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Abstract

In many new physics scenarios, the particle content of the Standard Model is extended and the

Higgs couplings are modified, sometimes without affecting single Higgs production. We analyse

two models with additional quarks. In these models, we compute double Higgs production from

gluon fusion exactly at leading-order, and present analytical results in the heavy-quark mass ap-

proximation. The experimental bounds from precision electroweak measurements and from the

measured rate of single Higgs production combine to give significant restrictions for the allowed

deviation of the double Higgs production rate from the Standard Model prediction as well as on

the branching ratio for the Higgs decay into photons. The two models analysed eventually present

a similar Higgs phenomenology as the Standard Model. We connect this result to the magnitude

of the dimension six operators contributing to the gluon-fusion Higgs production.
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I. INTRODUCTION

The search for the source of electroweak symmetry breaking has dominated particle the-

orist’s efforts for decades. Now that a particle with many of the right properties to be the

Higgs boson of the Standard Model has been discovered [1, 2], the efforts turn to under-

standing the properties of this particle. In the Standard Model, the couplings of the Higgs

boson to fermions, gauge bosons, and to itself are firm predictions of the model. In models

with new physics, however, these couplings can be different.

The dominant production mechanism for a Higgs boson is gluon fusion, which is sensitive

to many types of new physics. The simplest possibility is for new heavy colored scalars [3, 4]

and/or fermions [5–15] to contribute to Higgs production. However, since the observed Higgs

candidate particle is produced at roughly the Standard Model rate, extensions of the Higgs

sector beyond the Standard Model are extremely constrained. For example, a model with a

sequential fourth generation of chiral fermions predicts large deviations in the Higgs rates

[16–20] and is excluded by the limits on Higgs production for any Higgs mass below around

600 GeV [21, 22]. The properties of these potential new colored particles are further limited

by precision electroweak measurements. Models in which the Higgs boson is composite [23–

34], along with models which generate new higher dimension effective operators involving

the Higgs boson and gluons [35, 36], can also induce a single Higgs production rate different

from that of the Standard Model. Untangling the source of possible deviations from the

Standard Model by measuring the production and decay rates of the Higgs boson will be

quite difficult in models where there are only small differences from the Standard Model

predictions.

In this paper, we examine the extent to which the gluon fusion production of two Higgs

bosons can have a rate very different from that predicted by the Standard Model [37, 38],

given the restrictions from electroweak precision physics and from single Higgs production.

The observation of double Higgs production via gluon fusion is important in order to measure

the cubic self coupling of the Higgs boson [39, 40]. In the Standard Model, the rate is small,

although the O(α3
s) radiative corrections are known in the infinite top quark mass limit and

are large [41, 42]. For a 125 GeV Higgs particle, the most likely channel for HH exploration

is gg → HH → bbγγ [43], where studies have estimated that the LHC at full energy will

be sensitive to this process with around 600 fb−1. Using jet substructure techniques, the
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HH → bbW+W− and HH → bbτ+τ− channels may be available with about 600 fb−1[44]

and 1000 fb−1[40]. This is clearly not physics which will be done during the early phase of

LHC operations, unless the rate is significantly larger than in the Standard Model [45].

Double Higgs production can further be studied through vector boson fusion, which is

also sensitive to the three Higgs self coupling [46]. Vector boson fusion production of two

Higgs bosons can be affected by new operators involving the W and Z gauge bosons and the

Higgs, but is not sensitive to the new colored particles which contribute to the gluon fusion

process. Hence the two production mechanisms can provide complementary information.

Double Higgs production from gluon fusion first occurs at one loop and is therefore

potentially modified by the same new heavy colored particles which contribute to single

Higgs production. However, as pointed out in Ref. [36], single and double Higgs production

are sensitive to different higher dimension effective operators and in principle, the single

Higgs production rate could be Standard Model like, while the double Higgs production

could be highly suppressed or enhanced. Here, we consider the effects of both heavy vector-

like and chiral colored fermions on the single and double Higgs production rates, and the

interplay between them. We will not consider models with extended Higgs sectors, or with

higher dimension non-renormalizable operators.

For single Higgs production, it is useful to analyze the effects of non-Standard Model

colored particles using a low energy theorem [47]. The theorem can be formulated using the

background field method in terms of the traces of the mass matrices of colored objects, which

eliminates the need to diagonalize complicated mass matrices [48]. The low energy theorem

can be extended to double Higgs production, where new features arise [34]. In models with

extended fermion sectors (for example, in little Higgs models [49–55]) there are contributions

to double Higgs production containing more than one flavor of fermion [56]. These diagrams

contain axial couplings to the Higgs boson which are non-diagonal in the fermion states and

we demonstrate how these effects can be included using a low energy theorem. Low energy

theorems are extremely useful for single Higgs production and generally give estimates of

the total cross section which are quite accurate. For double Higgs production, however, the

low energy theorems provide an estimate of the total rate which typically disagrees with

the exact rate by 50% or more. The low energy theorem does not reproduce kinematic

distributions accurately, but instead predicts high energy tails which are not present in the

full theory [57].
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FIG. 1: Feynman diagrams for gg → HH in the Standard Model.

In this paper, we study the effects of heavy colored fermions on the gluon fusion double

Higgs production rate and show that agreement with single Higgs production requires the

double Higgs rate to be close to that of the Standard Model. We demonstrate how this

can be understood in terms of the effective operator approach of Ref. [36] and discuss the

limitations of the low energy theorem for gg → HH . Interestingly, composite Higgs models

and little Higgs models receive potentially large corrections to the gg → HH process from

the non-renormalizable operator ttHH . The observation of such a large effect would be a

“smoking gun” signal for such models [33, 34, 45].

II. DOUBLE HIGGS PRODUCTION

1. The Standard Model

In the Standard Model, double Higgs production from a gluon-gluon initial state arises

from the Feynman diagrams shown in Fig. 1. The result is sensitive to new colored objects

(fermions or scalars) in the loops and to the Higgs trilinear self-coupling. The amplitude for

ga,µ(p1)g
b,ν(p2) → H(p3)H(p4) is

Aµν
ab =

αs

8πv2
δab

[

P µν
1 (p1, p2)F1(s, t, u,m

2
t ) + P µν

2 (p1, p2, p3)F2(s, t, u,m
2
t )

]

, (1)

where P1 and P2 are the orthogonal projectors onto the spin-0 and spin-2 states respectively,

P µν
1 (p1, p2) = gµν − pν1p

µ
2

p1 · p2
,

P µν
2 (p1, p2, p3) = gµν +

2

sp2T

(

m2
Hp

ν
1p

µ
2 − 2p1.p3 p

µ
2p

ν
3 − 2p2.p3 p

ν
1p

µ
3 + s pµ3p

ν
3

)

, (2)

s, t, and u are the partonic Mandelstam variables,

s = (p1 + p2)
2 , t = (p1 − p3)

2 , u = (p2 − p3)
2 , (3)
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pT is the transverse momentum of the Higgs particle,

p2T =
ut−m4

H

s
, (4)

and v = (
√
2GF )

−1/2 = 246 GeV. The functions F1 and F2 are known analytically [37, 38].

Finally, the partonic cross section is given by

dσ̂(gg → HH)

dt
=

α2
s

215π3v4
|F1(s, t, u,m

2
t )|2 + |F2(s, t, u,m

2
t )|2

s2
, (5)

where we included the factor of 1
2
for identical particles in the final state.

