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Abstract

The non-Abelian discrete symmetry D7 of the heptagon is successfully applied to

both quark and lepton mass matrices, including CP violation.
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1 Introduction

The structure of quark and lepton mass matrices has been under theoretical study for many

years. Whereas the 6 quark masses and the 3 mixing angles and 1 CP violating phase in

the quark sector are now measured with some precision, the lepton sector is still missing

some crucial information. Recently, the neutrino mixing angle θ13 has been measured by

the Daya Bay [1] and RENO [2] collaborations. The fact that sin2 2θ13 is now centered at

around 0.1 means that the previously favored tribimaximal mixing pattern (sin2 θ23 = 1/2,

sin2 θ12 = 1/3, θ13 = 0) is invalid, although the A4 symmetry [3, 4, 5] used to obtain it [6] is

still applicable with some simple modifications [7, 8, 9]. On the other hand, in the simplest

application [3, 5] of A4, all the quark mixing angles are zero. The question is whether there

exists another symmetry which successfully yields both quark and lepton mass matrices,

with good fits of all masses, mixing angles, and phases. The answer is yes, as elaborated

below.

Using the non-Abelian discrete symmetry D7 of the heptagon, it has been shown [10] that

the CP violating phase of the quark mixing matrix may be predicted, whereas D7 also yields

a pattern [11] for the neutrino mass matrix consistent with what is observed. This pattern

is previously derived using the symmetry Q8 [12], and realizes a specific conjecture [13] that

the neutrino mass matrix has two texture zeros in the basis that charged-lepton masses are

diagonal.

In Sec. 2 the symmetry D7 is explained. In Sec. 3 the assignments of quarks under

D7 are given with the accompanying Higgs structure and the resulting mass matrices. In

Sec. 4 numerical fits to the quark masses and mixing angles are given, with a prediction of

the CP violating phase. In Sec. 5 the assignments of leptons under D7 are given with the

accompaning Higgs structure and the resulting mass matrices. In Sec. 6 the neutrino mass
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matrix is analyzed to show that it allows for nonzero θ13 and a specific correlation between

it and θ23 as well as δCP . Given that θ12 is close to the tribimaximal value, it prefers an

inverted hierarchy of neutrino masses although a quasidegenerate pattern with either normal

or inverted ordering cannot be ruled out. In Sec. 7 there are some concluding remarks.

2 Heptagonic Symmetry D7

The group D7 is the symmetry group of the regular heptagon with 14 elements, 5 equivalence

classes, and 5 irreducible representations. Its character table is shown below.

class n h χ1 χ2 χ3 χ4 χ5

C1 1 1 1 1 2 2 2

C2 7 2 –1 1 0 0 0

C3 2 7 1 1 a1 a2 a3

C4 2 7 1 1 a2 a3 a1

C5 2 7 1 1 a3 a1 a2

Table 1: Character Table of D7.

Here n is the number of elements and h is the order of each element. The numbers ak

are given by ak = 2 cos(2kπ/7). The character of each representation is its trace and must

satisfy the following two orthogonality conditions:

∑
Ci

niχaiχ
∗
bi = nδab,

∑
χa

niχaiχ
∗
aj = nδij, (1)

where n =
∑
i ni is the total number of elements. The number of irreducible representations

must be equal to the number of eqivalence classes.

The three irreducible two-dimensional reprsentations of D7 may be chosen as follows. For
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21, let

C1 :

(
1 0

0 1

)
, C2 :

(
0 ωk

ω7−k 0

)
, (k = 0, 1, 2, 3, 4, 5, 6),

C3 :

(
ω 0

0 ω6

)
,

(
ω6 0

0 ω

)
, C4 :

(
ω2 0

0 ω5

)
,

(
ω5 0

0 ω2

)
,

C5 :

(
ω4 0

0 ω3

)
,

(
ω3 0

0 ω4

)
, (2)

where ω = exp(2πi/7), then 22,3 are simply obtained by the cyclic permutation of C3,4,5.

