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Abstract

We derive a factorization theorem for production of an arbitrary number of color-
singlet particles accompanied by a fixed number of jets at the LHC. The jets are
defined with the standard anti-k7 algorithm, and the fixed number of jets is obtained
by imposing a veto on additional radiation in the final state. The formalism presented
here is useful for current Higgs boson analyses using exclusive jet bins, and for other
studies using a similar strategy. The derivation uses the soft-collinear effective theory
and assumes that the transverse momenta of the hard jets are larger than the veto
scale. We resum the large Sudakov logarithms o log?n—m (p:JF / p%et") up to the next-to-
leading-logarithmic accuracy, and present numerical results for Higgs boson production
in association with a jet at the LHC. We comment on the experimentally-interesting
parameter region in which we expect our factorization formula to hold.



1 Introduction

Accurate predictions for processes with a fixed number of final-state jets are crucial for many
LHC applications. A well-known example is that of a Higgs boson decaying to W-bosons
at the LHC [1, 2]. The background composition to this signal changes as a function of jet
multiplicity. In the zero-jet bin the background is dominated by continuum WW production,
while in the one-jet and two-jet bins, top-pair production becomes increasingly important.
The optimization of this search requires cuts dependent on the number of jets observed, and
therefore also on theoretical predictions for exclusive jet multiplicities.

Theoretical predictions for processes with an exclusive number of jets are notoriously
difficult to obtain. Fixed-order perturbation theory is plagued by large logarithms of the form
In(Q/py<'°), where @ denotes the hard scale in the process, such as my. For experimentally
relevant values py<*® ~ 25 — 30 GeV, residual scale variations in fixed-order calculations lead
to estimated errors that do not accurately reflect uncalculated higher-order corrections [3,
4, 5]. Progress in resummation of these logarithms to all orders has been slow. Event-shape
variables such as jettiness [6] allow resummation of jet-veto effects to arbitrary logarithmic
accuracy, and have been applied to study the production of vector bosons or Higgs bosons
plus multiple jets at the LHC [7, 11]. However, experimental measurements typically utilize
jet algorithms such as the anti-k7 algorithm, and conclusions drawn from calculations using
jettiness necessarily remain qualitative only. Resummation of jet-veto logarithms for the
Higgs cross section in the zero-jet bin in the presence of the anti-k7 algorithm has been
performed at next-to-leading logarithmic (NLL) accuracy using the semi-numerical program
CAESER [5]'. Recent work has extended these results to their NNLL accuracy [8, 9]. It has
been pointed out the potentially large In R corrections, where R is the jet-radius parameter
in the anti-kr algorithm, could have a significant numerical impact on the predictions [10].
These terms have yet to be studied at all orders and warrant further investigation.

We consider in this manuscript the resummation of the jet-veto logarithms for production
of one or more color-neutral particles, such as a Higgs boson or electroweak gauge bosons, in
association with one or more jets. We accomplish this by deriving a factorization theorem
using soft-collinear effective theory (SCET) [14, 15, 16, 17, 18] that assumes that the trans-
verse momenta of the hard jets are larger than the veto scale. As an example application, we
consider explicitly Higgs boson production in association with a single jet. This calculation
is of direct phenomenological interest for understanding the properties of the new Higgs-like
state observed at the LHC [19, 20]. It extends previous work on understanding the effect
of resummation on the Higgs plus zero-jet cross section [8, 9, 10]. We resum the logarithms
In(Q/p4°) through the next-to-leading logarithmic (NLL) level, where Q ~ my ~ p7. and
p7 is the transverse momentum of the observed jet. We demonstrate that the residual
scale variation of the theoretical prediction is drastically reduced by the inclusion of the
NLL resummation, and that the NLL+NLO result provides reliable predictions over a larger
kinematic range. Since the factorization theorem we derive is valid for both more jets and

'We note that different schemes for counting logarithms are employed in the literature; we specify in
detail the order-counting scheme we use in Section 2.



other color-neutral particles, our result also serves as a framework for how to augment a host
of fixed-order calculations with resummation of a class of large logarithms.

Recent work has suggested that it is difficult to extend the resummation of jet-veto
logarithms in the presence of the anti-kr algorithm beyond the NLL level [10]. We note that
the logarithms appearing in the jet-vetoed cross section for Higgs plus jet production are of
intermediate size; the numerical value of the leading logarithmic term in the experimentally
interesting region is In*(Q/ pyte) &~ 2.5. They are an important contribution to the cross
section but do not dominate. An improved prediction requires both resummation of jet-veto
logarithms and a NNLO fixed-order calculation of the process. It seems reasonable to us to
first establish a factorization theorem and study the effect of resummation through the NLL
level, since a NNLO calculation of the Higgs plus jet cross section is not yet available. We
note that in the standard order-counting, a NNLL resumed result would also necessarily be
matched with a NNLO fixed-order calculation for theoretical consistency [11].