In the Standard Model, the chiral fermions are

ψi
L =





uiL

diL



 , uiR, d
i
R , (6)

where i = 1, 2, 3 is a generation index and the Lagrangian describing the quark masses is

−LSM
M =

∑

i

λdiψ
i

LΦd
i
R + λui ψ

i

LΦ̃u
i
R + h.c. . (7)

Here Φ = (φ+, φ0)
T
is the Higgs doublet, Φ̃ = iσ2Φ

∗ and φ0 = v+H√
2
. Note that in the

Standard Model the Higgs couplings λu,di are purely scalar. In the following we will focus

on the third generation quarks and use the standard notation u3 = t, d3 = b, with λd3 ≡ λ1

and λu3 ≡ λ2.

In the Standard Model, the dominant contributions come from top quark loops. Analytic

expansion of the amplitudes in the limit m2
t >> s yields the leading terms

F1(s, t, u,m
2
t ) ≡ F tri

1 (s, t, u,m2
t ) + F box

1 (s, t, u,m2
t ) ,

F tri
1 (s, t, u,m2

t ) =
4m2

H

s−m2
H

s

{

1 +
7

120

s

m2
t

+
1

168

s2

m4
t

+O
(

s3

m6
t

)}

,

F box
1 (s, t, u,m2

t ) = −4

3
s

{

1 +
7

20

m2
H

m2
t

+
90m4

H − 28m2
Hs+ 12s2 − 13p2Ts

840m4
t

+O
(

s3

m6
t

)}

;

F2(s, t, u,m
2
t ) = −11

45
s
p2T
m2

t

{

1 +
62m2

H − 5s

154m2
t

+O
(

s2

m4
t

)}

. (8)

The leading terms in the inverse top mass expansion of Eq. 8 are called the “low energy

theorem” result and give the mt-independent amplitudes [37, 38]

F1(s, t, u,m
2
t ) |LET →

(

−4

3
+

4m2
H

s−m2
H

)

s ,

F2(s, t, u,m
2
t ) |LET → 0 . (9)
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From Eq. 8, we can clearly see that the triangle diagram has no angular dependence and

only makes an s-wave contribution. This result is expected since the triangle diagram has a

triple-scalar coupling, which has no angular momentum dependence. For the box diagrams,

at the lowest order in F box
2 there is angular momentum dependence reflected in p2T , which

is expected from the spin-2 initial state and spin-0 final state. At O(m−4
t ) in F box

1 there is

also an angular momentum dependent piece proportional to p2T . Since the initial and final

states for the F1 contribution are both spin-0, this is a somewhat surprising result. To gain

insight into the angular dependence of F box
1 and further insight into F box

2 , the functions can

be decomposed into Wigner d-functions, djsi,sf , where j is the total angular momentum and

si (sf) is in the initial (final) state spin:

F box
1 (s, t, u,m2

t ) = −4

3
s

[(

1 +
7

20

m2
H

m2
t

+
540m4

H − 116m2
Hs + 59s2

5040m4
t

)

d00,0(θ)

+
13s2 − 52m2

Hs

5040m4
t

d20,0(θ) +O
(

s3

m6
t

)]

,

F box
2 (s, t, u,m2

t ) = −11

45
s
s− 4m2

H√
6m2

t

[

1 +
62m2

H − 5s

154m2
t

+O
(

s2

m4
t

)]

d22,0(θ) . (10)

Here θ is the angle between an initial state gluon and final state Higgs,

t = m2
H − s

4
(1− β cos θ) and β =

√

1− 4m2
H

s
. (11)

In F box
1 , we can see the expected spin-0 s-wave component, d00,0, and an additional spin-0

d-wave component, d20,0, at O(m−4
t ). The s-wave and d-wave components are orthogonal.

Hence any angular independent observables, such as total cross section and invariant mass

distribution, are independent of the p2T component of F box
1 up to O(m−8

t ). Finally, F box
2 is

wholly dependent on the initial state spin-2 d-wave function d22,0, as expected from Eq. 1.

In Fig. 2, we compare the total cross section for double Higgs production at different

orders in the large mass expansion against the exact result1, as a function of the center

of mass energy in pp collisions. We use the CT10 NLO PDF set [58] and run the strong

coupling constant through NLO from its value αs(mZ) = 0.118. We fix mt = 173 GeV and

mb = 4.6 GeV. The low energy theorem results are quite sensitive to the scale choice, and

typically reproduce the exact results to within roughly 50% error. This “agreement” between

the infinite mass approximation (LET) and the exact result is not improved by the inclusion

1 The exact result always includes the contributions from both the top and bottom quarks.
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FIG. 2: Double Higgs production cross section as a function of the hadronic center of mass energy
√
S in the infinite top mass approximation, LET, (solid lines) and retaining the O

(

s
m2

t

)

corrections

(dashed lines), normalized to the exact result. The black (red) curves choose as the renormalization

and factorization scales µ = 2mH (µ = MHH =
√
s).

of higher orders in the large mass expansion. In single Higgs production, the reliability of the

infinite mass approximation has been investigated through NNLO [59–62]. Because of the

shape of the gluon parton luminosity, which peaks at large values of x = m2
H/s and decreases

rapidly, the largest contribution to the hadronic single Higgs cross section comes from the

region below the top quark threshold, s < 4m2
t , where the large top mass approximation

holds. As a consequence, finite mass corrections to single Higgs production have an effect of

less than 1%. On the other hand, for double Higgs production the partonic energy is always

s > 4m2
H and the condition for validity of the low energy theorem, s≪ 4m2

t , is typically not

satisfied.

Fig. 3 shows the sensitivity of the results to the choice of the PDF sets. The exact result

has a small sensitivity to the choice of LO vs NLO PDFs. However, the infinite mass limit

(LET) of the result is quite sensitive to the choice of PDFs. Including higher order terms

in the top mass expansion does not reduce this sensitivity to the choice of PDFs.

The inadequacy of the infinite mass approximation for double Higgs production becomes

even more apparent when looking at kinematic distributions [57]. Consider for example the
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FIG. 3: Total cross sections for HH production using CTEQ6L LO PDFS and CT10 NLO PDFs.

The renormalization/factorization scale is µ = 2mH in (a) and µ = MHH =
√
s in (b). For all

curves, αs is evaluated at NLO.

invariant mass of the HH system,

dσ(pp→ HH)

dMHH
=

2MHH

S
σ̂(gg → HH)

dLgg

dτ
,

dLgg

dτ
=

∫ 1

τ

dx

x
g(x, µF )g

(

τ

x
, µF

)

, (12)

where S is the hadronic center of mass energy squared, MHH =
√
s, and τ = s

S
. In Fig. 4

we analyse the impact of the finite mass corrections to the invariant mass distribution at
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4
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FIG. 4: Invariant mass distributions for Higgs pair-production at
√
S = 8 TeV and

√
S = 14 TeV,

for terms in the large mass expansion up to O(m−4
t ) (Eq. 8) and with the full mass dependence.
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FIG. 5: Transverse momentum distribution for double Higgs production cross section. The Stan-

dard Model exact result, the LET and the heavy top mass approximations up to O(m−4
t ) are

shown. We choose as the renormalization and factorization scales µ = MHH =
√
s and use the

CT10 NLO PDFs.

the
√
S = 8 TeV and

√
S = 14 TeV LHC. The inclusion of the O(m−2

t ) corrections does

not significantly improve the low energy theorem results. The m−4
t terms fail entirely in

reproducing the exact distribution, in particular at large values ofMHH . Similar features are

observed in the pT spectrum shown in Fig. 5. Even for very small pT ≪ mt, the infinite mass

spectrum does not reproduce the distribution accurately, although the transverse momentum

distribution is well described when including the O(m−4
t ) terms. However, for pT > mt, the

results from the heavy mass expansion drastically fail to approximate the exact distributions.