For Dn with n prime, there are 2n elements divided into (n+ 3)/2 eqivalence classes: C1

contains just the identity, C2 has the n reflections, Ck from k = 3 to (n+3)/2 has 2 elements

each of order n. There are 2 one-dimensional representations and (n− 1)/2 two-dimensional

ones.

The group multiplication rules of D7 are:

1′ × 1′ = 1, 1′ × 2i = 2i, (3)

2i × 2i = 1 + 1′ + 2i+1, 2i × 2i+1 = 2i + 2i+2, (4)

where 24,5 means 21,2. In particular, let (a1, a2), (b1, b2) ∼ 21, then

a1b2 + a2b1 ∼ 1, a1b2 − a2b1 ∼ 1′, (a1b1, a2b2) ∼ 22. (5)

In the decomposition of 21 × 22, we have instead

(a2b1, a1b2) ∼ 21, (a2b2, a1b1) ∼ 23. (6)

3 Quark Sector

We assign quarks as shown in Table 2 and Higgs doublets as shown in Table 3, together with

an extra Zd
2 × Zu

2 symmetry.
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symmetry [(u, d), (c, s)] (t, b) (dc, sc) bc (uc, cc) tc

D7 21 1 21 1 22 1

Zd
2 + + – – + +

Zu
2 + + + + – +

Table 2: Quark assignments under D7 × Zd
2 × Zu

2 .

symmetry Φ1 Φ2 Φ3,4 Φ5,6 Φ7,8

D7 1 1 21 22 23

Zd
2 + – – + +

Zu
2 + + + + –

Table 3: Higgs doublet assignments under D7 × Zd
2 × Zu

2 .

As a result, the (u, c, t) mass matrix is diagonal, coming from the Yukawa terms uucφ0
7 +

cccφ0
8 and ttcφ0

1. As for the (d, s, b) mass matrix, the allowed Yukawa terms are (dsc+sdc)φ̄0
2,

bbcφ̄0
2, b(d

cφ̄0
4 + scφ̄0

3), and (dφ̄0
4 + sφ̄0

3)b
c. The resulting mass matrix is thus of the form [10]

Md =


0 a ξb

a 0 b

ξc c d

 , (7)

where ξ = 〈φ̄0
4〉/〈φ̄0

3〉.

4 Prediction of CP Phase

As in Ref. [10], we can redefine the phases ofMd so that a, b, c, d are real, but ξ is complex.

Since Mu is diagonal, we have

V †LMdVR =


md 0 0

0 ms 0

0 0 mb

 , V †LMdM†
dVL =


m2
d 0 0

0 m2
s 0

0 0 m2
b

 , (8)
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where VL is the observed quark mixing matrix up to phase conventions. The structure of

MdM†
d allows us to obtain the following first approximations:

mb '
√
c2 + d2, Vcb '

bd+ ξ∗ac

(1 + |ξ|2)c2 + d2
, Vub '

ac+ ξbd

c2 + d2
, (9)

where a2 << b2 and |ξ|2 << 1 are assumed. We now rotate MdM†
d using

V3 =


1 0 Vub

0 1 Vcb

−V ∗ub −V ∗cb 1

 (10)

to obtain the 2× 2 matrix

M2M†
2 =

(
A C

C∗ B

)
, (11)

where

A = a2 + |ξ|2b2 − |Vub|2m2
b , (12)

B = a2 + b2 − |Vcb|2m2
b , (13)

C = ξb2 − VubV ∗cbm2
b , (14)

yielding

m2
s =

1

2
(B + A) +

1

2

√
(B − A)2 + 4|C|2, (15)

|Vus|2 =
1

2
− 1

2

√√√√1− 4|C|2
(B − A)2 + 4|C|2

, (16)

where the phase of Vus is that of C, and

md = |2abcξ − a2d|/msmb. (17)

Using |Vus| = 0.22534, we find |C|2/(B − A)2 = 0.05971, and m2
s >> m2

d implies A '

0.05351B, hencem2
s ' 1.05349B. Using these formulas, the 6 parameters a, b, c, d, Re(ξ), Im(ξ)

may then be determined and the CP violating parameter J is predicted.
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Figure 1: The CP violating parameter J versus ms/md. The solid (dash) lines indicate the

one (two) standard-deviation bounds of J .

