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Abstract

Many neutrino mixing scenarios that have µ − τ symmetry with θ13 = 0 are

in disagreement with recent experimental results that indicate a nonzero value for

θ13. We investigate the effect of small perturbations on Majorana mass matrices

with µ − τ symmetry and derive analytic formulae for the corrections to the mix-

ing angles. We find that since m1 and m2 are nearly degenerate, µ − τ symmetry

mixing scenarios are able to explain the experimental data with about the same

size perturbation for most values of θ12. This suggests that the underlying unper-

turbed mixing need not have θ12 close to the experimentally preferred value. One

consequence of this is that a new class of models with µ− τ symmetry is possible,

with unperturbed θ12 equal to zero or 90◦ for arbitrary unperturbed θ13.

1



Of the numerous neutrino mixing scenarios discussed in the literature [1], several have
µ − τ symmetry, such as tri-bimaximal mixing (TBM) [2], bimaximal mixing (BM) [3],
hexagonal mixing (HM) [4] and scenarios of A5 mixing [5]. In these scenarios, θ23 = 45◦,
θ13 = 0, and only θ12 depends on the particular model. Tri-bimaximal mixing is most
popular because the value of θ12 predicted by TBM is close to that preferred by the
current experimental data. However, the latest results from the T2K [6], MINOS [7],
and Double Chooz [8] experiments suggest a nonzero value of θ13, and the recent Daya
Bay [9] and RENO [10] experiments find θ13 6= 0 at the 5.2σ and 4.9σ level, respectively.
Various corrections may reconcile such models with nonzero θ13 [1]. In this Letter we
consider small perturbations acting on Majorana mass matrices with µ − τ symmetry
and estimate the size of perturbations required to explain the experimental data.

We find that for µ − τ symmetries with almost any initial value of θ12 (i.e., before
the perturbation), the minimal size of the perturbations needed to bring the model in
agreement with experimental data varies by only about 20%. The reason is that the θ12
correction depends only on the ratio of perturbation terms and not on their absolute
size, and the overall size of the perturbation is determined by the corrections to θ13 and
θ23, which are relatively small. We also show that a new category of models with µ − τ
symmetry, θ23 = 45◦, θ12 = 0 or 90◦, and arbitrary θ13, can also fit the data with small
perturbations.

We start with the mass matrix for Majorana neutrinos

M = U∗MdiagU † , (1)

where Mdiag = diag(m1, m2, m3), U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
mixing matrix [11] (without the multiplicative diagonal matrix of Majorana phases), and
we work in the basis in which the charged lepton mass matrix is diagonal. The masses
m2 and m3 are complex and m1 can be taken to be real and non-negative.

The general condition describing µ − τ symmetry (also sometimes called µ − τ uni-
versality) is [12]

|Uµi| = |Uτi| , for i = 1, 2, 3. (2)

From the standard form of the mixing matrix these conditions are equivalent to

θ23 = 45◦ , Re(cos θ12 sin θ12 sin θ13e
iδ) = 0 . (3)

Hence, there are four classes of µ − τ symmetry: (a) θ23 = 45◦, θ13 = 0; (b) θ23 =
45◦, θ12 = 0; (c) θ23 = 45◦, θ12 = 90◦; (d) θ23 = 45◦, δ = ±90◦. Class (a) contains models
with tri-bimaximal, bimaximal, hexagonal, and A5 symmetries, while class (d) includes
tetramaximal symmetry [13]. Classes (b) and (c) have not been studied before because
the unperturbed θ12 angle is far from the experimentally preferred value, but, as we show
below, small perturbations can have a large effect on θ12, and therefore these models
should not be ignored.
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Class (a): θ023 = 45◦, θ013 = 0

We first examine the effect of small perturbations on models in class (a). The initial
(unperturbed) mixing matrix can be written as

U0 =









cos θ012 sin θ012 0

− sin θ0
12√
2

cos θ0
12√
2

1√
2

sin θ0
12√
2

− cos θ0
12√
2

1√
2









, (4)

and the initial mass matrix is

M0 = U∗
0M

diag
0 U †

0 =








m0
1c

2
12 +m0

2s
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, (5)

where Mdiag
0 = diag(m0

1, m
0
2, m

0
3), and cjk, sjk denotes cos θ0jk and sin θ0jk respectively.

