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We calculate the number density, energy density, transverse pressure, longitudinal pressure, and
magnetization of an ensemble of spin one-half particles in the presence of a homogenous background
magnetic field. The magnetic field direction breaks spherical symmetry causing the pressure trans-
verse to the magnetic field direction to be different than the pressure parallel to it. We present
explicit formulae appropriate at zero and finite temperature for both charged and uncharged par-
ticles including the effect of the anomalous magnetic moment. We demonstrate that the resulting
expressions satisfy the canonical relations, Ω = −P‖ and P⊥ = P‖−MB, with M = −∂Ω/∂B being
the magnetization of the system. We numerically calculate the resulting pressure anisotropy for a
gas of protons and a gas of neutrons and demonstrate that the inclusion of the anomalous magnetic
increases the level of pressure anisotropy in both cases.

PACS numbers: 71.10.Ca, 95.30.Tg, 97.10.Ld

I. INTRODUCTION

The determination of the bulk properties of a Fermi
gas in the presence of a magnetic field is important for
understanding neutron stars and the early-time dynam-
ics of the quark gluon plasma created in relativistic heavy
ion collisions. In the presence of a uniform magnetic field,
both the matter and the field contributions to the space-
like components of the energy-momentum tensor become
anisotropic. The degree of pressure anisotropy increases
as the magnitude of the magnetic field increases. In this
paper we revisit the calculation of the bulk properties
of a Fermi gas of spin one-half particles in a uniform
magnetic field with the goal of unambiguously determin-
ing the pressure anisotropy from first principles including
the effect of the anomalous magnetic moment.

As mentioned above, there is currently considerable in-
terest in the behavior of matter in the presence of high
magnetic fields. Neutron stars, for example, are known
to possess high magnetic fields. More specifically, magne-
tars [1–7] are believed to have surface magnetic fields as
strong as 1014−1015 Gauss. Based on such surface mag-
netic fields, one could expect magnetic fields in the inte-
rior of magnetars to be on the order of 1016−1019 Gauss.
There have been many previous studies of the effect of
magnetic fields on neutron stars and magnetars focusing
on the effect of magnetic fields on the equation of state of
the matter composing the star including hadronic mat-
ter, quark matter, and hybrid stars composed of hadronic
matter with a quark matter core [8–48].

Among these references some authors have simply as-
sumed that the system continues to be describable in
terms of an energy density and an isotropic pressure
derivable from standard thermodynamic relations, while
other authors have included the fact that the background
magnetic field breaks the spherical symmetry of the sys-
tem. The breaking of the spherical symmetry has two
distinct contributions: (i) the matter contribution to the
energy-momentum tensor and (ii) the field contribution

to the energy-momentum tensor. For charged particles
the presence of a magnetic field causes the pressure trans-
verse to and longitudinal to the local magnetic field direc-
tion to be different, with the level of pressure anisotropy
increasing monotonically with the magnitude of the mag-
netic field. The same occurs for uncharged particles that
have a non-vanishing anomalous magnetic moment as we
will demonstrate.

There have been dynamical models of neutron stars
which have attempted to include the effect of high mag-
netic fields on the three-dimensional structure of neutron
stars [49–54]. Some of these studies have self-consistently
included modifications of the general relativistic metric
necessary to describe the breaking of spherical symmetry
by the neutron star’s magnetic field. However, to the best
of our knowledge there has not been a study which has
simultaneously included the general relativity aspects, ef-
fects of magnetic fields on the equation of state, and ef-
fects of pressure anisotropy on the static and dynamical
properties of a high-magnetic-field neutron star. In order
to complete this program it is necessary to first under-
stand all sources of pressure anisotropy due to magnetic
fields.

Another area in which there has been a significant
amount of attention focused on the behavior of matter
subject to high magnetic fields is the consideration of the
first fm/c after the collision of two high-Z ions in a rela-
tivistic heavy ion collision. Because of the large number
of protons in the colliding nuclei, magnetic fields on the
order of 1018−1019 Gauss are expected to be generated at
early times after the initial nuclear impact [55–59]. The
existence of such high magnetic fields prompted many re-
search groups to study how the finite temperature decon-
finement and chiral phase transitions are affected by the
presence of a background magnetic field. These studies
have included direct numerical investigations using lat-
tice quantum chromodynamics (QCD) [60–63] and theo-
retical investigations using a variety of methods includ-
ing, for example, perturbative QCD studies, model stud-
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ies, and string-theory inspired anti-de Sitter/conformal
field theory (AdS/CFT) correspondence studies [64–87].

In order to have more a comprehensive understanding
of the behavior of matter in a background magnetic field,
we begin with the basics and study Fermi gases consisting
of charged and uncharged spin one-half particles includ-
ing the effect of the anomalous magnetic moment. Many
of the results obtained here are already available in the
literature; however, the results for the transverse pres-
sure including the effect of the anomalous magnetic mo-
ment have not appeared previously. For sake of complete-
ness, we present the results for all of the components of
the matter contribution to the energy-momentum tensor
with and without anomalous magnetic moment as a point
of reference for future applications. In this paper we con-
sider systems at both zero and finite temperature. For
zero temperature systems, we demonstrate by explicit
calculation that the grand potential Ω = ε − µn = −P‖
where ε is the energy density, n is the number density,
P‖ is the pressure along the direction of the background
magnetic field, and µ is the chemical potential. For finite
temperature systems one also finds that Ω = −P‖.

