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I. INTRODUCTION

Muonium is one of the best studied purely electrodynamic bound states. The hyperfine

splitting (HFS) in the ground state of muonium is measured [1, 2] with error bars in the

ballpark of 16-51 Hz. A new higher accuracy measurement of muonium HFS is now planned

at J-PARC, Japan [3]. The results of QED calculations of the HFS interval are usually

organized in the form of a perturbation theory expansion in α, Zα, me/mµ. Some of the

terms in this expansion are enhanced by large logarithms of the fine structure constant

and/or electron-muon mass ratio. The current theoretical uncertainty of the HFS interval

is estimated to be about 70-100 Hz, respective relative error does not exceed 2.3 × 10−8

(see discussions in [4–6]). Still unknown three-loop purely radiative corrections, three-loop

radiative-recoil corrections, and nonlogarithmic recoil corrections (see detailed discussion

in [5, 6]) are the main sources of the theoretical uncertainty. Measurement of the HFS in

muonium is currently the best way to determine the value of the electron-muon mass ratio.

The value of α2(mµ/me) is obtained from comparison of the HFS theory and experiment

with the uncertainty that is dominated by the 2.3 × 10−8 relative uncertainty of the HFS

theory [6]. Improvement of the HFS theory would allow further reduction of the uncertainty

of the electron-muon mass ratio. A detailed analysis [4, 5] shows that reduction of the

theoretical error of HFS theory in muonium to about 10 Hz is a realistic goal. As a step in

this direction we consider below three-loop radiative-recoil contributions to HFS generated

by the light-by-light (LBL) scattering diagrams in Fig. 1 (and by three more diagrams with

the crossed photon lines). The radiative-recoil corrections due to the LBL diagrams in Fig.

1 are additionally enhanced by the large logarithm of the electron-muon mass ratio. The

logarithm squared contribution was calculated long time ago [7]. Below we calculate the

single-logarithmic radiative-recoil contribution.�� �� � kpq +� +�
FIG. 1. Diagrams with light-by-light scattering block
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We will follow the general approach to calculation of three-loop radiative-recoil corrections

to HFS developed in [7–14] and start with the general expression for the LBL scattering

contribution in Fig. 1 (see, e.g., [4, 5])

∆E =
α2(Zα)

π3
EF

m

M

(
−
3M2

256

)∫
d4k

iπ2k4

(
1

k2 + 2mk0
+

1

k2 − 2mk0

)
〈γα/kγβ〉

×

∫
d4q

iπ2q4

(
1

q2 + 2Mq0
+

1

q2 − 2Mq0

)
〈γµ

/qγ
ν〉Sαβµν ,

(1)

where kµ is the four-momentum carried by the upper photon lines, qµ is the four-momentum

carried by the lower photon lines, m is the electron mass, M is the muon mass, Z = 1 is the

muon charge in terms of the electron charged used for classification of different contributions,

and Sαβµν is the light-by-light scattering tensor. The Fermi energy is defined as

EF =
8

3
(Zα)4

m

M

(mr

m

)3

mc2, (2)

where mr is the reduced mass. The angle brackets in Eq. (1) denote the projection of the

γ-matrix structures on the HFS interval (difference between the states with the total spin

one and zero).

The contributions to HFS of the first two diagrams coincide and with account for three

more diagrams with crossed photon lines not shown explicitly in Fig. 1 we can represent

the LBL block as a sum of two contributions, the first one corresponding to the first two

(ladder) diagrams in Fig. 1 and the second one corresponding to the last (crossed) diagram

in Fig. 1

Sαβµν =

∫
d4p

iπ2
(2Lαβµν + Cαβµν) , (3)

where

Lαβµν = Tr

(
γµ

1

/p− /q −m
γν

1

/p−m
γβ

1

/p− /k −m
γα

1

/p−m

)
, (4)

Cαβµν = Tr

(
γµ

1

/p− /q −m
γβ

1

/p− /q − /k −m
γν

1

/p− /k −m
γα

1

/p−m

)
. (5)

The integral in Eq. (1) contains both nonrecoil and recoil corrections to HFS that are

partially already calculated (see [4, 5] for a collection of these results)
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∆E =
α2(Zα)

π
EF [−0.472 514 (1)] +

α2(Zα)

π3
EF

m

M

(
9

4
ln2 M

m
+ C1 ln

M

m
+ C0

)
. (6)

The leading nonrecoil term in Eq. (6) is generated by the nonrelativistic pole in the muon

propagator

1

q2 + 2Mq0 + i0
−→ −

iπ

M
δ(q0), (7)

and was calculated in [15, 16]. This is a numerically dominant contribution and it should be

extracted analytically from the expression in Eq. (1) before calculation of the radiative-recoil

corrections.

