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Abstract

We derive a factorization theorem for production of an arbitrary number of color-
singlet particles accompanied by a fixed number of jets at the LHC. The jets are
defined with the standard anti-kT algorithm, and the fixed number of jets is obtained
by imposing a veto on additional radiation in the final state. The formalism presented
here is useful for current Higgs boson analyses using exclusive jet bins, and for other
studies using a similar strategy. The derivation uses the soft-collinear effective theory
and assumes that the transverse momenta of the hard jets are larger than the veto
scale. We resum the large Sudakov logarithms αns log2n−m (pJT /pvetoT

)
up to the next-to-

leading-logarithmic accuracy, and present numerical results for Higgs boson production
in association with a jet at the LHC. We comment on the experimentally-interesting
parameter region in which we expect our factorization formula to hold.



1 Introduction

Accurate predictions for processes with a fixed number of final-state jets are crucial for many
LHC applications. A well-known example is that of a Higgs boson decaying to W -bosons
at the LHC [1, 2]. The background composition to this signal changes as a function of jet
multiplicity. In the zero-jet bin the background is dominated by continuum WW production,
while in the one-jet and two-jet bins, top-pair production becomes increasingly important.
The optimization of this search requires cuts dependent on the number of jets observed, and
therefore also on theoretical predictions for exclusive jet multiplicities.

Theoretical predictions for processes with an exclusive number of jets are notoriously
difficult to obtain. Fixed-order perturbation theory is plagued by large logarithms of the form
ln(Q/pvetoT ), where Q denotes the hard scale in the process, such as mH . For experimentally
relevant values pvetoT ∼ 25− 30 GeV, residual scale variations in fixed-order calculations lead
to estimated errors that do not accurately reflect uncalculated higher-order corrections [3,
4, 5]. Progress in resummation of these logarithms to all orders has been slow. Event-shape
variables such as jettiness [6] allow resummation of jet-veto effects to arbitrary logarithmic
accuracy, and have been applied to study the production of vector bosons or Higgs bosons
plus multiple jets at the LHC [7, 11]. However, experimental measurements typically utilize
jet algorithms such as the anti-kT algorithm, and conclusions drawn from calculations using
jettiness necessarily remain qualitative only. Resummation of jet-veto logarithms for the
Higgs cross section in the zero-jet bin in the presence of the anti-kT algorithm has been
performed at next-to-leading logarithmic (NLL) accuracy using the semi-numerical program
CAESER [5]1. Recent work has extended these results to their NNLL accuracy [8, 9]. It has
been pointed out the potentially large lnR corrections, where R is the jet-radius parameter
in the anti-kT algorithm, could have a significant numerical impact on the predictions [10].
These terms have yet to be studied at all orders and warrant further investigation.

We consider in this manuscript the resummation of the jet-veto logarithms for production
of one or more color-neutral particles, such as a Higgs boson or electroweak gauge bosons, in
association with one or more jets. We accomplish this by deriving a factorization theorem
using soft-collinear effective theory (SCET) [14, 15, 16, 17, 18] that assumes that the trans-
verse momenta of the hard jets are larger than the veto scale. As an example application, we
consider explicitly Higgs boson production in association with a single jet. This calculation
is of direct phenomenological interest for understanding the properties of the new Higgs-like
state observed at the LHC [19, 20]. It extends previous work on understanding the effect
of resummation on the Higgs plus zero-jet cross section [8, 9, 10]. We resum the logarithms
ln(Q/pvetoT ) through the next-to-leading logarithmic (NLL) level, where Q ∼ mH ∼ pJT and
pJT is the transverse momentum of the observed jet. We demonstrate that the residual
scale variation of the theoretical prediction is drastically reduced by the inclusion of the
NLL resummation, and that the NLL+NLO result provides reliable predictions over a larger
kinematic range. Since the factorization theorem we derive is valid for both more jets and

1We note that different schemes for counting logarithms are employed in the literature; we specify in
detail the order-counting scheme we use in Section 2.
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other color-neutral particles, our result also serves as a framework for how to augment a host
of fixed-order calculations with resummation of a class of large logarithms.

Recent work has suggested that it is difficult to extend the resummation of jet-veto
logarithms in the presence of the anti-kT algorithm beyond the NLL level [10]. We note that
the logarithms appearing in the jet-vetoed cross section for Higgs plus jet production are of
intermediate size; the numerical value of the leading logarithmic term in the experimentally
interesting region is ln2(Q/pvetoT ) ≈ 2.5. They are an important contribution to the cross
section but do not dominate. An improved prediction requires both resummation of jet-veto
logarithms and a NNLO fixed-order calculation of the process. It seems reasonable to us to
first establish a factorization theorem and study the effect of resummation through the NLL
level, since a NNLO calculation of the Higgs plus jet cross section is not yet available. We
note that in the standard order-counting, a NNLL resumed result would also necessarily be
matched with a NNLO fixed-order calculation for theoretical consistency [11].

In a more general context, there are many studies for which it would be helpful to aug-
ment fixed-order results with a NLL resummation of large logarithms to protect predictions
that stray a bit too far into the wrong region of phase space, for example those that approach
partonic threshold, or impose too strict a jet veto. While matching to a parton shower pro-
vides resummation of some of these effects, it is difficult to quantify the error estimate within
this approach. One approach is to this problem is taken in the program CAESER [12], which
provides a semi-numerical resummation at the NLL level for many event-shape distributions
at hadron colliders. The SCET framework we introduce in our manuscript allows the NLL
resummation of jet-veto effects for any color-neutral particle plus multiple jets, and is easy
to incorporate into a fixed-order program such as MCFM [13]. We believe that we can addi-
tionally resum threshold logarithms with a small extension of our framework. We therefore
expect that the factorization theorem we establish in this manuscript will have applications
beyond the Higgs plus jet process studied here.