We then show that, both with and without anoma-
lous magnetic moment, the resulting expressions satisfy
the canonical relation P⊥ = P‖ −MB, where P⊥ is the
pressure transverse to the magnetic field direction and
M = −∂Ω/∂B is the magnetization of the system. Eval-
uating the resulting expressions numerically, we demon-
strate that the magnitude of the pressure anisotropy is
larger when one takes into account the anomalous mag-
netic moment, however, as the temperature of the system
increases the pressure anisotropy decreases.

The structure of the paper is as follows. In Sec. II we
introduce the basic formulae necessary to calculate the
bulk properties of an ensemble of particles using quantum
field theory. In Sec. III we present the resulting formulae
for charged particles with and without anomalous mag-
netic moment. In Sec. IV we present the corresponding
formulae for uncharged particles. In Sec. V we compare
the numerical evaluation of the transverse and longitu-
dinal pressures. In Sec. VI we present our conclusions
and an outlook for the future. Finally, in Apps. A and B
we present a quantum field theory derivation of the nec-
essary components of the energy-momentum tensor for
charged and uncharged particles.

II. GENERALITIES

In the presence of fields, the energy-momentum tensor
can be decomposed into matter and field contributions

Tµν = Tµνmatter + Tµνfields . (1)

If there is only a background magnetic field B point-
ing along the z-direction, then the field contribution to
the energy-momentum tensor takes the form Tµνfields =

diag(B2/2, B2/2, B2/2,−B2/2).1 Since this contribu-
tion is well-understood, we do not spend more time dis-
cussing it in this paper. Instead, we focus on Tµνmatter for
a system composed of spin one-half fermions. In what
follows, the bulk properties of the system (energy den-
sity, transverse pressure, etc.) are understood to specify
the components of Tµνmatter in the local rest frame of the
system.

The matter contribution to the bulk properties of a
system can be expressed in terms of the one-particle dis-
tribution function f . We m consider a single particle
type with mass m and charge q and sum over the spin
polarizations. The results obtained can be straightfor-
wardly extended to a system consisting of multiple parti-
cle types. We present a derivation of the necessary com-
ponents of the energy-momentum tensor in Apps. A and
B. Summarizing the results, one finds that the local rest
frame number density, energy density, longitudinal pres-
sure, and transverse pressure can be expressed in terms
of the following integrals of the one-particle distribution
function

n =
∑
s

∫
k

f , (2)

ε = T 00 =
∑
s

∫
k

Ef , (3)

P‖ = T zz =
∑
s

∫
k

k2
z

E
f , (4)

P⊥ =
1

2
(T xx + T yy)

=
∑
s

∫
k

1

E

[
1

2

k2
⊥m̄(ν)√
m2 + k2

⊥
− sκBm̄(ν)

]
f , (5)

where we have singled out the z (parallel) direction for

future application, m̄2(ν) ≡ (
√
m2 + k2

⊥ − sκB)2, k2
⊥ is

the (discretized) transverse momentum,
∑
s represents

a sum over spin polarizations, κ represents the anoma-
lous magnetic moment, and

∫
k

is a properly normalized
(sum-)integration over momenta which we will define sep-
arately for charged and uncharged particles. For charged
particles with vanishing anomalous magnetic moment,
the expressions above were first derived in Ref. [8]. For
charged particles with finite anomalous magnetic mo-
ment the expressions for the number density and energy
density above were first derived in Ref. [11]. Here we
extend the treatment to include uncharged particles and
independently compute the transverse and longitudinal
pressures in the case of finite anomalous magnetic mo-
ment.

1 This is the form in Heaviside-Lorentz natural units. In Gaussian
natural units, when converting the magnetic field to GeV2, the
magnetic field is increased by a factor of

√
4π and the components

of the energy momentum-tensor are divided by a factor of 4π to
compensate, e.g. εB = B2/8π.
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We note that in order to include interactions, one
should use the interaction-corrected expression for the
particle’s dispersion relation. In the mean-field approxi-
mation, this amounts to including corrections to the bare
mass of the particle being considered, e.g. m→ m∗. The
resulting effective mass can depend on the chemical po-
tential and temperature. In what follows we indicate the
effective mass of the particle as m assuming that inter-
action corrections could be absorbed into the mass.2

III. CHARGED PARTICLES

In the presence of a uniform external magnetic field
pointing in the z-direction, the transverse momenta of
particles with an electric charge q are restricted to dis-
crete Landau levels with k2

⊥ = 2ν|q|B where ν ≥ 0 is an
integer [88] and one has∫

k

→ |q|B
(2π)2

∑
n

∫ ∞
−∞

dkz , (6)

where the sum over n represents a sum over the dis-
cretized orbital angular momentum of the particle in the
transverse plane. For spin one-half particles the orbital
angular momentum n is related to ν via [88]

ν = n+
1

2
− s

2

q

|q|
, (7)

where s = ±1 is the spin projection of the particle along
the direction of the magnetic field and q is the charge.3

An additional consequence of the quantization is that
the total energy of a charged particle becomes quantized
[90]

E =
√
k2
z + ((m2 + 2ν|q|B)1/2 − sκB)2 ,

=
√
k2
z + m̄2(ν) , (8)

where κ = κiµN with κi being the coupling strength for
the anomalous magnetic moment times the magneton,
and m̄2(ν) ≡ (

√
m2 + 2ν|q|B − sκB)2.

A. Zero temperature

At zero temperature the one-particle distribution func-
tion is given by a Heaviside theta function

f(E) = Θ(µ− E) , (9)

2 In the following, spherical symmetry is broken by a uniform mag-
netic field. Due to this, the effective mass could, in principle, also
depend on the angle of particle momentum relative to the mag-
netic field direction. We do not take this possibility into account
in this work.

3 The present calculation is valid only for spin one-half particles.
Spin zero, one and three-half particles, described respectively
by the Klein-Gordon, Proca and Rarita-Schwinger equations are
affected differently by the magnetic field [86, 89].

where µ is the chemical potential (Fermi energy).