In a more general context, there are many studies for which it would be helpful to aug-
ment fixed-order results with a NLL resummation of large logarithms to protect predictions
that stray a bit too far into the wrong region of phase space, for example those that approach
partonic threshold, or impose too strict a jet veto. While matching to a parton shower pro-
vides resummation of some of these effects, it is difficult to quantify the error estimate within
this approach. One approach is to this problem is taken in the program CAESER [12], which
provides a semi-numerical resummation at the NLL level for many event-shape distributions
at hadron colliders. The SCET framework we introduce in our manuscript allows the NLL
resummation of jet-veto effects for any color-neutral particle plus multiple jets, and is easy
to incorporate into a fixed-order program such as MCFM [13]. We believe that we can addi-
tionally resum threshold logarithms with a small extension of our framework. We therefore
expect that the factorization theorem we establish in this manuscript will have applications
beyond the Higgs plus jet process studied here.

Our paper is organized as follows. In Section 2, we derive our factorization theorem
using SCET. We apply our formalism to study Higgs plus one-jet production, and discuss
our numerical results, in Section 3. We conclude and discuss future directions in Section 4.
All formulae needed for resummation at the NLL level are given in the Appendix.

2 Factorization and Resummation

In this section we derive a factorization theorem for multi-jet production at the LHC in the
presence of a jet veto. We discuss the resummation of the logarithms associated with the jet
veto through NLL accuracy. We use pp — Higgs+1 jet via gluon-gluon fusion as an example
to highlight the derivation procedure. The generalization to additional jets is straightforward,
and is presented here. Our primary results are contained in Eqs. (14), (15), (26) and (27).



2.1 Discussion of the jet constraints

We focus on the case in which the jets are defined using the hadron collider anti-k; algo-
rithm [21]. The following distance metrics are used:

pij = min(pr;, pry)AR;/R,
pi = Pri- (1)

The anti-kp algorithm merges particles ¢ and j to form a new particle by adding their four
momenta if p;; is the smallest among all the metrics. Otherwise, ¢ or j is promoted to
a jet depending on whether p; or p; is smaller, and removed from the set of considered
particles. This procedure is repeated until all particles are grouped into jets. We note that
AR?j = Amzj + Agb?j, where An;; and Ag;; are the rapidity and azimuthal angle difference
between particles ¢ and 7, respectively. R is the jet radius parameter and in practice is
chosen to be around 0.4 — 0.5.

After clustering the partons, we demand that the final state contains no additional jets
with transverse momentum greater than a threshold py*°. For Higgs searches, typically
pute ~ 25 — 30 GeV. Since p¥'° is usually substantially lower than the partonic center of
mass (A = p¥'°/v/5 < 1), the vetoed observables are usually very sensitive to soft and
collinear emissions.

Additional constraints beyond the jet veto can be imposed on the final state. In the
following derivation, we require that the measured leading jets are all well-separated so that
no additional small scales will be generated. We also assume that leading jet momentum
P~ My~ V5 and 1> R? > \? while 52 log? R < 1. The second of these requirements
is necessary to insure that the measurement function factorizes into separate measurements
in each of the collinear sectors. This is discussed in detail in the next section. The third
requirement ensures that logarithms associated with the anti-k; parameter R need not be
resummed. Given that p4° ~ 25 —30GeV and R = 0.4 — 0.5 for Higgs production,when the

leading jet p7 ~ my ~ 125GeV, these assumptions are justified.

2.2 Derivation of the factorization theorem

We use SCET [14, 15, 16, 17, 18] to establish our factorization theorem. SCET makes
manifest the infrared limits of QCD by re-formulating the QCD Lagrangian using soft and
collinear modes whose momenta scale with a small power-counting parameter \ in appropri-
ate ways. For Higgs production, this parameter is of order pu°/ V/§ for radiation outside the
measured jet, and is of order R for radiation inside the measured jet. Consideration of the
jet algorithm and jet veto lead to the following relevant degrees of freedom in the effective
theory:

e a collinear jet mode with momentum p; = %*n;+k;, where n; is the light-cone vector
along the jet direction;

e two collinear modes propagating along the beam axes a and b, with p; = $n; + k; for
1=a,b;



e a soft mode with momentum £k,.

The residual momenta kj, k; and the soft momentum k, all scale as \/E)\, while the large
components of the three collinear momenta scale as w; ~ V5. We note that no ultrasoft
fields (kys ~ \/§)\2) are needed for the process we are considering here. Any phase space
measurement M is assumed to be insensitive to these modes in the final state, so that
e MIX ) (Xus) = 30 [ Xus) (Xus] = 14+ O(N), where X, denotes the final-state particles
with an ultrasoft momentum scaling.

The leading-power SCET operator which mediates gluon-fusion Higgs plus one jet pro-
duction is

«Q w1,n1 "~ wa,n3z~ w3, n3

_ Z e—i(%nrf—% ) Ca%cu Saa Sbb’Scc Baa Bﬁ v Buc (33'), (2)

Wi,y

where we have explicitly written out the Lorentz indices afu and the color indices abc. H
is the operator which creates a Higgs boson in the final state. Cg’;;u is the hard Wilson
coefficient which encodes the hard virtual fluctuations. It can be obtained order-by-order
by calculating the corresponding QCD diagrams. The n-collinear gauge invariant boson

field [18]

1
Bg,w = - [W,I(’Pﬁ + gsAgL)Wn} 5w,75 On,i 5 (3)
which creates (annihilates) a collinear gluon in the final (initial) state, is built out of the
collinear Wilson line [16]

W= 3 e |~g.zm 4] @)

perm.