A similar behaviour has been observed for the differential cross section dσ/dpT in higher

order corrections to single Higgs production [63].

2. Non-Standard Model bottom quark Yukawa coupling

We briefly discuss the role of the bottom quark loops which are omitted when using the

low energy theorems. In Fig. 6, we show the exact kinematic distribution for double Higgs

production in the Standard Model, along with the result of the low energy theorem. The

bottom quark contribution is negative but negligible in the Standard Model (Cb =
ybb
mb

= 1 is
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FIG. 6: Invariant mass distribution for Higgs pair production at
√
S = 8 TeV, in the infinite top

mass approximation (solid black), with the full dependence on mt, but no b quark contribution,

(red dotted) and including bottom-quark effects for increasing values of the Higgs-bottom quark

Yukawa coupling (dashed lines).

a rescaling factor of the bottom Yukawa coupling ybb with respect to the Standard Model).

The result of the destructive interference between the top and bottom quark loops remains

small even when the bottom Yukawa is scaled up by a factor of 10. Only enhancements by

factors as large as 50 cause the bottom loops to dominate and give significant deviations. In

the Standard Model (with CT10 NLO PDFs and µ = MHH), at
√
S = 8 TeV, the infinite

mass approximation for the two Higgs cross section is about 70% of the exact two Higgs

cross section. This remains roughly true if Cb is increased to ∼ 10. However, if the b quark

Yukawa coupling is increased by a factor of 50, this ratio goes to 9, and the low energy

theorem is wildly inaccurate.

3. Additional heavy quarks

A simple extension of the Standard Model with additional quarks of charge 2
3
which can

mix with the Standard Model like top occurs in many new physics scenarios, for example

little Higgs [49–52, 64] and composite Higgs [23–26, 28–34] models. There can also be new

heavy charge −1
3
quarks [65, 66] and the formulae in this section apply to both cases. We
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FIG. 7: Additional Feynman diagrams contributing to gg → HH in models with new heavy quarks

coupling to the Higgs boson through non-diagonal Yukawa interactions.

will take the new quarks to be in the fundamental representation of the color group. For an

overview of the latest lower bounds on the masses of the additional quarks, see for example

Refs. [5, 67]. Note however that the experimental analyses always assume the new quarks

to decay entirely either through W or though Z. This is not the case in our models, and

the experimental limits are therefore weakened [6, 68, 69].

In addition to the diagrams of Fig. 1, where any of the heavy quarks can be running in

the loop, the double Higgs production receives contributions also from the mixed diagrams

with two different quarks of Fig. 7. The mass terms and the interactions with a Higgs boson

of a pair of mass eigenstate quarks fi, fj (of the same charge) are

−LH =
∑

i,j

f i,L

(

miδij +
yij
v
H
)

fj,R + h.c.

=
∑

i,j

f i

(

miδij +
Yij + γ5Aij

v
H

)

fj , (13)

with

Yij =
yij + y∗ji

2
, Aij =

yij − y∗ji
2

. (14)

We consider real couplings. Therefore Yij = Yji and Aij = −Aji, and only the terms involving

two different quarks fi and fj contain pseudo-scalar couplings,

−LH =
∑

i

Yii
v
f iHfi +

∑

i 6=j

f i

(

Yij + γ5Aij

v

)

Hfj . (15)

In the Standard Model Yii = mi and Aij = 0.

For arbitrary masses mi and mj ,

F tri
1 (s, t, u,m2

i , m
2
j) =

Yii
mi

F tri
1 (s, t, u,m2

i ) +
Yjj
mj

F tri
1 (s, t, u,m2

j)

=
4m2

H

s−m2
H

sTr
(

yM−1
)

+O
(

s2

m4

)

, (16)
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where y and M are the Yukawa and the heavy quark mass matrices from Eq. 13. For the

box topologies, the leading terms in the large quark mass expansion are

F box
1 (s, t, u,mi, mj) = −4

3
s

{

Y 2
ii

m2
i

+
Y 2
jj

m2
j

+
2
(

Y 2
ij − A2

ij

)

mimj

}

+O
(

s2

m4

)

= −4

3
s Tr

(

yM−1yM−1
)

+O
(

s2

m4

)

,

F2(s, t, u,mi, mj) = O
(

s2

m4

)

. (17)

The relative minus sign between the vector and axial contributions comes from Eq. 14.

Although the leading terms of the triangle and box diagrams were calculated in the

diagonal mass basis, the cyclicity of the trace and the fact that both M and y rotate

according to the same unitary transformations allow one to cast the results in Eqs. 16 and 17

into a basis independent form. Hence the Yukawa and mass matrices can be evaluated both

in the mass basis, where M is diagonal, and in the current basis. In the current basis,

y = ∂M
∂v

. The infinite mass limit of both the triangle and box diagrams can also be obtained

via the low energy theorems [47, 48].

In our calculations in Sections IIIA and IIIB, we retain the full dependence of the leading

order amplitude on the quark masses. However, for small mass splitting δ ≡ m2
j −m2

i the

sub-leading terms have a simple and useful form,

F box
1 (s, t, u,m2

i , δ) =
Y 2
ii + Y 2

jj + 2Y 2
ij

m2
i

F box
1 (s, t, u,m2

i ) +
4

3
s
Y 2
jj + Y 2

ij

m2
i

δ

m2
i

[

1 +
7

10

m2
H

m2
i

]

+
8

3
s
A2

ij

m2
i

[

1 +
15m2

H − 4s

60m2
i

− δ

2m2
i

]

+O
(

s2

m4
i

,
δ2

m4
i

)

,

F2(s, t, u,m
2
i , δ) =

Y 2
ii + Y 2

jj + 2Y 2
ij

m2
i

F2(s, t, u,m
2
i ) + s

Y 2
jj + Y 2

ij

m2
i

δ

m2
i

(

22

45

p2T
m2

i

)

−2

3
s
A2

ij

m2
i

p2T
m2

i

+O
(

s2

m4
i

,
δ2

m4
i

)

. (18)

Following [70], we consider the infinite quark mass limit of these results and recast them

into a convenient form for the calculation of the amplitudes for single and double Higgs

production in models with extended quark sectors with respect to the Standard Model

amplitudes. In the infinite mass approximation, the leading order amplitudes can be written

as (Eqs. 16, 17)

Agg→H ∝ Tr
(

yM−1
)

, Abox
gg→HH ∝ Tr

(

yM−1yM−1
)

, (19)
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where the omitted proportionality terms do not depend on the masses and Higgs couplings

of the quarks. In the Standard Model, ytt = mt. The amplitudes only depend on the omitted

proportionality factors, which therefore cancel when taking the ratio to the Standard Model

result:

Rgg→H ≡ Agg→H

ASM
gg→H

= Tr
(

yM−1
)

=
∂

∂v
(log detM) , (20)

Rbox
gg→HH ≡

Abox
gg→HH

Abox,SM
gg→HH

= Tr
(

yM−1yM−1
)

(21)

In Eq. 20 we used the relation y = ∂M
∂v

[70]. Eq. 21 is equivalent to the result of Ref. [34].