The diagrams in Fig. 1 contain three loop integrations and each of them could in principle

generate a large logarithm of the electron-muon mass ratio. The strongly ordered region of

integration momenta m ≪ k ≪ p ≪ q ≪ M would produce logarithm cubed contribution

but it turns into zero due to the tensor structure of the LBL block and fermion factors in

this region [8], see below. The large logarithm squared, calculated in [7] arises from two

integration regions, m ≪ k ∼ p ≪ q ≪ M and m ≪ k ≪ p ∼ q ≪ M . Our current goal is

to calculate single-logarithmic contribution is Eq. (6), and as a preliminary step we would

like to separate the large logarithm squared contribution. First we recalculate the logarithm

cubed and logarithm squared corrections in an intuitively transparent way. We will elucidate

the origin of different contributions to the logarithm squared term what will help us to derive

a convenient expression for calculation of the single-logarithmic contributions.

II. LEADING LOGARITHMIC CONTRIBUTION

We start calculation of the integral in Eq. (1) with the loop integration in the LBL

scattering block. This block is a four-index tensor that is a function of four-momenta k

and q. Tensor indices are contracted with the conserved antisymmetric electron and muon

factors

〈γα/kγβ〉 = −〈γβ/kγα〉, kα〈γ
α/kγβ〉 = kβ〈γ

α/kγβ〉 = 0,

〈γµ
/qγ

ν〉 = −〈γν
/qγ

µ〉, qµ〈γ
µ
/qγ

ν〉 = qν〈γ
µ
/qγ

ν〉 = 0.
(8)
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As a result only the tensor structures that are odd in k and in q and are antisymmetric with

respect to transposition of indices (α, β) ↔ (β, α) and (µ, ν) ↔ (ν, µ) give contributions to

HFS. All tensor structures containing kα, kβ, qµ, and qν do not contribute to HFS. Then for

our purposes the LBL scattering tensor depends only on two independent structures

M
(1)
αβµν(k, q) =

k · q

2
(gµαgνβ − gµβgνα),

M
(2)
αβµν(k, q) =

1

4
(gµαkνqβ − gµβ kνqα + gνβkµqα − gναkµqβ).

(9)

Due to symmetries of the electron and muon factors in Eq. (8) all terms in the tensor

structures on the RHS in Eq. (9) give identical contributions to HFS, and in the calculations

below we will use more compact expressions

M
(1)
αβµν(k, q) = (k · q)gµαgνβ, M

(2)
αβµν(k, q) = gµαkνqβ . (10)

The general expression for the LBL scattering tensor in Eq. (3) can be obtained by repre-

senting the ladder and crossed traces in Eq. (4) and Eq. (5) in the form

Lαβµν =
L̃αβµν

D2
1D2D3

, Cαβµν =
C̃αβµν

D1D2D3D4

, (11)

where

D1 = p2−m2, D2 = (p− q)2−m2, D3 = (p− k)2−m2, D4 = (p− q− k)2−m2. (12)

Combining denominators in the expression for the crossed diagram with four different de-

nominators in Eq. (12) with the help of the Feynman parameters x, y, z, we obtain

(1− x)D4 + x

{
(1− y)D3 + y

[
zD2 + (1− z)D1

]}
= (p−K)2 − Ω(x, y, z, ξ), (13)

where

K = k(1− xy) + q(1− x+ xyz),

Ω(x, y, z, ξ) = m2 − k2xy(1− xy)− q2x(1− yz)(1− x+ xyz)

− 2(k · q)xy[1− x− z(1− xy)]ξ.

(14)
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The additional parameter ξ is equal one in Eq. (13) and is introduced here for further

convenience, we will explain its role later. There is no denominator D4 in the expression

for the ladder diagram in Eq. (11) but the expressions in Eq. (13) and Eq. (14) at x = 1

are still suitable for calculations with the ladder diagram. To obtain an explicit expression

for the LBL scattering tensor in Eq. (3) it remains to calculate the integral over the loop

momentum and to write the result in terms of the independent tensor structures in Eq. (10).

The final expression for Sαβµν is rather cumbersome and will be presented below when we

will use it for calculation of the single-logarithmic contribution in Eq. (6). We do not need

that general expression for discussion and calculation of the logarithm squared terms below.

A. The Region of Strongly Ordered Momenta

Large logarithmic contributions to HFS arise from logarithmic integrations in the region

of strongly ordered momenta m ≪ k ≪ q ≪ M where the expression in Eq. (1) simplifies

∆E ≃
α2(Zα)

π3

m

M
EF

(
−

3

64

)∫
d4k

iπ2k4

〈γα/kγβ〉

k2

∫
d4q

iπ2q4
M2q2

q4 − 4M2q20
〈γµ

/qγ
ν〉Sαβµν . (15)

The factor with the large mass M is of order one when q ≪ M and integrations over q and

k are logarithmic only if the LBL scattering tensor supplies a factor k/q. There are many

ways how such factor arises in the expression for Sαβµν . The leading contribution of this

type could arise from the logarithmic integration over the loop momentum p in the region

m ≪ k ≪ p ≪ q ≪ M. (16)

The integrand in the expression for the crossed diagram in Eq. (5) contains large q2 in

the denominator in the region of strongly ordered loop momenta what makes integration

over q nonlogarithmic. Only the ladder diagrams in Fig. 1 could generate logarithm cubed

contribution in this region. Expanding over q the ladder contribution to the LBL scattering

tensor Sαβµν in Eq. (3) we obtain

Lαβµν =

∫
d4p

iπ2
Lαβµν =

∫
d4p

iπ2
Tr

(
γµ

1

/p− /q −m
γν

1

/p−m
γβ

1

/p− /k −m
γα

1

/p−m

)

≃ −

∫
d4p

iπ2

1

q2p8
Tr

(
γµ/qγν/pγβ/p/k/pγα/p

)
.