P is the projective operator acting on the collinear fields sitting to the right of it inside
the parentheses. At leading power, the interactions between collinear and soft fields can be
eliminated through an operator redefinition B¢ — 5% B% which results in the soft Wilson
line Se" [17].

The cross section with a jet veto can be written as

do

A%y ZZ/dme U (papp OF (1) M| Xo X Xy X)X Xy Xo Xa | O(0)[paps) - (5)

spin X

We have decomposed the final state into different sectors based on the momentum scaling.
The operator O has been written in a factorizable form, but in order to proceed, we must
demonstrate that the measurement operator M, which includes the jet clustering operation
and jet vetoing, can also be factored into different sectors up to power suppressed correc-
tions [22]. The factorizability of the measurement operator M can be seen through power-
counting the anti-kr algorithm metrics p;; and p;. Recalling that the transverse momentum
pr for each sector scales as

pr~O01), py~ph~ph~O), (6)
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we have

prySpr~1l, prs~R' pr~pp~R T log\",
Pss ™~ Paa ™~ Pbb ™ ()‘R)71 s Psa ™~ Psb ™~ Pab ()‘R)il 10g A s
Ps ™~ Pa~ Py~ AT (7)

These scalings indicate that for the jet-radius parameter R not too large (R < log A7), the
contributions from the mixing between the jet and beam sectors, and the mixing between
the soft and beam sectors, are power suppressed. Jets tend to form separately within each
sector. Aslong as R < 1, radiation collinear to the jet direction will be combined before it is
clustered with soft radiation. This means that the soft radiation is insensitive to the details
of the collinear radiation except for the jet direction. Therefore, M can also be factored
between these two sectors. The measurement operator can therefore be factored as

M = MMM M, (8)

up to power-suppressed corrections in p5® and R. The individual M4 will be given in the
Appendix.
Plugging in the definition of the operator O, the cross section can be written as

d<I>H - ZZ/dWA/dZEG “na+ L= ns—qu )z

spin na

cct e, Z< | Sett SpLSet ()] Xs) (X S Sii¥ Seic’ (0)]0)

aBu
Xs
X Z<pa|82;a1($na7 Thyo na)|X )(Xa|5(wa—75,1)5%7%6%“1( )|pa>
X Z pb|66b1 nb7 nb> nb)|Xb><Xb|5(wb 755>6nb,nb85bb ( )|pb>

X ZZ O1BL s (7, i 0, ) XWX 0(ws = Pr)iy .0, Bl (0)]0) - (9)

ny Xy

Here, Z/X means summing over the final states with the restrictions imposed by M. We
have suppressed M for simplicity. In the last line, ZnJ indicates the need to sum over
all possible directions of different nj-jet modes. We have removed several Kronecker-deltas
using the discrete sums. The remaining ones have been turned into integrals [ dw4 and delta
functions 6(ws — P4), after combining the residual momentum k,, =na-ka with the label
momentum wy in the collinear sector A for A = a,b, J. We note that the collinear sectors
do not depend on 2 = ny - z.

We further modify this expression by performing a translational operation in each sector
and inserting several residual momentum operators [ dkd(k — /%) to remove the explicit
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momentum dependence on the final states. This gives us

— 4 na+ nbf—n‘] —qg—ks+kao+kp— k)
d<1>H ZZ/de/dx/d /dkAe

spin na

<G ot S 0] 9 5 0)] ) (I8 (, — ) SY 520

afu o
Xs

x Z<pa|5§;“1(0)lXa><Xa|5(ki — DO (k= b D)0(wa — Pa)Ony 2B (0)pa)

Na,Ma Na

X Z (Dol B (0)1X,) (X |0 (R — ki) (ki — ke )6(wy — POy, By P (0) | py)
x Z (OBl ()X )X 6(k] — k)6 (kg — kp)d(ws — Py)BL(0)]0), (10)

where dk = dk*td?kt. We now drop all residual momenta of order A\ or higher, keeping
homogeneously only the leading power terms in the exponent (dropping the contributions
of order A means that we ignore the recoil effect in the transverse plane). We perform the
integration over the k% component in each collinear sector to indicate that no restrictions
are applied on this residual momentum 2. This leads to

dCDH = Z/deZd% )4t (“’“ a+—nb—7nJ—qH)

spin
ngjjcg,g, ;, / "k (0]5271 S8 S (0) M 6™ (s — /%s)sgga’sggb/sg’{f’|o>
x / Pk (o B (0) My 8 (k- — hD)3(wa — Po)BE% (0)[pa)
[ et (B2 0) Mty 80— )6, — POBEL S (0) )
x (0]BE (0) M 82(k — Ib)d(wy — P)BY (0)[0). (11)