III. EXAMPLES

A. Singlet top partner

We are interested in examining possible large effects in two Higgs production from gluon

fusion in models which are consistent with precision electroweak measurements and the

observed rate for single Higgs production. Topcolor models [23, 28], top condensate mod-

els [24–27], and little Higgs models [49–55] all contain a charge 2
3
partner of the top quark.

We consider a general case with a vector SU(2)L singlet fermion, T 2, which is allowed to

mix with the Standard Model like top quark, T 1 [5, 68, 69, 71–73]. The fermions are,

ψL =





T 1
L

B1
R



 , T 1
R ,B1

R ; T 2
L , T 2

R . (22)

Following the notation of [5], the mass eigenstates are t, T and b = B1 (where t, b are the

observed top and bottom quarks), and can be found by the rotations

χt
L,R ≡





tL,R

TL,R



 ≡ U t
L,R





T 1
L,R

T 2
L,R



 . (23)

The chirality projectors are PL,R ≡ 1∓γ5
2

and the mixing matrices U t
L, U

t
R are unitary and

parameterized as,

U t
L =





cos θL − sin θL

sin θL cos θL



 , U t
R =





cos θR − sin θR

sin θR cos θR



 . (24)
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We will abbreviate sL = sin θL, cL = cos θL.

The fermion mass terms are

−LM,1 = λ1ψLHB1
R + λ2ψLH̃T 1

R + λ3ψLH̃T 2
R + λ4T

2

LT 1
R + λ5T

2

LT 2
R + h.c.

= χt
L

[

U t
LM

t
(1)U

t†
R

]

χt
R + λ1

v√
2
B1

LB1
R + h.c. , (25)

where

M t
(1) =





λ2
v√
2
λ3

v√
2

λ4 λ5



 . (26)

Without loss of generality, the T 2

LT 1
R term can be rotated away through a redefinition of

the right handed fields. The model therefore contains three independent parameters in

the top sector, which we take to be mt,MT and θL. The consistency of the model with

electroweak precision measurements and its decoupling properties have been studied in many

works [5, 67, 69, 71–73]. We will not repeat this analysis here, but use the results of Ref. [5].

It is interesting to note that in the limit θL ∼ 0 (required by precision electroweak data),

the mass terms for the top like quark and its partner become

λ2 ≃
√
2mt

v

[

1 +
s2L
2
(r − 1)

]

,

λ5 ≃ MT

[

1 +
s2L
2

1− r

r

]

, (27)

where r =
M2

T

m2

t
. Decoupling of the heavy quark therefore requires s2L ∼ r−1, as it was shown

in [5].

Since we are interested in Higgs production from the quark loops, we need the couplings

to the Higgs boson,

−LH,1 =
mt

v
ctttLtRH +

Mt

v
cTTTLTRH +

MT

v
ctT tLTRH +

mt

v
cTtTLtRH + h.c. , (28)

where

ctt = c2L , cTT = s2L , ctT = cTt = sLcL . (29)

Using Eq. 29 and the low energy theorems of Eqs. 20 and 21, it is straightforward to see

that the single and double Higgs production rates are the same as the Standard Model

up to corrections of O
(

s
m2

t
, s
M2

T

)

. These corrections are further suppressed by the small

mixing angles allowed by the bounds from electroweak precision data [5]. Both total and

differential distributions are very close to the Standard Model (Fig. 8), and one cannot use
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FIG. 8: Invariant mass distribution in the Standard Model and in the top-singlet partner model

(with MT = 1 TeV) at the
√
S = 8 TeV LHC.

double Higgs production to obtain information about additional vector singlet quarks. Fig. 8

uses the largest mixing angle allowed by precision electroweak data, and the reduction in the

total cross section for the singlet top partner model from the exact Standard Model result

is roughly 15%. This is of similar size to the reduction in the gg → H rate found in Ref. [5].

This model is an example of a case which will be extremely difficult to differentiate from

the Standard Model.

B. Mirror fermions

As a second example, we consider a model which has a generation of heavy mirror

fermions [71, 74–77]. There are four new quarks T 1, T 2 and B1, B2, with charge 2
3
and

−1
3
, respectively. The quarks are in the SU(2)L representations,

ψ1
L =





T 1
L

B1
L



 , T 1
R ,B1

R ; ψ2
R =





T 2
R

B2
R



 , T 2
L ,B2

L . (30)

The first set of heavy quarks has the quantum numbers of the Standard Model quarks, while

T 2 and B2 have have the left- and right- handed fermion assignments reversed from those
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of the Standard Model. For simplicity, we assume there is no mixing between the heavy

mirror fermions and the Standard Model fermions. This assumption eliminates the need to

consider limits from Z → bb [65] and relaxes the restrictions from precision electroweak data

discussed in Sec. III B 12.

The most general Lagrangian for the interactions of the mirror fermions with the Higgs

doublet is,

−L = λAψ
1

LΦB1
R + λBψ

1

LΦ̃T 1
R + λCψ

2

RΦB2
L + λDψ

2

RΦ̃T 2
L

+λEψ
1

Lψ
2
R + λFT

1

RT 2
L + λGB

1

RB2
L + h.c.

= χt
L

[

U t
LMUU

t†
R

]

χt
R + χb

L

[

U b
LMDU

b†
R

]

χb
R + h.c. . (31)

The mass eigenstates χq
P (P = L,R ; q = t, b) are obtained through unitary rotations

U q
P =





cos θqP − sin θqP

sin θqP cos θqP



 , (32)

and the mass matrices are

MU =





λB
v√
2

λE

λF λD
v√
2



 , MD =





λA
v√
2

λE

λG λC
v√
2



 . (33)

We will denote the two top- like and the two bottom- like mass eigenstates as T1, T2 and

B1, B2 respectively. The Lagrangian parameters λi can be expressed in terms of the physical

quark masses and the mixing angles. We report these relations in Appendix A.

Since all the quarks have different quantum numbers, it is not possible to rotate away

any parameter in the Lagrangian. However, the SU(2) symmetry requires that

MU,12 = MD,12 , (34)

and therefore

MT2
cos θtR sin θtL −MT1

cos θtL sin θ
t
R =MB2

cos θbR sin θbL −MB1
cos θbL sin θ

b
R . (35)

This relation can be written as
[

MT2
+MT1

]

sin θt−+

[

MT2
−MT1

]

sin θt+ =

[

MB2
+MB1

]

sin θb−+

[

MB2
−MB1

]

sin θb+ , (36)

2 We will not explore UV completions of this model that can mediate the decay of the mirror fermions

through higher-dimensional operators and prevent the new quarks from becoming stable.
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where θ
t(b)
± = θ

t(b)
L ± θ

t(b)
R .