Our paper is organized as follows. In Section 2, we derive our factorization theorem
using SCET. We apply our formalism to study Higgs plus one-jet production, and discuss
our numerical results, in Section 3. We conclude and discuss future directions in Section 4.
All formulae needed for resummation at the NLL level are given in the Appendix.

2 Factorization and Resummation

In this section we derive a factorization theorem for multi-jet production at the LHC in the
presence of a jet veto. We discuss the resummation of the logarithms associated with the jet
veto through NLL accuracy. We use pp→ Higgs+1 jet via gluon-gluon fusion as an example
to highlight the derivation procedure. The generalization to additional jets is straightforward,
and is presented here. Our primary results are contained in Eqs. (14), (15), (26) and (27).
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2.1 Discussion of the jet constraints

We focus on the case in which the jets are defined using the hadron collider anti-kT algo-
rithm [21]. The following distance metrics are used:

ρij = min(p−1
T,i, p

−1
T,j)∆Rij/R,

ρi = p−1
T,i. (1)

The anti-kT algorithm merges particles i and j to form a new particle by adding their four
momenta if ρij is the smallest among all the metrics. Otherwise, i or j is promoted to
a jet depending on whether ρi or ρj is smaller, and removed from the set of considered
particles. This procedure is repeated until all particles are grouped into jets. We note that
∆R2

ij = ∆η2
ij + ∆φ2

ij, where ∆ηij and ∆φij are the rapidity and azimuthal angle difference
between particles i and j, respectively. R is the jet radius parameter and in practice is
chosen to be around 0.4− 0.5.

After clustering the partons, we demand that the final state contains no additional jets
with transverse momentum greater than a threshold pvetoT . For Higgs searches, typically
pvetoT ∼ 25 − 30 GeV. Since pvetoT is usually substantially lower than the partonic center of
mass (λ ≡ pvetoT /

√
ŝ � 1), the vetoed observables are usually very sensitive to soft and

collinear emissions.
Additional constraints beyond the jet veto can be imposed on the final state. In the

following derivation, we require that the measured leading jets are all well-separated so that
no additional small scales will be generated. We also assume that leading jet momentum
pJT ∼ mH ∼

√
ŝ and 1 � R2 � λ2 while αs

2π
log2R � 1. The second of these requirements

is necessary to insure that the measurement function factorizes into separate measurements
in each of the collinear sectors. This is discussed in detail in the next section. The third
requirement ensures that logarithms associated with the anti-kT parameter R need not be
resummed. Given that pvetoT ≈ 25− 30GeV and R ≈ 0.4− 0.5 for Higgs production,when the
leading jet pJT ≈ mH ≈ 125GeV, these assumptions are justified.

2.2 Derivation of the factorization theorem

We use SCET [14, 15, 16, 17, 18] to establish our factorization theorem. SCET makes
manifest the infrared limits of QCD by re-formulating the QCD Lagrangian using soft and
collinear modes whose momenta scale with a small power-counting parameter λ in appropri-
ate ways. For Higgs production, this parameter is of order pvetoT /

√
ŝ for radiation outside the

measured jet, and is of order R for radiation inside the measured jet. Consideration of the
jet algorithm and jet veto lead to the following relevant degrees of freedom in the effective
theory:

• a collinear jet mode with momentum pJ = ωJ

2
nJ +kJ , where nJ is the light-cone vector

along the jet direction;

• two collinear modes propagating along the beam axes a and b, with pi = ωi

2
ni + ki for

i = a, b;
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• a soft mode with momentum ks.

The residual momenta kJ , ki and the soft momentum ks all scale as
√
ŝλ, while the large

components of the three collinear momenta scale as ωi ∼
√
ŝ. We note that no ultrasoft

fields (kus ∼
√
ŝλ2) are needed for the process we are considering here. Any phase space

measurement M̂ is assumed to be insensitive to these modes in the final state, so that∑
us M̂|Xus〉〈Xus| =

∑
us |Xus〉〈Xus| = 1 +O(λ), where Xus denotes the final-state particles

with an ultrasoft momentum scaling.
The leading-power SCET operator which mediates gluon-fusion Higgs plus one jet pro-

duction is

HO(x) =
∑
ωi,ni

e−i(
ω1
2
n1+

ω2
2
n2−ω3

2
n3)·xCabc

αβµH Saa
′

n1
Sbb

′

n2
Scc

′

n3
Bα,a′ω1,n1

Bβ,b′ω2,n3
Bµ,c′ω3,n3

(x) , (2)

where we have explicitly written out the Lorentz indices αβµ and the color indices abc. H
is the operator which creates a Higgs boson in the final state. Cabc

αβµ is the hard Wilson
coefficient which encodes the hard virtual fluctuations. It can be obtained order-by-order
by calculating the corresponding QCD diagrams. The n-collinear gauge invariant boson
field [18]

Bαn,ω =
1

gs

[
W †
n(Pα⊥ + gsA

α
n⊥)Wn

]
δω,P̄ δn,n̂ , (3)

which creates (annihilates) a collinear gluon in the final (initial) state, is built out of the
collinear Wilson line [16]

Wn =
∑
perm.

exp

[
−gs

1

P̄
n̄ · An

]
. (4)

P is the projective operator acting on the collinear fields sitting to the right of it inside
the parentheses. At leading power, the interactions between collinear and soft fields can be
eliminated through an operator redefinition Ban → Saa

′
n Ba

′
n , which results in the soft Wilson

line Saa
′

n [17].
The cross section with a jet veto can be written as

dσ

dΦH

=
1

8s

∑
spin

∑
X

∫
dx e−iqH ·x〈papb|O†(x)M̂|XaXbXJXs〉〈XsXJXbXa|O(0)|papb〉 . (5)