To reach the formula above, we have summed over the final states using Y, |[X)(X| =1

and have re-inserted the measurement operators M 4. We next define the beam and the jet
functions

From(z, P, R) = /dzkl > —w{plBre(0) Mp 6* (k' = k)5(w = P)Braa(0)p)

spin

J(R)g 6 = 2(2m)*(=w))(0IBl5 (0) My&* (ky — kj)d(ws — P)BL (0)[0),  (12)

2We note that this assumes that no pseudorapidity cut is imposed on the observed low pr jet. It is
straightforward to remove this constraint if desired; for simplicity of presentation we do not do so here.



and the soft function
S(ny, R, puete) = / Ak (0] Saer S S (0) M, 6% (ks — kig) S SBP'SAC(0)]0) . (13)
We emphasize that the beam and jet functions are well-defined only after the soft zero-bin

subtraction has been properly performed [25].
Finally, we arrive at our result

254 N2 -1
XTr(H - S) frg/pa(@a D1 R) fLgym (0, 077, R) T (R) (14)

11 1 2
do = d®ydd, / dz,dz, — ( ) 2m)*'0* (¢a + @ — 97 — qu)

Wlth the help of identifying > mdw 7d2k7 as the massless particle phase space d®; =
dg;dQ. We define the hard function H = CCT. The trace is over the color indices.

veto ;3

2 ](21)3
Sm():e py*? is much larger than Agep, the beam function can be further matched onto parton
distribution functions at the beam scale up ~ p¥*: f; | = Z;; ® f;(x). The matching
coefficient Z;; can be calculated perturbatively. We have chosen our normalization so that at
leading order, Zi; = 6(1 — 2)dy, J(R) = 1 and S = §%'6*'5°’. The factorization reproduces
the tree-level gg — Hg cross section. We note that for NLL resummation, only the leading-
order matching coefficients are needed. In the Appendix, we will present the NLO results
for the jet and beam functions, up to O(R) corrections.

The formalism is easily generalized to processes with an arbitrary number of jets and non-
strongly interacting particles in the final state. All the arguments go through identically.
We find

1 n
do = d®y dP, F(Py,, ;) Z / dagday - (2m)'6" (Qa DD qHC>

7 c

XZZTI‘ H S astaja ® f]a(xOL)Ibleb ®f]b Tp HJJ (15)

spin color

where d® . and d®;, denote the phase space measures for the color neutral particle H, and
the massless jets J;, respectively. F(®p., ®;,) includes all additional phase-space cuts other
than the pr veto acting on H, and the n hard jets, which should guarantee well separated
n-jet final states (ny, - ny; > A). The measured jet p7 should be much larger than pyete.

We note that possible issues arise when attempting to extend the resummation to the
NNLL level, as pointed out in Ref. [10]. For R > A, corrections of the form

a2 R?In \ (16)

appear, which prohibit soft-collinear factorization. In the limit R ~ X, clustering logarithms
of the form
a’In R In \ (17)



which prohibit even NLL resummation occur. Let us study the numerical impact of these
terms for the parameter values relevant for Higgs production. Setting R = 0.4, my = 126
GeV, and py*e = 25 GeV, we find R? = 0.16, In (1/\) = 1.6, and In (1/R) = 0.92. For R =
0.5, In (1/R) = 0.69. It is clear that the corrections of Eq. (16) are indeed power-suppressed
for experimentally-relevant value of R ~ 0.4 — 0.5. They can be obtained to sufficient
accuracy by matching to fixed-order results. There is also a hierarchy In (1/A) > In(1/R);
the clustering logarithms are not large for relevant jet parameters. An eventual inclusion
of the leading clustering effects by combining the resummation with a NNLO calculation of
Higgs plus one-jet production should be sufficient. We therefore believe that it makes sense
to study the resummation of jet-veto logarithms in Higgs production, and proceed with our
analysis.

We also comment briefly on the validity of our effective-theory approach before continu-
ing. There are two distinct regions of phase space that contribute to pp — Higgs—+jet: (1)
my ~ pp > pe© and (2) my > pr ~ p4°. Other parameter hierarchies can be obtained
as limits of these two regions. Our EFT approach captures all large logarithms in the first
region; we resum all logarithms of the form In (Q/p4°), where Q ~ mpy ~ p3. In the other
region with p ~ p¥ we do not correctly capture the large logarithms. We do as well (or
as badly) as a fixed-order calculation. A different EFT is needed for this region, and this
will be the subject of future work. We note that depending on the exact definition of region
(1), it contributes between 30-50% of the total Higgs+jet cross section, so it is a significant
fraction of the full result.

2.3 NLL Resummation

Each ingredient in Eqgs. (14) and (15) describes fluctuations with a particular momentum
scaling. When the hard, jet, beam and soft functions are calculated near their natural scales,
no large logarithms will arise. The typical scales for each sector are

f ~ PR, g ~prR, g~ s ~ P (18)

However, calculating the cross section requires all the functions to be evaluated at the same
factorization scale p, which generates large logarithms of the following ratios:

])_’37" qu_’R pUTEtO (19)
plooop
These large logarithms can be resummed by evolving each function to the scale p using the
renormalization group (RG) equation

nS = (). (20)

The anomalous dimension 7, can be extracted most easily from the € poles of each function
calculated using dimensional regularization.



