to the similar masses between f1(1420) and η(1440), the
decay of f1(1420) would also experience the TSM. Therefore, a helicity analysis of the invariant mass spectrum for the
overlapping f1(1420) and η(1440) is necessary. In comparison with the results reported in Ref. [8], we have detailed all
the analysis by including the f1(1420) contributions. We confirm the BESIII results by detailed helicity analysis from
which we can extract the invariant mass spectra for η(1440) in different channels. These features as a consequence of
the TSM could be a natural solution for the long-standing puzzle about the nature of η(1405/1475) in experimental
analyses.
We also mention that the η(1405/1475)→ 3π decay was also studied in Ref. [9] recently in a chiral unitary approach.

By exhausting several models and taking constraints from the meson-meson scatterings, the authors confirm that only
a0(980)-f0(980) mixing can not explain the BES result [6] and the inclusion of the triangular diagrams is necessary [8].
The rest part of this paper is organized as follows: the formalism is presented in Sec. II. Section III is devoted to

the numerical results and discussions. Our conclusion is given in Sec. IV.

II. FORMALISM

A. Effective Lagrangians and transition amplitudes

The effective Lagrangians for the η(1440) production have been presented in Ref. [8]. Here, we include the f1(1420)
contribution and list the effective Lagrangians as the following:

LV1V2P = gV1V2P εµνρσp
µ
V1
pνV2

ψρV1
ψσV2

ψP , (1)

LV P1P2
= gV P1P2

(ψP1∂µψP2
− ψP2∂µψP1

)ψµV , (2)

LSP1P2
= gSP1P2

ψSψP1
ψP2

, (3)

LAV P = gAV Pψ
µ
AψV µψP , (4)

Lψγf1 = g1εµνρσ∂
µψνψψ

ρ
γψ

σ
f1 + g2εµνρσ∂

µψλψ∂
λ∂νψργψ

σ
f1 , (5)

where S, P , V and A stand for four types of fields: scalar, pseudoscalar, vector and axialvector, respectively. For
η(1440) the same diagrams as in Ref. [8] are calculated, while for f1(1420) the similar diagrams are listed in Fig. 1.
Figure 1(1a)-(1b) are for f1(1420) → KK̄π throughK∗K̄ and a0(980)π channels. Figure 1(2a)-(2b) are for f1(1420) →
π+π−π0 through the TSM and a0− f0 mixing. Figure 1(3) is for f1(1420) → ηπ0π0, where we assume that a00(980)π

0

gives the main contribution.
Our kinematics conventions are shown in Fig. 2. Some common functions are defined as follows:

Gf =
1

s−m2
f + i

√
sΓf(s)

, (6)

Ga =
1

s−m2
a + i

√
sΓa(s)

, (7)

Γa(s) =
g2
aKK̄

(ρ(
√
s,mK0 ,mK̄0) + ρ(

√
s,mK+ ,mK−))

16π
√
s

+
g2aπηρ(

√
s,mπ0 ,mη)

16π
√
s

, (8)

Γf (s) =
g2
fKK̄

(ρ(
√
s,mK0 ,mK̄0) + ρ(

√
s,mK+ ,mK−))

16π
√
s
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FIG. 1: Feynman diagrams for the f1(1420) decays and its production in J/ψ radiative decay. Similar diagrams for η(1440)
have been given in Ref. [8].

p,mi

p1, m1

p2, m2

p3, m3

p23, m23

p23, m23

p1, m1

p2, m2

p3, m3

p,mi

k,ma

p− k,mb

k − p1, mc

(a) (b)

FIG. 2: Kinematics defined in our formalism.

+
g2fππ(ρ(

√
s,mπ0 ,mπ0) + 2ρ(

√
s,mπ+ ,mπ−))

16π
√
s

, (9)

ρ(
√
s,mA,mB) =

1

s

√

(s− (mA +mB)2)(s− (mA −mB)2) . (10)
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Then, the typical loop integrals can be expressed as

Îη1 = i

∫

d4k

(2π)4
(2p− k)µ(2p1 − k)ν

(−gµν + kµkν
m2
a
)

k2 −m2
a

1

(p− k)2 −m2
b

1

(k − p1)2 −m2
c

, (11)

Îf1 = i

∫

d4k

(2π)4
ǫµp (2p1 − k)ν

(−gµν + kµkν
m2
a
)

k2 −m2
a

1

(p− k)2 −m2
b

1

(k − p1)2 −m2
c

= ǫµp (cppµ + cp1p1µ) , (12)

Îf1b = Îf1(1 ↔ 2) = ǫµp (dppµ + dp2p2µ) . (13)

Taking into account that the relative signs between the charged and neutral loops are positive in isospin-conserving
processes but negative in isospin-violating processes, it is convenient to define

c+p ≡ ccpg
c
k∗Kπ + cnpg

n
k∗Kπ , (14)

c−p ≡ ccpg
c
k∗Kπ − cnpg

n
k∗Kπ , (15)

c+p1 ≡ ccp1g
c
k∗Kπ + cnp1g

n
k∗Kπ , (16)

c−p1 ≡ ccp1g
c
k∗Kπ − cnp1g

n
k∗Kπ , (17)

where the superscripts ‘c’ and ‘n’ denote the charged and neutral loops, respectively. We also define Î±η1, d
±
p and d±p2

for Îf1b in a similar way.
The invariant amplitudes in Fig. 1 can then be expressed as

M1a = gf1K∗KgK∗Kπ

[

ǫµp
(−gµν + p23µp23ν)

s23 −m2
V + imV ΓV

(p3 − p2)
ν + (2 ↔ 1)

]

= gf1K∗KgK∗Kπ × ǫµp (c1p1µ + c2p2µ + c3p3µ) , (18)

∑

spin

|M1a|2 =
1

3
g2f1K∗Kg

2
K∗Kπ

(

−gµν + pµpν

m2
f1

)

(c1p1µ + c2p2µ + c3p3µ) (c
∗
1p1ν + c∗2p2ν + c∗3p3ν) , (19)

M1b = 2gf1K∗Kg
2
aKK̄Ga(s23)