The couplings of the fermion mass eigenstates to the Higgs boson are

−LH
M =

cT1T1

2v
T 1LT1RH +

cT2T2

2v
T 2LT2RH +

cT1T2

2v
T 1LT2RH +

cT2T1

2v
T 2LT1RH +

cB1B1

2v
B1LB1RH +

cB2B2

2v
B2LB2RH +

cB1B2

2v
B1LB2RH +

cB2B1

2v
B2LB1RH + h.c. ,

(37)

where

cT1T1
= MT1

[

1 + cos
(

2θtL
)

cos
(

2θtR
)]

+MT2
sin

(

2θtL
)

sin
(

2θtR
)

= 2MT1

[

cos2 θt− − MT1
−MT2

2MT1

(

sin2 θt+ − sin2 θt−
)

]

,

cT1T2
= MT1

cos
(

2θtL
)

sin
(

2θtR
)

−MT2
cos

(

2θtR
)

sin
(

2θtL
)

=
MT1

−MT2

2
sin(2θt+)−

MT2
+MT1

2
sin(2θt−) ,

(cT2T2
, cT2T1

) = (cT1T1
, cT1T2

) withMT1
↔MT2

, θt± → −θt± . (38)

Similar expressions hold in the bottom sector.

The couplings to the electroweak gauge bosons that are needed for the computation of

the Peskin–Takeuchi parameters (Sec. III B 1) are reported in the Appendix.

1. Higgs production using low energy theorems in the mirror model

For single Higgs production through top quark and mirror fermion loops, the low energy

theorem of Eq. 20 yields

Agg→H = ASM
gg→H

(

1 +
cT1T1

2MT1

+
cT2T2

2MT2

+
cB1B1

2MB1

+
cB2B2

2MB2

)

≡ ASM
gg→H (1 + ∆) , (39)

where we introduce the fractional difference ∆ of the single Higgs amplitude from that of

the Standard Model.

Both for simplicity and because one expects large corrections to the oblique parameters

for a large mass splitting within each chiral doublet, we assume MT1
= MB1

= M and

MT2
=MB2

=M(1 + δ). In this limit,

Agg→H = ASM
gg→H

{

1 + 4− 1

1 + δ

[

(2 + δ) sin θt− − δ sin θb+
] [

(2 + δ) sin θb− + δ sin θb+
]

}

,

(40)
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where we impose (see Eq. 36)

(2 + δ) sin θt− + δ sin θt+ = (2 + δ) sin θb− + δ sin θb+ . (41)

Given the recent observations at the LHC, we are interested in the case when

Agg→H ∼ ASM
gg→H . One simple way to recover this limit is to have

θt− ∼ π

2
, θb− ∼ π

2
, (42)

which for single production gives3

Agg→H ∼ ASM
gg→H

{

1− δ2

1 + δ
cos2 θb+

}

= ASM
gg→H

{

1− δ2

1 + δ
sin2(2θbR)

}

. (43)

To get the Standard Model result for gg → H further requires either δ ∼ 0 or θbR ∼ θtR ∼ 0,

where the constraint on the right-handed mixing angle in the top sector arises from Eq. 41.

The result of Eq. 43 can be understood by inspecting the Yukawa couplings in the limit

θt,b− = π
2
:

cT1T1
= −cT2T2

= −Mδ cos2(θt+) = −Mδ sin2(2θtR) ,

cT1T2
= cT2T1

= −Mδ
2
sin(2θt+) =

Mδ

2
sin(4θtR) . (44)

Similar relations hold for the charge −1
3
sector. Hence, for δ ∼ 0 or θt,bR ∼ 0 the diagonal

Yukawa couplings go to zero and only the top quark, with its Standard Model Yukawa

coupling, contributes to single Higgs production. The off-diagonal couplings of the mirror

fermions to the Higgs boson are slightly less suppressed, and could induce deviations in the

double Higgs rate from that of the Standard Model.

From the low energy theorem of Eq. 21, the box contributions to gg → HH production

(including top quark loops) can be estimated,

F box
1 ≡ F box,SM

1 (1 + ∆box) ;

∆box =
c2T1T1

4M2
T1

+
c2T2T2

4M2
T2

+
c2B1B1

4M2
B1

+
c2B2B2

4M2
B2

+
cT1T2

cT2T1

2MT1
MT2

+
cB1B2

cB2B1

2MB1
MB2

= 4 +
3

2

α2
1 − α2

2 + α2
3 − α2

4

1 + δ
+

1

4

(α2
1 − α2

2)
2 + (α2

3 − α2
4)

2

(δ + 1)2
, (45)

3 This relation holds for small δ. For δ = 0, Eq. 36 requires sin θt
−

= sin θb
−
, and

Agg→H = ASM
gg→H

(

1 + 4 cos2 θb
−

)

. This result can be easily understood from the Yukawa couplings,

cT1T1
= cT2T2

= M cos2 θb
−

and cT2T1
= −cT1T2

= M
2
sin(2θb

−
). Also in this case, the gg → H rate is

identical to the Standard Model rate for θb
−
= π

2
.
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where we defined

α1 = δ sin θb+ + (2 + δ)(sin θb− − sin θt−) ,

α2 = (2 + δ) sin θt− , α3 = δ sin θb+ , α4 = (2 + δ) sin θb− . (46)

For θt,b− ∼ π
2
, Eq. 45 yields4

∆box =
δ2

1 + δ
cos2 θb+ +

δ4

2(1 + δ)2
cos4 θb+ . (47)

Note that F box
2 does not contribute in the infinite fermion mass limit. The terms proportional

to cos2(θb+) come from the contributions of the off-diagonal fermion-Higgs couplings. For

this simple choice of parameters, the same term governs the deviations from the Standard

Model both in single and double Higgs production.

We are interested in determining how large a deviation from the Standard Model

gg → HH rate is possible with a minimal deviation in the gg → H rate. With the assump-

tion of no mass splitting within the mirror doublets, there are five independent parameters:

the mass scale M , which drops out in the heavy mass limit for the Higgs production rates,

the mass splitting between families, δ, and three angles. Using Eq. 40, we replace one of the

angles with the fractional deviation ∆ of the gg → H amplitude from that of the Standard

Model,

sin θb− =
1

2 + δ

{

(4−∆)(1 + δ)

(2 + δ) sin θt− − δ sin θb+
− δ sin θb+

}

. (48)

We require this deviation to be within 10% and the mass splitting δ between the two mirror

families not to be too large (0 < δ < 1), since we expect electroweak observables to put severe

bounds on δ. Under these constraints, we perform a scan over δ,∆, θt− and θb+. The values

of these parameters for which Eqs. 41 and 48 yield real solutions for θt+, θ
b
− are represented

by the blue dots in Fig. 9. The red diamonds represent regions where the difference ∆box in

the double Higgs amplitude from the box topology is larger than 15%.