We have decomposed the final state into different sectors based on the momentum scaling.
The operator O has been written in a factorizable form, but in order to proceed, we must
demonstrate that the measurement operator M̂, which includes the jet clustering operation
and jet vetoing, can also be factored into different sectors up to power suppressed correc-
tions [22]. The factorizability of the measurement operator M̂ can be seen through power-
counting the anti-kT algorithm metrics ρij and ρi. Recalling that the transverse momentum
pT for each sector scales as

pJT ∼ O(1) , psT ∼ paT ∼ pbT ∼ O(λ) , (6)
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we have

ρJJ . ρJ ∼ 1 , ρJs ∼ R−1 , ρJa ∼ ρJb ∼ R−1 log λ−1 ,

ρss ∼ ρaa ∼ ρbb ∼ (λR)−1 , ρsa ∼ ρsb ∼ ρab ∼ (λR)−1 log λ−1 ,

ρs ∼ ρa ∼ ρb ∼ λ−1 . (7)

These scalings indicate that for the jet-radius parameter R not too large (R� log λ−1), the
contributions from the mixing between the jet and beam sectors, and the mixing between
the soft and beam sectors, are power suppressed. Jets tend to form separately within each
sector. As long as R� 1, radiation collinear to the jet direction will be combined before it is
clustered with soft radiation. This means that the soft radiation is insensitive to the details
of the collinear radiation except for the jet direction. Therefore, M̂ can also be factored
between these two sectors. The measurement operator can therefore be factored as

M̂ = M̂JM̂sM̂aM̂b, (8)

up to power-suppressed corrections in pvetoT and R. The individual MA will be given in the
Appendix.

Plugging in the definition of the operator O, the cross section can be written as

dσ

dΦH

=
1

8s

∑
spin

∑
nA

∫
dωA

∫
dx ei(

ωa
2
na+

ωb
2
nb−

ωJ
2
nJ−qH)·x

×Cabc†
αβµC

a′b′c′

α′β′µ′

′∑
Xs

〈0|Saa1
na
Sbb1nb

Scc1nJ
(x)|Xs〉 〈Xs|Sa

′
1a
′

na
Sb
′
1b
′

nb
Sc
′
1c
′

nJ
(0)|0〉

×
′∑
Xa

〈pa|Bα,a1
na

(x−na
, x⊥na

, 0na)|Xa〉〈Xa|δ(ωa − P̄a)δna,n̂aBα
′,a′1

na
(0)|pa〉

×
′∑
Xb

〈pb|Bβ,b1nb
(x−nb

, x⊥nb
, 0nb

)|Xb〉〈Xb|δ(ωb − P̄b)δnb,n̂b
Bβ′,b′1nb

(0)|pb〉

×
∑
nJ

′∑
XJ

〈0|Bµ,c1nJ
(x−nJ

, x⊥nJ
, 0nJ

)|XJ〉〈XJ |δ(ωJ − P̄J)δnJ ,n̂J
Bµ′,c′1nJ

(0)|0〉 . (9)

Here,
∑′

X means summing over the final states with the restrictions imposed by M̂. We

have suppressed M̂ for simplicity. In the last line,
∑

nJ
indicates the need to sum over

all possible directions of different nJ -jet modes. We have removed several Kronecker-deltas
using the discrete sums. The remaining ones have been turned into integrals

∫
dωA and delta

functions δ(ωA − P̄A), after combining the residual momentum k−nA
≡ n̄A · kA with the label

momentum ωA in the collinear sector A for A = a, b, J . We note that the collinear sectors
do not depend on x+

A ≡ nA · x.
We further modify this expression by performing a translational operation in each sector

and inserting several residual momentum operators
∫

dkδ(k − k̂) to remove the explicit
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momentum dependence on the final states. This gives us

dσ

dΦH

=
1

8s

∑
spin

∑
nA

∫
dωA

∫
dx

∫
d4ks

∫
dkA e

i(ωa
2
na+

ωb
2
nb−

ωJ
2
nJ −qH−ks+ka+kb−kj)·x

×Cabc†
αβµC

a′b′c′

α′β′µ′

′∑
Xs

〈0|Saa1
na
Sbb1nb

Scc1nJ
(0)|Xs〉 〈Xs|δ4(ks − k̂s)Sa

′
1a
′

na
Sb
′
1b
′

nb
Sc
′
1c
′

nJ
|0〉

×
′∑
Xa

〈pa|Bα,a1
na

(0)|Xa〉〈Xa|δ(k+
a − k̂+

a )δ2(k⊥a − k̂⊥a )δ(ωa − P̄a)δna,n̂aBα
′,a′1

na
(0)|pa〉

×
′∑
Xb

〈pb|Bβ,b1nb
(0)|Xb〉〈Xb|δ(k+

b − k̂
+
b )δ2(k⊥b − k̂⊥b )δ(ωb − P̄b)δnb,n̂b

Bβ′,b′1nb
(0)|pb〉

×
′∑
XJ

〈0|Bµ,c1nJ
(0)|XJ〉〈XJ |δ(k+

J − k̂
+
J )δ2(k⊥J − k̂⊥J )δ(ωJ − P̄J)Bµ′,c′1nJ

(0)|0〉 , (10)

where dk ≡ dk+d2k⊥. We now drop all residual momenta of order λ or higher, keeping
homogeneously only the leading power terms in the exponent (dropping the contributions
of order λ means that we ignore the recoil effect in the transverse plane). We perform the
integration over the k+

A component in each collinear sector to indicate that no restrictions
are applied on this residual momentum 2. This leads to

dσ

dΦH

=
1

8s

∑
spin

∫
dωA

∑
nJ

d2k⊥J (2π)4δ4
(ωa

2
na +

ωb
2
nb −

ωJ
2
nJ − qH

)
×Cabc†

αβµC
a′b′c′

α′β′µ′

∫
d4ks〈0|Saa1

na
Sbb1nb

Scc1nJ
(0)M̂sδ

4(ks − k̂s)Sa
′
1a
′

na
Sb
′
1b
′

nb
Sc
′
1c
′

nJ
|0〉

×
∫

d2k⊥a 〈pa|Bα,a1
na

(0)M̂a δ
2(k⊥a − k̂⊥a )δ(ωa − P̄a)Bα

′,a′1
na

(0)|pa〉

×
∫

d2k⊥b 〈pb|Bβ,b1nb
(0)M̂b δ

2(k⊥b − k̂⊥b )δ(ωb − P̄b)Bβ
′,b′1
nb

(0)|pb〉

× 〈0|Bµ,c1nJ
(0)M̂J δ

2(k⊥J − k̂⊥J )δ(ωJ − P̄J)Bµ′,c′1nJ
(0)|0〉 . (11)