(

gcK∗Kπ Î
c
f1 + gnK∗Kπ Î

n
f1

)

= 2gf1K∗Kg
2
aKK̄Ga(s23)× ǫµp

(

pµc
+
p + p1µc

+
p1

)

, (20)

∑

spin

|M1b|2 =
4

3
g2f1K∗Kg

4
aKK̄ |Ga(s23)|2

(

−gµν + pµpν

m2
f1

)

(pµc
+
p + p1µc

+
p1)(pνc

+∗
p + p1νc

+∗
p1 ) , (21)

M2a = 2
√
2gf1K∗KgfKK̄gfππGf (s23)

(

gcK∗Kπ Î
c
f1 − gnK∗Kπ Î

n
f1

)

= 2
√
2gf1K∗KgfKK̄gfππGf (s23)× ǫµp

(

pµc
−
p + p1µc

−
p1

)

, (22)

∑

spin

|M2a|2 =
8

3
g2f1K∗Kg

2
fKK̄g

2
fππ|Gf (s23)|2

(

−gµν + pµpν

m2
f1

)

(pµc
−
p + p1µc

−
p1)(pνc

−∗
p + p1νc

−∗
p1 ) , (23)

M2b = M1b ×
√
2gfKK̄gfππGf (s23) (loop2

c − loop2n) , (24)

∑

spin

|M2b|2 =





∑

spin

|M1b|2


× 2g2fKK̄g
2
fππ|Gf (s23)|2|loop2c − loop2n|2 , (25)

M3 = 2gf1K∗KgaKK̄gaπη

[

Ga(s23)
(

gcK∗Kπ Î
c
f1 + gnK∗Kπ Î

n
f1

)

+ (2 ↔ 1)
]

= 2gf1K∗KgaKK̄gaπη × ǫµp
[

Ga(s23)
(

pµc
+
p + p1µc

+
p1

)

+ (2 ↔ 1)
]

, (26)

∑

spin

|M3|2 =
2

3
g2f1K∗Kg

2
aKK̄g

2
aπη

(

−gµν + pµpν

m2
f1

)

[|Ga(s23)|2(pµc+p + p1µc
+
p1)(pνc

+∗
p + p1νc

+∗
p1 )

+|Ga(s13)|2(pµd+p + p2µd
+
p2)(pνd

+∗
p + p2νd

+∗
p2 )

+Ga(s23)Ga(s13)
∗(pµc

+
p + p1µc

+
p1)(pνd

+∗
p + p2νd

+∗
p2 )

+Ga(s23)
∗Ga(s13)(pµc

+∗
p + p1µc

+∗
p1 )(pνd

+
p + p2νd

+
p2)] , (27)
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M4 = g1ǫµνρσp
µ
ψǫ
ν
ψǫ
ρ
γǫ
σ
f1 + g2ǫµνρσp

µ
ψp

ν
f1ǫ

ρ
γǫ
σ
f1ǫψ · pf1B2(Q) . (28)

In Eq. (27), we have put the identical factor 1/2 in the squared amplitude. The parametrization of Eq. (28) is taken
from Ref. [10] and B2(Q) is the Blatt-Weisskopf barrier factor

B2(Q) =

√

1

Q4 + 3Q2Q2
0 + 9Q4

0

, (29)

where Q is the decay momentum, and Q0 is a hadron scale parameter Q0 = 0.197321/R GeV with R the radius of
the centrifugal barrier in fermi. In this paper we adopt R = 0.35 fm which is about the radius of J/ψ.

1. Helicity amplitudes

In experiment, the quantum number of an intermediate state X is generally determined by measuring the angular
distribution of the X decays. To proceed, we first make a model-independent analysis of the helicity structure of the
transition matrix element which would allow us to separate different partial waves. Then, by comparing with the
angular distributions measured by experiment, we can extract the dynamic coupling strengths for different partial
waves.
For a decay process a→ b+ c with spin, helicity and parity (si, λi, ηi)i=a,b,c, the decay amplitude in the rest frame

of a can be expressed as [11],

Msa
λbλc

(θ, φ;λa) ∝ Dsa∗
λa,λb−λc

(φ, θ, 0)F saλbλc , (30)

where Dsa∗
λa,λb−λc

(φ, θ, 0) is the rotation function, and F saλbλc is the helicity-coupling amplitude which is independent
of angular variables. It satisfies two constraints taking into account angular momentum conservation and Parity
conversation:

|λb − λc| ≤ sa , (31)

F saλbλc = ηaηbηc(−)sa−sb−scF sa−λb−λc . (32)

From these relations, we can find out the independent helicity-coupling amplitudes.
As follows, we will re-analyze the angular distributions of the recoiled photon in J/ψ → γX and the recoiled f0(980)

in X → f0(980)π decays which are measured by the BESIII experiment [6]. Now as a preparation, we derive the
helicity amplitudes of each vertex from the Lagrangians in Eqs. (1)-(5).
In J/ψ → γf1, the helicity amplitude with transversely polarized f1 can be expressed as

〈λγ , λf1 = ±1|Ŝ|λψ〉 = g1ǫµνρσp
µ
ψǫ
ν
ψǫ

∗ρ
γ ǫ

∗σ
f1 + g2B2(Q)ǫµνρσp

µ
ψp

ν
γǫ

∗ρ
γ ǫ

∗σ
f1 ǫψ · pγ

= −ig1λγmψD
1∗
λψ0

(φ, θ, 0) + ig2B2(Q)λγmψQ
2D1∗

λψ0
(φ, θ, 0)

= D1∗
λψ0(φ, θ, 0)F

1
λγλf1

, (33)

which is nonvanishing with λγ = λf1 , and

F 1
λγλf1

= −ig1λγmψ + ig2λγmψQ
2B2(Q) . (34)

So the independent amplitude is

F 1a
11 = imψ[−g1 + g2Q

2B2(Q)] . (35)

When f1 is longitudinally polarized, the g2 term will have no contribution. The helicity amplitude is