(17)
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Projection of the last trace on the structures in Eq. (9) is zero after averaging over di-

rections of vector pµ. Hence, leading term in the expansion of the LBL tensor does not

contain (k/q) ln(q/k), and the logarithm cubed contribution to HFS does not arise despite

the logarithmic nature of all integrations in the region of strongly ordered loop momenta in

Eq. (16).

B. Logarithm Squared Contribution

The logarithm squared contributions arise in two integration regions

m ≪ k ∼ p ≤ σ ≤ q ≪ M, m ≪ k ≤ σ ≤ p ∼ q ≪ M, (18)

that are obtained from the region of strongly ordered loop momenta in Eq. (16), when we

lift the strong ordering requirement and allow two of the three loop momenta to be of the

same order. For calculational purposes we introduce an auxiliary parameter m ≪ σ ≪ M

that separates the regions of large and small momenta and should cancel in the final results.

As we have seen the LBL scattering tensor does not generate leading logarithmic terms of

the type (k/q) ln(q/k), and hence logarithms (k/q) ln(σ/k) and (k/q) ln(q/σ) do not arise in

the large and small integration momenta regions in Eq. (18).

To isolate the logarithm squared contributions we expand ladder and crossed contribu-

tions to the LBL scattering tensor in Eq. (3) in the regions of small and large momenta in

Eq. (18) and look for contributions of order k/q. The ladder contributions of this type arise

from expansions both in the small and large momentum regions

Lαβµν [p ≤ σ] ≃

∫
d4p

iπ2
Tr

(
γµ

1

−/q
γν

1

/p
γβ

1

/p− /k
γα

1

/p

)
, (19)

Lαβµν [p ≥ σ] ≃

∫
d4p

iπ2
Tr

(
γµ

1

/p− /q
γν

1

/p
γβ

1

/p
/k
1

/p
γα

1

/p

)
. (20)

The low momenta integral in Eq. (19) is superficially linearly divergent at the upper limit.

This is an artificial divergence introduced in the integral when have thrown away momentum

p in comparison with q in one of the denominators. We will deal with this divergence below

extracting contributions of order k/q from the integral in Eq. (19). Notice also that in the

large momenta region the integral in Eq. (20) generates a contribution of the form k/q after

expansion of the integrand up to the second order in k/p.
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The contribution of the small integration momenta region for the crossed diagram in

Eq. (5) is suppressed as σ2/q2 due to large q2 in the denominator of the crossed diagram

in Eq. (5). The total leading logarithmic contribution to HFS connected with this diagram

arises only from the large momenta region, where the terms of order k/q arise, like in

Eq. (20), after expansion of the integrand up to the second order in k/p

Cαβµν ≃

∫
d4p

iπ2
Tr

(
γµ

1

/p− /q
γβ

1

/p− /q
γν

1

/p
/k
1

/p
γα

1

/p
+ γµ

1

/p− /q
γβ

1

/p− /q
/k

1

/p− /q
γν

1

/p
γα

1

/p

)
. (21)

Now we are ready to calculate the logarithm squared contributions to HFS. We rational-

ize and combine denominators in Eq. (19)-Eq. (21) like in Eq. (12)-Eq. (14), and extract the

contributions proportional to k/q from the respective integrals. Let us illustrate necessary

transformations considering as an example calculation of the small momenta ladder contri-

bution in Eq. (19). In this case we need only one Feynman variable y in Eq. (13), other

variables are fixed, x = 1, z = 0. We obtain

Lαβµν [p ≤ σ] ≃
1

q2

∫

|p|≤σ

d4p

iπ2

∫ 1

0

dy
2y

[
(p− k(1− y))2 + k2y(1− y)

]3Tr
[
γµ/qγν/pγβ(/p− /k)γα/p

]
.

(22)

Next follows shift of the integration momentum p → p + k(1 − y) in this formally linearly

ultraviolet divergent integral. As usual a finite surface term arises after such shift (see, e.g.,

[17]). Further transformations are pretty standard, we calculate the trace, make the Wick

rotation, preserve only the contributions proportional to k/q, calculate the integrals, extract

the terms proportional to the tensor structures in Eq. (10), and obtain a finite result

Lαβµν [p ≤ σ] =
4

q2
[(k · q)gµαgβν − 2gµαqβkν ] . (23)

Notice that the coefficient before the formally linearly divergent contribution turned into

zero automatically. Calculation of the contributions in Eq. (20) and Eq. (21) is no more

difficult, and we obtain

Lαβµν [p ≥ σ] =
4

q2
gµαkνqβ, (24)