1. Zero anomalous magnetic moment

We begin by considering the case with no anomalous
magnetic moment, i.e. κ = 0. In terms of the chemical
potential, µ, the maximum kz is defined via (8)

kz,F (ν) =
√
µ2 − 2ν|q|B −m2 . (10)

In addition, in the sum over the Landau levels one must
guarantee that the quantity under the square root in (10)
is positive. This requires m̄2 ≤ µ2 which results in

ν ≤ νmax =

⌊
µ2 −m2

2|q|B

⌋
, (11)

where bxc = max{n ∈ Z | n ≤ x} is the largest integer
less than or equal to x.

Using the above, we can write down an expression for
the number density using (2) and (6) to obtain [19, 25]

n =
|q|B
(2π)2

∑
s=±1

ν≤νmax∑
n=0

∫ ∞
−∞

dkz Θ(µ− E) ,

=
|q|B
2π2

∑
s=±1

ν≤νmax∑
n=0

∫ kz,F

0

dkz ,

=
|q|B
2π2

∑
s=±1

ν≤νmax∑
n=0

kz,F (ν) . (12)

Note that the upper limit on the n sum is set in terms
of the maximum Landau level and that ν depends on n
and s via Eq. (7). Note that the κ = 0 degeneracy factor
for a given Landau level is automatically taken into ac-
count by the dual sum over spin and angular momentum.

Similarly, one can evaluate the energy density to obtain
[19, 25]

ε =
|q|B
2π2

∑
s=±1

ν≤νmax∑
n=0

∫ kz,F

0

dkz
√
k2
z + m̄2(ν) ,

=
|q|B
4π2

∑
s=±1

ν≤νmax∑
n=0

[
µkz,F (ν)

+m̄2(ν) log

(
µ+ kz,F (ν)

m̄(ν)

)]
. (13)

Next, we consider the parallel pressure P‖ and obtain
[19]

P‖ =
|q|B
2π2

∑
s=±1

ν≤νmax∑
n=0

∫ kz,F

0

dkz
k2
z√

k2
z + m̄2(ν)

,

=
|q|B
4π2

∑
s=±1

ν≤νmax∑
n=0

[
µkz,F (ν)

−m̄2(ν) log

(
µ+ kz,F (ν)

m̄(ν)

)]
. (14)
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Note that using (12), (13), and (14) it is straightforward
to see that ε+ P‖ = µn and hence Ω = ε− µn = −P‖.

Finally, we consider the transverse pressure P⊥ and
obtain

P⊥ =
|q|B
4π2

∑
s=±1

ν≤νmax∑
n=0

2ν|q|B
∫ kz,F

0

dkz
1√

k2
z + m̄2(ν)

,

=
|q|2B2

2π2

∑
s=±1

ν≤νmax∑
n=0

ν log

(
µ+ kz,F (ν)

m̄(ν)

)
. (15)

Numerically the results for P‖ and P⊥ are different for
any value of B; however, they only become significantly
different for very large B. Using Eq. (11), for example,
we see that when B > (µ2 − m2)/2|q|, only the lowest
Landau level contributes to the sums and one obtains

lim
B→∞

P‖ =
|q|B
4π2

[
µkF −m2 log

(
µ+ kF
m

)]
, (16)

where kF ≡
√
µ2 −m2. The transverse pressure on the

other hand vanishes in this limit

lim
B→∞

P⊥ = 0 . (17)

A relationship between P‖ and P⊥ can be estab-
lished by evaluating the magnetization of the system
M ≡ −∂Ω/∂B = ∂P‖/∂B [91]. Performing the neces-

sary derivatives4 of the parallel pressure one finds M =
(P‖ − P⊥)/B. Rearranging gives P⊥ = P‖ −MB which
is the canonical relationship one finds in the literature
between the transverse and longitudinal pressures.

2. Nonzero anomalous magnetic moment

We now turn to the case of nonzero anomalous mag-
netic moment. In this case the expressions for kz,F and
νmax must be adjusted to

kz,F =
√
µ2 − ((m2 + 2ν|q|B)1/2 − sκB)2 , (18)

νmax =

⌊
(µ+ sκB)2 −m2

2|q|B

⌋
. (19)

With these two modifications Eqs. (12), (13), and (14)
are unchanged, but one should note that νmax now de-
pends on the spin alignment s.

4 Formally one should use left or right derivatives in the vicinity of
magnetic field magnitudes where νmax changes under infinitesi-
mal variation.

The transverse pressure, however, is modified when
there is a non-vanishing anomalous magnetic moment

P⊥ =
|q|B2

2π

∑
s=±1

ν≤νmax∑
n=0

[
|q|νm̄(ν)√
m2 + 2ν|q|B

− sκm̄(ν)

]

×
∫ kz,F

0

dkz
1√

k2
z + m̄2(ν)

.

=
|q|B2

2π

∑
s=±1

ν≤νmax∑
n=0

[
|q|νm̄(ν)√
m2 + 2ν|q|B

− sκm̄(ν)

]

× log

(
µ+ kz,F (ν)

m̄(ν)

)
. (20)

Evaluating the magnetization one obtains in this case
[25]5

M =
∂P‖

∂B
=
P‖

B
+
|q|B
2π2

∑
s=±1

ν≤νmax∑
n=0

×

[
sκm̄(ν)− |q|νm̄(ν)√

m2 + 2ν|q|B

]
log

(
µ+ kz,F (ν)

m̄(ν)

)
.

=
P‖

B
− P⊥

B
. (21)

So one finds once again P⊥ = P‖ −MB.