Under a small perturbation the final (resultant) mass matrix can be written as

M = U∗
0M

diag
0 U †

0 + E , (6)

where the perturbation matrix E has the general form

E =M −M0 =





ǫ11 ǫ12 ǫ13
ǫ12 ǫ22 ǫ23
ǫ13 ǫ23 ǫ33



 . (7)

Treating the three masses as eigenvalues of the mass matrix with each column of
the mixing matrix as the corresponding eigenvector, we can use traditional perturbation
methods to find the corrections to the three angles and three masses. From experiment
we know that m1 and m2 are nearly degenerate, so that degenerate perturbation theory
with |δm0

21| ≪ |δm0
31| and |ǫij | < |m0

k| (where δm0
ji = m0

j −m0
i , and the index k denotes

the heaviest eigenstate), can be used. For simplicity, we assume M0 and E are real and
employ the following notation:

ǫ1 = ǫ11 , ǫ2 = ǫ12 + ǫ13 , ǫ3 = ǫ12 − ǫ13 , ǫ4 = ǫ22 + ǫ33 + 2ǫ23 ,

ǫ5 = ǫ22 − ǫ33 , ǫ6 = ǫ22 + ǫ33 − 2ǫ23 − 2ǫ11 . (8)

We find the first order corrections to the three masses to be

δm
(1)
i =

1

4

[

4ǫ1+ǫ6±
(

2δm0
21−

√

8ǫ23 + ǫ26 + 4(δm0
21)

2 + 4δm0
21(2

√
2ǫ3 sin 2θ

0
12 + ǫ6 cos 2θ

0
12)

)]

,

(9)
where the plus sign is for i = 1 and the minus sign is for i = 2, and

δm
(1)
3 =

1

2
ǫ4 . (10)
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Table 1: Best-fit values and 2σ ranges of the oscillation parameters [14] used to find the
ǫij , with δm

2 ≡ |m2|2 −m2
1 and ∆m2 ≡ |m3|2 − (m2

1 + |m2|2)/2.

Hierarchy θ12(
◦) θ13(

◦) θ23(
◦) δm2(10−5eV2) |∆m2|(10−3eV2)

Normal 33.6+2.1
−2.0 8.9+0.9

−0.9 38.4+3.6
−2.3 7.54+0.46

−0.39 2.43+0.12
−0.16

Inverted 33.6+2.1
−2.0 9.0+0.8

−1.0 38.8+5.3
−2.3 ⊕ 47.5− 53.2 7.54+0.46

−0.39 2.42+0.11
−0.16

The first order corrections to the mixing angles are

δθ
(1)
12 =

1

2
arctan

2
√
2ǫ3 cos 2θ

0
12 − ǫ6 sin 2θ

0
12

2
√
2ǫ3 sin 2θ

0
12 + ǫ6 cos 2θ

0
12 + 2δm0

21

, (11)

δθ
(1)
23 =

ǫ5s
2
12 −

√
2ǫ2s12c12

2δm0
31

+
ǫ5c

2
12 +

√
2ǫ2s12c12

2δm0
32

, (12)

δθ
(1)
13 =

√
2ǫ2c

2
12 − ǫ5s12c12
2δm0

31

+

√
2ǫ2s

2
12 + ǫ5s12c12
2δm0

32

, (13)

and the second order correction to θ12 is

δθ
(2)
12 = −

√
2ǫ2ǫ5 cos 2(θ

0
12 + δθ

(1)
12 ) + (ǫ22 − ǫ25/2) sin 2(θ

0
12 + δθ

(1)
12 )

4δm0
21δm

0
32

. (14)

Imposing |δm0
21| ≪ |δm0

31|, the expressions for δθ
(1)
23 and δθ

(1)
13 simplify to

δθ
(1)
23 ≃ ǫ5

2δm0
31

, δθ
(1)
13 ≃

√
2ǫ2

2δm0
31

. (15)

We note that while δθ
(1)
23 and δθ

(1)
13 are suppressed by a factor of order ǫj/δm

0
31, to leading

order δθ12 depends only on ratios of linear combinations of ǫ3, ǫ6 and δm0
21 (which is

O(ǫij)). Therefore large corrections to θ12 are possible even for small corrections to θ23
and θ13.