However, like for small-g7 resummation, a subtlety arises because of the identical virtu-
ality shared by the collinear and soft degrees of freedom [25, 26]. Various efforts have been
made in SCET to regulate this rapidity divergence [26, 27, 28], which all have shown be able
to reproduce correctly the NLO fixed-order QCD singularities. In our current approach, we
adopt the formalism proposed in Ref. [26]. We regulate the extra divergence by modifying
the collinear and the soft Wilson lines as follows:

W, —>Zexp( [w2|7j‘nn AnD,

perm.

3|—n/2
S, —>Zexp( [ %n'fls}), (21)

perm.

where the bookkeeping parameter w will be set to 1 as n — 0. The effective rapidity cut-off
v and the new parameter 1 play similar roles as 1 and € in dimensional regularization. The
corresponding rapidity—RG equation commutes with the conventional one for the beam and
the soft functions: [u-2 35V 2]=0,

dFB’S
v
dv

The natural v-scale choices for the beam and the soft functions are

vp ~ Tap\/s, Vs~ pr. (23)

Since the physical cross section is p and v independent, the anomalous dimensions must
obey the consistency conditions

= W) EFps(v). (22)

29+ +75+75 =0,
7B +75 =0, (24)
up to power corrections of order A and effects due to finite jet (beam) separations [23]. We

will use these conditions to extract the anomalous dimension for the soft function. The
general solution to the RG equation can be formally written as

F(:uv V) = U(:ua v, /LO?VO)F(/LU?VO)' (25)

The explicit form of the evolution kernel U for each function along with all details needed
for NLL resummation are given in the Appendix.

Recalling that for NLL resummation only the tree-level Wilson coefficients are needed,
we find the following simplified expression for production of a color-neutral particle plus one
jet:

dO'NLL Z/dAab—}hk ,MH,CL’a,ZL‘b) fa(NB7xa)fb(MBaxb)
XU (o o) Us(pts v, 15, vs) Ipap (it v, B, VB Tay T) Ryt prg, R) . (26)
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For a more general process, the evolutions of the hard and the soft functions will usually
induce operator mixing in color space. Therefore, the NLL cross section for multi-jet pro-
duction reads

donu, = Z/d%dxb Tr [Hﬁl(?)_)hC{k}(MH)SUH,{k}(MuuH) US,{k}(,ua v, JLs, VS)
ab

X fa(pB, a) fo(i, ©6) LB ab (1t Vs 1B, VB, Tas Tp) H,RJi (1, pry; R) - (27)

7

We note that due to the separation between the scales inside and outside the allowed jets,
a full refactorization or a refactorization ansatz of the soft function [23, 24] may be helpful
in improving the resummation accuracy. Since this involves In R effects and is therefore
moderate for the experimentally-interesting p4¢* and R, its will be left for further studies.
There also exist non-global logarithms [29] beginning at the NLL’ level according to the order-
counting of Ref. [11], whose resummation is beyond the scope of our formalism presented in
this work.

Different schemes are used in the literature to determine the accuracy of resummation
prescriptions. When calling our result NLL, we use the order-counting defined in Ref. [11].
This means that we include the two-loop cusp anomalous dimension, and the one-loop non-
cusp anomalous dimensions for the beam, soft, jet and hard functions. We therefore achieve
NLO accuracy in the exponent of the Sudakov form factor. Our beam, soft, jet and hard
functions are taken to be leading-order. Denoting the large logarithms associated with the
veto scale generically as L, our NLL captures the two leading logarithms at each order in a.
We correctly obtain a,L? and a,L, o2L* and o?L3, o2L5 and o2L5, and so on. To obtain
the next tower of logarithms (a?L?, a3L*, etc.), we would need to include the jet, beam and
soft functions at 1-loop. This would correspond to NLL’ in the language of Ref. [11], or to
the NLL implied in the traditional QCD approach [5]. All ingredients are currently known
for this extension except for the one-loop soft function, which is not difficult to obtain. We
plan to include this term in future detailed numerical studies. Control over the next tower of
logarithms (a?L, a2 L3, etc.) would require the two-loop non-cusp anomalous dimensions ~,,
and would correspond to NNLL in the notation of Ref. [11]. We note that since we match to
the full NLO result from MCFM, we should in principle include the hard, beam, jet and soft
functions also to NLO accuracy in order to maintain theoretical consistency in the powers
of o included. We will correct this shortcoming in future work.