B. Finite temperature

We now turn our attention to the case of a finite tem-
perature ensemble of charged particles. In this case the
distribution function is

f±(E, T, µ) =
1

eβ(E∓µ) + 1
, (22)

where f+ describes particles, f− describes anti-particles,
and µ is the chemical potential.

1. Zero anomalous magnetic moment

We begin with the number density

n± =
|q|B
(2π)2

∑
s=±1

∞∑
n=0

∫ ∞
−∞

dkz f±(E, T, µ) , (23)

recalling that E =
√
k2
z + m̄2(ν) with m̄2(ν) = m2 +

2ν|q|B. Introducing the variable x = E∓µ we can rewrite

5 We note that there appear to be some typos in the expression
contained in Ref. [25].
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kz =
√

(x± µ)2 − m̄2(ν) and using dkz = (x ± µ)((x ±
µ)2 − m̄2(ν))−1/2dx one obtains

n± =
|q|B
2π2

∑
s=±1

∞∑
n=0

∫ ∞
m̄(ν)∓µ

dx
(x± µ)f±(x, T, 0)√

(x± µ)2 − m̄2(ν)
.

(24)
Next, we consider the energy density. Using the same
change of variables as before, one obtains

ε± =
|q|B
2π2

∑
s=±1

∞∑
n=0

∫ ∞
m̄(ν)∓µ

dx
(x± µ)2f±(x, T, 0)√

(x± µ)2 − m̄2(ν)
.

(25)
Similarly, one obtains for the longitudinal pressure

P‖,± =
|q|B
2π2

∑
s=±1

∞∑
n=0

×
∫ ∞
m̄(ν)∓µ

dx
√

(x± µ)2 − m̄2(ν)f±(x, T, 0) .

(26)

Finally, one obtains for the transverse pressure

P⊥,± =
|q|2B2

2π2

∑
s=±1

∞∑
n=0

ν

∫ ∞
m̄(ν)∓µ

dx
f±(x, T, 0)√

(x± µ)2 − m̄2(ν)
.

(27)
Next we consider the magnetization obtained from

M = ∂P‖/∂B. In order to do this we apply the fun-
damental theorem of calculus

d

dy

∫ b

a(y)

dx g(x, y, · · · ) =

−a′(y) g(a(y), y, · · · ) +

∫ b

a(y)

dx
dg(x, y, · · · )

dy
. (28)

Using this we can evaluate the derivative of the integral
appearing on the second line of (26)

∂

∂B

(∫ ∞
m(ν)∓µ

dx
√

(x± µ)2 − m̄2(ν)f±(x, T, 0)

)
=

−m̄(ν)
∂m̄(ν)

∂B

∫ ∞
m̄(ν)∓µ

dx
f±(x, T, 0)√

(x± µ)2 − m̄2(ν)
, (29)

where we have used the fact that in the case at hand the
first term on the right-hand side of (28) is zero. Using
m̄ ∂m̄/∂B = 1

2∂m̄
2/∂B = |q|ν we can obtain finally

M± =
∂P‖,±

∂B
=
P‖,±

B
− P⊥,±

B
, (30)

which is the canonical relation between the transverse
pressure, the longitudinal pressure, and the magnetiza-
tion. Rearranging we obtain P⊥,± = P‖,± −M±B be-
tween the perpendicular and parallel pressures at finite
temperature in the case that there is no anomalous mag-
netic moment.

2. Nonzero anomalous magnetic moment

As was the case at zero temperature, when including
the anomalous magnetic moment, the primary thing that
changes is the mass m̄2(ν) = (

√
m2 + 2ν|q|B − sκB)2.

With this change, the expressions for n±, ε±, and P‖,±
given in Eqs. (24), (25), and (26), respectively, are un-
changed. For the transverse pressure, however, one must
include additional terms

P⊥,± =
|q|B2

2π2

∑
s=±1

∞∑
n=0

m̄(ν)

[
|q|ν√

m2 + 2ν|q|B
− sκ

]

×
∫ ∞
m̄(ν)∓µ

dx
f±(x, T, 0)√

(x± µ)2 − m̄2(ν)
. (31)

In addition, when including the anomalous magnetic mo-
ment, the magnetization has a different form since

m̄(ν)
∂m̄(ν)

∂B
= −m̄(ν)

[
sκ− |q|ν√

m2 + 2ν|q|B

]
, (32)

which results in

M± =
P‖,±

B
+
|q|B
2π2

∑
s=±1

∞∑
n=0

m̄(ν)

[
sκ− |q|ν√

m2 + 2ν|q|B

]

×
∫ ∞
m̄(ν)∓µ

dx
f±(x, T, 0)√

(x± µ)2 − m̄2(ν)
.

(33)

Once again we see that P⊥,± = P‖,± −M±B.

IV. UNCHARGED PARTICLES

In the case that the particle being considered is un-
charged, then one does not obtain discrete Landau levels
and, as a result, ∫

k

→
∫

d3k

(2π)3
, (34)

in Eqs. (2)-(5). Prior to proceeding with the calculations,
we note that for uncharged particles one has

m̄2 =

(√
m2 + k2

⊥ − sκB
)2

. (35)

A. Finite temperature

We first consider the general case of uncharged par-
ticles at finite temperature including the effect of the
anomalous magnetic moment. The derivation necessary
is performed in App. B. Here we summarize the re-
sults and list the contributions from particles and anti-
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particles. The resulting expression for the number den-
sity is

n± =
1

2π2

∑
s=±1

∫ ∞
m−sκB

dE E f±(E, T, µ)

×
[
k̂ + sκB

(
arctan

(
sκB −m

k̂

)
+
π

2

)]
,

(36)

where k̂ ≡
√
E2 − (m− sκB)2. The energy density is

ε± =
1

2π2

∑
s=±1

∫ ∞
m−sκB

dE E2 f±(E, T, µ)

×
[
k̂ + sκB

(
arctan

(
sκB −m

k̂

)
+
π

2

)]
.