A recent global three-neutrino fit [14] yields the parameter values in Table 1. We
have done a numerical search to find perturbed mass matrices that give the oscillation
parameters and which have small perturbations. In our search, we first fix θ023 = 45◦ and
θ013 = 0, consistent with µ − τ symmetry, and choose a particular value for θ012 and the
magnitude of m1 for the normal hierarchy (or m3 for the inverted hierarchy). The global
fit in Table 1 then defines the magnitudes of the other two final masses and the three
final mixing angles (since θ013 = 0, the initial Dirac phase does not matter).

We characterize the size of the perturbation as the root-mean-square (RMS) value of
the perturbations, i.e.,

ǫRMS =

√

∑3
i,j=1 |Mij −M0ij |2

9
, (16)
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Table 2: Top half: values of the perturbations (in 10−3 eV) that give the best-fit param-
eters in Table 1 and have the minimum ǫRMS for the given θ012, for the normal hierarchy
and m1 = 0. Bottom half: representative values that fit the experimental data within
2σ and for which all ǫij have a similar magnitude (with m0

1 = 0, m0
2 = 0.0054 eV,

m0
3 = 0.0595 eV, m1 = 0.0072 eV, δ = 180◦ and all other phases equal to 0).

θ012(
◦) ǫ11 ǫ12 ǫ13 ǫ22 ǫ23 ǫ33 ǫRMS

60 -3.05 -3.50 -5.99 -2.72 -1.52 5.77 4.10
45 (BM) -1.32 -4.74 -4.74 -3.58 -0.66 4.90 3.79
35.3 (TBM) 0.32 -4.66 -4.82 -4.40 0.16 4.08 3.74
30 (HM) 1.07 -4.31 -5.18 -4.78 0.54 3.71 3.79
0 0.00 -1.38 -8.11 -4.24 0.00 4.24 4.36

60 5.41 -4.17 -4.52 -5.00 -9.94 3.36 6.14
45 (BM) 6.76 -4.43 -4.26 -5.67 -9.27 2.69 6.08
35.3 (TBM) 7.66 -4.32 -4.37 -6.12 -8.82 2.24 6.08
30 (HM) 8.11 -4.17 -4.52 -6.35 -8.59 2.01 6.09
0 9.46 -2.52 -6.17 -7.02 -7.92 1.34 6.28

where i and j sum over neutrino flavors. Hence, ǫRMS is determined by the following
quantities: three initial masses, two initial Majorana phases, two final Majorana phases
and one final Dirac phase. We scan over these quantities with all phases taken to be
either 0 or 180◦ to find the minimum value of ǫRMS for a given θ012. We follow the same
procedure for classes (b) and (c) below. For class (d), all values of the phases are allowed.

We show the perturbations that give the smallest ǫRMS for the normal hierarchy,
m1 = 0 and several values of θ012 in Table 2. It is clear that the sizes of ǫRMS are
approximately the same regardless of the value of θ012; we find that the smallest ǫRMS

for each θ012 varies by at most 17% for the examples shown. This can be explained
by the perturbation results derived above as follows. From Eq. (8) we have ǫRMS =
√

ǫ21 + ǫ22 + ǫ23 +
1
2
ǫ25 +

1
4
ǫ24 +

1
4
(2ǫ1 + ǫ6)2/3; since m3 ≫ m1, m2 for the normal hierarchy

with m1 = 0 eV and the first order perturbations of the three masses are much smaller
than m3, we can assume δm0

31 ≈ m0
3 ≈ m3 ≈

√
∆m2 = 0.0493 eV. Then from Eq. (15)

we know that in order to get the correction δθ23 = −6.6◦ and δθ13 = 8.9◦ for any value of
θ012, we need ǫ5 = −0.0114 eV and ǫ2 = 0.0108 eV, so that

√

ǫ22 + ǫ25/2/3 = 0.00449 eV,
which is already close to the ǫRMS values found in Table 2. The small discrepancy can
be explained by the first perturbation of the three masses and other ǫ’s. Hence, we can
say that the size of the perturbation mainly comes from the corrections to θ23 and θ13.
From Eq. (11) we know that the correction to θ12 is determined by the relative ratio of
ǫ3 to ǫ6 and the actual size of the perturbation does not matter. This means that we can
have large corrections for θ012 with a (relatively) small perturbation.

