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Abstract

We present results for W -boson production at large transverse momentum at LHC and
Tevatron energies. We calculate complete next-to-leading-order (NLO) QCD corrections
and higher-order soft-gluon corrections to the differential cross section. The soft-gluon
contributions are resummed at next-to-next-to-leading-logarithm (NNLL) accuracy via
the two-loop soft anomalous dimensions. Both NLO and approximate next-to-next-to-
leading-order (NNLO) pT distributions are presented. Our numerical results are in good
agreement with recent data from the LHC.

1 Introduction

The production of W bosons with large transverse momentum, pT , has been observed and ana-
lyzed at the Tevatron over the past two decades, and significantly higher event rates have been
observed as expected at the LHC over the past couple of years. This Standard Model process
is a background to Higgs production and new physics and thus it is important to have accurate
theoretical predictions to exploit fully the large number of events at the LHC. The pT distri-
bution falls rapidly with increasing pT , spanning several orders of magnitude over accessible
regions at hadron colliders. High-pT W production has a clean experimental signature when
the W decays to leptons, and solid predictions are needed to reduce uncertainties in precision
measurements of the W mass and decay width. The charged leptons in complementary pro-
cesses involving Z bosons can be measured with somewhat higher resolution than the neutrino,
but the observed event rate for W bosons at the LHC is as much as a factor of ten larger
than that for Z bosons. Precise calculations for W production at large pT are also needed to
identify signals of possible new physics, such as new gauge bosons, which may enhance the pT
distribution at large pT .

At leading order (LO) in the strong coupling αs, a W boson can be produced with large
pT by recoiling against a single parton which decays into a jet of hadrons. The LO partonic
processes for W production at large pT are qg → Wq and qq̄ → Wg.

The NLO corrections arise from one-loop parton processes with a virtual gluon, and real
radiative processes with two partons in the final state. The NLO corrections to the cross section
for W production at large pT were calculated in [1, 2] where complete analytic expressions were
provided. Numerical NLO results for production at the Tevatron were also presented in Refs.
[1, 2]. The predictions are consistent with the data from the CDF [3] and D0 [4] collaborations.

1



g

q

q

W

g

q

q

W

Figure 1: LO diagrams for the process qg → Wq.

The NLO corrections enhance the differential distributions in pT of the W boson and they
reduce the factorization and renormalization scale dependence.

Beyond NLO, it is possible to calculate contributions from the emission of soft gluons.
These corrections can be formally resummed and they were first calculated to next-to-leading-
logarithm (NLL) accuracy in [5]. Approximate NNLO corrections derived from the resumma-
tion were used in [6] and were shown to provide enhancements and a further reduction of the
scale dependence. Numerical results were presented for the Tevatron in [6] and for the LHC
at 14 TeV energy in Ref. [7]. In this paper we extend the resummation to next-to-next-to-
leading-logarithm (NNLL) accuracy (see also [8]). A related study using soft-collinear effective
theory (SCET) has recently appeared in [9].

In the next section we briefly review the NLO calculation and present numerical results for
the pT distribution of the W at the LHC and the Tevatron. Section 3 discusses NNLL resum-
mation for the soft-gluon corrections. In section 4 we derive approximate NNLO expressions
from the NNLL resummation and we present approximate NNLO pT distributions for the W
boson at the LHC and the Tevatron. We conclude in Section 5.

2 NLO results

We start with the leading-order contributions to W production at large pT with a single hard
parton in the final state. The two contributing sub-processes are

q(pa) + g(pb) −→ W (Q) + q(pc)

and
q(pa) + q̄(pb) −→ W (Q) + g(pc).

We define the kinematic variables s = (pa + pb)
2, t = (pa − Q)2, u = (pb − Q)2, and s4 =

s + t + u − Q2. At the partonic threshold, where there is no available energy for additional
radiation, s4 → 0. The partonic cross sections are singular in this limit, but the divergences
are integrable when averaged over the parton distributions in the colliding hadrons.