To reach the formula above, we have summed over the final states using
∑

X |X〉〈X| = 1

and have re-inserted the measurement operators M̂A. We next define the beam and the jet
functions

f⊥g/p(z, p
veto
T , R) =

∫
d2k⊥

∑
spin

−ω〈p|Bα,an (0)M̂B δ
2(k⊥ − k̂⊥)δ(ω − P̄)Bn,α,a(0)|p〉 ,

J(R)gµµ
′

⊥ δcc
′
= 2(2π)3(−ωJ)〈0|Bµ,cnJ

(0)M̂Jδ
2(k⊥J − k̂⊥J )δ(ωJ − P̄J)Bµ′,c′nJ

(0)|0〉 , (12)

2We note that this assumes that no pseudorapidity cut is imposed on the observed low pT jet. It is
straightforward to remove this constraint if desired; for simplicity of presentation we do not do so here.
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and the soft function

S(nJ , R, p
veto
T ) =

∫
d4ks〈0|Saa1

na
Sbb1nb

Scc1nJ
(0)M̂s δ

4(ks − k̂s)Sa1a′

na
Sb1b

′

nb
Sc1c

′

nJ
(0)|0〉 . (13)

We emphasize that the beam and jet functions are well-defined only after the soft zero-bin
subtraction has been properly performed [25].

Finally, we arrive at our result

dσ = dΦHdΦJ

∫
dxadxb

1

2ŝ

1

4

(
1

N2
c − 1

)2

(2π)4δ4 (qa + qb − qJ − qH)

×Tr(H · S) f⊥g/pa(xa, p
veto
T , R)f⊥g/pb(xb, p

veto
T , R)J(R) , (14)

with the help of identifying
∑

n
1

2(2π)3ωJ
dωJd2k⊥J as the massless particle phase space dΦJ =

q̄J
8(2π)3 dqJdΩ. We define the hard function H ≡ CC†. The trace is over the color indices.

Since pvetoT is much larger than ΛQCD, the beam function can be further matched onto parton
distribution functions at the beam scale µB ∼ pvetoT : fi,⊥ = Iij ⊗ fj(x). The matching
coefficient Iij can be calculated perturbatively. We have chosen our normalization so that at
leading order, Iij = δ(1− x)δij, J(R) = 1 and S = δaa

′
δbb
′
δcc
′
. The factorization reproduces

the tree-level gg → Hg cross section. We note that for NLL resummation, only the leading-
order matching coefficients are needed. In the Appendix, we will present the NLO results
for the jet and beam functions, up to O(R) corrections.

The formalism is easily generalized to processes with an arbitrary number of jets and non-
strongly interacting particles in the final state. All the arguments go through identically.
We find

dσ = dΦHcdΦJi F(ΦHc ,ΦJi)
∑
a,b

∫
dxadxb

1

2ŝ
(2π)4δ4

(
qa + qb −

n∑
i

qJi −
∑
c

qHc

)

×
∑̄
spin

∑̄
color

Tr(H · S) Ia,iaja ⊗ fja(xa) Ib,ibjb ⊗ fjb(xb)
n∏
i

JJi(R) , (15)

where dΦHc and dΦji denote the phase space measures for the color neutral particle Hc and
the massless jets Ji, respectively. F(ΦHc ,ΦJi) includes all additional phase-space cuts other
than the pT veto acting on Hc and the n hard jets, which should guarantee well separated
n-jet final states (nJi · nJj � λ). The measured jet pJT should be much larger than pvetoT .

We note that possible issues arise when attempting to extend the resummation to the
NNLL level, as pointed out in Ref. [10]. For R� λ, corrections of the form

α2
s R

2 lnλ (16)

appear, which prohibit soft-collinear factorization. In the limit R ∼ λ, clustering logarithms
of the form

α2
s lnR lnλ (17)
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which prohibit even NLL resummation occur. Let us study the numerical impact of these
terms for the parameter values relevant for Higgs production. Setting R = 0.4, mH = 126
GeV, and pvetoT = 25 GeV, we find R2 = 0.16, ln (1/λ) = 1.6, and ln (1/R) = 0.92. For R =
0.5, ln (1/R) = 0.69. It is clear that the corrections of Eq. (16) are indeed power-suppressed
for experimentally-relevant value of R ≈ 0.4 − 0.5. They can be obtained to sufficient
accuracy by matching to fixed-order results. There is also a hierarchy ln (1/λ) > ln (1/R);
the clustering logarithms are not large for relevant jet parameters. An eventual inclusion
of the leading clustering effects by combining the resummation with a NNLO calculation of
Higgs plus one-jet production should be sufficient. We therefore believe that it makes sense
to study the resummation of jet-veto logarithms in Higgs production, and proceed with our
analysis.

We also comment briefly on the validity of our effective-theory approach before continu-
ing. There are two distinct regions of phase space that contribute to pp → Higgs+jet: (1)
mH ∼ pJT � pvetoT , and (2) mH � pJT ∼ pvetoT . Other parameter hierarchies can be obtained
as limits of these two regions. Our EFT approach captures all large logarithms in the first
region; we resum all logarithms of the form ln (Q/pvetoT ), where Q ∼ mH ∼ pJT . In the other
region with pJT ∼ pvetoT , we do not correctly capture the large logarithms. We do as well (or
as badly) as a fixed-order calculation. A different EFT is needed for this region, and this
will be the subject of future work. We note that depending on the exact definition of region
(1), it contributes between 30-50% of the total Higgs+jet cross section, so it is a significant
fraction of the full result.