〈λγ , λf1 = 0|Ŝ|λψ〉 = g1ǫµνρσp
µ
ψǫ
ν
ψǫ

∗ρ
γ ǫ

∗σ
f1

= −ig1λγmψ
Ef1
mf1

D1∗
λψλγ (φ, θ, 0)

= D1∗
λψλγ

(φ, θ, 0)F 1
λγ0 , (36)

with

F 1
λγ0 = −ig1λγmψ

Ef1
mf1

. (37)
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So the independent amplitude is

F 1a
10 = −ig1mψ

Ef1
mf1

. (38)

For f1 → f0(980)π
0, the helicity amplitude can be written as

〈f0π|Ŝ|f1〉 = 2gf1K∗Kgf0KK

[

gcK∗Kπ Î
c
f1 − gnK∗Kπ Î

n
f1

)

= 2gf1K∗Kgf0KKǫ
µ
p (pµc

−
p + p1µc

−
p1)

= 2gf1K∗Kgf0KKc
−
p1ǫp · p1

= D1∗
λf10

(φ, θ, 0)F 1b
00 , (39)

where we have used the relation ǫp · p = 0. Also, in the helicity frame of f1(1420), we have

ǫp · p1 = −D1∗
λf0

(φ, θ, 0)Q . (40)

So the independent amplitude is

F 1b
00 = −2gf1K∗Kgf0KKc

−
p1Q . (41)

Similarly, the helicity amplitude for J/ψ → γη(1440) can be obtained with both J/ψ and γ transversely polarized:

〈λγη(1440)|Ŝ|λψ〉 = gψγη1ǫµνρσp
µ
ψq

ν
γ ǫ
ρ
ψǫ
σ
γ

= −iλγgψγη1mψ|~q|D1∗
λψλγ (φ, θ, 0)

= D1∗
λψλγ (φ, θ, 0)F

1c
λγ0 , (42)

with

F 1c
λγ0 = −iλγgψγη1mψ|~q| . (43)

For η(1440) → f0(980)π
0, the helicity amplitude is

〈f0π|Ŝ|η(1440)〉
= 2gη1K∗Kgf0KK(gcK∗Kπ Î

c
f1 − gnK∗Kπ Î

n
f1)

= F 0d
00 . (44)

B. Angular distribution

By combining the two-body decay amplitudes in the helicity frame, we can derive the total helicity amplitudes for
the chain process J/ψ → γX → γf0(980)π

0 as shown in Fig. 3 and extract the angular distributions to compare with
the experimental data [6].

J/Ψ

γ

X

θγ, φγ

f0(980)

π

θf0, φf0

FIG. 3: The kinematics for the chain process J/ψ → γX → γf0(980)π
0.
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For X being η(1440), the total helicity amplitude can be expressed as

Aη1(λψ , λγ) ∝ D1∗
λψλγ (φγ , θγ , 0)F

1c
λγ0

1

s−m2
η1 + imη1Γη1

F 0d
00 . (45)

The angular distribution is

dση1
dΩ

∝
∑

λψ ,λγ=±1

|Aη1(λψ , λγ)|2

∝
∑

λψ ,λγ=±1

∣

∣

∣D1∗
λψλγ (φγ , θγ , 0)

∣

∣

∣

2

= 1 + cos2 θγ , (46)

where dΩ ≡ dΩγdΩf0 with dΩγ ≡ d cos θγdφγ and dΩf0 ≡ d cos θf0dφf0 . One step further, we obtain

dση1
d cos θγ

∝ 1 + cos2 θγ , (47)

dση1
d cos θf0

∝ const , (48)

for the angular distributions of θγ and θf0(980), respectively. These expressions are the same as those adopted in
Ref. [6].
For X being f1(1420), the total helicity amplitude of the chain process can be expressed as

Af1 (λψ, λγ , λf1 ) ∝ D1∗
λψ,λγ−λf1

(φγ , θγ , 0)F
1a
λγλf1

1

s−m2
f1

+ imf1Γf1
D1∗
λf10

(φf0 , θf0 , 0)F
1b
00 . (49)

The angular distribution via f1(1420) is

dσf1
dΩ

∝
∑

λψ ,λγ=±1

∣

∣

∣

∣

∣

∣

∑

λf1=0,±1

Af1(λψ , λγ , λf1)

∣

∣

∣

∣

∣

∣

2

∝
∑

λψ ,λγ=±1

∣

∣

∣αD1∗
λψ,0(φγ , θγ , 0)D

1∗
λγ0(φf0 , θf0 , 0) +D1∗

λψ,λγ (φγ , θγ , 0)D
1∗
00(φf0 , θf0 , 0)

∣

∣

∣

2

= α2
1 sin

2 θf0 sin
2 θγ +

α1

2
cosφα cosφf0 sin 2θf0 sin 2θγ + cos2 θf0(cos

2 θγ + 1) , (50)

where α ≡ α1e
iφα is the ratio of the λf1 = ±1 amplitude to that of λf1 = 0. By integrating over corresponding polar

angles in the above double distribution, one has access to the angular distributions of θγ and θf0 , respectively, for the
intermediate f1(1420):

dσf1
d cos θγ

∝ 1 + 2α2
1 + (1− 2α2

1) cos
2 θγ , (51)

dσf1
d cos θf0

∝ 2 + (α2
1 − 2) sin2 θf0 . (52)

With both η(1440) and f1(1420) contributing to the chain process, the total helicity amplitude can be obtained in
a similar way, namely,

Aη1+f1(λψ , λγ) = D1∗
λψλγ

(φγ , θγ , 0)F
1c
λγ0

1

s−m2
η1 + imη1Γη1

F 0d
00

+D1∗
λψ0

(φγ , θγ , 0)D
1∗
λγ0(φf0 , θf0 , 0)F

1a
λγλγ

1

s−m2
f1

+ imf1Γf1
F 1b
00

+D1∗
λψλγ

(φγ , θγ , 0)D
1∗
00(φf0 , θf0 , 0)F

1a
λγ0

1

s−m2
f1

+ imf1Γf1
F 1b
00

∝ λγ

[

rD1∗
λψλγ

(φγ , θγ , 0) + αD1∗
λψ0

(φγ , θγ , 0)D
1∗
λγ0(φf0 , θf0 , 0) +D1∗

λψλγ
(φγ , θγ , 0)D

1∗
00(φf0 , θf0 , 0)