The LO diagrams are shown in Figs. 1 and 2. The LO differential cross section for the
qg → Wq process is

EQ

dσB
qg→Wq

d3Q
= FB

qg→Wq δ(s4) , (2.1)
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Figure 2: LO diagrams for the process qq̄ → Wg.

where

FB
qg→Wq =

ααs(µ
2
R)CF

s(N2
c − 1)

Aqg
∑

f

|Lffa |2 , (2.2)

Aqg = −
(

s

t
+

t

s
+

2uQ2

st

)

,

with µR the renormalization scale, L the left-handed couplings of the W boson to the quark
line, and f the quark flavor. Also CF = (N2

c − 1)/(2Nc) with Nc = 3 the number of colors.
For the process qq̄ → Wg the LO result is

EQ

dσB
qq̄→Wg

d3Q
= FB

qq̄→Wg δ(s4) , (2.3)

where

FB
qq̄→Wg =

ααs(µ
2
R)CF

sNc

Aqq̄ |Lfbfa |2 , (2.4)

Aqq̄ =
u

t
+

t

u
+

2Q2s

tu
.

The complete NLO corrections were derived in [1, 2]. The virtual corrections involve ul-
traviolet divergences which renormalize αs and make it depend on the renormalization energy
scale which we set to be ∼pT . Both the real and the virtual corrections display soft and
collinear divergences which arise from the masslessness of the gluons and the zero-mass approx-
imation for the quarks. The soft divergences cancel between real and virtual processes while
the collinear singularities are factorized in a process-independent manner and absorbed into
factorization-scale-dependent parton distribution functions.

The complete NLO corrections to the LO differential cross section can be written as a sum
of two terms

EQ

dσ̂
(1)
fafb→W (Q)+X

d3Q
= α2

s(µ
2
R) [δ(s4)B(s, t, u, µR) + C(s, t, u, s4, µF )] (2.5)

with µF the factorization scale. The coefficient functions B and C depend on the parton flavors.
B(s, t, u, µR) is the sum of virtual corrections and of singular terms ∼δ(s4) in the real radiative
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Figure 3: Ratios of the W -boson NLO pT distribution with various choices of scale to the
central result with scale µ = pT at the LHC at 7 TeV (left) and at the Tevatron (right).

corrections. C(s, t, u, s4, µF ) is from real emission processes away from s4 = 0. The NLO
corrections are crucial in reducing theoretical uncertainties and thus making more meaningful
comparisons with experimental data for W production at the Tevatron [3, 4] and the LHC [10]
at large transverse momentum.

All numerical results presented in this paper are for the sum of W+ and W− differential
cross sections. Initial-state parton densities are taken from MSTW2008 [11]. We use the NLO
central sets with the QCD coupling evolved at NLO in this section. In section 4, where we
include the NNLL logarithmic corrections, we employ the NNLO central sets with the QCD
coupling evolved at NNLO. The W is on shell and final-state partons are integrated over the
full phase space.

We begin with results for W production at the LHC at center-of-mass energy
√
S = 7 TeV

and with pT in the range 20-500 GeV. At lower values of pT the fixed order NLO estimates
become unreliable due to Sudakov logarithms and the comparison with experiment needs to
include nonperturbative pT smearing. We set the factorization and renormalization scales equal
to each other and denote this common scale by µ. In the left plot of Fig. 3 we plot ratios for
the W -boson pT distribution at the LHC with various choices of scale to the central result with
scale µ = pT . We display the scale variation of the NLO result with scale choices pT/2 and

2pT . We also show results for the choice of scale µ =
√

p2T + m2
W but note that the numbers for

this choice of scale are very similar to those for µ = pT . We see that the scale variation is of
the order of ±10%. The results for these ratios are almost identical at 8 TeV energy and very
similar at 14 TeV.

In the right plot of Fig. 3 we show results for W production at the Tevatron at 1.96 TeV
energy. Again, we display the scale variation of the NLO result with scale choices pT/2 and

2pT and also
√

p2T + m2
W . We note that the published CDF and D0 analyses [3, 4] involve older

Run I data. The results presented here are also applicable to the higher luminosity and energy
data from Run II.
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Figure 4: One-loop eikonal diagrams for qg → Wq.
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Figure 5: One-loop eikonal diagrams for qq̄ → Wg.

We will say more about the scale variation in Section 4 when we include the NNLO soft-
gluon corrections. Another source of uncertainty in the differential distributions comes from
the parton distribution functions (PDF). We will return to the topic of PDF uncertainties when
we present the approximate NNLO results in Section 4.3.