2.3 NLL Resummation

Each ingredient in Eqs. (14) and (15) describes fluctuations with a particular momentum
scaling. When the hard, jet, beam and soft functions are calculated near their natural scales,
no large logarithms will arise. The typical scales for each sector are

µH ∼ pJT , µJ ∼ pJTR , µB ∼ µS ∼ pvetoT . (18)

However, calculating the cross section requires all the functions to be evaluated at the same
factorization scale µ, which generates large logarithms of the following ratios:

pJT
µ
,

pJTR

µ
,

pvetoT

µ
. (19)

These large logarithms can be resummed by evolving each function to the scale µ using the
renormalization group (RG) equation

µ
dF

dµ
= γµ(µ)F (µ) . (20)

The anomalous dimension γµ can be extracted most easily from the ε poles of each function
calculated using dimensional regularization.
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However, like for small-qT resummation, a subtlety arises because of the identical virtu-
ality shared by the collinear and soft degrees of freedom [25, 26]. Various efforts have been
made in SCET to regulate this rapidity divergence [26, 27, 28], which all have shown be able
to reproduce correctly the NLO fixed-order QCD singularities. In our current approach, we
adopt the formalism proposed in Ref. [26]. We regulate the extra divergence by modifying
the collinear and the soft Wilson lines as follows:

Wn →
∑
perm.

exp

(
−gs

1

P̄

[
w2 |P̄|−η

ν−η
n̄ · An

])
,

Sn →
∑
perm.

exp

(
−gs

1

P

[
w
|2P3|−η/2

ν−η/2
n · As

])
, (21)

where the bookkeeping parameter w will be set to 1 as η → 0. The effective rapidity cut-off
ν and the new parameter η play similar roles as µ and ε in dimensional regularization. The
corresponding rapidity-RG equation commutes with the conventional one for the beam and
the soft functions: [µ ∂

∂µ
, ν ∂

∂ν
] = 0,

ν
dFB,S

dν
= γν(ν)FB,S(ν) . (22)

The natural ν-scale choices for the beam and the soft functions are

νB ∼ xa,b
√
s , νS ∼ pvetoT . (23)

Since the physical cross section is µ and ν independent, the anomalous dimensions must
obey the consistency conditions

2γµH + γµJ + γµB + γµS = 0 ,

γνB + γνS = 0 , (24)

up to power corrections of order λ and effects due to finite jet (beam) separations [23]. We
will use these conditions to extract the anomalous dimension for the soft function. The
general solution to the RG equation can be formally written as

F (µ, ν) = U(µ, ν, µ0, ν0)F (µ0, ν0) . (25)

The explicit form of the evolution kernel U for each function along with all details needed
for NLL resummation are given in the Appendix.

Recalling that for NLL resummation only the tree-level Wilson coefficients are needed,
we find the following simplified expression for production of a color-neutral particle plus one
jet:

dσNLL =
∑
ab

∫
dσ̂ab→hkLO (µH , xa, xb) fa(µB, xa)fb(µB, xb)

×UH,k(µ, µH)US,k(µ, ν, µS, νS) IB,a,b(µ, ν, µB, νB, xa, xb)RJ(µ, µJ , R) . (26)
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For a more general process, the evolutions of the hard and the soft functions will usually
induce operator mixing in color space. Therefore, the NLL cross section for multi-jet pro-
duction reads

dσNLL =
∑
ab

∫
dxadxb Tr

[
H
ab→hc{k}
LO (µH)S UH,{k}(µ, µH)US,{k}(µ, ν, µS, νS)

]
× fa(µB, xa)fb(µB, xb)IB,a,b(µ, ν, µB, νB, xa, xb)

∏
i

RJi(µ, µJ , R) . (27)

We note that due to the separation between the scales inside and outside the allowed jets,
a full refactorization or a refactorization ansatz of the soft function [23, 24] may be helpful
in improving the resummation accuracy. Since this involves lnR effects and is therefore
moderate for the experimentally-interesting pvetoT and R, its will be left for further studies.
There also exist non-global logarithms [29] beginning at the NLL’ level according to the order-
counting of Ref. [11], whose resummation is beyond the scope of our formalism presented in
this work.

Different schemes are used in the literature to determine the accuracy of resummation
prescriptions. When calling our result NLL, we use the order-counting defined in Ref. [11].
This means that we include the two-loop cusp anomalous dimension, and the one-loop non-
cusp anomalous dimensions for the beam, soft, jet and hard functions. We therefore achieve
NLO accuracy in the exponent of the Sudakov form factor. Our beam, soft, jet and hard
functions are taken to be leading-order. Denoting the large logarithms associated with the
veto scale generically as L, our NLL captures the two leading logarithms at each order in αs.
We correctly obtain αsL

2 and αsL, α2
sL

4 and α2
sL

3, α3
sL

6 and α3
sL

5, and so on. To obtain
the next tower of logarithms (α2

sL
2, α3

sL
4, etc.), we would need to include the jet, beam and

soft functions at 1-loop. This would correspond to NLL’ in the language of Ref. [11], or to
the NLL implied in the traditional QCD approach [5]. All ingredients are currently known
for this extension except for the one-loop soft function, which is not difficult to obtain. We
plan to include this term in future detailed numerical studies. Control over the next tower of
logarithms (α2

sL, α3
sL

3, etc.) would require the two-loop non-cusp anomalous dimensions γx,
and would correspond to NNLL in the notation of Ref. [11]. We note that since we match to
the full NLO result from MCFM, we should in principle include the hard, beam, jet and soft
functions also to NLO accuracy in order to maintain theoretical consistency in the powers
of αs included. We will correct this shortcoming in future work.