(37)

The longitudinal pressure is

P‖,± = =
1

24π2

∑
s=±1

∫ ∞
m−sκB

dE f±(E, T, µ)

×
{

2k̂(sκB −m)(2m+ sκB)

+E2

[
4k̂ + 6sκB

(
arctan

(
sκB −m

k̂

)
+
π

2

)]}
.

(38)

The transverse pressure is

P⊥,± =
1

6π2

∑
s=±1

∫ ∞
m−sκB

dE f±(E, T, µ)(k̂3 − 3sκBmk̂) .

(39)

Finally, we obtain the magnetization

M± =
κ

4π2

∑
s=±1

s

∫ ∞
m−sκB

dE f±(E, T, µ)

×
[
k̂(sκB +m) + E2

(
arctan

(
sκB −m

k̂

)
+
π

2

)]
.

(40)

We see that the magnetization vanishes when κ→ 0. In
addition, with these expressions one finds P⊥,± = P‖,±−
M±B.

B. Zero temperature

In the zero temperature limit there is only a particle
contribution since limT→0 f−(E, T, µ) = 0 for E ≥ 0 and
limT→0 f+(E, T, µ) = Θ(µ− E). Using the results listed
in the previous subsection one finds for the number den-
sity [25]

n =
1

4π2

∑
s=±1

[
kF
3

(
2k2
F − 3sκBm̂

)
−sκBµ2

(
arctan

(
m̂

kF

)
− π

2

)]
, (41)

where m̂ = m − sκB, kF =
√
µ2 − m̂2. Similarly the

energy density can be obtained in this limit [25]

ε =
1

48π2

∑
s=±1

[
kFµ(6µ2 − 3m̂2 − 4sκBm̂)

−8sκBµ3

(
arctan

(
m̂

kF

)
− π

2

)
−m̂3(3m̂+ 4sκB) log

(
kF + µ

m̂

)]
. (42)

And the longitudinal pressure can also be easily obtained

P‖ =
1

48π2

∑
s=±1

[
kFµ(2µ2 − 5m̂2 − 8sκBm̂)

−4sκBµ3

(
arctan

(
m̂

kF

)
− π

2

)
+m̂3(3m̂+ 4sκB) log

(
kF + µ

m̂

)]
. (43)

Using the derived expressions for n, ε, and P‖ one can
show that ε + P‖ = µn is satisfied explicitly. The trans-
verse pressure is

P⊥ =
1

48π2

∑
s=±1

[
kFµ

(
2µ2 − 5m̂2 − 12sκBm̂− 12(sκB)2

)
+3m̂2(m̂+ 2sκB)2 log

(
kF + µ

m̂

)]
. (44)

Finally, evaluating ∂P‖/∂B one obtains the magnetiza-

tion in this case [25]6

M =
κ

12π2

∑
s=±1

s

[
µkF (3sκB + m̂)

−µ3

(
arctan

(
m̂

kF

)
− π

2

)
−m̂2(3sκB + 2m̂) log

(
kF + µ

m̂

)]
. (45)

From this result we can once again verify that P⊥ =
P‖ −MB.

V. NUMERICAL RESULTS

In this section we present numerical evaluation of the
transverse and longitudinal pressures derived in the pre-
vious section. For the numerics that follow we will as-
sume (i) a gas of protons with a mass m = mp =
0.939 GeV, electric charge q = +e, and an anomalous
magnetic moment of κ = κpµN = 1.79 · e/(2mp) =

6 We note that there appear to be some typos in the expression
contained in Ref. [25].
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FIG. 1. (Color online) Transverse and longitudinal pressures
of a zero temperature gas of protons as a function of the num-
ber density. Results include the effect of the proton anoma-
lous magnetic momentum.
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FIG. 2. (Color online) Ratio of transverse and longitudinal
pressures of a zero temperature gas of protons as a function
of the number density. Results are shown with and without
the effect of the proton anomalous magnetic moment.

0.288633 GeV−1 in Heaviside-Lorentz natural units 7 and
(ii) a gas of neutrons with a mass m = mn = 0.939 GeV,
electric charge q = 0, and an anomalous magnetic mo-
mentum of κ = κnµN = −1.91 · e/(2mn) = −0.307983
GeV−1 [38]. In all cases shown we consider a magnetic

7 In Gaussian natural units one has µN = 0.0454871 GeV−1 which
is the Heaviside-Lorentz value divided by

√
4π. Note that if one

uses Gaussian natural units, the magnetic field in GeV2 is scaled
by a factor of

√
4π compared to the corresponding Heaviside-

Lorentz magnetic field. As a result the product of µNB is inde-
pendent of the convention chosen.
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FIG. 3. (Color online) Magnetization of a zero temperature
gas of protons times the background magnetic field. Result
includes the effect of the proton anomalous magnetic moment.

field magnitude of 5× 1018 Gauss.
In Fig. 1 we plot the transverse and longitudinal pres-

sures of a zero temperature gas of protons including the
effect of the anomalous magnetic moment. The cusps in
the curves correspond to threshold crossings for the max-
imum Landau level. As can be seen from this figure, the
transverse and longitudinal pressures are not equal. In
addition, one can see from the figure that at low densi-
ties the transverse pressure is negative at low densities
when there is a non-vanishing anomalous magnetic mo-
ment, while the longitudinal pressure remains positive at
all densities.