3 NNLL Resummation

Near partonic threshold the corrections from soft-gluon emissions are dominant. These correc-
tions can be resummed to all orders using renormalization group arguments. The resummed
cross section is derived in Mellin moment space, with N the moment variable conjugate to s4,
and is given formally by

σ̂res(N) = exp

[

∑

i

Ei(Ni)

]

exp
[

E ′
j(N

′)
]

exp

[

∑

i

2
∫

√
s

µF

dµ

µ
γi/i

(

Ñi, αs(µ)
)

]

×H
(

αs(
√
s)
)

S

(

αs

(√
s

Ñ ′

))

exp

[

∫

√
s/Ñ ′

√
s

dµ

µ
2 ReΓS (αs(µ))

]

(3.1)

where the first exponential resums the collinear and soft-gluon radiation from the inital-state
partons; the second exponential resums corresponding terms from the final state; the third
exponential controls the factorization scale dependence of the cross section via the parton-
density anomalous dimension; H is the hard-scattering function; and S is the soft-gluon function
describing noncollinear soft gluon emission whose evolution is controlled by the soft anomalous
dimension ΓS. The first three exponentials in Eq. (3.1) are independent of the color structure
of the hard scattering and thus universal [12, 13], while the functions H , S, and ΓS are process-
specific [5, 14]. More details of the resummation formalism have been given before (see e.g.
Refs. [5, 14, 15]) and will not be repeated here.
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Figure 6: Two-loop eikonal diagrams for qg → Wq and qq̄ → Wg involving the two incoming
partons. There are two additional sets of 12 diagrams each with the same topologies that
involve one incoming and one outgoing parton.

We expand the process-specific soft anomalous dimensions ΓS in the strong coupling as

ΓS =
αs

π
Γ
(1)
S +

α2
s

π2
Γ
(2)
S + · · · . (3.2)

The one-loop results, Γ
(1)
S , are obtained from the ultraviolet poles in dimensional regularization

of one-loop eikonal diagrams involving the colored particles in the partonic processes, Figs. 4
and 5, and were first derived in [5]. We determine the two-loop results, Γ

(2)
S , from the ultraviolet

poles of two-loop dimensionally regularized integrals for eikonal diagrams shown in Fig. 6 and
related graphs involving other combinations of the eikonal lines (see also [8]).

For qg → Wq the one-loop soft anomalous dimension is

Γ
(1)
S, qg→Wq = CF ln

(−u

s

)

+
CA

2
ln
(

t

u

)

(3.3)

and the two-loop soft anomalous dimension is

Γ
(2)
S, qg→Wq =

K

2
Γ
(1)
S, qg→Wq , (3.4)

where K = CA(67/18− ζ2)− 5nf/9 [16] with CA = 3 and nf the number of light quark flavors.
For qq̄ → Wg the corresponding results are

Γ
(1)
S, qq̄→Wg =

CA

2
ln
(

tu

s2

)

(3.5)

and

Γ
(2)
S, qq̄→Wg =

K

2
Γ
(1)
S, qq̄→Wg . (3.6)
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We note that the proportionality of the two-loop soft anomalous dimension to the one-loop
result is anticipated on general grounds from the work in Ref. [17] (see also [18, 19, 20]).

4 NNLO approximate results

By expanding the resummed cross section, Eq. (3.1), in the strong coupling we derive approx-
imate fixed-order results. In this section we present the analytical expressions for the NNLO
expansion and use them to present approximate NNLO results for the W -boson transverse
momentum distribution at the LHC and the Tevatron.

4.1 qg −→ Wq

We can write the NLO soft and virtual corrections for qg → Wq as

EQ

dσ̂
(1)
qg→Wq

d3Q
= FB

qg→Wq

αs(µ
2
R)

π

{

cqg3

[

ln(s4/p
2
T )

s4

]

+

+ cqg2

[

1

s4

]

+

+ cqg1 δ(s4)

}

. (4.1)

The NLO coefficients cqg3 and cqg2 of the soft-gluon terms in Eq. (4.1) can be derived from the
expansion of the resummed cross section and are given by cqg3 = CF + 2CA and

cqg2 = − (CF + CA) ln

(

µ2
F

p2T

)

− 3

4
CF − CA ln

(

tu

sp2T

)

. (4.2)