3 Numerical results for Higgs+jet production

We present in this section numerical results for pp→ h+jet at an 8TeV LHC with a jet veto
imposed. We combine our resummation with the NLO cross section from MCFM to produce
NLL+NLO results. In the numerics presented here we restrict the leading jet rapidity to
|ηJ | < 2.5 and veto all other jets with pT,i > pvetoT and |ηi| <∞ for simplicity. Experiments
typically only veto jets in the range |η| . 4.5. However, we expect that this boundary effect
will be small [5]. It is simple to include this constraint if desired, as discussed in the previous
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section. We have included the gg, qg, and qq̄ partonic scattering channels in obtaining these
results. All relevant beam, jet and soft functions, as well as anomalous dimensions needed
for this calculation, are presented in the Appendix.

We begin by demonstrating that our formalism correctly sums all the next-to-leading
logarithms of pvetoT /pJT by comparing the expanded NLL production rate with the MCFM
NLO result [13]. In the expanded NLL result, we have included the large non-logarithmic
virtual corrections by using the full NLO hard function taken from Ref. [30]. The validity of
our formalism is shown in Fig. 1, where we show the agreement between these two results in
the region where log pJT/p

veto
T becomes large. This demonstration is based on the dominance

of the log terms over the other contributions omitted in SCET in the small pvetoT region.

0.05 0.10 0.50 1.00 5.00
- 1.0

- 0.5

0.0

0.5

1.0

pT
veto H GeV L

Σ
E

X
P

-
Σ

M
C

F
M

Σ
M

C
F

M

Figure 1: Presented is the ratio of the expanded SCET cross section |σexp| and the full NLO
QCD calculation from MCFM σMCFM, |σexp−σMCFM|/|σMCFM|. We have required the leading
jet pJT > 120GeV, |ηJ | < 2.5, have set R = 0.1 and have made pvetoT as low as 0.01GeV. The
excellent agreement between the expanded SCET prediction and the MCFM cross section
for such low pvetoT implies that our formalism catches all the NLL structures.

We next study the cross section for Higgs+jet production. Since Eq. (26) is only valid
for pvetoT � pJT , in order to give a prediction over the entire allowed kinematic range, we have
to combine the resummed formula of Eq. (26) with the full NLO result. For this purpose,
we adopt the matching scheme proposed in Ref. [5], in which the RG-improved cross section
is taken as

σ =

(
σNLL

σLO

)Z [
σNLO(µ)− Z (σexp(µ)− σLO(µ))

]
, (28)

where Z =
(
1− pvetoT /pmaxT,veto

)
. σLO is the LO cross section and σNLO is the cross section

calculated through NLO using MCFM. σexp is obtained by expanding the resummed cross
section σNLL in Eq. (26). We postpone rigorous study of the uncertainty induced by the

11



choice of matching procedure to future work. In evaluating the resummed production rate
σNLL, we fix

µH =
[
(xa
√
s)Ta·Ta(xb

√
s)Tb·Tb (pJT )TJ ·TJ

] 1∑
i Ti·Ti ,

µJ = pJTR ,

µB = µS = pvetoT . (29)

These choices minimize the logarithmic dependence in the hard, jet and the beam functions.
When we use this set of scale choices, the cross section is also independent of the rapidity
scale ν.

Figure 2: Shown are the NLO+NLL prediction and the NLO cross section as a function of
pvetoT for pJT ≥ 120 GeV. The solid-blue curve represents the RG-improved cross section in
Eq. (28). The dashed-red line shows the NLO result for the scale choice µ = mH , while the
dotted red lines show the NLO result for µ = mH/2 and µ = 2mH . The blue band reflects
the scale uncertainty of the RG-improved rate. The band boundaries are set by the values
at the scale choices mH/2 and 2mH .
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In Fig. 2, we demonstrate the improvement obtained with NLL resummation by showing
the dependence of both the NLO and RG-improved integrated cross sections on different
choices of pvetoT . We have set pJT > 120GeV, µ = mH = 126GeV and have taken the anti-kT
parameter R = 0.4. For the matching in Eq. (28), we use pmaxT,veto = 120 GeV in Z. We use
the MSTW2008 NLO PDF set [31] with two-loop αs running. We can see that for small
values of pvetoT , the fixed-order cross section becomes negative while the NLO + NLL result
remains positive. We also vary the scale µ from mH/2 to 2mH to estimate the theoretical
uncertainty. We can see that resumming the large logarithms greatly reduces the residual
scale variation for the experimentally relevant values pvetoT ≈ 25− 30 GeV, leading to a more
reliable prediction. The fixed-order cross section exhibits little scale variation for pvetoT ≈ 55
GeV. Similar behavior is observed for the Higgs plus zero-jet cross section [3, 4], and was
argued to result from an accidental cancellation between several higher-order corrections
with different origins. The same argument holds here for the Higgs plus one-jet result. As
pvetoT becomes large, the fixed-order and resumed cross section coincide. Since the separation
between the hard scale and pvetoT vanishes in this limit, this behavior is expected.

To gain some intuition regarding how low in pJT the resummation of jet-veto logarithms
leads to a difference from fixed-order, we fix pvetoT = 25 GeV and integrate over the leading-jet
transverse momentum subject to the constraint pJT ≥ pjT,min. We stress that some caution
must be exercised in using these results. Our effective theory framework is only valid when
the hierarchy pvetoT � pJT exists. When pvetoT ∼ pJT , our result reduces to the fixed-order
result, which contains the ratio of scales pvetoT � mH . A different effective theory framework
consisting is needed to resume logarithms of this ratio. With these caveats stated, we plot
in Fig. 3 the NLO and NLL+NLO results as a function of the minimum allowed jet pT
for pvetoT = 25 GeV. Significant differences between both the central values and residual
scale uncertainties persist down to low values of pminT , indicating the need to augment the
fixed-order results with resummation over the entire pJT region.