In Fig. 2 we show the ratio of the transverse to longi-
tudinal pressures for a zero temperature gas of protons
with and without the effect of the anomalous magnetic
moment. In both cases we once again see cusps indicative
of Landau level crossings and a vanishing transverse pres-
sure at low densities. From this figure we also see that
including the anomalous magnetic moment enhances the
pressure anisotropy.

In Fig. 3 we plot the background magnetic field times
the magnetization of a zero temperature gas of protons
obtained via Eq. (21). We note that there are two distinct
sets of cusps visible in Fig. 3. This is due to the fact that,
when the effect of the anomalous magnetic moment is
included, there are two different Landau level thresholds
for particles with spins aligned or anti-aligned with the
background magnetic field.

In Fig. 4 we plot the ratio of the transverse pressure to
the longitudinal pressure of a gas of protons as a function
of the net proton density (particle minus anti-particle) for
T = {0, 10, 30, 500}MeV. As can be seen from this figure,
as the temperature is increased, the cusps associated with
Landau level crossings are diminished and the level of the
pressure anisotropy also decreases. The highest tempera-
ture shown T = 500 MeV is on the order of those initially
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FIG. 4. (Color online) Ratio of transverse to longitudinal
pressure of a gas of protons as a function of the net proton den-
sity for four different temperatures T = {0, 10, 30, 500} MeV.
Results include the effect of the proton anomalous magnetic
moment.

generated in relativistic heavy ion collisions at CERN’s
Large Hadron Collider. As we see, at these high tem-
peratures the pressure anisotropy for charged particles is
quite small, . 1%. However, it should be noted that as
the system cools, the pressure anisotropy increases.

We consider next the case of neutral particles, focusing
on a specific example of a gas of neutrons. In Fig. 5 we
plot the ratio of the transverse to longitudinal pressures
of a gas of neutrons as a function of the neutron den-
sity with and without the effect of the neutron anoma-
lous magnetic moment. This figure shows that without
the anomalous magnetic moment the pressures are com-
pletely isotropic; however, when there is a non-vanishing
anomalous magnetic moment the pressure anisotropy can
be quite sizable. In Fig. 6 we show the ratio of the to-
tal particle plus anti-particle transverse to longitudinal
pressures. This figure shows that as the temperature of
the system increases, the amount of pressure anisotropy,
again, decreases.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have revisited the calculation of the
matter contribution to the energy-momentum tensor of
a Fermi gas of spin one-half particles subject to an ex-
ternal magnetic field. We considered both charged and
uncharged particles with and without the effect of the
anomalous magnetic moment. For zero temperature sys-
tems we demonstrated through explicit calculation that
the resulting energy density, number density, and longi-
tudinal pressure satisfy ε+P‖ = µn. Using the standard
definition of the grand potential Ω = ε − µn allowed us
to see that, in all cases investigated, the grand potential
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κn = 0
κn = -1.91

FIG. 5. (Color online) Ratio of transverse and longitudinal
pressures of zero temperature gas of neutrons as a function
of number density. Results are shown with and without the
effect of the neutron anomalous magnetic moment.
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FIG. 6. (Color online) Ratio of transverse and longitu-
dinal pressures of a gas of neutrons as a function of the
net neutron density for four different temperature T =
{0, 10, 30, 500} MeV. Results include the effect of the neutron
anomalous magnetic moment.

is related to the longitudinal pressure via Ω = −P‖ in
agreement with previous findings in the literature.

We point out that some of the results contained herein
are known in the literature. The results obtained for
the transverse pressure of charged and uncharged par-
ticles with non-zero anomalous magnetic moment are
new. In addition, we have presented in two appendices
an explicit derivation of the necessary statistical aver-
ages of the energy-momentum tensor, taking into account
the anomalous magnetic moment. Using the results ob-
tained, we demonstrated that the standard relationship,
P⊥ = P‖ −MB, between the transverse pressure, longi-
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tudinal pressure, and magnetization of the system holds
in all cases considered.

The resulting formulae for the bulk properties can be
applied to both zero temperature and finite temperature
systems and hence could be useful in understanding the
impact of high magnetic fields on the evolution of proto-
neutron stars, proto-quark stars, and the matter gener-
ated in relativistic heavy ion collisions. Applying the de-
rived formulae to a system of protons we found that there
can exist a sizable pressure anisotropy in the matter con-
tribution to the energy-momentum tensor which could
have a phenomenological impact. Additionally we found
that as the temperature of the system increases, the pres-
sure anisotropy decreases. This is primarily due to the
fact that increasing temperature allows higher Landau
levels to be partially occupied and hence reduces the dis-
crete effects one sees at zero temperature. For uncharged
particles Landau quantization does not play a role and,
instead, any pressure anisotropy exhibited comes from a
non-vanishing anomalous magnetic moment. Once again
as the temperature increases, the pressure anisotropy is
reduced. This effect is due to the fact that as the tem-
perature increases high momentum modes become highly
occupied which causes momentum terms in the energy to
dominate over those associated with the anomalous mag-
netic moment.