]

,(53)
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where we have applied the selection rule λf1 = λγ for the transversely polarized f1(1420); r ≡ r1e
iφr is the ratio of

the η(1440) amplitude to that of f1(1420) with λf1 = 0. Then the angular distribution becomes

dση1+f1
dΩ

∝
∑

λψ ,λγ=±1

|Aη1+f1(λψ , λγ)|2

= r21(cos 2θγ + 3) + 2r1α1 sin θf0 sin 2θγ cosφf0 cos(φα − φr) + 2r1 cos θf0 cosφr(cos 2θr + 3)

+2α2
1 sin

2 θf0 sin
2 θγ + α1 cosφα sin 2θf0 sin 2θγ cosφf0 + cos2 θf0(cos 2θγ + 3) . (54)

It is easy to show that Eqs. (46) and (50) can be reproduced by setting the corresponding resonance couplings to
vanish. Similarly, the angular distributions of θγ and θf0 can be obtained

dση1+f1
d cos θγ

∝ 1 + 2α2
1 + 3r21 + (1− 2α2

1 + 3r21) cos
2 θγ , (55)

dση1+f1
d cos θf0

∝ α2
1 + 2r21 + 4r1 cosφr cos θf0 + (2− α2

1) cos
2 θf0 . (56)

Checking Eqs. (47), (51) and (55), one can see that the cos θγ distribution is always symmetric as a feature of a two-
body decay. In contrast, the angular distribution of cos θf0 turns out to be nontrivial. As shown by Eqs. (48), (52) and
(56), the contributions from different states with different quantum numbers are encoded in the angular distribution
of cos θf0 . By fitting the experimental data, the coupling parameters can thus be determined which alternatively
would provide information about the contributing resonances. As shown by Fig. 3 of Ref. [6], the cos θf0 distribution
is apparently asymmetric which indicates some contributions from the f1(1420) production besides η(1440).
With the explicit total helicity amplitude in Eq. (53), we can express the differential width as

dΓ =
1

(2π)5
1

16m2
ψ

|Aη1+f1 |2 |~pγ ||~pf0 |d
√
sXdΩγdΩf0 . (57)

We can define the following quantities by integrating the invariant mass
√
sX of the f0(980)π

0:

A1 =

∫

d
√
sX |~pγ ||~pf0 |

∣

∣

∣

∣

F 1c
10F

0d
00

sX −m2
η1 + imη1Γη1

∣

∣

∣

∣

2

, (58)

A2 =

∫

d
√
sX |~pγ ||~pf0 |

∣

∣

∣

∣

∣

F 1a
11 F

1b
00

sX −m2
f1

+ imf1Γf1

∣

∣

∣

∣

∣

2

, (59)

A3 =

∫

d
√
sX |~pγ ||~pf0 |

∣

∣

∣

∣

∣

F 1a
10 F

1b
00

sX −m2
f1

+ imf1Γf1

∣

∣

∣

∣

∣

2

, (60)

which can thus be related to the quantities measured in experiment, i.e.

α2
1 =

A2

A3
, r21 =

A1

A3
. (61)

From these relations, we can extract the information about the couplings from the angular distribution analysis.
To compare with the experimental measurement of the unpolarized partial decay width in terms of the recoiled

energy s by the photon in J/ψ → γX → γABC, the following standard expression is adopted,

dΓJ/ψ→γX→γABC

d
√
s

=
2s

π

ΓJ/ψ→γX(s)× ΓX→ABC(s)

(s−m2
X)2 + Γ2

Xm
2
X

, (62)

where s is the four-momentum square of X = η(1440)/f1(1420) in the reaction. A constant width Γ(f1(1420)) =
0.0549 GeV is adopted for f1(1420) [4], while for η(1440), both constant width and energy-dependent form are adopted,

Γη(1440)(s) = Γη(1440)→K∗K→KK̄π(s) = Γ1a(s) , (63)

where Γ1a corresponds to Fig. 1(1a).
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III. RESULTS AND DISCUSSIONS

In this part, we present our analyses and numerical results. First we demonstrate explicitly that the TSM is
dominant in η(1440) → 3π, and the main contribution is indeed from such a kinematic region that all the internal
particles are close to their mass shells. Then, we give the fitting results about η(1440) from KK̄π spectrum and
show the predictions of π+π−π0 and ηπ0π0 which are consistent with Ref. [8]. By including f1(1420), we extract
the couplings of f1(1420) through the analysis of the angular distribution of π+π−π0 channel [6]. Finally, we show
that the combined results for both η(1440) and f1(1420) in comparison with the BES data would allow us to draw
a conclusion on the anomalously large isospin violations observed in η(1405) → 3π and the nature of η(1405) and
η(1475).

A. Loop integral

Here we discuss in detail the calculation of Îη1 and Îf1 in Eqs. (11)-(12). What we actually need in Îf1 is the
coefficients cp and cp1. We use two methods to calculate the loops:

1. We directly calculate Îη1 and Îf1 by LoopTools without any form factors. The UV divergences are regularized
dimensionally by ∆ = 2/(4−D)− γE + log 4π, where ∆ can be adjusted and the default value is ∆ = 0.

2. The exponential form factor method as applied in Ref. [12]. Namely, an exponential form factor as follows is

included in Îη1 and Îf1 to cut off the UV divergence:

exp

[

k2 −m2
a

Λ2
+

(p− k)2 −m2
b

Λ2
+

(k − p1)
2 −m2

c

Λ2

]

, (64)

where Λ is the cutoff energy and characterize the effective range of the interaction. In principle, other forms of
form factors can also be examined and we find the results are similar to each other.