For our numerical analysis, we start with the approximate solutions, then diagonalize

MdM†
d directly. We scan for solutions consistent with data on the 3 masses and 3 mixing

angles, within one standard deviation of each parameter. We then obtain J numerically from

the resulting VCKM . This is then the prediction of our model. In Fig. 1 we plot J versus

ms/md, which shows good agreement with data. We use the 2008 updated values [14] of

md,s,b evaluated at MW :

md(MW ) = 2.93 (+1.25/− 1.21) MeV, (18)

ms(MW ) = 56± 16 MeV, (19)

mb(MW ) = 2.92± 0.09 GeV, (20)

and the 2012 Particle Data Group (PDG) [15] values of the mixing angles

|Vus| = 0.22534± 0.00065, (21)

|Vcb| = 0.0412 (+0.0011/− 0.0005), (22)
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|Vub| = 0.00351 (+0.00015/− 0.00014). (23)

Note that PDG also lists the condition 17 < ms/md < 22 and the value of the CP violating

parameter is

J = 2.96 (+0.20/− 0.16)× 10−5. (24)

We show in Table 4 sample values of a, b, c, d, Re(ξ), Im(ξ) with the corresponding values of

md,ms,mb, |Vus|, |Vub|, |Vcb| and J as well as ms/md.

a (GeV) b (GeV) c (GeV) d (GeV) Re(ξ) Im(ξ) ms/md

md (MeV) ms (MeV) mb (GeV) |Vus| |Vub| |Vcb| J

0.0125 0.138 1.32 -2.60 0.053 -0.084 17.00

3.89 66.2 2.92 0.22534 0.00355 0.0420 2.95× 10−5

0.0124 0.139 1.34 -2.60 0.058 -0.084 17.25

3.91 67.4 2.93 0.22532 0.00358 0.0420 2.89× 10−5

0.0123 0.138 1.40 -2.60 0.064 -0.087 17.50

3.96 69.2 2.96 0.22519 0.00363 0.0409 2.76× 10−5

0.0122 0.138 1.39 -2.55 0.068 -0.084 17.75

3.94 69.9 2.91 0.22501 0.00359 0.0415 2.70× 10−5

Table 4: D7 parameter fits of quark masses and mixing.

5 Lepton Sector

Using again D7×Zd
2 ×Zu

2 , we assign leptons as shown in Table 5 and Higgs triplets as shown

in Table 6.
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symmetry (νe, e) [(νµ, µ), (ντ , τ)] ec [(µc, τ c)]

D7 1 21 1 23

Zd
2 + + + +

Zu
2 + + + +

Table 5: Lepton assignments under D7 × Zd
2 × Zu

2 .

symmetry ξ1 ξ2,3

D7 1 21

Zd
2 + +

Zu
2 + +

Table 6: Higgs triplet assignments under D7 × Zd
2 × Zu

2 .

As a result, the (e, µ, τ) mass matrix is diagonal, coming from the Yukawa terms eecφ̄0
1

and µµcφ̄0
5 + ττ cφ̄0

6. As for the Majorana (νe, νµ, ντ ) mass matrix, the allowed Yukawa terms

are νeνeξ
0
1 , (νµντ + ντνµ)ξ01 , and νe(νµξ

0
3 + ντξ

0
2). The resulting mass matrix is thus of the

form [11]

Mν =


a c d

c 0 b

d b 0

 , (25)

which was first derived using Q8 [12], and realizes one of the conjectures of Ref. [13].