4 Conclusions

In this manuscript, we have established a formalism for the production of color-singlet parti-
cles produced in association with an exclusive number of jets at the LHC. Using effective field
theory techniques, we have proven the factorization theorem of Eqs. (14) and (15), which
allows us to resum large Sudakov logarithms of the form log pvetoT /Q with Q ∼ mH ∼ pJT to
all orders. We have focused on Higgs production in association with a jet as an example.
We have demonstrated by the excellent agreement between the expanded NLL result and
NLO QCD cross section that our formalism correctly captures all relevant large logarithms
in the pvetoT /Q→ 0 limit. The scale uncertainty of the cross section is greatly reduced by in-
clusion of the resummation. By matching our results with MCFM, we provide a NLL+NLO
result for Higgs+jet production valid over the entire kinematic range. With our results, it is
easy to supplement fixed-order results for vector boson or Higgs boson production with the
resummation of jet-veto logarithms in order to provide predictions valid throughout phase
space.
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Figure 3: The NLO+NLL prediction and the NLO cross section as a function of pminT for
pvetoT = 25GeV. The solid-blue curve represents the RG-improved cross section in Eq. (28).
The dashed-red line shows the NLO result for the scale choice µ = mH , while the dotted red
lines show the NLO result for µ = mH/2 and µ = 2mH . The blue band reflects the scale
uncertainty of the RG-improved rate. The band boundaries are set by the values at the scale
choices mH/2 and 2mH .

Several future directions remain to be pursued. With our results it is possible to improve
the theoretical predictions for Higgs plus one or two jets. This will be of great phenomeno-
logical importance as the properties of the new state discovered at the LHC are further
analyzed. We plan to further investigate these phenomenological application of our formal-
ism. It is also interesting to study the effective theory valid when both the veto scale and
the leading jet pT are smaller than mH . Beyond NLL’, extra clustering effects will enter the
cross section, which are not completely understood [10] yet. We have argued that the nu-
merical impact of these terms should be subdominant to the effects studied here. However,
a NNLO calculation of the jet, beam and soft functions would be helpful in determining
whether this formalism can be extended beyond NLL’. In the current work, we have simpli-
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fied the calculation of the anti-kT jet function by keeping the leading R contributions only
in the resummation formulae. It will be phenomenologically interesting to include higher
order corrections in R to improve the accuracy. We have also neglected for simplicity the
boundary effects due to the experimentally finite η range. These issues will be addressed in
future detailed phenomenological studies.
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A Fixed-order jet and beam functions

In this Appendix, we list all ingredients needed for NLL resummation. We start with the
NLO calculation of the jet and the beam functions, whose definitions can be found in Eq. (12).
The anti-kT jet function is calculated using the measurement function

M̂J = Θ(∆η2
ij + ∆φ2

ij < R2) +O(pvetoT ) . (30)

We explicitly calculate that the jet collinear radiation leaking outside the jet is power-
suppressed by pvetoT after correctly subtracting the soft zero-bin contributions. Since numer-
ically R� 1, we can simplify the measure using

∆η2
ij + ∆φ2

ij = 2 cosh(∆ηij)− 2 cos(∆φij) +O(R4). (31)

In this limit, the NLO jet functions for gluons and quarks become

J (1)
g =

αs(µ)

2π

[
CA

(
67

9
− 3π2

4

)
− 23

9

nf
2

+ β0 log
µ

pJTR
+ 2CA log2 µ

pJTR

]
+O(R2) ,

J (1)
q =

αs(µ)

2π
CF

[
13

2
− 3π2

4
+ 3 log

µ

pJTR
+ 2 log2 µ

pJTR

]
+O(R2) . (32)

The measure for the beam function with one emission is

M̂B = Θ
(
kT,i < pvetoT

)
Θ (|ηi| < ηcut) + Θ(|ηi| > ηcut) . (33)

Experimentally, ηcut ∼ 4.5. For simplicity, we set ηcut =∞ here. We note that this difference
does not affect the anomalous dimension of the beam function, it only changes the finite
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part. The calculation is performed using the ’t Hooft-Veltmann scheme. The NLO matching
coefficient I for the beam function is found to be

I(1)
gg (z) =

αs(µ)CA
2π

(
4 log

µ

pvetoT

log
ν

n̄·p
δ(1− z)− 2p̃gg(z) log

µ

pvetoT

)
,

I(1)
qq (z) =

αs(µ)CF
2π

(
4 log

µ

pvetoT

log
ν

n̄·p
δ(1− z) − 2p̃qq(z) log

µ

pvetoT

+ (1− z)

)
,

I(1)
gq (z) =

αs(µ)CF
2π

(
−2pgq(z) log

µ

pvetoT

+ z

)
,

I(1)
qg (z) =

αs(µ)TF
2π

(
−2pqg(z) log

µ

pvetoT

+ 2z(1− z)

)
, (34)

with

p̃gg(z) =
2z

(1− z)+

+ 2z(1− z) + 2
1− z
z

,

p̃qq(z) =
1 + z2

(1− z)+

,

pgq(z) =
1 + (1− z)2

z
,

pqg(z) = 1− 2z + 2z2 . (35)

From these fixed order calculations, we can determine the anomalous dimensions used for
RG evolution. The anomalous dimension for the jet function is given by

γJi = 2ΓcuspT
2
i log

µ

pJiT R
+ γJi . (36)

For the beam function, it is

γνB = 2ΓcuspT
2
i log

µ

pvetoT

,

γµB = 2ΓcuspT
2
i log

ν

n̄·p
+ γBi

, (37)

where T 2
i = CA for gluon and T 2

i = CF for quark. Here,

Γcusp =
αs
4π

Γ0 +
(αs

4π

)2

Γ1 + . . . . (38)
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B RG evolution

The evolutions of the jet and the beam functions are given by

RJi = exp
[
−2T 2

i S(µJ , µ)− AJi(µJ , µ)
]( µJ

pJiT R

)−2T 2
JAΓ(µJ ,µ)

,

UB,a = exp

[
−T 2

aAΓ(pvetoT , µ) log
ν2

ν2
B

]
exp

[
−T 2

aAΓ(µB, µ) log
ν2
B

ω2
a

− ABa(µB, µ)

]
.