In the following, we fix θt− = π
2
in order to focus on a region with large ∆box, and analyse

how double Higgs production depends on θb+ and δ for a Standard Model gg → H amplitude,

∆ = 0, and for ±10% deviations from it, ∆ = ±0.1. This analysis is shown in Fig. 10 for a

heavy mass scale M = 800 GeV. To qualitatively understand the features of these plots, one

4 In the exact δ = 0 limit the result reads F box
1

= F
box,SM
1

[

1− 4 cos2 θb
−
+ 8 cos4 θb

−

]

.
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FIG. 9: Allowed regions in the θt−, θ
b
+ parameter space where deviations, ∆, from the Standard

Model gg → H amplitude are below 10% and the mirror fermion masses satisfy 0 < δ < 1. The

other two angles are fixed through Eqs. 41 and 48. The red diamonds denote regions where the

gg → HH amplitude from the box topology deviates from the Standard Model by more than 15%.

can consider the limit of small deviations from the Standard Model single Higgs amplitude

and small family splitting δ,

∆box = δ4 cos4 θb+

[

1

2
− δ(1− sin θb+)

]

+∆
[

−1 + δ2 cos2 θb+ +O(δ3)
]

+O(∆2, δ6) . (49)

For almost degenerate mirror fermions (δ ∼ 0) and small deviations in single Higgs produc-

tion from the Standard Model case, (which occurs when θb+ = ±π
2
), the dominant term is

∆box ∼ −∆. When single Higgs production is suppressed, double Higgs production is always

enhanced, while for a slightly enhanced Higgs single production rate, double production can

also be suppressed. For ∆ = 0 and small δ, double Higgs production is also enhanced. In all

cases, the minimal deviations from Standard Model double Higgs production occurs exactly

at θb+ = ±π
2
, while the maximum deviation is at

θb+ = arccos

(

2

√
1 + δ

2 + δ

)

+

√
1 + δ

2δ
∆+O(∆2) . (50)

Finally, we note that the results of this section can be written in terms of an effective
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FIG. 10: Deviations from the Standard Model box amplitude, F box
1 , as a function of θb+ for θt− = π

2 ,

M = 800 GeV and four different values of the fractional mass difference δ of the two mirror families,

for a 10% deviation in the single Higgs production amplitude (left plot) and for the same gg → H

amplitude as in the Standard Model (right plot). The blank regions on the curves are not allowed

for θt+, θ
b
− to be real.

Lagrangian, which for δ = 0 is

Leff =
αs

12π
Ga

µνG
a,µν

[

(1 + 4 cos2 θb−)
H

v
− (1− 4 cos2 θb− + 8 cos4 θb−)

H2

2v2

]

. (51)

2. Bounds from electroweak precision data

The new mirror quarks carry electroweak charges, and therefore contribute to the self -

energies of the electroweak gauge bosons [72, 74, 78]. A convenient way to parametrize these

effects is through the Peskin–Takeuchi parameters [79, 80],

α∆SF =
4s2W c

2
W

M2
Z

{

ΠZZ(M
2
Z)− ΠZZ(0)− Πγγ(M

2
Z)−

c2W − s2W
cW sW

ΠγZ(M
2
Z)

}

,

α∆TF =
ΠWW (0)

M2
W

− ΠZZ(0)

M2
Z

,

α∆UF = 4s2W

{

ΠWW (M2
W )−ΠWW (0)

M2
W

− c2W

(

ΠZZ(M
2
Z)−ΠZZ(0)

M2
Z

)

−2sW cW
ΠγZ(M

2
Z)

M2
Z

− s2W
Πγγ(M

2
Z)

M2
Z

}

, (52)

where ΠXY (p
2) denotes the transverse part of the vacuum polarization amplitude evaluated

at momentum p2 and c2W =
M2

W

M2

Z

= 1 − s2W . The couplings of the mirror fermions to the
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electroweak gauge bosons are reported in the Appendix.

We use the fit to the electroweak precision data given in Ref. [81],

S = 0.03± 0.10 , T = 0.05± 0.12 , U = 0.03± 0.10 , (53)

with correlation coefficients

ρij =











1.0 0.89 −0.54

0.89 1.0 −0.83

−0.549 −0.83 1.0











.

The reference Higgs and top-quark masses are mH,ref = 126 GeV and mt,ref = 173 GeV.

We use mH = 125 GeV and so we need to account also for the Higgs contributions to the

electroweak parameters. Up to terms of O(M2
Z/m

2
H), they read

∆SH =
1

12π
log

(

m2
H

m2
H,ref

)

, ∆TH = − 3

16πc2W
log

(

m2
H

m2
H,ref

)

, ∆UH = 0 . (54)

The ∆χ2 is defined as

∆χ2 =
∑

i,j

(Xi − X̂i)(σ
2)−1

ij (Xj − X̂j) , (55)

where X̂i are the central values of the electroweak parameters from the fit in Eq. 53, Xi

are the contributions to these parameters from the new mirror fermions and from the Higgs

loops, and σ2
ij ≡ σiρijσj , with σi being the errors given in Eq. 53.

We consider the case of no mass splitting within the doublets, while the fractional mass

difference between the two heavy families is parametrized by δ, and focus on the regions

of parameter space where we expect the largest deviations with respect to the Standard

Model gg → HH amplitude, while the single Higgs rate remains very close to the Standard

Model value. Following the discussion in the previous section, we therefore fix θt− = π
2
,

∆ = {−0.1; 0; 0.1} and choose M = 800 GeV. In Fig. 11 we show the 95% allowed regions

in the {sin θb+, δ} parameter space for the three values of ∆ (red bands), along with the

regions where the box enhancement is larger than 15% (blue diamonds). The experimental

bounds typically require δ to be small. In this limit, the electroweak parameters assume

simple expressions,

∆SF =
NC

30π
∆

[

25

6
+ 4δ sin θb+ −∆

(

1 + δ sin θb+
)

+O(δ2)

]

,

∆TF =
NC

96πs2W

M2

M2
W

∆2
[

2 + δ
(

sin θb+ + 2
)

+O(δ2)
]

,

∆UF =
NC

60π
∆2

[

2 + δ sin θb+ +O(δ2)
]

, (56)
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FIG. 11: Red bands: 95% confidence level allowed regions from the fit to electroweak data for single

Higgs amplitudes which are suppressed (a)/enhanced (c) by 10% with respect to the Standard

Model amplitude, or equal to the Standard Model amplitude (b), for θt− = π
2 and M = 800 GeV.

Blue diamonds: parameter space regions which allow an enhancement of 15% or more to the double

Higgs rate from the box topology. Such a large enhancement is not allowed by electroweak precision

bounds in the case of ∆ = 0.1 (c).

where NC = 3. For δ → 0, θb− → θt− = π
2
and ∆ → 0 (Eq. 43). However, a large increase in

the double Higgs rate from the box topology can be obtained only for large values of δ. In

particular, for ∆ = 0.1 the electroweak precision observables do not allow the mass splitting

to be large enough to obtain a significant enhancement, consistently with the results from

Fig. 10.
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FIG. 12: Differential double Higgs production cross section in the Standard Model and in the

mirror fermion model for θt− = π
2 , M = 800 GeV. The single Higgs production amplitude with

respect to the Standard Model is suppressed by 10% (a), equal (b) or enhanced by 10% (c). We use

CT10NLO PDFs and µ = MHH =
√
s. The curves labelled Low Energy Theorem use the infinite

mass approximation to the rate.

3. Phenomenology of the Mirror Fermion Model and H → γγ

Once the parameters of the model are constrained to reproduce the Standard Model single

Higgs amplitude to within ±10% and to be allowed by a fit to the precision electroweak

data, there is very little freedom left to adjust parameters. The differential cross section

for gg → HH is shown for allowed parameters in Fig. 12 and it is clear that this class of
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models does not allow for a large enhancement of the HH production rate. The exact cross

sections include both Standard Model t and b contributions, while the low energy theorem

curves include the infinite mass limit of the heavy quark contribution. The largest allowed

enhancement is found for ∆ = −0.1 and in this case, the total cross section, pp → HH is

enhanced by ∼ 17% over the Standard Model rate.