Cαβµν =
8

q2
gµα [(k · q) gνβ − 3kνqβ] . (25)
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Finally, the total contribution to the LBL scattering tensor Sαβµν of the type k/q arising

in the region in Eq. (18) is the sum of the contributions in Eq. (23)-Eq. (25)

Sαβµν = 2Lαβµν [p ≤ σ] + 2Lαβµν [p ≥ σ] + Cαβµν ≃
16

q2
[(k · q)gµαgβν − 2gµαqβkν ] . (26)

Comparing the small momenta contribution to the LBL tensor 2Lαβµν [p ≤ σ] (see Eq. (23))

with the final expression above we see that the small momenta contribution to Sαβµν is

equal the large momenta contribution. Next we substitute the LBL tensor in Eq. (26) in

the expression for HFS in Eq. (15) and contract Lorentz indices

〈γα/kγβ〉〈γµ
/qγ

ν〉gµα gνβ = −
8

3
[ 2(k · q) + k0q0] , (27)

〈γα/kγβ〉〈γµ
/qγ

ν〉gµαkνqβ =
4

3

[
k2q2 − (k · q)2 + k2

0q
2 + k2q20 − 2(k · q)k0q0

]
. (28)

Averaging over directions of k we obtain the ladder and crossed contributions to the LBL

tensor

〈γα/kγβ〉〈γµ
/qγ

ν〉Lαβµν = 〈γα/kγβ〉〈γµ
/qγ

ν〉
4

q2
[(k · q)gµαgνβ − gµαkνqβ ] = −

16

3
k2 2q

2 + q20
q2

,

(29)

〈γα/kγβ〉〈γµ
/qγ

ν〉Cαβµν = 〈γα/kγβ〉〈γµ
/qγ

ν〉
8

q2
gµα [(k · q)gνβ − 3kνqβ ] = −4

16

3
k22q

2 + q20
q2

. (30)

Then the total LBL scattering tensor in this regime has the form

〈γα/kγβ〉〈γµ
/qγ

ν〉(2Lαβµν + Cαβµν) = −32k22q
2 + q20
q2

, (31)

and the logarithm squared contribution to HFS can be written as

∆E =
α2(Zα)

π3

m

M
EF

3

2

∫
d4q

iπ2q4
M2(2q2 + q20)

q4 − 4M2q20

∫
d4k

iπ2k4
. (32)

The logarithm squared contribution arises in the integration regionm2 ≪ k2 ≪ q2 ≪ M2,

and we calculate it using, after the Wick rotation, four-dimensional spherical coordinates

and preserving only the logarithmic contribution
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∆E =
α2(Zα)

π3

m

M
EF

(
−
3

2

)
2

π

∫ π

0

dθ sin2 θ

∫ M2

m2

dq2

q2
M2(2 + cos2 θ)

q2 + 4M2 cos2 θ

∫ q2

m2

dk2

k2

≃
9

4

α2(Zα)

π3

m

M
EF ln2 M

m
.

(33)

This logarithm squared contribution was obtained in [7].

Another way [18] to calculate this contribution is to notice that it is intimately connected

with the two-loop renormalization of the axial vector current first calculated by Adler long

time ago [19]. Consider the leading recoil correction to HFS generated by the graphs with

two-photon exchanges in Fig. 2. Respective contribution to HFS is given by the expression

in Eq. (1) without the LBL scattering block. The antisymmetric electron-line and and

muon-line spin factors in Eq. (8) can be written in the form

〈γαγδγβ〉(e) −→ iǫραδβ〈γργ5〉(e), 〈γµγσγν〉(µ) −→ iǫλµσν〈γλγ5〉(µ). (34)� +�
FIG. 2. Diagrams with two-photon exchanges

Then the leading recoil contribution to HFS has the form

∆E =
3

4

Zα

π

m

M
EF 〈γ

λγ5〉(µ)

∫ M

m

dq

q
〈γλγ5〉(e). (35)

We see that the leading recoil contribution to HFS is determined by the matrix element of

the electron axial current calculated at the characteristic virtuality q. The first radiative

correction to this matrix element is of order α2 ln(q2/m2) and arises at two loops [19] (see

Fig. 3)

j5λ → j5λ

[
1−

3

4

(α
π

)2

ln
q2

m2

]
. (36)

Substituting this renormalization factor in the expression for the leading recoil correction

in Eq. (35) we obtain the leading recoil correction accompanied by the logarithm squared

contribution in Eq. (33)

∆E = −
3

4

Zα

π

m

M
EF ln

M

m
+

9

4

α2(Zα)

π3

m

M
EF ln2 M

m
. (37)
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FIG. 3. Two-loop axial current renormalization

We see that the logarithm squared contribution is an observable effect of the axial current

renormalization.

Let us clarify the connection between the calculation of this contribution based on the

consideration of the LBL scattering tensor and the approach with the axial current renor-

malization. The diagrams in Fig. 3 are naively linearly divergent and the result in Eq. (36)

implies a gauge invariant regularization. On the other hand contribution of the diagrams in

Fig. 1 to HFS is ultraviolet finite. Hence, for the purpose of calculation of the logarithm

squared contribution replacement of the two triangle diagrams in Fig. 3 by the three box

diagrams in Fig. 1 can be considered as a gauge invariant regularization. Let us see how

this regularization works. Consider first the integration region where k ∼ p ≤ σ ≤ q. In

this region the lower fermion line in the LBL scattering box in the first two diagrams in Fig.

