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We study chiral symmetry breaking for fundamental charged fermions coupled electromagneti-
cally to photons with the inclusion of four-fermion contact self-interaction term, characterized by
coupling strengths α and λ, respectively. We employ multiplicatively renormalizable models for the
photon dressing function and the electron-photon vertex which minimally ensures mass anomalous
dimension γm = 1. Vacuum polarization screens the interaction strength. Consequently, the pattern
of dynamical mass generation for fermions is characterized by a critical number of massless fermion
flavors Nf = Nc

f above which chiral symmetry is restored. This effect is in diametrical opposition to
the existence of criticality for the minimum interaction strengths, αc and λc, necessary to break chi-
ral symmetry dynamically. The presence of virtual fermions dictates the nature of phase transition.
Miransky scaling laws for the electromagnetic interaction strength α and the four-fermion coupling
λ, observed for quenched QED, are replaced by a mean-field power law behavior corresponding to a
second order phase transition. These results are derived analytically by employing the bifurcation
analysis, and are later confirmed numerically by solving the original non-linearized gap equation.
A three dimensional critical surface is drawn in the phase space of (α, λ,Nf ) to clearly depict the
interplay of their relative strengths to separate the two phases. We also compute the β-functions
(βα and βλ), and observe that αc and λc are their respective ultraviolet fixed points. The power
law part of the momentum dependence, describing the mass function, implies γm = 1 + s, which
reproduces the quenched limit trivially. We also comment on the continuum limit and the triviality
of QED.

PACS numbers: 12.20.-m, 11.30.Rd, 11.15.Tk

Since the works of Maskawa and Nakajima as well as
the Kiev group [1], it is well known that quenched quan-
tum electrodynamics (QED) exhibits vacuum rearrange-
ment, which triggers chiral symmetry breaking when the
interaction strength α = e2/(4π) exceeds a critical value
αc ∼ 1. αc was argued to be an ultraviolet stable fixed
point defining the continuum limit in supercritical QED.
Although these works were carried out for the bare ver-
tex in the Landau gauge, principle qualitative conclusions
were later shown to be robust even for the most gen-
eral and sophisticated ansätze put forward henceforth for
an arbitrary value of the covariant gauge parameter, see
e.g., [2–5]. Bardeen, Leung and Love [6] demonstrated
that the composite operator ψ̄ψ acquires large anoma-
lous dimensions at α = αc. In fact, the mass anomalous
dimension was shown to be γm = 1, leading to the fact
that the four-fermion interaction operator (ψ̄ψ)2 acquires
the scaling dimension of d = 2(3− γm) = 4 instead of 6,
and becomes renormalizable. This is an example of when
an interaction which is irrelevant in a certain region of
phase space (perturbative) might become relevant in an-
other (non perturbative). Consequently, the four-fermion

contact interaction becomes marginal whose absence can-
not render QED a closed theory in the strong coupling
domain. Depending upon the non perturbative details
of the fermion-boson interaction, it is plausible to have
γm > 1, implying d < 4, which would modify the status
of the four-point operators from marginal to relevant, see,
e.g., the review article [7], and references therein. The
upshot of the argument is that the robustness of any
conclusion about strong QED can be guaranteed only
if it is supplemented by these perturbatively irrelevant
operators. Quenched QED with the inclusion of these
additional operators has been studied in [8].

Unquenching QED involves inclusion of fermion loops.
It provides screening and transforms the vacuum char-
acteristics drastically, changing the Miransky scal-
ing law for the dynamically generated mass m ∼
Λ Exp[−π/

√

α/αc − 1] to a mean field square-root be-
havior, i.e., m ∼ Λ

√
α− αc, [10]. See also [11] and

references therein. Employing a multiplicatively renor-
malizable photon propagator proposed by Kizilersu and
Pennington [12], it has recently been shown that large
value of Nf restores chiral symmetry above a critical
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value N c
f and the corresponding scaling law itself is a

square-root: m ∼ Λ
√

N c
f −Nf , [13]. However, these

results were demonstrated without incorporating four-
fermion interactions. In this article, we include this ad-
ditional interaction and establish the robustness of this
result with the inclusion of all the driving elements which
influence chiral symmetry breaking, namely, α: the QED
interaction strength, λ: the coupling constant related to
the four-fermion interactions and Nf : the fermion fla-
vors whose effect is diametrically opposed to that of α
and λ. We study the details of chiral symmetry break-
ing in the vicinity of the phase change, mapping out the
phase space of all these relevant parameters and report
the results which survive as well as the ones that modify
in different regimes of this phase transition.