We present the calculations based on the above two treatments in Fig. 4. In the kinematic region that all the internal
particles are close to their mass shells, namely the TS kinematics, these two treatments give nearly identical results
since the form factor corrections are nearly unity. In particular, the absorptive part is dominated by the contributions
from the TS kinematics. The real part turns out to be more sensitive to the form factor corrections when the internal
particles deviate from their mass shells. Similar results are found for the f1(1420) since its mass is nearly the same
as η(1440) and they share the same TSM. As a result, one can imagine that there should be little difference between
these two treatments in the isospin-violating decay of η(1440)/f1(1420) → 3π since the main contribution is from
the absorptive part in the TS kinematics and the dispersive part would largely cancel out between the charged and
neutral loop amplitudes. It is worth noting that the cancellation between the charged and neutral loop amplitudes
eventually makes the calculation almost independent of the model uncertainties as explicitly pointed out in Ref. [8].
This should be a direct way to confirm the dominance of the TSM in η → 3π as a dynamic mechanism.

B. Angular distribution analysis

In the numerical calculations, the common coupling constants present in the triangle loops for η(1440) and f1(1420)
are adopted the same as in Ref. [8], i.e. gaKK̄ = 3.33 GeV, gaηπ = 2.45 GeV, gnK∗Kπ = 3.208, and gcK∗Kπ = 3.268.
BES [13] and KLOE [14] give different values for the f0(980) coupling, namely, gfKK̄ = 4.18 GeV and gfππ =
1.66 GeV from BES [13]; and gfKK̄ = 5.92 GeV and gfππ = 2.09 GeV from KLOE [14]. Similar to the treatment in
Ref. [8], contributions from Figs. 1(1b) and (2b) are neglected since they are only about 1/10 of Figs. 1(1a) and (2a),
respectively.
We adopt the mass and width of f1(1420) from the PDG [4], i.e. mf1(1420) = 1.4264 GeV and Γf1(1420) = 54.9 MeV,

but leave the mass and width of η(1440) to be fitted by the experimental data based on the “one-state” assumption.
This is reasonable since the f1 spectrum does not suffer from the ambiguity of possible abundant states in this energy
region and as we shall see later that the f0(980) angular distribution measured by BESIII [6] only requires a small
contribution from the f1(1420).
Taking into account the present datum status, our analysis strategy is as follows: we first fit the BESIII data [6]

for the angular distributions of the recoiled photon and f0(980) in the decay of J/ψ → γX and X → f0(980)π
0.

This allows us to extract the relative strengths between the η(1440) and f1(1420) in the isospin violating decays.
Then, by applying for the constraint from the J/ψ → γη(1405/1475)→ γKK̄π from DM2, MARK III, and BES [4],
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FIG. 4: The imaginary and real parts of the loop integrals in terms of the invariant mass of KK̄ at
√
s = 1.42 GeV. There are

two sets of lines identified by those two spikes which correspond to the charged (lower mass) and neutral (higher mass) KK̄
thresholds. For each set of lines, the thick and thin solid ones represent the results with Λ = 1.0 and Λ = 0.5 GeV, respectively,
while the dashed lines denote the results of LoopTools calculation without form factor.

it allows us to determine the absolute differential widths for both η(1440) and f1(1420). We shall compare this
with the exclusive fit by η(1440) as shown in Ref. [8]. In the end, we shall output the invariant mass spectra for
η(1440)/f1(1420) → KK̄π, ηππ and 3π, from which we would expect to observe different lineshapes and peak positions
from the same state in different decay channels.
The θγ and θf0 angular distributions of exclusive η(1440) and f1(1420) have been analyzed in Ref. [6] as parame-

terized in Eqs (47)-(48) and (51)-(52). Now we consider the combined contributions from both η(1440) and f1(1420)
and fit the BESIII data [6] using Eqs. (55)-(56) which can be expressed as

dN

d cos θγ
= bγ(1 + c cos2 θγ) , (65)

dN

d cos θf0
= bf0(1 + c1 cos θf0 + c2 cos

2 θf0) , (66)
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where bγ and bf0 are the overall normalization factors and

c ≡ 1− 2α2
1 + 3r21

1 + 2α2
1 + 3r21

, c1 ≡ 4r1 cosφr
α2
1 + 2r21

, c2 ≡ 2− α2
1

α2
1 + 2r21

. (67)

We use the CERN program MINUIT to fit the data and the fitting results are demonstrated in Fig. 5. To compare
with the results of Ref. [6], we show the χ2 values of different fits in Table I. From Fig. 5 we can see that the angular
distributions are improved significantly when both η(1440) and f1(1420) are included. The apparently asymmetric
behavior of the cos θf0 distribution in Fig. 5 can be well explained as the interference between η(1440) and f1(1420).
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FIG. 5: Fitting results for the cos θf0(980) distribution (left panel) and cos θγ distribution (right panel), respectively. The solid
lines are the results considering both η(1440) and f1(1420), while the dashed and dotted lines are the results with exclusive
η(1440) or f1(1420), respectively.

TABLE I: The fitting qualities of different fits.

immediate states χ2/d.o.f for cos θγ χ2/d.o.f for cos θf0
η(1440) 40.2/15 26.8/14

f1(1420) 59.0/15 26.4/13

η(1440) and f1(1420) 38.3/14 19.8/12

The fitted parameters are as follows:

bγ = 118.5± 8.8, c = 0.538± 0.312 , (68)

from the θγ distribution and

bf0 = 145.7± 10.7, c1 = 0.314± 0.128, c2 = 0.141± 0.317 , (69)

for θf0 . By solving Eq. (67), we obtain

α2
1 = 1.197± 1.090, r1 = 1.50± 0.89, φr = ±(1.27± 0.20) , (70)

which will allow us to extract the coupling constants for f1(1420), i.e. gf1(1420)K∗K , g1, and g2. Coupling gf1(1420)K∗K

can be directly obtained from the width of f1(1420) [4] by assuming that KK̄π channel is dominant; gψγη(1440)/g1 is
related to the fitted r1; and g2/g1 is related to the fitted α1.
The fitted parameters of η(1440) are mη(1440) = 1.42 GeV , Γη(1440) = 67 MeV. The extracted couplings are listed

in Table II. There are two solutions for the ratio of the D-wave coupling to S-wave coupling g2/g1, i.e. the value
−0.179 indicates the S-wave dominant, while the value 0.970 indicates the D-wave dominant. The present precision
of the experimental data seems impossible to distinguish these two solutions. From our fit we find that the ratio of
f1(1420) to η(1440) in the KK̄π channel is about 17.3%.
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TABLE II: Couplings extracted from the angular distribution analysis.