We note that initial values of θ12 on the “dark side” (θ012 > 45◦ and m0
1 < m0

2) can
also fit the data with perturbations that are similar in magnitude to those needed for
tri-bimaximal mixing (see the entry for θ012 = 60◦ in Table 2).
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Table 3: Top half: same as Table 2, except for the inverted hierarchy and m3 = 0.
Bottom half: same as Table 2, except for the inverted hierarchy and m0

1 = 0.05 eV,
m0

2 = 0.052 eV, m0
3 = 0, m3 = 0.002 eV, and all phases equal to 0.

θ012(
◦) ǫ11 ǫ12 ǫ13 ǫ22 ǫ23 ǫ33 ǫRMS

60 -0.86 -4.94 -5.64 5.57 -0.43 -4.72 4.31
45 (BM) -0.47 -5.29 -5.29 5.38 -0.23 -4.91 4.29
35.3 (TBM) -0.05 -5.30 -5.28 5.17 0.03 -5.12 4.28
30 (HM) 0.16 -5.23 -5.36 5.07 0.08 -5.22 4.28
0 0.00 -4.47 -6.12 5.15 0.00 -5.15 4.32

60 -3.56 -4.89 -5.27 5.95 2.67 -3.92 4.49
45 (BM) -3.06 -4.98 -5.18 5.70 2.92 -4.17 4.47
35.3 (TBM) -2.73 -4.94 -5.22 5.54 3.08 -4.34 4.46
30 (HM) -2.56 -4.89 -5.27 5.45 3.17 -4.42 4.46
0 -2.06 -4.28 -5.88 5.20 3.42 -4.67 4.50

In the top half of Table 2, ǫ11 and ǫ23 are much smaller than the other ǫij for some
values of θ012. We have checked that if these values are set to zero, the experimental
constraints can still be satisfied at the 2σ level without a large change in the nonzero
parameters. Therefore if some perturbations are exactly zero due to symmetries, the
resulting mass matrix can still fit the experimental data with small perturbations.

For the inverted hierarchy, some representative sets of ǫij that give the minimum ǫRMS

are shown in Table 3 for m3 = 0. The minimum ǫRMS as a function of θ012 varies only by
about 1% in this case, i.e., the minimum ǫRMS varies with θ012 even less for the inverted
hierarchy than for the normal hierarchy.

Clearly, if perturbations are large enough that tri-bimaximal mixing can explain the
experimental data, then other µ − τ mixing scenarios, such as bimaximal, hexagonal
mixing and A5 mixing, can also explain the experimental data with about the same size
perturbation. Hence, tri-bimaximal mixing has no special position among the µ − τ
symmetry mixing scenarios when a perturbation is required to fit the experimental data.
Also, it is possible for all the perturbations to have a similar magnitude and still give the
oscillation parameters within their 2σ ranges; see the bottom half of Tables 2 and 3.

We also varied the size of the final masses by changing the value of m1 in the normal
hierarchy and m3 in the inverted hierarchy. We find that the minimum ǫRMS decreases
as the size of the final masses increases for both the normal and inverted hierarchies.
For the quasi-degenerate hierarchy (in which the magnitude of the absolute masses is
larger than

√
∆m2) the size of the perturbation can be very small. This can be explained

by the perturbation equations: since δm0
31 ≈ m3 − m1 ≈ ∆m2/(m3 + m1) for small

perturbations, and ∆m2 is fixed by experimental data, then δm0
31 will decrease if the

masses increase, and similarly for δm0
32. Then Eqs. (12) and (13) show that in order to

get the same corrections for θ013 and θ
0
23, the size of the perturbation should also decrease.
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Classes (b) and (c): θ023 = 45◦, θ012 = 0 or 90◦

For class (b) (θ023 = 45◦, θ012 = 0), since the Dirac phase is irrelevant, the initial mixing
matrix and mass matrix can be written as

U0 =









cos θ013 0 sin θ013

− sin θ0
13√
2

1√
2

cos θ0
13√
2

− sin θ0
13√
2

− 1√
2

cos θ0
13√
2









, (17)

and the initial mass matrix is

M0 = U∗
0M

diag
0 U †

0 =








m0
1c

2
13 +m0

3s
2
13

(m0

3
−m0

1
)s13c13√
2

(m0

3
−m0

1
)s13c13√
2

(m0

3
−m0

1
)s13c13√
2

1
2
(m0

2 +m0
3c

2
13 +m0

1s
2
13)

1
2
(−m0

2 +m0
3c

2
13 +m0

1s
2
13)

(m0

3
−m0

1
)s13c13√
2

1
2
(−m0

2 +m0
3c

2
13 +m0

1s
2
13)

1
2
(m0

2 +m0
3c

2
13 +m0

1s
2
13)









. (18)

If we redefine the phase of the wavefunction ψ3 to −ψ3, or change the initial angle θ023
from 45◦ to 135◦ and switch the indices 2 and 3, then the mass matrix in Eq. (18) is
exactly the same as that in Eq. (5).