3 Numerical results for Higgs+jet production

We present in this section numerical results for pp — h+jet at an 8TeV LHC with a jet veto
imposed. We combine our resummation with the NLO cross section from MCFM to produce
NLL+NLO results. In the numerics presented here we restrict the leading jet rapidity to
Ins| < 2.5 and veto all other jets with pr; > p4° and |n;| < oo for simplicity. Experiments
typically only veto jets in the range |n| < 4.5. However, we expect that this boundary effect

will be small [5]. Tt is simple to include this constraint if desired, as discussed in the previous
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section. We have included the gg, qg, and ¢¢ partonic scattering channels in obtaining these
results. All relevant beam, jet and soft functions, as well as anomalous dimensions needed
for this calculation, are presented in the Appendix.

We begin by demonstrating that our formalism correctly sums all the next-to-leading
logarithms of p2°/pd. by comparing the expanded NLL production rate with the MCFM
NLO result [13]. In the expanded NLL result, we have included the large non-logarithmic
virtual corrections by using the full NLO hard function taken from Ref. [30]. The validity of
our formalism is shown in Fig. 1, where we show the agreement between these two results in
the region where log p7./ps® becomes large. This demonstration is based on the dominance

of the log terms over the other contributions omitted in SCET in the small p47° region.

1.0 L] L] L] L]
o5 o
S
g s /
=
)
Tl 2 oo .
o b
5=
S
_05 o -
_ 1.0 'l 'l 'l 'l
0.05 0.10 0.50 1.00 5.00

P Gev)

Figure 1: Presented is the ratio of the expanded SCET cross section |0ey,| and the full NLO
QCD calculation from MCFM oycrm, |Texp —0mcrM|/|overn|. We have required the leading
jet pf > 120GeV, |n;] < 2.5, have set R = 0.1 and have made p3* as low as 0.01GeV. The
excellent agreement between the expanded SCET prediction and the MCFM cross section
for such low p%® implies that our formalism catches all the NLL structures.

We next study the cross section for Higgs+jet production. Since Eq. (26) is only valid
for p4® < pd., in order to give a prediction over the entire allowed kinematic range, we have
to combine the resummed formula of Eq. (26) with the full NLO result. For this purpose,
we adopt the matching scheme proposed in Ref. [5], in which the RG-improved cross section
is taken as

0LO

o= (255) o0 ~ 7 Gonli) ~ o100 . (29

where Z = (1 — p%eto/p%%‘gto). oLo is the LO cross section and onpo is the cross section
calculated through NLO using MCFM. 0.y, is obtained by expanding the resummed cross
section onrr, in Eq. (26). We postpone rigorous study of the uncertainty induced by the
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choice of matching procedure to future work. In evaluating the resummed production rate
ONLL, W€ fix

1
i = [(aay/3) T (a5 o
Hy = p%R,
p = s = pr°. (29)
These choices minimize the logarithmic dependence in the hard, jet and the beam functions.

When we use this set of scale choices, the cross section is also independent of the rapidity
scale v.

600 —

400 —

o (fb)

— NLL+NLO p=my
— - NLO pu=my T
pr’ 2 120 GeV —
my/2 < u < 2 my 7

200

20 40 60 80 100 120
veto

Pr

Figure 2: Shown are the NLO+NLL prediction and the NLO cross section as a function of
pyete for pd. > 120 GeV. The solid-blue curve represents the RG-improved cross section in
Eq. (28). The dashed-red line shows the NLO result for the scale choice y = my, while the
dotted red lines show the NLO result for y = mpy/2 and yu = 2mpy . The blue band reflects
the scale uncertainty of the RG-improved rate. The band boundaries are set by the values
at the scale choices my /2 and 2my.
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In Fig. 2, we demonstrate the improvement obtained with NLL resummation by showing
the dependence of both the NLO and RG-improved integrated cross sections on different
choices of py¥t°. We have set p7. > 120GeV, u = my = 126GeV and have taken the anti-kz
parameter R = 0.4. For the matching in Eq. (28), we use pfir,, = 120 GeV in Z. We use
the MSTW2008 NLO PDF set [31] with two-loop a; running. We can see that for small
values of pu° the fixed-order cross section becomes negative while the NLO + NLL result
remains positive. We also vary the scale p from mpy /2 to 2my to estimate the theoretical
uncertainty. We can see that resumming the large logarithms greatly reduces the residual
scale variation for the experimentally relevant values p4° ~ 25 — 30 GeV, leading to a more
reliable prediction. The fixed-order cross section exhibits little scale variation for p4'® ~ 55
GeV. Similar behavior is observed for the Higgs plus zero-jet cross section [3, 4], and was
argued to result from an accidental cancellation between several higher-order corrections
with different origins. The same argument holds here for the Higgs plus one-jet result. As
Py becomes large, the fixed-order and resumed cross section coincide. Since the separation
between the hard scale and p4° vanishes in this limit, this behavior is expected.

To gain some intuition regarding how low in p7. the resummation of jet-veto logarithms
leads to a difference from fixed-order, we fix pj**> = 25 GeV and integrate over the leading-jet
transverse momentum subject to the constraint pr_‘ﬁ > p]Tmm We stress that some caution
must be exercised in using these results. Our effective theory framework is only valid when

the hierarchy py® < pi exists. When p3° ~ p7., our result reduces to the fixed-order

result, which contains the ratio of scales p¥'° < my. A different effective theory framework
consisting is needed to resume logarithms of this ratio. With these caveats stated, we plot
in Fig. 3 the NLO and NLL+NLO results as a function of the minimum allowed jet pr

for pyete = 25 GeV. Significant differences between both the central values and residual

min

scale uncertainties persist down to low values of pJ'*", indicating the need to augment the
fixed-order results with resummation over the entire p7. region.