In section I, we introduce the framework of the
Schwinger-Dyson equations (SDEs), the notation as well
as the assumptions we employ for our analysis. Section II
is dedicated to the analytic treatment of the gap equation
in the neighborhood of the critical plane which separates
chirally symmetric and asymmetric solutions. Next, in
section III, we present the results of our numerical anal-
ysis. The last section IV summarizes our findings and
provides an outlook for future work.

I. SDE FOR THE FERMION PROPAGATOR

The starting point for our analysis is the SDE for the
electron propagator

S−1(p) = S−1
0 (p) + ie2

∫

d4k

(2π)4
γµS(k)Γν(k, p)∆µν(q)

− iG0

∫

d4k

(2π)4
Tr[S(k)] , (1)

where q = k−p, e is the electromagnetic coupling and G0

is the four-fermion coupling. We define the dimensionless
four-fermion coupling λ as λ/Λ2 = G0/(4π

2). S−1
0 (p) =

6p is the inverse bare propagator for massless electrons.
We parameterize the full propagator S(p) in terms of
the electron wave function renormalization F (p2) and
the mass function M(p2) as S(p) = F (p2)/(6p−M(p2)).
∆µν(q) is the full photon propagator which can be con-
veniently written as

∆µν(q) = −G(q
2)

q2

(

gµν − qµqν
q2

)

− ξ
qµqν
q4

, (2)

where ξ is the covariant gauge parameter such that ξ = 0
corresponds to the Landau gauge. G(q2) is the photon
renormalization function or the dressing function. The
full electron photon vertex is represented by Γµ(k, p).
The form of the full vertex is tightly constrained by var-
ious key properties of the gauge theory, [7], e.g., multi-
plicative renormalizability of the fermion and the gauge
boson propagators, [2, 12, 14], perturbation theory, [15],

the requirements of gauge invariance/covariance, [5, 16–
20] and, of course, observed phenomenology, [21]. The
most general decomposition of this vertex in terms of its
longitudinal and transverse components is

Γµ(k, p) =
4

∑

i=1

λi(k, p)L
µ
i (k, p) +

8
∑

i=1

τi(k, p)T
µ
i (k, p) ,(3)

where Lµ
1 = γµ, Lµ

2 = (k + p)µ(6k + 6p), Lµ
3 = (k + p)µ

and Lµ
4 = σµν(k + p)ν , where σµν = [γµ, γν ]/2. The co-

efficients λi are determined through the Ward-Takahashi
identity

(k − p)µΓ
µ(k, p) = S−1(k)− S−1(p) , (4)

relating the electron propagator with the electron-photon
vertex, [22]. Starting from the limiting form of this iden-
tity, namely the Ward identity,

∂S−1(p)

∂pµ
= Γµ(p, p) , (5)

employing the most general form of the fermion propa-
gator and then generalizing to arbitrarily different mo-
menta, one obtains

λ1(k, p) =
1

2

[

1

F (k2)
+

1

F (p2)

]

,

λ2(k, p) =
1

2

1

k2 − p2

[

1

F (k2)
− 1

F (p2)

]

,

λ3(k, p) = − 1

k2 − p2

[

M(k2)

F (k2)
− M(p2)

F (p2)

]

(6)

and λ4(k, p) = 0.
It has now been established that the choice of the

transverse vertex has observable consequences at the
hadronic level, despite the fact that the simple rainbow-
ladder truncation is sufficient to reproduce a large body
of existing experimental data on pseudoscalar and vector
mesons such as their masses, charge radii, decay con-
stants and scattering lengths, as well as their form fac-
tors and the valence quark distribution functions, [23–33].
For example, the conundrum of mass difference between
opposite parity states can only be explained through cor-
rections to the rainbow ladder truncations, [34], also see
the review, [35]. In addition to the efforts steered through
the continuum studies, attempts have also been initiated
in lattice field theory to compute the transverse form
factors of the fermion-boson vertex in some simple kine-
matical regimes, [36, 37]. Extending these efforts to the
entire kinematical space of momenta k2, p2 and q2 is nu-
merically challenging and it may require some time be-
fore the results are made available. However, despite the
fact that the transverse vertex can have material effect
on hadronic properties and is crucial in maintaining key
properties of a quantum field theory, the qualitative be-
havior of the fermion mass function itself is not signifi-
cantly sensitive to its details. Therefore, for our purpose,
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we shall restrict ourselves to the simplest construction
(Eq. (8) of [13]) which, in the quenched limit, renders
the ultraviolet behavior of M(p2) to be