(39)

We have defined IB,a,b = UB,aUB,b in Eqs. (26) and (27). For the Higgs production process
considered in this work, we have, the following color identities: for the ggg channel, Ti ·Tj =
−CA/2; for the q1q̄2g3 channel, T1 · T2 = −(CF −CA/2) and T1 · T3 = T2 · T3 = −CA/2. The
anomalous dimension for the hard function can be found in Ref. [32]. The solution to the
RG equation is

UH = exp

[
2
∑
i

T 2
i S(µH , µ)− 2AH(µH , µ) + 2AΓ(µH , µ)

∑
i 6=j

Ti · Tj
2

log ∆R2
ij

]

×
∏
i

(
µH
ωi

)2T 2
i AΓ(µH ,µ)

, (40)

where ∆R2
ij = 2 (cosh(∆ηij)− cos(∆φij)) for i, j 6= a, b, ∆R2

ia = e−ηi , ∆R2
ib = eηi and

∆R2
ab = 1. Also ωi = pjiT if i ∈ J , otherwise ωa = xa

√
s. The soft anomalous dimension is

determined by the consistency relation in Eq. (24), which gives the solution

US = exp

[
−2
∑
i∈B

T 2
i S(µs, µ)− As(µs, µ) − 2AΓ(µs, µ)

∑
i 6=j

Ti · Tj
2

log ∆R2
ij

]

×
(

1

R

)∑
i∈J 2T 2

i AΓ(µs,µ)(
νs
µs

)∑
i∈B 2T 2

i AΓ(µs,µ)(
ν

νs

)∑
i∈B 2T 2

i AΓ(pvetoT ,µ)

. (41)

For the NLL resummation, we need

AΓ(µi, µf ) =
Γ0

2β0

{
log r +

αs(µi)

4π

(
Γ1

Γ0

− β1

β0

)
(r − 1)

}
, (42)

and

S(µi, µf ) =
Γ0

4β2
0

{
4π

αs(µi)

(
1− 1

r
− log r

)
+

(
Γ1

Γ0

− β1

β0

)
(1− r + log r) +

β1

2β0

log2 r

}
,

(43)
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where r = αs(µf )/αs(µi) and

β0 =
11

3
CA −

4

3
TFnf , (44)

β1 =
34

3
C2
A −

20

3
CATFnf − 4CFTFnf , (45)

Γ0 = 4 , (46)

Γ1 = 4

[
CA

(
67

9
− π2

3

)
− 20

9
TFnf

]
. (47)

AJ/B, AH and AS are needed at leading order, and can be obtained by substituting the Γ0

in AΓ with the corresponding γ0 and expanding in αs. For AJ/B we have

γ
Jq
0 = 6CF , (48)

and

γ
Jg
0 = 2β0 , (49)

for quark and gluon jets or beam functions, respectively. For γH =
∑

i γi, we have

γq0 = −3CF , (50)

and

γg0 = −β0 , (51)

The two loop γS can be extracted via the relation 2γH + γJi + γS + γBa + γBb
= 0. At one

loop, γS0 = 0.

C Expanded results

Expanding out the resummed result will give us the fixed order singular term up to NLL.
We find

H

H0

= 1 +
αs(µ)

4π

(
−Γ0

2

∑
i

T 2
i

L2

2
+

(
−Γ0

∑
i 6=j

Ti · Tj
2

log ∆R2
ij − Γ0

∑
i

T 2
i log

µH
ωi

+ γH0 + nβ0

)
L

)
,

(52)

where we have assumed at the leading order H0 ∝ αns and defined L = log(µ/µH)2 where
µH is of order pJT , and ∆R2

ij and ωi have been defined previously.
The expanded jet evolution gives

Ji = 1 +
αs(µ)

4π

(
Γ0

2
T 2
i

L2

2
+

(
Γ0T

2
i log

µJ

pJiT R
+
γJi0

2

)
L

)
, (53)
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where L = log(µ/µj)
2. We have checked that it reproduces singular pieces of the fixed-order

NLO calculation of the jet function. To see this we note that the first two NLO terms can
be combined to give Γ0

4
T 2
i log2 µ2

(p
Ji
T R)2

+O(λ0) as long as µJ is of order pJiT R.

The singular terms of the beam coefficient are given by

Iaa′(z) = δ(1− z)δaa′

(
1 +

αs(µ)

4π

[
Γ0T

2
a

(
log

µ

pvetoT

log
ν2

ν2
B

+ log
µ

µB
log

ν2
B

ω2
a

)
+ γBa

0 log
µ

µB

])
−αs(µ)

π
paa′(z) log

µ

µB
, (54)

where paa′(z) is the normal splitting function. This result again agrees with the fixed order
calculation if we choose µB ∼ pvetoT and νB ∼ ωa.

Finally, the soft function is

S = 1 +
αs(µ)

4π

(
Γ0

2

∑
a∈B

T 2
a

[
L2

2
+ log

ν2
S

ν2
log

µ2

(pvetoT )2

])

+
αs(µ)

4π

(
Γ0

2

∑
i∈J

T 2
i logR2 +

Γ0

2

∑
a∈B

T 2
a log

µ2
S

ν2
S

+ Γ0

∑
i 6=j

Ti · Tj
2

log ∆R2
ij +

γS0
2

)
L ,

(55)

where L = log(µ/µS)2 and µS ∼ νS ∼ pvetoT . We note that once we combine the soft and the
beam functions, the ν dependence in these two contributions cancels, as required. If we set
µB = µS = pvetoT , the νS and νB dependence also disappear. We note that numerically, the
logR2 × L term is of order 0.1× L, which we interpret as a single-log term.
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