gη(1440)K∗K 3.638

gJ/ψγη(1440)(GeV−1) (1.59± 0.32) × 10−3

gf1K∗K(GeV) 2.282 ± 0.054

g1 (4.4± 2.7) × 10−4

g2/g1(GeV−2) −0.179+0.403
−0.219 or 0.970+0.219

−0.403
Γ(J/ψ→γf1→γKK̄π)

Γ(J/ψ→γη(1440)→γKK̄π)
(17.3± 23.4)% or (17.1 ± 23.1)%

With these couplings, we can predict the corresponding spectra and ratios for J/ψ → γf1(1420) with f1(1420) →
KK̄π, π+π−π0 and ηπ0π0 as shown in Fig. 6 and Table III. The results obtained by those two values of g2/g1 are
almost identical as demonstrated in Fig. 6(a) for the KK̄π channel. So, in other channels we only show the results
with g2/g1 = −0.179. The main features of spectra and ratios are similar to those of η(1440).
In the π+π−π0 channel, the results of KLOE are larger than those of BESIII by a factor of about 1.11 due to the

difference of gfKK̄ and gfππ extracted from these two experiments as mentioned earlier. Meanwhile, it shows that
the partial width (or branching ratio) is insensitive to the form factor cut-off energy. This feature has been discussed
earlier and it is because that the model uncertainties will be largely constrained by the cancellation between the
charged and neutral loop amplitudes. Nevertheless, the dominant contributions to the isospin-violating decays are
from the TS kinematics where the form factor effects are rather small.
In the ηπ0π0 channel, the results are sensitive to the integration methods and cut-off energies due to the contributions

from the dispersive part in the loop integrals. When varying the cut-off Λ from 1.0 GeV to 0.5 GeV, the results change
about 31%.
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FIG. 6: Predictions for the spectra dΓ(J/ψ → γf1(1420) → γABC)/d
√
s. Figure (a) is for the KK̄π channel where the solid

and dashed line denote results with different values of g2/g1. Figures (b) and (c) are for the π+π−π0 channel with gf0KK and
gf0ππ determined by the BES and KLOE data, respectively, and (d) for the ηπ0π0 channel. The thick and thin solid lines in
Figures (b-d) correspond to the results with Λ = 1.0 and 0.5 GeV, respectively, while the dashed lines denote the results by
the LoopTools calculation without form factor.

As we expect that the TSM appears to be more significant in f1(1420) than in η(1440) since the coupling f1(1420) →
K∗K̄ + c.c. is in a relative S wave, while η(1440) → K∗K̄ + c.c. is in a P wave. Taking the results with Λ = 1.0 GeV
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TABLE III: The extracted results for f1(1420), where ΓABC ≡ Γ(J/ψ → γf1(1420) → γABC) and RABC ≡ ΓABC/ΓKK̄π.

coupling g2/g1 = −0.179 GeV−2 g2/g1 = 0.970 GeV−2

channel Γ(keV) R Γ(keV) R

KK̄π 2.67× 10−2 1 2.63× 10−2 1

LoopTool 3.18× 10−4 1.19% 3.18× 10−4 1.21%

π+π−π0(BES) Λ = 1.0 GeV 3.06× 10−4 1.15% 3.06× 10−4 1.16%

Λ = 0.5 GeV 3.11× 10−4 1.17% 3.11× 10−4 1.18%

LoopTool 3.54× 10−4 1.33% 3.54× 10−4 1.34%

π+π−π0(KLOE) Λ = 1.0 GeV 3.40× 10−4 1.27% 3.89× 10−4 1.29%

Λ = 0.5 GeV 3.45× 10−4 1.29% 3.45× 10−4 1.31%

LoopTool 6.78× 10−3 25.4% 6.74× 10−3 25.6%

ηπ0π0 Λ = 1.0 GeV 4.68× 10−3 17.5% 4.68× 10−3 17.8%

Λ = 0.5 GeV 3.24× 10−3 12.1% 3.24× 10−3 12.3%

as an example, the ratio of π+π−π0 to KK̄π is 1.27% in f1(1420), while in η(1440) the ratio is 0.762%. The ratio of
ηπ0π0 to KK̄π is 17.5% in f1(1420), while in η(1440) the ratio is 6.61%. The contributions from the f1(1420) also
affects the peak position as demonstrated in the next Subsection.

C. Invariant mass spectra including both η(1440) and f1(1420)

With the parameters fixed as the above, we compare the spectra and ratios with experiment [6] in Fig. 7 and
Table IV where both η(1440) and f1(1420) are included. The main features are consistent with Ref. [8] where only
η(1440) was considered.
It shows that the contribution of f1(1420) is much smaller than that of η(1440) in J/ψ → γη(1440)/f1(1420) →

γKK̄π. However, one should be reminded that this is largely due to the suppressed coupling for J/ψ → γf1(1420).
In contrast, the contribution from the f1(1420) is relatively enhanced in the ηπ0π0 channel than in KK̄π because
of the TSM. The most interesting scenario is that the lineshapes of the invariant mass spectra for the KK̄π, ηπ0π0

and π0π+π− decays are very different from each other due to the presence of the TSM in the last two processes.
Also, the interferences of the TSM have led to the shifts of peak positions in those three channels which describe
the experimental data consistently. Such a phenomenon retains even with contributions from η(1440) exclusively as
found in Ref. [8].
For the isospin-violating channel of η(1440)/f1(1420) → 3π, the observation of the narrow f0(980) in the ππ

spectrum can be regarded as a signature of the TSM. As being shown in Ref. [8], the narrow peak is located between
the charged and neutral KK̄ thresholds as a residual contribution due to the isospin violation. The mass difference
between the charged and neutral kaons gives rise to the nonvanishing amplitudes between the K+K− and K0K̄0

thresholds which has been a crucial mechanism for the a0(980) and f0(980) mixing. Beyond this scenario, what we show
here and in Ref. [8] is that the TSM can further dominantly enhance the f0(980) production in η(1440)/f1(1420) → 3π
which eventually explains the anomalously large isospin violations.
As listed in Table IV, we can see that the ratios of π+π−π0 and ηπ0π0 to KK̄π agree well with experiment.