For later use in the NNLO results we also define the scale-independent part of cqg2 as T qg
2 =

−(3/4)CF − CA ln(tu/sp2T ).
The coefficient of the δ(s4) terms in Eq. (4.1) is given by

cqg1 =
1

2Aqg
[Bqg

1 + Bqg
2 nf + Cqg

1 + Cqg
2 nf ] +

cqg3
2

ln2

(

p2T
Q2

)

+ cqg2 ln

(

p2T
Q2

)

, (4.3)

with Bqg
1 , Bqg

2 , Cqg
1 , and Cqg

2 as given in the Appendix of the first paper in Ref. [2] but without
the renormalization counterterms and using fA ≡ ln(A/Q2) = 0 [note that the terms not
multiplying Aqg in Eq. (A4) for Bqg

1 of Ref. [2] should have the opposite sign than shown in
that paper].

The NNLO expansion of the resummed cross section involves logarithms lnk(s4/p
2
T ) with

k = 0, 1, 2, 3. The terms with k = 1, 2, 3 were already provided in Refs. [5, 6] from NLL
resummation. Terms for k = 0 were also given in Eq. (3.8) of Ref. [6] but they were incomplete.
Now that we have expressions for NNLL resummation we can provide the complete result for
the k = 0 terms.

The NNLO soft-gluon corrections for qg → Wq can be written as

EQ

dσ̂
(2)
qg→Wq

d3Q
= FB

qg→Wq

α2
s(µ

2
R)

π2
σ̂′(2)

qg→Wq (4.4)
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with

σ̂′(2)
qg→Wq =

1

2
(cqg3 )2

[

ln3(s4/p
2
T )

s4

]

+

+

[

3

2
cqg3 cqg2 − β0

4
cqg3 + CF

β0

8

] [

ln2(s4/p
2
T )

s4

]

+

+

{

cqg3 cqg1 + (cqg2 )2 − ζ2 (cqg3 )2 − β0

2
T qg
2 +

β0

4
cqg3 ln

(

µ2
R

p2T

)

+ (CF + 2CA)
K

2
− 3

16
β0CF

}

[

ln(s4/p
2
T )

s4

]

+

+

{

cqg2 cqg1 − ζ2 c
qg
3 cqg2 + ζ3 (cqg3 )2 +

β0

4
cqg2 ln

(

µ2
R

s

)

− β0

2
CF ln2

(

−u

p2T

)

− β0

2
CA ln2

(

−t

p2T

)

− CF K ln

(

−u

p2T

)

− CAK ln

(

−t

p2T

)

+ (CF + CA)

[

β0

8
ln2

(

µ2
F

s

)

− K

2
ln

(

µ2
F

s

)]

−
(

CF
K

2
− 3β0CF

16

)

ln

(

p2T
s

)

+
3β0

8
CF ln2

(

p2T
s

)

+ 2D(2)
q + D(2)

g + B(2)
q + 2 Γ

(2)
S qg→Wq

}

[

1

s4

]

+

(4.5)

with β0 = (11CA − 2nf)/3 and where we have used the two-loop constants (cf. [21, 22])

D(2)
q = CFCA

(

−101

54
+

11

6
ζ2 +

7

4
ζ3

)

+ CFnf

(

7

27
− ζ2

3

)

, (4.6)

D(2)
g = (CA/CF )D(2)

q , and

B(2)
q = C2

F

(

− 3

32
+

3

4
ζ2 −

3

2
ζ3

)

+ CFCA

(

−1539

864
− 11

12
ζ2 +

3

4
ζ3

)

+ nfCF

(

135

432
+

ζ2
6

)

. (4.7)

Note that the difference from Eq. (3.8) of Ref. [6] is in the [1/s4]+ terms. The higher
powers of the logarithms are the same. Also note that one can determine the scale-dependent
δ(s4) terms at NNLO. These terms are also given in Ref. [6] and will not be repeated here.