1 effectively shrinks to a point, and these diagrams turn into the axial current diagrams in

Fig. 3. We have already calculated contribution to the LBL scattering tensor 2Lαβµν [p ≤ σ]

generated in this region, see Eq. (23). This contribution is exactly one half of the total

contribution to the LBL scattering tensor in Eq. (26). The other half (see Eq. (24) and

Eq. (25)) arises in the integration region k ≤ σ ≤ p ∼ q, where both lower loops in all

diagrams in Fig. 1 effectively shrink to a point. Therefore, contribution to the axial current

renormalization generated in this region can be considered as a pure regularization effect,

for example contribution of a heavy regularizing fermion that survives when the fermion

mass goes to infinity.

III. SINGLE-LOGARITHMIC CONTRIBUTION

Calculation of the single-logarithmic contribution to HFS requires more accurate treat-

ment of the LBL scattering tensor in Eq. (3). Calculating traces in Eq. (11) we obtain
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L̃αβµν = 8D2
1g

µαgνβ + 16D1g
µα

[
pνqβ + kνpβ + kνqβ − pνpβ

]
− 8D1g

µαgνβ

× [(p · q) + (p · k) + (k · q)] + 32gµα
[
(k · q)pνpβ − (p · q)kνpβ − (p · k)pνqβ

]

+ 16(p · k)(p · q)gµαgνβ − 32pµpαkνqβ,

(38)

and

C̃αβµν = 8D1g
µα

[
−3kνqβ + kνpβ + pνqβ

]
− 8D2g

µαkνpβ − 8D3g
µαpνqβ

+ 16(k · q)gµαpνpβ − 16(k · q)gµαkνpβ − 16(k · q)gµαpνqβ + 16p · (k + q)gµαkνqβ.

(39)

Then after the shift in Eq. (13) and calculation of the loop integral the LBL scattering tensor

can be written in the form

Sαβµν = 2Lαβµν + Cαβµν , (40)

where (see Eq. (11))

Lαβµν =

∫
d4p

π2i
Lαβµν = −16

∫ 1

0

dy

∫ 1

0

dz
y2(1− y)z

Ω(1, y, z, 1)
[(k · q)gµαgνβ − gµαkνqβ ]

+ 16

∫ 1

0

dy

∫ 1

0

dz

{
y(1− 2y) + 2y2z

Ω(1, y, z, 1)

+ y2(1− z)
k2(1− y)2 + q2y2z2

Ω2(1, y, z, 1)

}[
(k · q)gµαgνβ − 2gµαkνqβ

]

+ 16

∫ 1

0

dy

∫ 1

0

dz

{[
m2y

Ω(1, y, z, 1)
−

∫ 1

0

dξ
2(k · q)2y3(1− y)2z2ξ

Ω2(1, y, z, ξ)

+ y3(1− y)z(1− z)
k2q2 + (k · q)2

Ω2(1, y, z, 1)

]
gµαgνβ

− y3(1− y)z(1− z)
2(k · q)

Ω2(1, y, z, 1)
gµαkνqβ

}
,

(41)

and

Cαβµν =

∫
d4p

π2i
Cαβµν = 8

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dzx2y

{
−
(k · q)gµαgνβ − 3gµαkνqβ

Ω(x, y, z, 1)

+
4m2 − 2k · qxy[1− x− z(1− xy)]

Ω2(x, y, z, 1)
gµαkνqβ

}
.

(42)
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The additional parameter ξ in Eq. (41) arises when we separate the ultraviolet divergence

in the logarithmically divergent integral

∫
d4p

iπ2

p2

[p2 − Ω(1, y, z, 1)]3
=

∫
d4p

iπ2

p2

[p2 − Ω(1, y, z, 0)]3

+

∫
d4p

iπ2
p2
[

1

[p2 − Ω(1, y, z, 1)]3
−

1

(p2 − Ω(1, y, z, 0))3

]

=

[
ln

Λ2

Ω(1, y, z, 0)
−

3

2

]
−

∫ 1

0

dξ
2(k · q)y(1− y)z

Ω(1, y, z, ξ)
.

(43)

As was explained above the LBL scattering tensor is contacted with the odd in k and in

q tensor structures and the even ultraviolet divergent term in the square brackets does not

contribute to HFS and can be thrown away.

It is easy to check that the terms on the RHS in the first lines in Eq. (41) and Eq. (42)

reproduce the leading ladder and crossed contributions to the LBL scattering tensor in

Eq. (26) and generate the logarithm squared contribution to HFS in Eq. (33).