4 Conclusions

In this manuscript, we have established a formalism for the production of color-singlet parti-
cles produced in association with an exclusive number of jets at the LHC. Using effective field
theory techniques, we have proven the factorization theorem of Egs. (14) and (15), which
allows us to resum large Sudakov logarithms of the form log p3¥°/Q with Q ~ my ~ p7. to
all orders. We have focused on Higgs production in association with a jet as an example.
We have demonstrated by the excellent agreement between the expanded NLL result and
NLO QCD cross section that our formalism correctly captures all relevant large logarithms
in the p¥*°/@Q — 0 limit. The scale uncertainty of the cross section is greatly reduced by in-
clusion of the resummation. By matching our results with MCFM, we provide a NLL+NLO
result for Higgs+jet production valid over the entire kinematic range. With our results, it is
easy to supplement fixed-order results for vector boson or Higgs boson production with the
resummation of jet-veto logarithms in order to provide predictions valid throughout phase
space.

13
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- — NLL+NLO p=mp -
. —— NLO pu=my
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Figure 3: The NLO+NLL prediction and the NLO cross section as a function of p** for
pyte = 25GeV. The solid-blue curve represents the RG-improved cross section in Eq. (28).
The dashed-red line shows the NLO result for the scale choice 1 = my, while the dotted red
lines show the NLO result for 4 = mpy/2 and p = 2mpg . The blue band reflects the scale
uncertainty of the RG-improved rate. The band boundaries are set by the values at the scale

choices my /2 and 2my.

Several future directions remain to be pursued. With our results it is possible to improve
the theoretical predictions for Higgs plus one or two jets. This will be of great phenomeno-
logical importance as the properties of the new state discovered at the LHC are further
analyzed. We plan to further investigate these phenomenological application of our formal-
ism. It is also interesting to study the effective theory valid when both the veto scale and
the leading jet pr are smaller than my. Beyond NLL’, extra clustering effects will enter the
cross section, which are not completely understood [10] yet. We have argued that the nu-
merical impact of these terms should be subdominant to the effects studied here. However,
a NNLO calculation of the jet, beam and soft functions would be helpful in determining
whether this formalism can be extended beyond NLL’. In the current work, we have simpli-
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fied the calculation of the anti-kr jet function by keeping the leading R contributions only
in the resummation formulae. It will be phenomenologically interesting to include higher
order corrections in R to improve the accuracy. We have also neglected for simplicity the
boundary effects due to the experimentally finite n range. These issues will be addressed in
future detailed phenomenological studies.
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A Fixed-order jet and beam functions

In this Appendix, we list all ingredients needed for NLL resummation. We start with the
NLO calculation of the jet and the beam functions, whose definitions can be found in Eq. (12).
The anti-kp jet function is calculated using the measurement function

My = O(An} + Ad}; < R?) + O(p5™) . (30)

We explicitly calculate that the jet collinear radiation leaking outside the jet is power-
suppressed by py® after correctly subtracting the soft zero-bin contributions. Since numer-
ically R < 1, we can simplify the measure using

An} 4+ A¢ = 2 cosh(An,;) — 2 cos(Adi;) + O(RY). (31)

In this limit, the NLO jet functions for gluons and quarks become

2
o sy 67 3m7\  23ny oo o0 loe® H 2
I or |4\ 9 T g o Thulos S 2Caloe” Srp +OR),
2
W - sl 13 3T o2 M 2 5
J; o Cr 5 1 + ng;ﬁR—i_ og VIR + O(R?) . (32)

The measure for the beam function with one emission is
M =0 (kr; < ™) O (Il < mews) + O] > Teus) (33)

Experimentally, 1., ~ 4.5. For simplicity, we set 1.,+ = 0o here. We note that this difference
does not affect the anomalous dimension of the beam function, it only changes the finite
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part. The calculation is performed using the 't Hooft-Veltmann scheme. The NLO matching
coefficient Z for the beam function is found to be

+<1—z>),

(34)

Ié;)(z) — ( >CA (4log I{ito log —(5(1 — 2) — 2Pgqe(2) log pjit()) )
Ié;)(z) (410g 1o log _5(1 — 2) — 2Pgq(2) log peto
I_(gé)(z) = < 2pgq(2) log =5 pueto - Z) ’
Ié;)(z) ( 2pqe(2) log jﬁto +22(1— z)) ,
with
Pag(2) = (lf—ih +22(1 - 2) +21;Z
) = -
Pgq(2) = # g
Deg(2) =1 — 22 + 222,

(35)

From these fixed order calculations, we can determine the anomalous dimensions used for
RG evolution. The anomalous dimension for the jet function is given by

Vg, = QFCUSpr log

For the beam function, it is
VB
B

where T?? = C4 for gluon and T?