4.2 qq̄ −→ Wg

For the process qq̄ → Wg we can write the NLO soft and virtual corrections as

EQ

dσ̂
(1)
qq̄→Wg

d3Q
= FB

qq̄→Wg

αs(µ
2
R)

π

{

cqq̄3

[

ln(s4/p
2
T )

s4

]

+

+ cqq̄2

[

1

s4

]

+

+ cqq̄1 δ(s4)

}

. (4.8)

Here the NLO coefficients cqq̄3 and cqq̄2 of the soft-gluon terms are cqq̄3 = 4CF − CA and

cqq̄2 = −2CF ln

(

µ2
F

p2T

)

− (2CF − CA) ln

(

tu

sp2T

)

− β0

4
. (4.9)

For later use in the NNLO results we also define the scale-independent part of cqq̄2 as T qq̄
2 =

−(2CF − CA) ln(tu/sp2T ) − β0/4.
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The coefficient of the δ(s4) terms in Eq. (4.8) is given by

cqq̄1 =
1

2Aqq̄

[

Bqq̄
1 + Cqq̄

1 + (Bqq̄
2 + D(0)

aa )nf

]

+
cqq̄3
2

ln2

(

p2T
Q2

)

+ cqq̄2 ln

(

p2T
Q2

)

, (4.10)

with Bqq̄
1 , Bqq̄

2 , Cqq̄
1 , and D(0)

aa as given in the Appendix of Ref. [2] but without the renormal-
ization counterterms and using fA = 0.

Again, the NNLO expansion involves logarithms lnk(s4/p
2
T ) with k = 0, 1, 2, 3. The terms

with k = 1, 2, 3 were already provided in Refs. [5, 6] from NLL resummation, but the terms
given for k = 0 in Eq. (3.19) in [6] were incomplete. With NNLL resummation we can now
provide the complete result.

The NNLO soft-gluon corrections for qq̄ → Wg can be written as

EQ

dσ̂
(2)
qq̄→Wg

d3Q
= FB

qq̄→Wg

α2
s(µ

2
R)

π2
σ̂′(2)

qq̄→Wg (4.11)

with

σ̂′(2)
qq̄→Wg =

1

2
(cqq̄3 )2

[

ln3(s4/p
2
T )

s4

]

+

+

[

3

2
cqq̄3 cqq̄2 − β0

4
cqq̄3 + CA

β0

8

] [

ln2(s4/p
2
T )

s4

]

+

+

{

cqq̄3 cqq̄1 + (cqq̄2 )2 − ζ2 (cqq̄3 )2 − β0

2
T qq̄
2 +

β0

4
cqq̄3 ln

(

µ2
R

p2T

)

+ (4CF − CA)
K

2
− β2

0

16

}[

ln(s4/p
2
T )

s4

]

+

+

{

cqq̄2 cqq̄1 − ζ2 c
qq̄
3 cqq̄2 + ζ3 (cqq̄3 )2 +

β0

4
cqq̄2 ln

(

µ2
R

s

)

− β0

2
CF ln2

(

−u

p2T

)

− β0

2
CF ln2

(

−t

p2T

)

+ CF

[

−K ln

(

tu

p4T

)

+
β0

4
ln2

(

µ2
F

s

)

−K ln

(

µ2
F

s

)]

−
(

CA
K

2
− β2

0

16

)

ln

(

p2T
s

)

+
3β0

8
CA ln2

(

p2T
s

)

+ 2D(2)
q + D(2)

g + B(2)
g + 2 Γ

(2)
S qq̄→Wg

}

[

1

s4

]

+

(4.12)

where

B(2)
g = C2

A

(

−1025

432
− 3

4
ζ3

)

+
79

108
CA nf + CF

nf

8
− 5

108
n2
f . (4.13)

The scale-dependent δ(s4) terms at NNLO were also provided in Eq. (3.19) of [6] and we
will not repeat them here.

4.3 Numerical results

We begin with results for W production at the LHC at 7 TeV energy. In Fig. 7 we plot the
W -boson pT distribution, dσ/dpT . In the left plot, we compare the NLO and the approximate
NNLO results at the LHC at 7 TeV energy with µ = pT . We also compare our results to recent
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Figure 7: W -boson approximate NNLO pT distribution at the LHC at 7 TeV compared with
ATLAS data.

data from ATLAS [10]. It is evident that the effect of the NNLO soft-gluon corrections grows
with pT as one would expect, since the kinematical region near partonic threshold becomes
more important at higher pT . The inset plot shows that the ratio of the approximate NNLO to
the full NLO (i.e. the K factor) grows with pT , and the NNLO soft-gluon corrections provide
nearly a 60% enhancement at pT = 500 GeV. Since the ATLAS data use acceptance cuts
and are normalized by the total fiducial cross section, we have to correct for these factors to
extrapolate the experimental results for direct comparison to our pT distribution. We use the
procedure described in [23]. We multiply the normalized ATLAS results by the total fiducial
cross section and divide by the acceptances. It is clear from the comparison that the data are in
very good agreement with our NNLO approximate result, which provides a better description
than NLO alone. The ATLAS data only go up to a pT of 300 GeV and it will be interesting to
see data from the LHC at even higher pT .