M(p2) ∼ (p2)γm/2−1 , (7)

with anomalous mass dimensions γm = 1. This large
value makes it mandatory to introduce four-point inter-
actions to ensure self consistency. With this choice of the
full vertex, we obtain, in the massless limit,

F (p2) =

(

p2

Λ2

)ν

, G(q2) =

(

q2

Λ2

)s

, (8)

where ν = αξ/(4π) and s = αNf/(3π). Near criticality,

where the generated masses are small, it is reasonable to
assume that the power law solutions for the propagators
capture, at least qualitatively, correct description of chi-
ral symmetry breaking. We choose to study the resulting
equation for the mass function in the convenient Lan-
dau gauge. Results for any other gauge can be derived
by applying the Landau-Khalatnikov-Fradkin transfor-
mations [20, 38, 39] or using a vertex ansatz which ef-
fectively incorporates gauge covariance properties in its
construction, e.g., [2, 4, 5].

After taking the trace of Eq. (1), carrying out angular
integral and Wick rotating to Euclidean space, we obtain

M(p2) = g(p2)

p2

∫

0

dk2
k2

p2
M(k2)

k2 +M2(k2)
+

Λ2

∫

p2

dk2
M(k2)

k2 +M2(k2)
g(k2) +

λ

Λ2

Λ2

∫

0

dk2
k2M(k2)

k2 +M2(k2)
, (9)

where g(p2) = s0G(p
2), s0 = 3α/(4π) and Λ is the ultra-

violet cutoff which regularizes the integrals. Note that
we have employed the simplifying assumption G(q2) =
G(k2) for k2 > p2 and G(q2) = G(p2) for p2 > k2, which
would allow for the analytic treatment of the linearized
equation for the mass function as detailed in the following
section.

II. ANALYTIC TREATMENT

Before we venture into the computation of the mass
function by numerically solving the above non-linear in-
tegral equation, we find it insightful to make analyti-
cal inroads. The differential version of the gap equation
(9) simplifies in the neighborhood of the critical coupling
αc; viz., the coupling whereat M(p2) 6= 0 solution bi-
furcates away from the M(p2) = 0 solution, which alone
is possible in perturbation theory. The behavior of the
solution near the bifurcation point may be investigated
by performing functional differentiation of the gap equa-
tion with respect to M(p2) and evaluating the result at
M(p2) = 0. Practically, this amounts to analyzing lin-
earized form of the original gap equation [i.e., the equa-
tion obtained by eliminating all terms of quadratic or

higher order in M(p2)].

M(p2) =
g(p2)

p2

p2

∫

0

dk2M(k2) +

Λ2

∫

p2

dk2
M(k2)

k2
g(k2)

+
λ

Λ2

Λ2

∫

0

dk2 M(k2) . (10)

Note that the non-linearized version of this equation
receives negligible contribution from the region k2 → 0,
while this is not true for Eq. (10). This shortcoming
is readily remedied by introducing an infrared cutoff m2

such that M(m) = m. The resultant linearized gap equa-
tion, Eq. (10), can now be studied analytically in the
neighborhood of the critical plane on converting it into a
second order linear differential equation

x2M ′′(x) + sxM ′(x) + s0(1− s)
M(x)

xs
= 0 , (11)

with two boundary conditions. Here we have used the
convenient substitution x = Λ2/p2. Following are the
infrared and ultraviolet boundary conditions

M ′(Λ2/m2) = 0 , (12a)

M(1) =

(

1 +
λ

s0

)

M ′(1)

1− s
. (12b)

Note that the four-fermion coupling only affects the ul-
traviolet boundary condition. The differential equation
itself and the infrared boundary condition do not have
any direct dependence on it. It is what we expect in-
tuitively. four-fermion Nambu–Jona-Lasinio (NJL) type
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term only generates a constant mass term. Therefore, it
effectively serves as a cut-off dependent bare mass and
can hence only influence the dynamics through the ul-
traviolet boundary condition.