"
— + ;-
ijfR YJ

2 cusp T} log veto :

21—‘cuspj—f log T + VB »

= CF for quark. Here,

Loup = 2 r0+(4;) Tyt
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B RG evolution

The evolutions of the jet and the beam functions are given by

I

> —2T2 Ar (pg,1)

Ry, = exp [=2T7S(ug, 1) — As (s, )] ( 5
pr R
2 2

1% 1%
Upa = exp|—TZAr(py", p)log V—g} exp [—T 2 Ar(ug, p)log w—ﬁ — Ap, (15, 1)
B a

(39)

We have defined Zp ,, = U Up, in Egs. (26) and (27). For the Higgs production process
considered in this work, we have, the following color identities: for the ggg channel, T;-T; =
—CA/2, for the qlq_ggg Channel, T1 : TQ = —(CF — CA/2> and T1 : T3 = T2 : T3 = —CA/2 The
anomalous dimension for the hard function can be found in Ref. [32]. The solution to the
RG equation is

Ug = exp

T, - T;
2 TS p) = 2An (. p) + 240 (1) Y | =5 log AR

i#j
<TI (%

where AR?, = 2(cosh(Any;) — cos(Ady;)) for 4,5 # a,b, AR;, = e, AR} = € and
AR? = 1. Also w; = py if @ € J, otherwise w, = x,+/s. The soft anomalous dimension is
determined by the consistency relation in Eq. (24), which gives the solution

) 2T2Ar (prr 1)
: (40)

T, - T;
Us = exp| =23 TS (s 1) = Aslpts, ) = 2Ar(ps, 1) 3 =5~ log ARJ,
i€EB 175]
1\ Zies 2L Ar (o) 7, N\ Liep 2T A (sn) /), N Tien 207 Ar(pr*% 1)
“(#) (i) (=) -
R s Vg
For the NLL resummation, we need
Lo as(pi) (T1 B
Ar(p, ) = —=<1 S (L P oy 42
luany) = g logr+ BB (T2 o) 42)
and
FO{ 47 ( 1 ) (F1 51) B, o }
S, = — l———logr) +|(=—5 )1 —r+logr) + —log“r, ,
(ks oy) 15 o) ~ —log T A ( gr) 25, %
(43)
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where 7 = a(pf)/as(p;) and

11 4
Po = _CA —3Teny, (44)
4 2
ﬁ = %CA BOCATan — 4CFTFTLJC y (45)
PO - 4, (46)
67 > 20
Fl =4 |:CA <§ - ?) - ? an:| . (47)

Ay, Ax and Ag are needed at leading order, and can be obtained by substituting the Iy
in Ar with the corresponding ~, and expanding in «,. For A;/p we have

v = 6Ck, (48)
and
Jg
Yoo = 2/80 ) (49)
for quark and gluon jets or beam functions, respectively. For vg = ), v;, we have
% = —3CF, (50)
and
’78 = _60 ’ (51)

The two loop vs can be extracted via the relation 2vg + vy, + vs + v, + 78, = 0. At one
loop, 75 = 0.
C Expanded results

Expanding out the resummed result will give us the fixed order singular term up to NLL.
We find

H OCs(ﬂ) Lo ] 2 HH H
FO:1+ . (—72 i 2 FOZ logAR —Fogﬂ lo i +nﬁ0 L s

i i#]

(52)

where we have assumed at the leading order Hy o< o” and defined L = log(p/ug)? where
pp is of order p7., and AR?j and w; have been defined previously.
The expanded jet evolution gives

as(p) (T 2L ) Iy 7()71'
Jy=14 SV (2o T2 1 L), 53
R (2 2 Ozogp;zRJr 2 (53)
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where L = log(u/u;)*. We have checked that it reproduces singular pieces of the fixed-order
NLO calculation of the jet functlon To see this we note that the first two NLO terms can
be combined to give FO T?log® + O()\%) as long as pz is of order pTlR

(v R)?2
The singular terms of the beam coefficient are given by

2 2

Tow(2) = (1 — 2)0qa 14 LW (1) T2 ( log ——— logy——i—log—log—B +’yég“log£

A pveto Vg 1B wg 1B
_O‘S(l‘) H

0

Paa (2) log — (54)

where pyq(2) is the normal splitting function. This result again agrees with the fixed order
calculation if we choose pg ~ ps® and vp ~ w,.
Finally, the soft function is

F 2
N
(p7)
as(p) (Lo 2 2 4 2 T - T; 2 769
?<72TilogR ZT log +FOZ S log ARY + - | L,

iceJ a€B 1#£]

S = 1+

(55)

where L = log(u/ps)? and pg ~ vg ~ pyét°. We note that once we combine the soft and the
beam functions, the v dependence in these two contributions cancels, as required. If we set
Up = js = p”T”O the vg and vg dependence also disappear. We note that numerically, the
log R? x L term is of order 0.1 x L, which we interpret as a single-log term.
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