We note that although we presented results applica-
ble to the case of a single particle type, the resulting
formulae can be easily applied to the case of a system
composed of multiple particle types. Since the contribut-
ing particles may have different pressure anisotropies de-
pending on the sign and the magnitude of the anomalous
magnetic moment, one must take care to sum over all
particle types subject to the necessary conservation laws
prior to making quantitative statements about the phe-
nomenological impact of magnetic-field induced pressure
anisotropies on dense matter [92]. Finally, we emphasize
that although the numerical results shown in the results
section assumed a particular magnetic field amplitude,
the analytic results derived herein are completely gen-
eral and as such can be applied to assess the impact of
magnetic fields on the bulk properties of matter in a wide
variety of situations.
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Appendix A: Energy-momentum tensor

In this appendix we derive the energy-momentum ten-
sor including the effect of the anomalous magnetic mo-
ment. For this purpose we will use the method of metric
perturbations which allows one to most efficiently com-
pute a symmetric and gauge-invariant energy-momentum
tensor. The starting point is the following relation be-
tween the variation of the action and the energy momen-
tum tensor

δS =
1

2

∫
d4x
√
−g T µν δgµν , (A1)

where g ≡ det(gµν). We proceed in the standard way by
writing the action in terms of the Lagrangian density,
varying the metric, identifying the energy-momentum
tensor by comparison with (A1), and finally taking gµν →
ηµν where ηµν = diag(1,−1,−1,−1) is the Minkowski-
space metric.

We begin with the curved-space Lagrangian density
for a spin one-half fermion with charge q in the presence
of an external magnetic field including the effect of the
anomalous magnetic moment

L = ψ̄(i /D −m+
1

2
κσµνFµν)ψ − 1

4
FµνFµν , (A2)

where κ is the anomalous magnetic moment and, as

usual, /a ≡ γµaµ, Dµ ≡ 1
2 (
−→
∂µ −

←−
∂µ) + Γµ + iqAµ with

Γµ being the spin connection which is zero in flat space,
and σµν = i[γµ, γν ]/2. This allows us to write the co-
variantized action as S =

∫
d4x
√
−gL = Sm + Sf with

Sm =

∫
d4x
√
−g ψ̄

[
i

2
γαDβ(gαβ + gβα)−m

+
1

8
κσαβF γδ(gαγ + gγα)(gβδ + gδβ)

]
ψ , (A3)

Sf = −1

4

∫
d4x
√
−g FαβF γδgαγgβδ , (A4)

where we have split the action into matter and field con-
tributions and used the the fact that the metric tensor
is symmetric to explicitly symmetrize the matter contri-
bution. First, we evaluate δS making use of the identity
δ
√
−g = − 1

2

√
−g gµνδgµν . Note, importantly, that the

gamma matrices themselves depend on the metric and
therefore one needs to take into account their variation
under metric variation. The variation can be computed
with [93] or without [94] the use of vierbeins. Comput-
ing the variation, identifying T µν , and taking the limit
gµν → ηµν one finds the following expressions for the
matter and field contributions to the energy-momentum
tensor in flat space

T µνm = ψ̄

[
i

2
(γµDν + γνDµ)

+
1

2
κ (σµαF να + σναFµα)

]
ψ − ηµνLm , (A5)

T µνf = −FµαF να − ηµνLf , (A6)
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where Lm and Lf are the matter and field contributions
to the Lagrangian density corresponding to the first and
second terms in Eq. (A2), respectively.

Appendix B: Matter contribution to Tµν

In this appendix we derive expressions for the energy-
momentum tensor in a uniform background magnetic
field. We focus on the matter contribution since the field
contribution (A6) is standard. In the rest of this ap-
pendix we can therefore ignore the pure gauge field term
in the Lagrangian. In flat space the Lagrangian density
for a spin one-half fermion with charge q in the presence
of an external magnetic field including the effect of the
anomalous magnetic moment is

L = ψ̄(i /D −m+
1

2
κσµνFµν)ψ , (B1)

where κ is the anomalous magnetic moment and, as

usual, /a ≡ γµaµ, Dµ ≡ 1
2 (
−→
∂µ −

←−
∂µ) + iqAµ, and

σµν = i[γµ, γν ]/2. The equations of motion for ψ and
ψ̄ can be determined using

∂L
∂ψ̄
− ∂µ

(
∂L

∂(∂µψ̄)

)
= 0 ,

∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)
= 0 , (B2)

which result in

(i/∂ − q /A−m+
1

2
κσµνFµν)ψ = 0 , (B3)

i∂µψ̄γ
µ + ψ̄(q /A+m− 1

2
κσµνFµν) = 0 . (B4)

We note for application to the calculation of Tµν that
if we multiply the first equation from the left by ψ̄ we
obtain L = 0. This demonstrates that the matter La-
grangian density vanishes when evaluated with solutions
which obey the equations of motion. This allows us to
simplify Eq. (A5) to

T µν = ψ̄

[
i

2
(γµDν + γνDµ)

+
1

2
κ (σµαF να + σναFµα)

]
ψ , (B5)

To evaluate the necessary statistical average of T µν
we first need to solve the equations of motion in order
to determine the energy eigenvalues and spinors. The
spinors and energy eigenvalues are available in the liter-
ature [90, 95–97]; however, we review the derivation for
sake of completeness and then use the resulting spinors
to evaluate the statistical averages of T µν . We note that
the spinor solutions have been expressed in various dif-
ferent forms in the literature. We present a specific com-
pact form for the spinors, however, we have explicitly
verified that using the forms of the spinors presented in
Refs. [90, 95–97] yields the same final results.