The mirror fermions also contribute to the rate for H → γγ5. We again consider each

mirror family to be degenerate between the charge 2
3
and charge −1

3
quarks, and the two

families to be split by a mass difference Mδ. In the limit mH << mt,MW ,M [87],

√

Γ(H → γγ)

Γ(H → γγ)SM
= 1− 16

47

[

cT1T1

2MT1

+
cT2T2

2MT2

+
1

4

(

cB1B1

2MB1

+
cB1B1

2MB2

)]

= 1− 8

47

[

5 + sin θb−
(

3 sin θb− − 8 sin θt−
)]

−32

47
δ sin θb+

(

sin θb− − sin θt−
)

+O(δ2) , (57)

where we impose only the angle relation from Eq. 41 and expand for small δ. In the limit

δ = 0 (and therefore θb− = θt− from Eq. 41), the branching ratio into photons cannot be

larger than in the Standard Model.

We relate the deviations in the photon decay branching ratio to the deviation ∆ from the

Standard Model single Higgs production rate6,

√

Γ(H → γγ)

Γ(H → γγ)SM
= 1− 24

47

[

4(δ + 1)

((δ + 2) sin θt− − δ sin θb+)
2
− (δ + 2) sin θt− + δ sin θb+

(δ + 2) sin θt− − δ sin θb+

]

− 4

47
∆

[

1 +
3(δ + 2) sin θt−

(δ + 2) sin θt− − δ sin θb+
− 12(δ + 1)

((δ + 2) sin θt− − δ sin θb+)
2

]

− 6

47
∆2 δ + 1

((δ + 2) sin θt− − δ sin θb+)
2
. (58)

Imposing only the bounds from electroweak precision observables, and performing a gen-

eral scan over the input parameters δ, θb+, θ
b
−, θ

t
+ (fixing θt− through Eq. 41, M = 800 GeV

and δ in the range {−0.5; 2}), we find that the Higgs branching ratio into photons can

have large differences from the Standard Model predictions, with suppressions as large as

90% and enhancements up to 10%. Requiring also the single Higgs production rate to be

5 We consider only the contributions of heavy mirror quarks. Heavy leptons can also affect the H → γγ

rate [82–86].
6 This result holds for arbitrary values of the parameters.
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FIG. 13: Ratio of Γ(H → γγ) to the Standard Model Higgs branching ratio into photons for

the points of Fig. 11(b), where ∆ = 0 and θt− = π
2 . We fix δ = ±0.2, which is allowed from

the electroweak fit for all the values of θb+. Larger deviations from the Standard Model H → γγ

branching ratios arise outside this range of δ, in the regions where | sin θb+| is close to 1.

close to the Standard Model value puts severe constraints on these deviations. For a single

Higgs production amplitude equal to the Standard Model prediction, the maximum devia-

tion in the Higgs branching ratio into photons is ±5%. For the regions of parameter space

of Fig. 11(a), where θt− = π
2
and a −10% deviation from the Standard Model prediction for

the gg → H rate is allowed, only small enhancements (up to +10%) of the H → γγ rate

are allowed. For a +10% enhancement in the single Higgs rate over the Standard Model

prediction (Fig. 11(c)), the branching ratio into photons deviates from the Standard Model

prediction by at most by a few percent. We show how these deviations depend on the free

input parameters δ, sin θb+ in Fig. 13, where we focus on ∆ = 0 and pick two values of δ

which are allowed by the electroweak fit over all the range of θb+ (with θt− = π
2
). The clear

conclusion is that the restrictions from precision electroweak data, combined with a single

Higgs production rate close to the Standard Model prediction, do not allow for significant

deviations in the H → γγ rate in this class of models.
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IV. CONNECTION TO GLUON-HIGGS DIMENSION SIX OPERATORS

An interesting idea [36] is to combine single and double Higgs production to gain in-

sights on the mechanism giving mass to the particles that contribute to these loop-mediated

processes. Including contributions up to dimension-6 operators, the effective Lagrangian

responsible for the Higgs-gluon interactions can be written as

L = c1O1 + c2O2 . (59)

Particles whose mass arises entirely from renormalizable Higgs couplings induce an operator

O2 =
αs

24π
Ga

µνG
a,µν log

(

Φ†Φ

v2

)

≃ αs

12π
Ga

µνG
a,µν

(

H

v
− H2

2v2

)

. (60)

If the particle receives contributions to its mass from other sources as well, an additional

operator

O1 =
αs

12π
Ga

µνG
a,µν

(

Φ†Φ

v2

)

≃ αs

12π
Ga

µνG
a,µν

(

H

v
+
H2

2v2

)

(61)

arises. In the Standard Model cSM1 = 0, cSM2 = 1. The two operators contribute differently

to Higgs single and pair production and the different rates in these channels constrain the

coefficients c1 and c2. Following [36], one can derive these two coefficients in a background

field approach. The Higgs field is treated as a background field, and the masses of the

heavy particles become thresholds in the running of αs. Matching the low- and high-energy

theories [47, 88],
1

g2eff(µ)
=

1

g2s(µ)
− δbf

8π2
log det

M(H)

µ
, (62)

where M(H) is the Higgs-dependent mass matrix and δbf = 2/3 for fermions in the funda-

mental representation of the color group. This yields the effective Lagrangian

Leff =
αs

12π
Ga

µνG
a,µν log detM(H) . (63)

We write the determinant of the mass matrix as

detM(H) = [1 + Fi(H/v)]× P (λi, mi, v) , (64)

where P is a polynomial of the Yukawa couplings λi and fermionic masses mi and in general

Fi(H/v) = F (H/v, λi, mi, v). If Fi(H/v) is such that F ′
i (0) = 1 + Fi(0), and all the higher

order derivatives vanish before electroweak symmetry breaking, then the Higgs production
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rates via gluon fusion in the heavy quark limit are exactly as in the Standard Model7. This

is the case in the singlet top partner model, where Fi(H/v) = H/v and therefore c1,2 = cSM1,2 .

Interestingly, one can have the same single Higgs production rate as in the Standard

Model, but a different double Higgs rate, only for F ′′
i (0) 6= 0. If also the first condition,

F ′
i (0) = 1 + Fi(0), is not met, then the single Higgs rate is not Standard Model like. In

such a case, we note that for Fi independent of Yukawa couplings and fermionic masses,

the Higgs rates do not depend on the details of the fermion sector [34] and deviations can

arise only from changes to the Higgs potential. If Fi depends on the Yukawa couplings and

fermionic masses, the Higgs rates will in general be related to these parameters. Such a

situation occurs for example in the mirror fermion model. In this case

ct1 = −2βt

(1−βt)2
, cb1 = −2βb

(1−βb)2
,

ct2 = 1 + 2
(1−βt)2

, cb2 = 2
(1−βb)2

.

(65)

We define

βt =
λEλF

λBλDv2/2
, βb =

λEλG
λAλCv2/2

. (66)

In terms of the physical parameters,

βq = 1− 4(1 + δ)

(2 + δ)2 cos2 θq− − δ2 cos2 θq+
, q = t, b . (67)

For βb → 0, cb1 and cb2 go to twice the Standard Model value. In this limit, the vector

contributions to the fermion mass matrix vanish, and the masses come entirely from elec-

troweak symmetry breaking. Since there are two quarks, an extra factor of two arises. In ct2

one clearly sees the +1 contribution coming from the Standard Model top quark.