In the right plot of Fig. 7 we show ratios of the approximate NNLO result with the variation
of the result with scale µ = pT/2 and 2pT relative to µ = pT . We also show the ratio with

µ =
√

p2T + m2
W and note that the results for this choice of scale are very similar to those for

µ = pT . Finally we show the ratio of NLO to NNLO with µ = pT which again shows that
NNLO describes the data better than NLO.

Also, comparing the left plot of Fig. 3 with the right plot of Fig. 7 it is seen that the scale
dependence at approximate NNLO is smaller than at NLO at intermediate values of pT , but it
grows larger (mostly due to the lower bound) at very high pT values where the overall soft-gluon
contribution is also larger. Since in the perturbative expansion we include logarithms of µF/pT
and µR/pT in plus-distribution terms shown in Eqs. (4.5) and (4.12) as well as in δ(s4) terms
shown in Ref. [6], we conclude that the best scale choice for our approximate NNLO results
is µ = pT . We note that our calculation does not include all scale terms, i.e. scale logarithms
in terms from corrections beyond the soft-gluon approximation. Since we do not have the full
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NNLO corrections, only a complete calculation can give the true NNLO scale uncertainty. We
also note that although it is generally expected that as one increases the order in perturbation
theory the scale uncertainty should decrease, this is not always the case due to numerics. In
particular, as we showed in Ref. [7] the NLO scale uncertainty is not smaller than the LO scale
uncertainty due to accidental cancellations at LO. Nevertheless, we repeat that our upper scale
uncertainty at approximate NNLO is smaller than the NLO one and it is only the lower scale
uncertainty that becomes bigger at very high pT , higher pT than for most current LHC data.

We note that results for 7 TeV LHC energy have also been provided in Ref. [9] at NNLL
in the SCET formalism. It is not possible to do an analytical comparison with [9] because no
analytical results are provided there. It is also important to note that NNLL means different
things in different approaches and also if one uses different variables within the same approach.
This has been clearly explained in the context of top quark production in the review paper
of Ref. [24] and applies here as well. Therefore our NNLL Mellin-space resummation is not
equivalent to the NNLL SCET resummation of [9]. Related studies for top quark cross sections
show that different formalisms can give very different numerical results [24].

Furthermore, it is difficult to make a meaningful numerical comparison because most of the
figures in [9] plot results versus parameters that are only defined within the SCET formalism.
Non-graphical results are provided in Table 1 of [9], which provides absolute integrated cross
section estimates for pT > 200 GeV. The LO and NLO fixed-order results are of course in
agreement with ours, but exponentiated logarithmic corrections will obviously diverge in this
bin, thus making the comparison not very meaningful. At a purely numerical level, however,
we note that our approximate NNLO integrated cross section at 7 TeV LHC energy above a
pT of 200 GeV is 68.1+3.1

−8.3 pb, which is about 20% larger than that provided in Table 1 of Ref.
[9], i.e. 55.9+2.0

−1.4 pb.
Finally it is important to note that here we use an NNLO expansion of the resummed

expression to obtain numerical results, in order to avoid prescriptions needed to invert from
moment space to momentum space. Even within a given formalism such as SCET or Mellin
moments, there is a numerical difference between using NNLO expansions and attempting a full
resummation (again see [24] and references therein for more details). However, this difference
is typically smaller than the differences between different formalisms or prescriptions, so this is
usually a point of relatively minor significance. For example both the values and uncertainties
in [9] are very similar for the resummed and NNLO approximate results.

We continue with the presentation of our numerical results for the W -boson pT distribution
at the LHC. In Fig. 8 we show results for the LHC at 8 TeV energy. Although the overall
pT distribution is enhanced at 8 TeV relative to 7 TeV, the result for the ratio of approximate
NNLO over NLO shown in the inset plot is very similar (almost identical) to that at 7 TeV.
Also the scale dependence at 8 TeV is almost the same as at 7 TeV as can be seen by comparing
the right plots of Figs. 7 and 8.