If we now apply the Lommel transformations: z = Bxγ

and W (x) = x−aM(x), the linearized equation can be
converted into the following Bessel differential equation

z2W ′′(z) + zW ′(z) + (z2 −A2)W (z) = 0 , (13)

where, γ = −s/2, a = (1 − s)/2, A = (1 − s)/s, and

B =
√

3α(1− s)/(πs2), where s < 1 . The boundary
conditions in terms of the function W (z) are given by

aW (z) + γzW ′(z)|z=B(m/Λ)s = 0 , (14a)

a (s0 − λ)W (z)− γz (s0 + λ)W ′(z)|z=B = 0 . (14b)

The general solution of the second order differential equa-
tion (13) is

W (z) = c1JA(z) + c2YA(z) , (15)

where JA(z) and YA(z) are the Bessel functions of the
first and the second kind, respectively. The power law
part of momentum dependence of the mass function
M(x) = xaW (x) is neatly separated out into the fac-
tor xa, implying γm = 1 + s. Note that s = 1 corre-
sponds to a momentum independent photon propagator
which implies γm = 2. Consequently, Eq. (7) implies
that it corresponds to a momentum independent mass
function, a result which is readily and analytically con-
firmed from the resultant simple integral equation. This
is a well known behavior of a contact interaction model
of the NJL type. Moreover, the quenched limit of γm = 1
is also reproduced trivially.

For the homogenous boundary conditions of Eqs. (14),
the non-trivial chirally asymmetric solution of the gap
equation exists if the following condition holds :

[

2aJA(z) + γz (JA−1(z)− JA+1(z))

2aYA(z) + γz (YA−1(z)− YA+1(z))

]

z=B(m/Λ)s
=

(1 + λ/s0) γB (JA−1(B)− JA+1(B)) − (1− s)(1− λ/s0)JA(B)

(1 + λ/s0) γB (YA−1(B)− YA+1(B)) − (1− s)(1− λ/s0)YA(B)
.

(16)
In the limit of Λ → ∞, we obtain the following result for the dynamically generated mass m :

m2

Λ2
≡ f (α,Nf , λ) =

[

2

B

]
2

s Γ(A)Γ(A+ 2)2a

πγ

[

(1 + λ/s0) γB (JA−1(B)− JA+1(B)) − (1− s)(1− λ/s0)JA(B)

(1 + λ/s0) γB (YA−1(B)− YA+1(B)) − (1− s)(1− λ/s0)YA(B)

]

.(17)

Carrying out the Taylor expansion near the critical point,
we find the following scaling laws :

m

Λ
= A1(λ,Nf ) [α− αc(λ,Nf )]

1/2 , (18)

m

Λ
= A2(α,Nf ) [λ− λc(α,Nf )]

1/2 , (19)

m

Λ
= A3(α, λ)

[

N c
f (α, λ) −Nf

]1/2
. (20)

The exact form of the functional dependence of Ai, αc,
λc and N c

f on the relevant pair of α, λ and Nf can be

derived from Eq.(17) but, not yielding novel insight into
the problems at hand, we refrain from computing it. The
momentum dependence of the mass function (based upon
the numerical calculation discussed in the next section)
and the scaling laws for λ, α and Nf have been plotted
in Figs. (1-5).

The critical values of the parameters α, Nf , and λ de-
fine a surface in the 3D phase-space of these parameters.
The mass function is zero (non-zero) below (above) the
critical surface, which corresponds to restored (broken)
chiral symmetry. The analytic expression for the critical

surface can be obtained by setting m/Λ = 0 in equation
(17). The resultant equation, which can be solved for λ,
is given by

λ =−s0
[γB (JA−1(B)− JA+1(B)) − (1− s)JA(B)]

[γB (JA−1(B)− JA+1(B)) + (1− s)JA(B)]
.(21)

In order to obtain a finite mass for the charged fermion
in the limit of Λ → ∞, one requires charge renormal-
ization. Therefore, in this limit, we impose α(Λ) =
αc +m2/(A2Λ2). One can thus readily obtain the corre-
sponding β-function :

βα = Λ
∂α

∂Λ

∣

∣

∣

λ,Nf

= −2(α− αc) . (22)

Therefore, αc is the ultraviolet fixed point of βα, as has
been observed in [10]. Identical presence of the fixed
point for βλ for λc is readily observed :

βλ = Λ
∂λ

∂Λ

∣

∣

∣

α,Nf

= −2(λ− λc) . (23)
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FIG. 1: The mass functions for different values of λ at fixed
α = 2.5 and Nf = 2. Its increasing sensitivity to the variation
in lambda helps locate the critical strength λc. Dashed and
solid curves represent mass functions with (vacuum polariza-
tion of Eq. (25)) and without feedback (vacuum polarization
of Eq. (8)) from the gap equation, respectively.