At the next step we calculate the integral over momentum k of the upper photons in

Eq. (1)

T (q2, q0) =
1

2

∫
d4k

iπ2k4

(
1

k2 + 2mk0
+

1

k2 − 2mk0

)
〈γα/kγβ〉〈γµ

/qγ
ν〉Sαβµν

= 〈γµ
/qγ

ν〉

∫
d4k

iπ2k4

〈γα/kγβ〉

k2 − 2mk0
Sαβµν ,

(44)

where we used the symmetry of the integrand under simultaneous substitution k → −k and

q → −q to get rid of the second term in the first brackets on the RHS in the first line. In

terms of T (q2, q0) the contribution to HFS in Eq. (1) has the form

∆E =
α2(Zα)

π3

m

M
EF

(
−
3M2

128

)∫
d4q

iπ2q4

(
1

q2 + 2Mq0
+

1

q2 − 2Mq0

)
T (q2, q0). (45)

We calculate T (q2, q0) combining denominators with the help of additional Feynman

parameters u and t (the four-vectorQ and the scalar ∆ on the RHS depend on the parameters

x, y, z, ξ, u, and t)

(1− u)
[
(1− t)k2 + t(k2 − 2mk0)

]
+ u

[
Ω(x, y, z, ξ)

−xy(1− xy)

]
= (k −Q)2 −∆, (46)
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where

∆ = g
[
−q2 + 2bq0 + a2

]
, a2 =

1

g

[
τ 2 +

m2u

xy(1− xy)

]
, b =

τd

g
,

d = ξu

[
z −

1− x

1− xy

]
, τ = m(1 − u)t, g = g0 − d2,

g0 =
u(1− yz)(1− x+ xyz)

y(1− xy)
.

(47)

The four-vector Q has the form

Qµ = dqµ + τµ, (48)

where τµ = (τ, 0) and to calculate the integral over k we shift the integration variable

kµ −→ kµ +Qµ = kµ + dqµ + τµ. (49)

Contractions of matrix structures in Eq. (44) are calculated using relationships in Eq. (27)

and Eq. (28). Five different tensor structures arise in calculations, and after the shift of

integration variable in Eq. (49) they reduce to

〈γα/kγβ〉〈γµ
/qγ

ν〉gµαgνβ −→ −
8

3
(2q2 + q20)− 8q0τ,

〈γα/kγβ〉〈γµ
/qγ

ν〉(k · q)gµαgνβ −→ −
8

3

(
1

4
k2 + q2d2

)
(2q2 + q20)− 8q20τ

2 −
8

3
(5q2 + q20)dq0τ,

〈γα/kγβ〉〈γµ
/qγ

ν〉gµαkνqβ −→
2

3
k2(2q2 + q20) +

8

3
(q2 − q20)τ

2,

〈γα/kγβ〉〈γµ
/qγ

ν〉(k · q)2gµαgνβ −→ −
8

3

(
3

4
k2 + q2d2

)
(2q2 + q20)q

2d−
8

3
(8q2 + q20)τ

2q20d

−
8

3

(
1

4
k2 + q2d2

)
(7q2 + 2q20)q0τ − 8q30τ

3,

〈γα/kγβ〉〈γµ
/qγ

ν〉(k · q)gµαkνqβ −→

[
2

3
k2(2q2 + q20) +

8

3
τ 2(q2 − q20)

](
q2d+ q0τ

)
.

(50)

Now we are ready to obtain explicit integral representations for the ladder TL(q
2, q0) and

crossed TC(q
2, q0) diagram contributions to the function T (q2, q0)

T (q2, q0) = 2TL(q
2, q0) + TC(q

2, q0). (51)
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The ladder contribution can be written as a sum of nine integrals

TL(q
2, q0) =

128

3

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

du

∫ 1

0

dt
∑

i

TL,i(y, z, u, t, q
2, q0), (52)

where (x = 1 in all formulae below and ξ = 1 in all expressions except TL,6)

TL,1 = yz(1− t)(1− u)2

{[
1

∆
−

q2d2

∆2

]
(2q2 + q20)−

(q2 + 2q20)τ
2

∆2
−

q0(5q
2 + q20)τd

∆2

}
, (53)

TL,2 =
3

2
(2q2 + q20)

{
−
(1− 2y) + 2yz

1− y

(1− t)(1− u)2

∆

+ (1− z)
u(1− u)

∆
−

y2z2(1− z)q2

(1− y)2
(1− t)u(1− u)2

∆2

}
,

(54)

TL,3 =

{
(1− 2y) + 2yz

1− y

(1− t)(1− u)2

∆2
− (1− z)

u(1− u)

∆2

+ 2
y2z2(1− z)q2

(1− y)2
(1− t)u(1− u)2

∆3

}
(2q2 + q20)q

2d2,

(55)

TL,4 =

{
(1− 2y) + 2yz

1− y

(1− t)(1− u)2

∆2

− (1− z)
u(1− u)

∆2
+ 2

y2z2(1− z)q2

(1− y)2
(1− t)u(1− u)2

∆3

}

×

[
(2q2 + q20)τ

2 + q0(5q
2 + q20)τd

]
,

(56)

TL,5 =
m2

1− y

(1− t)(1− u)2

∆2

[
(2q2 + q20)d+ 3q0τ

]
, (57)