6 Analysis of Neutrino Mass Matrix

Rotating Mν to the tribimaximal basis using
ν1

ν2

ν3

 = U †TB


νe

νµ

ντ

 =


√

2/3 −
√

1/6 −
√

1/6√
1/3

√
1/3

√
1/3

0 −
√

1/2
√

1/2



νe

νµ

ντ

 , (26)

it becomes

M(1,2,3)
ν =


m1 m6 m4

m6 m2 m5

m4 m5 m3

 , (27)
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where

m1 =
1

3
(2a+ b− 2c− 2d), (28)

m2 =
1

3
(a+ 2b+ 2c+ 2d), (29)

m3 = −b, (30)

m4 =
1√
3

(−c+ d), (31)

m5 =
1√
6

(−c+ d) =
m4√

2
, (32)

m6 =
1

3
√

2
(2a− 2b+ c+ d) =

1

2
√

2
(m1 + 2m2 + 3m3). (33)

If m4 = m5 = m6 = 0, tribimaximal mixing is recovered. In particular, m4 6= 0 or m5 6= 0

means that θ13 6= 0. In previous studies, the special cases m4 6= 0,m5 = m6 = 0 [16, 17]

and m5 6= 0,m4 = m6 = 0 [8, 9, 18] have been explored. The requirement from D7 that

m5 = m4/
√

2 is a new condition which will predict a special correlation between θ13 and θ23

as well as δCP .

Consider the unitary matrix Uε such that

U †εM(1,2,3)
ν (M(1,2,3)

ν )†Uε =


|m′1|2 0 0

0 |m′2|2 0

0 0 |m′3|2

 , (34)

then U ′αi = UTBUε is the lepton mixing matrix up to phases. Let Uε be approximately given

by

Uε =


1 ε12 ε13

ε21 1 ε23

ε31 ε32 1

 , (35)

then for |m′1|2 ' |m1|2, we have

ε21 '
−(m6m

∗
1 +m2m

∗
6)

|m2|2 − |m1|2
. (36)

In addition, since the effective neutrino mass mee in neutrinoless double beta decay is given

by

mee = |a| = |m1 +m2 +m3|, (37)
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whereas

m3 =
1

3
(2
√

2m6 −m1 − 2m2), (38)

we have the relationship

|m3|2 −m2
ee =

1

3
(|m2|2 − |m1|2)[1 + 4

√
2Re(ε21)]. (39)

Since |m2|2 − |m1|2 ' ∆m2
21 is very small, this model predicts mee = |m3| to a very good

approximation. The structure of Eq. (38) also shows that an inverted ordering of neutrino

masses is expected, although the quasidegenerate limit is also possible for this texture as

fully analyzed in Ref. [19], in which case either inverted or normal ordering may occur. In

the following we focus on the inverted case, i.e. |m3| < |m1| < |m2|.

For m4 6= 0, ν3 is rotated to ν ′3 according to

ε13 '
m1m

∗
4 +m4m

∗
3

|m3|2 − |m1|2
, ε23 '

m2m
∗
4 +m4m

∗
3√

2(|m3|2 − |m1|2)
. (40)

As a result,

U ′e3 '
√

2

3
ε13 +

√
1

3
ε23 '

−m4(m1 + 2m2)
∗ +m∗4(2m1 +m2)√

6(|m1|2 − |m3|2)
, (41)

U ′µ3 ' − 1√
2
− 1√

6
ε13 +

1√
3
ε23 ' −

1√
2
− (m1 −m2)m

∗
4√

6(|m1|2 − |m3|2)
, (42)

U ′τ3 '
1√
2
− 1√

6
ε13 +

1√
3
ε23 '

1√
2
− (m1 −m2)m

∗
4√

6(|m1|2 − |m3|2)
, (43)

If all parameters are real, then for U ′e3 = 0.16, sin2 2θ23 would be 0.80, which is ruled out by

present data, i.e. sin2 2θ23 > 0.92. However, a fit may be obtained for complex values.

We go back to Eq. (25) and observe that a, c, d may be chosen real, so only b is complex.