Note that we have restricted ourselves to the mean
field approach, i.e., we work within the approxima-
tions which neglect quantum corrections corresponding
to four-fermion interactions beyond the tree level. Tak-
ing into account these corrections is beyond the scope and
the thrust of this article. Having said that, going beyond
our approximation would require incorporating the SDE
for the full Green function corresponding to the four-
fermion degrees of freedom. One way of achieving this
at the level of the Bethe-Salpeter fermion-anti-fermion
scattering kernel is the skeleton expansion. Another way
of incorporating this is the Cornwall-Jackiw-Tamboulis
(CJT) effective potential written in terms of the com-
posite degrees of freedom for higher loops, see for exam-
ple [40]. For the four-fermion interaction part, the con-
clusions obtained in [40] are the same as ours, i.e., there is
an ultraviolet fixed point whose quantitative form along
the critical curve is the same as given by Eq. (23). As
pointed out before, the critical value λc has a functional
dependence on α. The work of Kondo et. al. suggests
that, at least when we restrict ourselves to the immedi-
ate neighbourhood of the critical curve, λc captures all
the dependence on alpha, even on including four-fermion
interactions.

The analytical results of this section can be confirmed
and made precise through a numerical study of the non-
linearized gap equation (9). This analysis is presented in
the next section.
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FIG. 2: The scaling law for four-fermion coupling λ. Dots,
solid and dashed lines represent numerical results, fit to the
numerical data with a power law and analytically predicted
square-root scaling law, respectively, at α = 2.5 and Nf = 2.
The mean field behavior of the chiral phase transition is
evident. Dashed and solid curves represent mass functions
with (vacuum polarization of Eq. (25)) and without feed-
back (vacuum polarization of Eq. (8)) from the gap equation,
respectively.

III. NUMERICAL RESULTS

In order to compare and confirm the above analyti-
cal results, based on the linearized approximation, we
solve the original non-linear integral equation (9) numer-
ically for varying Nf , α, and λ. Depicted in Fig. 1 is
the fermion mass functions for different values of λ for
α = 2.5 and Nf = 2. The closer we get to the critical
value λc, the more drastically pronounced is the drop in
the mass function, indicating the approaching onslaught
of the phase transition. The scaling law is explored in
Fig. 2, where the variation of m/Λ ≡M(p2 = 0)/Λ with
λ is plotted at the fixed values of α and Nf . The fit of
the complete numerical data shows that the power of the
scaling law is slightly different from 0.5. This is expected
as the mean field scaling behavior (20) captures the cor-
rect physics in the immediate vicinity of the critical point,
only where the linearized version of the equation becomes
exact. In the same figure, we also superimpose the an-
alytically derived square-root scaling law which, as ex-
pected, sits exactly atop the numerical findings in the
immediate vicinity of the critical point. In Figs. 3 and
4, we show the variation of the mass section and the cor-
responding scaling law as a function of α at fixed values
of Nf = 2 and λ = 0.6. These results again confirm
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FIG. 3: The mass function M(p2) for varying values of the
electromagnetic coupling α for fixed values of massless fermion
flavors Nf = 2 and the four-fermion coupling λ = 0.6. The
objective is to hunt αc and determine the nature of the phase
transition. Dashed and solid curves represent mass functions
with (vacuum polarization of Eq. (25)) and without feed-
back (vacuum polarization of Eq. (8)) from the gap equation,
respectively.

the validity of the square-root dependence of the dynam-
ically generated mass on the electromagnetic coupling.
In Figs. 5 and 6, we plot the mass function in the pres-
ence of increasing types of virtual fermion–anti-fermion
pairs and the resulting scaling law as a function of Nf ,
respectively, for α = 2.5 and λ = 0.3. These results es-
tablish the robustness of the conclusions presented in the
reference [13] on the inclusion of the four-point contact
interaction term.