TL,6 = 4

∫ 1

0

dξξyz2(1− t)u(1− u)2

×

{[
3

4

1

∆2
ξ

−
q2d2ξ
∆3

ξ

]
(2q2 + q20)q

2dξ −
τ 2q20dξ
∆3

ξ

(8q2 + q20)

+

[
1

4

1

∆2
ξ

−
q2d2ξ
∆3

ξ

]
(7q2 + 2q20)q0τ −

3q30τ
3

∆3
ξ

}
,

(58)

TL,7 = −
yz(1− z)

1− y

q2u(1− u)

∆2

[
(2q2 + q20)d+ 3q0τ

]
, (59)
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TL,8 = 2
yz(1− z)

1− y
(1− t)u(1− u)2

{[
−
3

4

1

∆2
+

q2d2

∆3

]
(2q2 + q20)q

2d

+
τ 2q20d

∆3
(8q2 + q20) +

[
−
1

4

1

∆2
+

q2d2

∆3

]
(7q2 + 2q20)q0τ +

3q30τ
3

∆3

}
,

(60)

TL,9 = 4
yz(1− z)

1− y
(1− t)u(1− u)2

[
−
1

4

1

∆2
(2q2 + q20)q

2d

+ q2(q2 − q20)
τ 2d

∆3
−

1

4

1

∆2
(2q2 + q20)q0τ + q0(q

2 − q20)
τ 3

∆3

]
.

(61)

The crossed diagram contribution can be written as a sum of three integrals

TC(q
2, q0) =

128

3

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

du

∫ 1

0

dt
∑

i

TC,i(x, y, z, u, t, q
2, q0), (62)

where (ξ = 1 in all formulae below)

TC,1 =
1

2

x(1− t)(1− u)2

1− xy

[
(2q2 + q20)

[
2

∆
−

q2d2

∆2

]
− 3

q2τ 2

∆2
−

q0(5q
2 + q20)τd

∆2

]
, (63)

TC,2 =
x(1− t)(1− u)2

1− xy

um2

xy(1− xy)

[
2q2 + q20

∆2
− 4

(q2 − q20)τ
2

∆3

]
, (64)

TC,3 =
1

2

x(1− t)(1− u)2

1− xy

[
(2q2 + q20)

q2d2

∆2
− 4(q2 − q20)

q2τ 2d2

∆3

+ (2q2 + q20)
q0τd

∆2
− 4(q2 − q20)

q0τ
3d

∆3

]
.

(65)

All logarithmic contributions to HFS can be obtained from the large momentum expan-

sion of T (q2, q0). The leading term in this expansion we already obtained in Eq. (31)

T = −32

∫
d4k

iπ2k4

q2 + 2q20
q2

≃ −32

∫ −q2

m2

dk2

k2

q2 + 2q20
q2

≃ −32
q2 + 2q20

q2
ln

−q2

m2
. (66)

We are going to calculate the next terms in the large q expansion of T (q2, q0)

T = −32
q2 + 2q20

q2
ln

−q2

m2
+ κ1

2q2 + q20
q2

+ κ2
q2 + 2q20

q2
, (67)

where κ1 and κ2 are the numerical coefficients to be calculated. The numerators of the last

two terms should contain any two linear independent combinations of q2 and q20. We have

chosen 2q2+q20 and q2+2q20 because the first one contains the same combination of momenta
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TABLE I. Leading terms in the ladder diagram expansion

TL,i − 3
16κ1i − 3

16κ2i

TL,1 ln −q2

m2 + 8ζ(3)− 8 1

TL,2a −6 ln −q2

m2 − 9 0

TL,2b 3 ln −q2

m2 − 24ζ(3) − 4π2

3 + 35 0

TL,2c 3 ln −q2

m2 − 24ζ(3) + 33 0

TL,3 96ζ(3) − 116 0

TL,4
4π2

9 − 8
3 0

TL,5 0 0

TL,6 −16ζ(3) + 19 0

TL,7 −16ζ(3) + 20 0

TL,8 −40ζ(3) + 97
2 0

TL,9 16ζ(3) − 19 0

TL ln −q2

m2 − 8π2

9 + 5
6 1

that arises in the leading term of the expansion in Eq. (66), and the second structure does

not generate logarithm of the mass ratio after integration over q.

The integral representations in Eq. (53)-Eq. (61), and in Eq. (63)-Eq. (65) are rather

cumbersome and we simplify them before integration over the Feynman parameters. It

turns out that in calculations of the asymptotic expansion in Eq. (67) we can omit the term

2bq0 in the denominator ∆

∆ = g(q2 + 2bq0 + a2) → g(q2 + a2) ≡ ∆̃. (68)

To justify this simplification it is sufficient to notice that the term 2bq0 in the denominator

∆ arises when we combine the subleading term 2mk0 from the electron propagator with the

subleading term 2k · q from the denominator Ω in Eq. (46). The denominator ∆̃ depends

only on the Lorentz invariant momentum squared q2 what makes the calculations easier.