In Fig. 9 we show the corresponding results for the LHC at 14 TeV energy. Again, the
increase due to the NNLO soft-gluon corrections is more prominent at very high pT , reaching
90% enhancement at pT = 1000 GeV. The scale variation at the LHC at 14 TeV energy is
shown on the right plot. At the very highest pT the scale uncertainty is significant.

Finally, we present results for the Tevatron. The left plot of Fig. 10 shows the NLO and
NNLO approximate pT distributions at the Tevatron at µ = pT , with the inset plot displaying
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Figure 8: W -boson approximate NNLO pT distribution at the LHC at 8 TeV.
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Figure 9: W -boson approximate NNLO pT distribution at the LHC at 14 TeV.
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Figure 10: W -boson approximate NNLO pT distribution at the Tevatron.

the K factor. The right plot of Fig. 10 shows the results for scale variation at the Tevatron,
where there is a reduction of scale dependence at NNLO relative to that at NLO in the pT
range shown, as can be seen by comparing the right plots of Figs. 3 and 10.

In addition to the scale variation shown in the previous figures, one can also attempt an
independent variation of the factorization and renormalization scales; however, this does not
affect the range of the overall uncertainty significantly, if at all.

As already mentioned in Section 2, in addition to scale dependence another important
source of uncertainty comes from the PDF. Here we use the PDF sets and procedure provided
by MSTW2008 [11] to calculate the PDF uncertainties for W production. In the left plot of
Fig. 11 we compare the PDF uncertainty with the scale uncertainty at NNLO and also at NLO
at the Tevatron. The scale ratios are for µ = pT/2 and 2pT and are the same as already shown
in the plots of the previous Tevatron figures, but displaying them together and with the PDF
ratios makes the comparison of all the uncertainties easier. We note that for the Tevatron the
PDF uncertainties are smaller than the NLO scale variation, but they are larger than the scale
variation at approximate NNLO for most pT values. As mentioned earlier, the NNLO scale
variation is consistently smaller than that at NLO.

In the right plot of Fig. 11 we compare the PDF uncertainty with the scale uncertainty at
NNLO and also at NLO at the LHC at 8 TeV energy (the results at 7 TeV are practically the
same). Here the situation is somewhat different from the Tevatron in that the upper range of
the PDF uncertainty is larger than both NLO and NNLO scale variation, but the lower range is
smaller than both for most pT values. Also the scale variation at approximate NNLO is smaller
than that at NLO for moderate pT values but becomes larger, particularly at the lower end, at
very high pT .

The growing NNLO contribution relative to NLO with increasing pT at both Tevatron and
LHC energies does not appear to be an artifact of perturbation theory. The extended pT range
made accessible by the LHC brings into play a high multiplicity of hard jets in various inclusive
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Figure 11: PDF and scale uncertainties for the W -boson pT distribution at the Tevatron (left)
and at the LHC at 8 TeV (right).

cross sections, and this is expected to affect the convergence of perturbative predictions. The
recent ATLAS data [10] and its agreement with our theoretical results confirms this expectation.
An analysis of the Z distribution is underway and will be reported elsewhere.

5 Conclusions

The transverse momentum distribution of the W boson receives large QCD corrections. Com-
plete NLO calculations have been used in this paper to provide numerical results at LHC and
Tevatron energies. In addition, NNLL resummation of soft-gluon corrections has been derived
using two-loop soft anomalous dimensions. Approximate NNLO analytical expressions have
been derived from the resummed cross section and employed to produce numerical results. The
NNLO soft-gluon corrections reduce the NLO scale dependence at low and intermediate pT
where the bulk of the data is located. In the very high pT region at LHC energies the soft log-
arithms seem to become sensitive to scale. It is possible that including hard NNLO corrections
will improve this situation. The experimental bins at large pT are larger because the number
of expected events and the pT resolution both decrease dramatically. Recent ATLAS data [10]
are in good agreement with our numerical results. The higher-order results presented in this
paper strengthen theoretical predictions for W production at hadron colliders and may prove
significant for new physics searches in the tail of the pT spectrum.
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