Shown in Fig. 7 is the critical curve in λ − α plane
at Nf = 2. The dynamical mass ceases to exist for the
values of λ and α below the curve. The dots in this
figure represent the points obtained by numerically solv-
ing the non-linear integral equation of the mass function
and the solid curve represents the analytical result which
corresponds to expression (21). This criticality should be
considered as an extension of its quenched QED counter-
part obtained in [41]. For the sake of completeness, in
Figs. 8 and 9, we present the critical curves in λ − Nf

and α−Nf planes for fixed values of α = 2 and λ = 0.3,
respectively. These figures show that the analytical re-
sults agree with the numerical findings with a very good
accuracy. Fig. (9) gives a quantitative picture of how
the growing number of fermion flavors requires stronger
electromagnetic coupling. The relation is not linear. The
screening effect exhausts the strength of the interaction
faster with increasing Nf .
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FIG. 4: The scaling law for the coupling α, investigated
through the behavior of the mass function near critical-
ity, Fig. 3. Dots, solid and dashed lines represent numeri-
cal results, fit of the numerical data to the power law and
analytically predicted square-root scaling law, respectively at
Nf = 2 and λ = 0.6. Dashed and solid curves represent mass
functions with (vacuum polarization of Eq. (25)) and with-
out feedback (vacuum polarization of Eq. (8)) from the gap
equation, respectively.

Finally, in Fig. 10, we present the full critical surface in
the phase space of Nf , α, and λ. In the limit of Nf → 0,
Miransky scaling law is reproduced. The results pre-
sented in this paper are qualitatively robust if, instead
of the multiplicatively renormalizable photon propagator
of Eq. (8), we employ any of the following models :

• One loop perturbative photon propagator, as em-
ployed in [10] :

G(q2) = 1 +
αNf

3π
ln

(

q2

Λ2

)

. (24)

• A photon propagator which receives feedback from
the gap equation, i.e.,

G(q2) = [
(

q2 +M2(0)
)

/Λ2]s , (25)

which is also multiplicatively renormalizable. For
a comparison, we have also displayed numerical re-
sults for this latter choice in all the relevant fig-
ures. As we had anticipated, near criticality, results
are practically indistinguishable from the ones ob-
tained from using the model of Eq. (8).

Note that away from criticality, a complete self con-
sistent coupled solution of the photon and the fermion
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N f = 1

N f = 2.5

N f = 2.7

N f = 2.7037

N f = 2.70387

N f = 2.703882

Α = 2.5 and Λ = 0.3

10-10 10-6 0.01 100 106 1010
10-5

10-4

0.001

0.01

0.1

1

p2

M
H
p2 L
�L

FIG. 5: The mass function M(p2) for increasing number of
massless fermion flavors diminishes because the interaction
gets screened. Chiral symmetry is restored above a certain
Nc

f , which depends upon the values of α and λ. Dashed and
solid curves represent mass functions with (vacuum polariza-
tion of Eq. (25)) and without feedback (vacuum polarization
of Eq. (8)) from the gap equation, respectively.

propagator will be required. However, finiteness of the
dynamically generated mass for Λ → ∞ forces non per-
turbative QED to be consistently defined only for those
values of α and λ which lie on the critical surface. This
is a simple corollary of the argument laid out in [6]. Note
that as we employ a model for the vacuum polarization,
the running coupling is not our prediction. Following
Rakow, [42], if we define the renormalization at q2 = 0
rather than on the mass shell, we get

αR(0) = αF 2
R(0)GR(0) = αGR(0) , (26)

because FR(0) = 1 for us. Therefore, our model conforms
to αR(0) → 0 in accordance with the lattice computation
of unquenched QED, [42]. As we have argued before,
when Λ → ∞, α → αc. Thus αR(0) = αcGR(0) → 0,
which is associated with the triviality of QED in [42]. We
use this same model for the vacuum polarization even in
the presence of the perturbatively irrelevant four-fermion
interaction terms. This means that on the phase bound-
ary, the renormalised coupling is zero even in the pres-
ence of the four-fermion interactions. This is in accor-
dance with the argument presented in [11]. However,
note that for the practical solution of the gap equation,
the photon propagator or the running coupling below
q2 = κ2 = M2(κ2) has no bearing on chiral symmetry
breaking solution.
We now recall that the Bethe-Salpeter equation gives us
an approximate relation between the integral over the