The coefficients governing single and double Higgs production are then

cH ≡ c1 + c2 = 1 + 2

[

1

1− βt
+

1

1− βb

]

,

cHH ≡ c1 − c2 = −1 − 2

[

1 + βt
(1− βt)2

+
1 + βb

(1− βb)2

]

. (68)

The two rates depend on the two independent parameters βt, βb from the top and bottom

sectors. Even if we require the single Higgs rate, gg → H , to be close to the Standard Model

7 For the purpose of this discussion, we only need F ′′

i (0) = 0. Nonvanishing derivatives at higher orders

only affect gluon fusion production of three or more Higgs bosons.
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FIG. 14: The shaded red regions correspond to amplitudes for gg → H within ±10% of the

Standard Model rate.

value,

cH = c1 + c2 → cSMH (1 + ∆) = 1 + ∆ , (69)

we are left with an independent parameter that can yield completely independent variations

in the double Higgs rate.

In Fig. 14, we show the regions of βb and βt which reproduce the Standard Model Higgs

amplitude to within ∆ = ±10%. Imposing the constraint of Eq. 69 on the single Higgs rate

in general constrains the double Higgs rate, gg → HH ,

cHH → 2c1 − (1 + ∆) . (70)

In the singlet case, c1 = 0 and deviations in single and double Higgs rates must be of the

same order of magnitude. In the mirror case, c1 can deviate from zero, which removes the

close relationship between single and double Higgs production.

In terms of the parameters of the mirror fermion model,

cHH → cSMHH

(

1 +
8

(1− βt)2
− 5− βt

1− βt
∆+∆2

)

= −
{

1 +
1

2

[

(2 + δ)2 cos2 θt− − δ2 cos2 θt+
1 + δ

]2

+O(∆)

}

. (71)

The term in the curly brackets correctly reproduces 1+∆box from Eq. 49 for ∆ = 0, θt− = π
2
.

A large effect in the double Higgs rate requires large c1, and, in turn, βt ∼ 1. This is seen
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in Fig. 15, where we fix βb to reproduce the single Higgs rate within 10% the Standard

Model value. However, from Eq. 67 βt → 1 implies δ → −1 or δ → ∞. These are not

viable solutions. The first one corresponds to massless quarks. The second one requires

non-perturbative interactions with the Higgs (large λB, λD) for heavy quarks (large λE, λF ),

as in Eq. 66. In the mirror fermion model discussed in this paper, large deviations in the

gg → HH rate do not occur.

V. CONCLUSIONS

We analysed double Higgs production from gg → HH in the Standard Model and in mod-

els with additional heavy vector or chiral quarks. In the Standard Model, we compared the

approximate results in the large top mass expansion with the exact cross section, and anal-

ysed the dependence of the production rate on the choice of the renormalization/factorization

scale µ and on the PDF sets. As is well known [42, 57], the low energy theorems fail to accu-

rately reproduce both the total and differential double Higgs cross sections. The differential

distributions are poorly estimated by the low energy theorems and predict a large tail at

high invariant masses. The discrepancy is smallest for the scale choice µ = 2mH , yielding a

10− 25% difference from the exact calculation of the total rate. Further, the predictions of

the large top mass expansion depend sensitively on the choice of PDFs. Inclusion of higher
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order terms in the large mass expansion does not improve the convergence towards the exact

results.

We discussed how the combination of single and double Higgs production from gluon

fusion might give insight into the mechanism giving mass to quarks. The parameters of

models with new heavy fermions are strongly constrained both by the observed rate for

gg → H and by precision electroweak measurements. In the case of a new heavy vector

singlet quark, electroweak precision observables strongly constrain its mixing with the top

quark [5]. The singlet needs almost to decouple from the Standard Model particles, and

therefore deviations from the Standard Model in both the single and double Higgs rates are

small.

The situation is more interesting in the case of heavy mirror quarks which are not allowed

to mix with the Standard Model fermions. The bounds from electroweak precision data

still allow for the single Higgs production cross section to differ from the Standard Model

predictions. However, after restricting the deviations in the gg → H rate from the Standard

Model rate to be small, the resulting double Higgs cross section and distributions become

close to those of the Standard Model. The reason for this behaviour becomes clear in terms

of the two dimension six operatorsO1 and O2. Once we fix the single Higgs rate to be close to

that of the Standard Model, large deviations in the double Higgs rate occur only if one of the

mirror family becomes very heavy, with non-perturbative Higgs interactions, or very light,

outside the range mH < 2mq where the operator expansion applies. In the mirror fermion

model we also investigated the effects of the additional quarks on the Higgs branching ratio

to photons. After the constraints from the observed single Higgs cross section and precision

electroweak measurements are taken into account, the branching ratio H → γγ is always

within 10% of the Standard Model rate.

Therefore, in the two example of models with new heavy fermions which we studied, the

constraints from the observed gg → H rate, combined with precision electroweak data, do

not allow large deviations of the gg → HH rate from the Standard Model prediction.
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Appendix A: Electroweak parameters in the mirror fermion model

We present here some useful formulae for the mirror fermion model.

The parameters λi appearing in the mass Lagrangian 31 can be expressed in terms of the

physical masses and mixing angles as

λ2
v√
2

= mt ,

λB
v√
2

= MT1
cos θtL cos θ

t
R +MT2

sin θtL sin θ
t
R ,

λD
v√
2

= MT1
sin θtL sin θ

t
R +MT2 cos θ

t
L cos θ

t
R ,

λE = MT2
sin θtL cos θ

t
R −MT1

cos θtL sin θ
t
R ,

λF = MT2
cos θtL sin θ

t
R −MT1

cos θtR sin θtL . (A1)

Similar relations hold for the corresponding parameters in the bottom sector, with MTi
→

MBi
and θtP → θbP .

The charged current interactions among quarks of charge Q and (Q− 1) are

LCC
M =

g√
2

∑

i,j

{

q̄iQγ
µ
[

V L
ij PL + V R

ij PR

]

qj(Q−1)

}

W+
µ + h.c. , (A2)

with

V L
T1B1

= cos θbL cos θ
t
L V L

T1B2
= sin θbL cos θ

t
L

V L
T2B1

= cos θbL sin θ
t
L V L

T2B2
= sin θbL sin θ

t
L

V R
T1B1

= sin θbR sin θtR V R
T1B2

= − cos θbR sin θtR

V R
T2B1

= − sin θbR cos θtR V R
T2B2

= cos θbR cos θtR .

(A3)

We can rewrite these relations as

V L
ij =

(

U t
L

)

i1

(

U b
L

)

j1
, V R

ij =
(

U t
R

)

i2

(

U b
R

)

j2
. (A4)

The neutral current interactions among quarks of charge Q are

LNC
M =

g

2cW

∑

i,j

{

q̄iQγ
µ
[

XL
ijPL +XR

ijPR − 2s2WQδij
]

qjQ
}

Zµ + h.c. , (A5)

where

XL
T1T1

= cos2 θtL XL
T1T2

= XL
T2T1

= sin θtL cos θ
t
L XL

T2T2
= sin2 θtL

XR
T1T1

= sin2 θtR XR
T1T2

= XR
T2T1

= − sin θtR cos θtR XR
T2T2

= cos2 θtR .
(A6)
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The same relations, up to an overall minus sign, hold in the bottom sector. In more compact

form we can write

XL
ij = ±

(

U t,b
L

)

i1

(

U t,b
L

)

j1
, XR

ij = ±
(

U t,b
R

)

i2

(

U t,b
R

)

j2
, (A7)

where the plus sign holds in the top sector and the minus in the bottom sector.
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