For the above initial mass matrix, corrections must shift θ12 from 0 to 33.6◦, and θ13
from the initial arbitrary angle to 9.0◦. We used the same scan procedure as before and
searched for the minimum ǫRMS for various values of θ013 (see Table 4). We find that
for θ013 < 20◦, the data can be explained with about the same size perturbation as was
found for class (a). For example, when θ013 = 0 for class (b), the initial mass matrix is
the same as θ012 = 0 for class (a), and therefore the minimum ǫRMS is also the same.
In particular, when θ013 is close to 9.0◦ in class (b), the minimum ǫRMS is even smaller
than the minimum value for class (a) because the correction to θ13 is smaller in this case.
Although the correction to θ12 is large, it does not affect the size of the perturbation too
much because its size is mainly determined by the corrections to θ13 and θ23, as noted
before. However, for δθ13 greater than about 20◦, the size of the perturbation required
to fit the data becomes larger since θ13 must change by more than 10◦.

For class (c) (θ023 = 45◦, θ012 = 90◦), we find that switching m0
1 with m0

2 makes the
initial mass matrix the same as the initial mass matrix of class (b). Since we scan all
possible values of m0

1 and m
0
2, the minimum ǫRMS for a given θ013 for class (c) is the same

as for class (b).

Class (d): θ023 = 45◦, δ0 = ±90◦

If we fix θ023 = 45◦, δ0 = ±90◦ and vary both θ012 and θ
0
13, this category includes mixing

scenarios such as the tetramaximal mixing pattern (T4M) [13], and the correlative mixing
pattern with δ = ±90◦ [15]. For θ013 < 20◦ and θ012 ≤ 45◦, the smallest ǫRMS for the normal
hierarchy (withm1 = 0) varies from 2.29×10−3 eV to 5.26×10−3 eV, where the minimum
value occurs at θ013 = 9◦ and θ012 = 32◦, and the maximum value occurs at θ013 = 20◦ and
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Table 4: Top half: same as Table 2, except for class (b) (θ012 = 0). Bottom half: same as
Table 2, except for class (b).

θ013(
◦) ǫ11 ǫ12 ǫ13 ǫ22 ǫ23 ǫ33 ǫRMS

0 0.00 -1.38 -8.11 -4.24 0.00 4.24 4.36
5 0.48 1.44 -5.28 -4.48 -0.24 4.00 3.27
10 -0.44 4.21 -2.52 -4.02 0.22 4.46 3.06
15 -2.64 6.59 -0.14 -2.92 1.32 5.56 3.90
20 -5.85 8.30 1.57 -1.32 2.93 7.17 5.24

0 9.46 -2.52 -6.17 -7.02 -7.92 1.34 6.28
5 9.01 1.13 -2.52 -6.80 -7.69 1.56 5.41
10 7.66 4.67 1.02 -6.12 -7.02 2.24 5.22
15 5.47 8.00 4.35 -5.03 -5.93 3.33 5.80
20 2.50 11.00 7.35 -3.54 -4.44 4.82 6.92

θ012 = 0. Therefore small perturbations can fit the experimental data for a wide range of
θ012 and θ013 for class (d).

In summary, we studied small perturbations to Majorana mass matrices with µ − τ
symmetry that yield experimentally preferred oscillation parameters. We find that the
size of the perturbations (which decreases as the neutrino mass scale is increased), is
mainly determined by the corrections to θ23 and θ13, and that small perturbations can
give a very large correction to θ12 because to first order, the θ12 correction depends only
on the ratio of perturbation terms and not on their absolute size. Hence, most mixing
scenarios with µ− τ symmetry can explain the experimental data with perturbations of
similar magnitude, and tri-bimaximal mixing has no special place among scenarios with
µ − τ symmetry. We also find that slightly perturbed µ − τ symmetric models with
θ12 = 0 or 90◦ are viable for θ13 < 20◦.
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