ä
ä

ä

ä

ä

ä
ä
ä
ä

ä

ä

ä

ä

ä

ä
ä

ä

ä

ä

ä

ä

m

L
= 0.3344 1 -

N f

2.7039

0.6424

m

L
= 0.4444 1 -

N f

2.7039

0.6899

m

L
= 0.2749 1 -

N f

2.7039

0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
10-4

0.001

0.01

0.1

1

N f

m
�L

Α = 2.5 and Λ = 0.3

FIG. 6: The scaling law for Nf . Dots, solid and dashed lines
represent numerical results, fit of the numerical data to the
power law and analytically predicted square-root scaling law,
respectively, at α = 2.5 and λ = 0.3. Thus the nature of
this transition is independent of the inclusion of four-fermion
interaction term. Dashed and solid curves represent mass
functions with (vacuum polarization of Eq. (25)) and with-
out feedback (vacuum polarization of Eq. (8)) from the gap
equation, respectively.

Chiral Symmetry Breaking

Chiral Symmetry Restoration

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Α

Λ

N f = 2

FIG. 7: Critical curve in λ − α plane at Nf = 2. Dots and
solid curve represent the numerical results and analytical find-
ings, respectively. For a fixed Nf , chiral symmetry breaking
phase is achieved when the combined strength of α and λ lies
above the criticality curve, dictated by Eq. (21). The curve
is indistinguishable, independently of the photon propagator
employed [i.e., Eq. (8) or Eq. (25)]. The same is true for Figs.
8, 9 and 10.

mass function and the "decay constant of the pion (f)"
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Chiral Symmetry Breaking

Chiral Symmetry Restoration

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

N f

Λ

Α = 2

FIG. 8: Critical curve in λ−Nf plane at α = 2. Dots and solid
curve represent the numerical results and analytical findings,
respectively. It is clear that the bifurcation analysis provides
an exact analysis of the non-linear equation at criticality.

Chiral Symmetry Breaking

Chiral Symmetry Restoration

1 2 3 4 5 6
1

2

3

4

5

6

N f

Α

Λ = 0.3

FIG. 9: Critical curve in Nf − α plane at λ = 0.3. As in the
other curves, dots are numerical solutions whereas the solid
line is the outcome of the bifurcation analysis.

given by Eq. (4.42) of [11]

f2 =

∫ Λ

dp2p2M(p2)

[

M(p2)− p2M ′(p2)/2
]

[p2 +M2(p2)]2
. (27)

We numerically evaluate f for varying values of s and find
that f → ∞ in the limit when the ultraviolet regulator
Λ → ∞, a result which suggests that the continuum limit
is the one of noninteracting bosons, in agreement with
earlier findings [10, 43].

IV. EPILOGUE

We have studied chiral symmetry breaking for fun-
damental fermions interacting electromagnetically with

0

5

10

Α

5
10

15
20

N f

0.0

0.5

1.0

Λ

FIG. 10: A three dimensional view of the criticality surface.
It corresponds to Eq. (21) as well as the numerical analysis
of the non-linearized Eq. (9). The region below the surface
represents chirally symmetric phase.

photons and self interacting through perturbatively
irrelevant four-fermion contact interaction which is
required to render QED a closed theory in its strongly
coupled regime, where, this additional interaction
becomes marginal and, perhaps, even relevant. We
have used multiplicatively renormalizable models for
the photon propagator (with and without the feedback
from the gap equation) which, we argue, should capture
the qualitative physics correctly in the vicinity of the
critical surface in the phase space of (α, λ,Nf ), marking
the onslaught of chiral symmetry breaking (restoration).
The presence of virtual fermion–anti-fermion pairs
changes the nature of the phase transitions along the α
and λ-axes. The Miransky scaling law softens down to
a square root mean field scaling behavior as a function
of all the three parameters α, λ and Nf , (20). Study of
the mass anomalous dimensions for QED with a model
vacuum polarization reveals how, quantitatively, the
momentum dependence of the photon propagator, i.e.,
(p2)s−1, filters into the momentum dependence of the
fermion mass function, namely, (p2)(s−1)/2, through the
gap equation. We believe that our analysis can and
should be extended to the study of QCD through its
SDEs. Situation is ripe for the application of this line of
approach and technology to QCD, where we are finally
having the first glimpses of the flavor dependence of the
gluon propagator in the infrared region, [44]. This is for
future.
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