Meanwhile, one also notices that the relative contributions from f1(1420) to η(1440) are quite different in different
channels as we discussed in Fig. 7. Namely, the relative strength of f1(1420) to η(1440) turns out to be more significant
in the ηπ0π0 channel than in the KK̄π. It is because the S-wave coupling of K∗K to f1(1420) would allow a relatively
enhanced contributions from the TSM in J/ψ → γf1(1420) → γηπ0π0 than η(1440).
In Table V we present the η(1440) and f1(1420) peak positions extracted in those three decay channels. Due to the

contributions from the TSM, the peak positions are shifted differently. It shows that the exclusive results for η(1440)
and f1(1420) respectively or the results with their combined contributions have a similar feature. Namely, the largest
peak mass can be seen in the KK̄π channel, while the smallest one is the 3π channel. This qualitative pattern fits
well the experimental observations in these three decay channels.
Because of the TSM, the peak positions in both ηππ and 3π channels would move towards the K∗K̄+c.c. threshold

which is about 1.39 GeV. The more significant the TSM contribution is, the larger the peak position shift would
be. As a result of the TSM dominance in the π+π−π0 channel, the peak position observed in the π+π−π0 channel
has a lower value than that in the ηπ0π0 channel. The importance of the TSM suggests that a partial wave analysis
including the TSM is necessary. Such a mechanism may also have significant interferences with the background. As
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FIG. 7: The spectra dΓ(J/ψ → γX → γABC)/d
√
s including both η(1440) and f1(1420). In the KK̄π channel, we also show

the experimental data, i.e. the solid triangles, solid circles, hollow circles, solid pentacles and hollow pentacles from MARK
III(K0

SK
±π∓) [15], BES(K0

SK
±π∓) [16], BES(K±K∓π0) [17], DM2(K0

SK
±π∓) [18], and DM2(K+K−π0) [18], respectively.

The thin line in Fig. (a) is the background. In the π+π−π0 and π+π− channels, we show the results given by the LoopTools
calculation with gf0KK and gf0ππ determined by BES. In the ηπ0π0 channel, we choose the results with Λ = 1.0 GeV.

TABLE IV: The combined results for RABC = Γ(J/ψ → γX → γABC)/Γ(J/ψ → γX → γKK̄π) including both η(1440) and
f1(1420). The experimental data [6, 16, 19, 20] are also listed. For f1(1420) we adopt g2/g1 = −0.179.

R

channel Theory Expt.

KK̄π 1 1

LoopTool 0.781%

π+π−π0(BES) Λ = 1.0 GeV 0.746% (0.90 ± 0.39)%

Λ = 0.5 GeV 0.752%

LoopTool 0.878%

π+π−π0(KLOE) Λ = 1.0 GeV 0.837% (0.90 ± 0.39)%

Λ = 0.5 GeV 0.843%

LoopTool 23.7%

ηπ0π0 Λ = 1.0 GeV 8.22% (7.8± 4.6)%

Λ = 0.5 GeV 5.28%

a consequence, it will lead to different lineshapes for the η(1440) in different production channels. For instance, the
peak position of the η(1440) in J/ψ → γηππ is slightly different from that in J/ψ → ωηππ [21]. Note that the results
of Ref. [21] are given by simple Breit-Wigner fit instead of partial wave analysis. Further detailed analysis of this
channel using partial wave analysis should include the TSM as an important underlying dynamics in order to extract
the correct pole position for the η(1440).
With mη(1440) = 1.42 GeV and mf1(1429) = 1.4264 GeV, we find that the peak position shifts in the f1(1420) decays

are larger than in η(1440). The reason again is because of the relative S-wave coupling for f1(1420) → K∗K̄ + c.c.
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When combining η(1440) and f1(1420) together, the largest peak position shift that we can achieve is about 24 MeV,
which supports our one-state assumption. Namely, the η(1405) and η(1475) may be just one state in different channels.

TABLE V: Peak positions in different channels.

peak position (GeV) KK̄π π+π−π0 ηπ0π0

η(1440) 1.433 1.416 1.426

f1(1420) 1.431 1.411 1.422

η(1440) + f1(1420) 1.432 1.415 1.425

D. Radiative decays of η(1405/1475)

Our proposal that η(1405) and η(1475) are the same state would have an explicit consequence in the description of
the radiative decays of η(1405/1475)→ γV , where V stands for the light vector mesons φ, ρ0 and ω. In the one-state
assumption, η(1440) would be the SU(3) flavor partner of η(1295) as the first radial excitation states of η and η′. In
Ref. [5], it was commented that by assigning the η(1475) to the SU(3) partner of η(1295) as the ss̄ dominant state would
not be able to explain why the observed branching ratios BR(η(1475) → γρ0)) is larger than BR(η(1475) → γφ)).
Also, it was commented that the observation that the much stronger production rate of J/ψ → γη(1405/1475) than
J/ψ → γη(1295) seemed not be obvious taking into account the above question. However, in this Subsection, we shall
show that the experimental observations can be self-consistently understood by treating η(1440) and η(1295) as the
SU(3) flavor partners. This can be explicitly demonstrated as the following:
By assigning η(1295) and η(1440) as the first radial excitation of η and η′, we can organize them as the following

mixtures between nn̄ ≡ (uū+ dd̄)/
√
2 and ss̄:

η(1295) = cosαnn̄− sinαss̄

η(1440) = sinαnn̄+ cosαss̄ , (71)

where α is the mixing angle.
In the J/ψ radiative decays, it is a good approximation that the photon is radiated by the charm (anti-)quark, and

the light qq̄ of 0−+ is produced by the gluon radiation. By defining the production strength for the qq̄ of 0−+ as the
following:

g0 ≡ 〈qq̄|Ĥ |J/ψ, γ〉 , (72)

one can express the production amplitudes for η(1295) and η(1440) as

M(η(1295)) = (
√
2 cosα−R sinα)g0 ,

M(η(1440)) = (
√
2 sinα+R cosα)g0 , (73)

where R ≡ 〈ss̄|Ĥ|J/ψ, γ〉/g0 is an SU(3) flavor symmetry breaking factor, and one can simply set it to be unity as a
leading approximation. It can be easily seen that a proper value for the mixing angle α in the first quadrant would
lead to a much suppressed b.r. for J/ψ → γη(1295) than for J/ψ → γη(1440). The value of α can be determined
by the b.r.s measured for these two channels. For instance, if one requires that B.R.(J/ψ → γη(1440))/B.R.(J/ψ →
γη(1295)) ≃ 10, namely, the production of η(1440) is about one order of magnitude larger than η(1295), one would
have

B.R.(J/ψ → γη(1440))

B.R.(J/ψ → γη(1295))
=

(

qη(1440)

qη(1295)

)3
(√

2 sinα+R cosα√
2 cosα−R sinα

)2

≃ 10 , (74)

where qη(1440) and qη(1295) are three momenta of the pseudoscalars in the J/ψ rest frame, respectively. with R ≡ 1,

one has α ≃ 38◦. Such a mixing scenario will have explicit predictions for the radiative decays of η(1440) → φγ, ρ0γ
and ωγ.
Since φ and ω are nearly ideally mixed to each other and ρ0 has isospin-1, we adopt the flavor wavefunctions, φ = ss̄

and ω = nn̄, and ρ0 = (uū− dd̄)/
√
2. The η(1440) radiative decays are via M1 transitions where the quark spin will

be flipped by the magnetic interaction. A standard operator in the quark model can be written as

Ĥem ≡ 〈φAχS |
2
∑

i

eiµi−→σ i · −→ǫ γ |φSχA〉 , (75)
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where µi ≡ e/2mi is the magnetic moment of the ith quark, and |φSχA〉 and |φAχS〉 are the flavor-spin wavefunctions
for η(1440) and vector meson, respectively. The subscriptions S and A means that the corresponding wavefunctions
are symmetric or anti-symmetric under the exchange of the first and second quark (anti-quark). The flavor and spin
wavefunctions are defined in a standard way as the following:

φS(ss̄) ≡ (ss̄+ s̄s)/
√
2 ,

φS(nn̄) ≡ (nn̄+ n̄n)/
√
2 ,

χA ≡ (↑↓ − ↓↑)/
√
2 (76)

for the pseudoscalar state, and

φA(φ) ≡ (ss̄− s̄s)/
√
2 ,

φA(ρ
0) ≡ ((uū− ūu)− (dd̄− d̄d))/2 ,

φA(ω) ≡ ((uū− ūu) + (dd̄− d̄d))/2 ,

χS ≡ ↑↑, ↓↓, (↑↓ + ↓↑)/
√
2 , (77)

for the vectors.
One can easily work out the flavor-spin couplings for those three channels as follows:

hφγ = − e

3ms
cosα ,

hρ0γ =
e

2mq
sinα ,

hωγ =
e

6mq
sinα , (78)

where mq = mu = md and ms ≃ 5mq/3. Apart from the spacial form factor and phase space factor in a P wave, the
b.r. fraction among these decay channels are then

B.R.(γφ) : B.R.(γρ0) : B.R.(γω) ≃ cos2 α

25
:
sin2 α

4
:
sin2 α

36
. (79)

For a proper value of α in the first quadrant, the decay of η(1440) → γρ0 would be dominant. To be consistent with
the production of η(1440) and η(1295) in the J/ψ radiative decays, i.e. α ≃ 38◦, one obtains B.R.(γφ) : B.R.(γρ0) :
B.R.(γω) ≃ 1 : 3.8 : 0.42.
In brief, given a proper mixing angle between the η(1295) and η(1440) as the first radial excitation states of η and

η′, the theoretical interpretation of the η(1405/1475) as a single state of η(1440) does not obviously conflict with the
so far available experimental data at all. The misunderstanding that the branching ratio of η(1475) → γφ should
be larger than that of η(1475) → γρ0 if η(1475) is the higher mass partner of η(1295) is not necessary at all due to
the suppression of the quark masses in the M1 transition. This point, unfortunately, has not been realized in earlier
analyses.

IV. SUMMARY

In summary, we have made a systematic analysis of the correlated processes J/ψ → γη(1440)/f1(1420) with
η(1440)/f1(1420) → KK̄π, ηππ and 3π, where the role played by the TSM is clarified. Our combined analysis
including η(1440) and f1(1420) agrees well with the experiment data, and provides an overall description of the
processes J/ψ → γX with X → KK̄π, ηπ0π0, and π+π−π0. In particular, we show that the inclusion of the
f1(1420) can improve the description of the f0(980)π

0 angular distribution significantly, although the contribution
from f1(1420) is much smaller than η(1440). By fitting the BESIII data for J/ψ → γX → γf0(980)π

0, we extract the
coupling parameters of f1(1420). It allows us to estimate that the ratio of f1(1420) to η(1440) in the KK̄π channel
is about 17.3%. This does not change the results of the previous work [8] in which we assumed that η(1440) was the
only contributing state as treated by the BESIII. We also show that f1(1420) can contribute some percentages to the
narrow peak of f0(980) → ππ via the TSM.
We emphasize that the dynamic feature of the TSM can be recognized by the strong narrow peak observed in the

3π channel with the anomalously large isospin violations. Moreover, it leads to the obvious peak position shifts for
the same η(1440) or f1(1420) state in different decay channels, which may suggest that the η(1405) and η(1475) are
actually the same state. So far, such a one-state prescription seems not to have a conflict with existing experimental
data. This may shed a light on the long-standing puzzling question on the nature of η(1405) and η(1475) in the
literature.
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