Even after this simplification the integrals over the Feynman remain unwieldy, especially in

the case of the crossed diagrams when they contain an extra Feynman parameter x. They

become more manageable if we notice that the remnant of the scalar product k · q in the

denominator Ω survives not only as the term 2bq0 in Eq. (68) but also as the second term
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in the factor g (see definitions in Eq. (47), below we show explicitly only dependence of g,

d, and ∆̃ on one parameter ξ)

g(ξ) = g(0)− d2 =
u(1− yz)(1− x+ xyz)

y(1− xy)
− ξ2u2

[
z −

1− x

1− xy

]2
. (69)

The leading logarithmic term in Eq. (67) arises when we simply omit this second term,

g(ξ) → g(0). To calculate the subleading terms in the asymptotic expansion in Eq. (67) we

represent all terms with the denominator ∆̃(ξ = 1) in Eq. (68) in the form

1

∆̃(ξ = 1)
=

1

∆̃(ξ = 0)
+

[
1

∆̃(ξ = 1)
−

1

∆̃(ξ = 0)

]
=

1

∆̃(ξ = 0)
−

∫ 1

0

dξ
2ξq2d2(ξ)

∆̃(ξ)
. (70)

It is easier to calculate separately the integrals with the two terms on the RHS than the

integral with the denominator ∆̃ on the LHS side. Unlike the expansions in Eq. (24)-Eq. (26)

the integrals with the denominator ∆̃ substituted by the terms on the RHS are well suited for

calculation of the subleading terms in the asymptotic expansions in the kinematics described

in Eq. (18). After tedious calculations we obtained analytic expressions for the subleading

terms in the asymptotic expansion of the integrals in Eq. (53)-Eq. (61) and in Eq. (63)-

Eq. (65). These terms are collected in Tables I and II, and the asymptotic expansions for

the ladder and crossed diagrams have the form

TL = −
16

3

2q2 + q20
q2

[
ln

−q2

m2
−

8π2

9
+

5

6

]
−

16

3

q2 + 2q20
q2

, (71)

TC = −
64

3

2q2 + q20
q2

[
ln

−q2

m2
− 2ζ(3) +

8

3

]
−

32

3

q2 + 2q20
q2

. (72)

Then the total ultraviolet asymptotic expansion in Eq. (67) acquires the form

T = −32
2q2 + q20

q2

[
ln

−q2

m2
−

4

3
ζ(3)−

8π2

27
+

37

18

]
−

64

3

q2 + 2q20
q2

. (73)

Our next task is to calculate the single-logarithmic contributions generated by the first

two terms in the expansion in Eq. (73). We substitute the asymptotic expansions in Eq. (71)

and Eq. (72) in the expression for HFS in Eq. (45). One can prove that the last terms

with the numerator q2 + 2q20 do not generate logarithmic contributions and all double- and

single-logarithmic contributions are generated by the terms proportional 2q2 + q20 . The
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leading logarithmic term in Eq. (73) generates not only the logarithm squared contribution

in Eq. (33) but also additional single-logarithmic terms. Analytic calculation of single-

logarithmic terms is performed with the help of auxiliary integration formulae collected in

[20]. We obtain ladder and crossed diagram logarithmic contributions to HFS in the form

2∆EL ≃ 2
α2(Zα)

π3

m

M
EF

[
3

8
ln2 M

m
+

(
−
π2

3
+

23

16

)
ln

M

m

]
, (74)

∆EC ≃
α2(Zα)

π3

m

M
EF

[
3

8
ln2 M

m
+

(
−3ζ(3) +

17

2

)
ln

M

m

]
. (75)

TABLE II. Leading terms in the crossed diagram expansion

TC,i − 3
64κ1i − 3

64κ2i

TC,1 ln −q2

m2 − π2

3 + 7
2

1
2

TC,2 −7
2ζ(3) +

π2

3 + 1 0

TC,3
3
2ζ(3)−

11
6 0

TC ln −q2

m2 − 2ζ(3) + 8
3

1
2

And finally the total logarithmic radiative-recoil contribution to HFS generated by the

gauge invariant set of of three-loop diagrams with the LBL insertions has the form

∆E =
α2(Zα)

π3

m

M
EF

[
9

4
ln2 M

m
+

(
−3ζ(3)−

2π2

3
+

91

8

)
ln

M

m

]
. (76)

IV. CONCLUSIONS

Other single-logarithmic radiative-recoil contributions to HFS were calculated earlier [9–

14]

∆E =
α3

π3

m

M
EF

[
3ζ(3)− 6π2 ln 2 + π2 − 8

]
ln

M

m
. (77)

Combining this contribution with the result obtained above in Eq. (76) we obtain the total

result for all known three-loop radiative-recoil single-logarithmic corrections to HFS

∆Etot =
α3

π3

m

M
EF

(
−6π2 ln 2 +

π2

3
+

27

8

)
ln

M

m
. (78)
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As was explained in the Introduction, the current goal of the HFS theory in muonium is

to reduce the theoretical uncertainty below 10 Hz. The result above is a step in this direc-

tion. Work on calculation of the remaining three-loop single-logarithmic and nonlogarithmic

contributions to HFS is now is progress.
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