This means that m4 is real as well as 2m1 − m2, and for m6 = 0, m3 = −(m1 + 2m2)/3.

Writing m1,2 as m1,2 e
iφ1,2 with m2 ' m1 and sinφ2 = 2 sinφ1, we obtain

U ′e3 '
m1m4√
6∆m2

32

[− cosφ1 + cosφ2 − 9i sinφ1], (44)
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U ′µ3 ' − 1√
2

+
m1m4√
6∆m2

32

[cosφ1 − cosφ2 − i sinφ1], (45)

U ′τ3 '
1√
2

+
m1m4√
6∆m2

32

[cosφ1 − cosφ2 − i sinφ1], (46)

where cosφ2 = ±
√

1− 4 sin2 φ1. We then have

sin2 θ13 =
|U ′e3|2

1 + |ε13|2 + |ε23|2
, tan2 θ23 =

|U ′µ3|2

|U ′τ3|2
. (47)

Since

|m3| '

√
∆m2

32

√
5 + 4 cos(φ2 − φ1)

2
√

1− cos(φ2 − φ1)
, (48)

the above equations relate |m3| = mee with θ13 and θ23. If we fix θ13, we then obtain |m3| as

a function of θ23. We plot in Fig. 2 our model predictions for |m1,2| and |m3| = mee versus

sin2 2θ23. The other data points are taken to be their experimental central values.

m1,2

m3

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

0.02

0.04

0.06

0.08

0.10

sin2H2 Θ23L

m
He

V
L

Figure 2: Neutrino masses m1,2 and m3 = mee versus sin2 2θ23.
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If we rotate M1,2,3
ν (M1,2,3

ν )† by

U ′ε =


1 0 ε13

0 1 ε23

−ε∗13 −ε∗23 1

 , (49)

we obtain the 2×2 mass-squared matrix spanning ν ′1,2. This differs from the 2×2 submatrix

in the tribimaximal basis by terms quadratic in m4 which are important in obtaining the

correct ∆m2
21 and Eq. (36) becomes modified. However, we can adjust |m2| versus |m1| as

well as m6 to fit the data. These adjustments will have negligible effects on |m3|.

0.93 0.94 0.95 0.96 0.97 0.98 0.99
0.70

0.75

0.80

0.85

0.90

0.95

1.00

sin2!2 Θ23"

sin
!∆"

Figure 3: The CP violating parameter | sin δCP | versus sin2 2θ23.

We plot in Fig. 3 our model prediction for | sin δCP | versus sin2 2θ23. To obtain sin δCP ,

we use

U ′e2 '
1√
3
, U ′µ2 '

1√
3

+
1√
2
ε∗23, J = Im(U ′e2U

′
µ3U

′
µ2
∗
U ′e3
∗
), (50)

from which we find (using U ′µ2 = |U ′µ2|eiθµ2 , etc.)√
2

3
cos θ23 sin δ ' |U ′µ2| sin(θµ3 − θµ2 − θe3). (51)
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7 Concluding Remarks

We have studied a specific pattern for both quark and lepton mass matrices. In both cases,

one mass matrix is diagonal (Mu andMe), whereas the other has two zeros (Md andMν).

In the case ofMν , the assumption that it is Majorana corresponds to one of the conjectures

of Ref. [13], whereas the Dirac mass matrix Md requires further restrictions to make it

predictive, as first proposed in Ref. [10] using the non-Abelian discrete symmetry D7. The

conjectured form of Mν was first derived [12] using Q8, but it may also be obtained [11]

using D5 or D7. Here we consider D7 as the unifying symmetry for both quarks and leptons.

The CP violating parameter J in the quark sector is constrained in this model by

md,ms,mb, |Vus|, |Vub|, |Vcb|. Within one standard deviation of all six measurements, we ob-

tain J in agreement with data. In the neutrino sector, we obtain |m1,2| as well as |m3| = mee

as functions of sin2 2θ23 and also predict sin δCP as a function of sin2 2θ23.
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