As in the main body of the text, we choose the mag-
netic field to point along the z-direction. Choosing
the vector potential to be Aµ = (0,−By, 0, 0) we have
Fµν = B(δµxδνy − δνxδµy) and as a result

1

2
κσµνFµν = iκBγxγy = κB

(
σ3 0
0 σ3

)
≡ κBS3 . (B6)

Next we write Eq. (B3) in Hamiltonian form by searching
for static solutions of the form ψ = e−iEtΨ(x) which
results in the Dirac-Pauli equation [98]

(α · π + γ0m− κBγ0S3)Ψ = EΨ , (B7)

where α ≡ γ0γ and π ≡ −i∇− qA.
Here we are interested in the diagonal components of
T µν which for a constant magnetic field are given by

T 00 = ψ̄
(
iγ0D0

)
ψ , (B8)

T xx = ψ̄ (iγxDx − κBσxy)ψ , (B9)

T yy = ψ̄ (iγyDy − κBσxy)ψ , (B10)

T zz = ψ̄ (iγzDz)ψ . (B11)

1. Charged particles

We now search for the solution of the Dirac-Pauli equa-
tion for charged particles. Based on the structure of the
equation, we begin by making an ansatz for the bi-spinor

Ψ of the form Ψ(x) = eikxxeikzzu
(s)
n (y) with [90]

u(s)
n (y) =

 c1φν(y)
c2φν−1(y)
c3φν(y)
c4φν−1(y)

 , (B12)

where

ν = n+
1

2
− s

2

q

|q|
, (B13)

with n = 0, 1, 2, · · · .8 The constants ci above implicitly
depend on the spin alignment s = ±1. The functions φn
are given by

φn(ξ) = Nne
−ξ2/2Hn(ξ) , (B14)

where the variable ξ is

ξ =
√
|q|B

(
y +

kx
qB

)
, (B15)

n ≥ 0 is an integer, Hn is a Hermite polynomial, and
Nn = (qB)1/4(

√
π2nn!)−1/2 is a normalization constant

8 When ν = 0 there could be an issue with the Hermite functions
with index ν − 1 not being well defined; however, as we will
show below, in this case one finds that the coefficients vanish
identically.
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which ensures
∫∞
−∞ dy φ2

n(y) = 1. Inserting this ansatz
and simplifying the Dirac-Pauli equation, one obtains m− κB 0 kz kν

0 m+ κB kν −kz
kz kν −m+ κB 0
kν −kz 0 −m− κB

χ = Eχ ,

(B16)

where χ = (c1 c2 c3 c4)T and kν =
√

2|q|Bν. Evaluating
the determinant of the matrix on the left we obtain the
energy eigenvalues [90]

Es = ±
√
k2
z + (λ− sκB)2 , (B17)

where λ ≡
√
m2 + k2

ν . The choice of an overall pos-
itive sign for the energy eigenvalue above corresponds
to particle states and the negative sign to anti-particle
states. Without loss of generality we can focus on the
positive energy states and, in the end, extend the result
to include the necessary contribution from the negative
energy states.

The resulting positive energy eigenvectors are

χ(s) =
1√

2λαsβs

 sαsβs
−kzkν
sβskz
αskν

 , (B18)

where αs ≡ Es − κB + sλ and βs ≡ λ + sm. The
overall normalization of the state is fixed by requiring

that
∫∞
−∞ dy u

(r)†
n (x)u

(s)
m (x) = 2Esδ

rsδnm. The general
quantum state for positive energy states can now be con-
structed

ψ(x) =
∑
s=±1

∑∫
k

bs(k)u(s)(k)eik̃µx
µ

, (B19)

where bs(k) is a particle creation operator which obeys

{br(p), b†s(k)} = (2π)δrsδnmδ(pz − kz) , (B20)

k = (n, kz) with n = 0, 1, 2, · · · , k̃ = (Ek, kx, 0, kz), and∑∫
k

≡ |q|B
2π

∑
n

∫ ∞
−∞

dkz
2π

1√
2Ek

. (B21)

Note that the factor of
√

2Ek in the denominator above
is fixed by the spinor normalization used above.

a. Energy Density

To determine the energy density, we begin by evaluat-
ing the 00 component of the energy-momentum density
which is equivalent to the Hamiltonian density T 00 =
H = iψ†∂tψ. Integrating over space gives the Hamilto-

nian

H = i

∫
x

ψ†∂tψ

= i
∑
r,s

∫
x

∑∫
p

∑∫
k

[
b†r(p)u(r)†(p)eip̃µx

µ
]

×
[
bs(k)u(s)(k)(−iEk)e−ik̃µx

µ
]
, (B22)

where
∫
x
≡
∫
d3x. Using the orthonormality relations

listed above one finds

H =
|q|B
2π

∑
s=±1

∑
n

∫ ∞
−∞

dkz
2π

Ek b
†
s(k)bs(k) . (B23)

We can now compute the thermal average of the energy
using the density matrix ρ

ρ = e−βH+αN , (B24)

where is β = 1/T is the inverse temperature, α = βµ with
µ being the chemical potential, H is the Hamiltonian
operator, and

N =
|q|B
2π

∑
s=±1

∑
n

∫ ∞
−∞

dkz
2π

b†s(k)bs(k) , (B25)

is the number operator. The statistical average of the
Hamiltonian operator gives the energy density

ε ≡ 〈H〉 =
Tr[ρH]

Tr[ρ]
. (B26)

Using the Baker-Campbell-Hausdorff formula one ob-
tains

〈b†s(k)bs(k)〉 = 〈bs(k)b†s(k)〉e−β(E−µ) , (B27)

which, upon application of the anti-commutation rela-
tions for the creation operators, gives the Fermi-Dirac
distribution for particles

〈b†s(k)bs(k)〉 =
1

eβ(Ek−µ) + 1
= f+(Ek, T, µ) . (B28)

With this we obtain our final expression for the particle
contribution to the energy density

ε = 〈H〉 =
|q|B
2π

∑
s=±1

∑
n

∫ ∞
−∞

dkz
2π

Ekf+(Ek, T, µ) .

(B29)
Note that if one includes the anti-particle states, one
must normal order the Hamiltonian operator prior to per-
forming the statistical average.

b. Number Density

Based on the above discussion, the number density can
easily be seen to be given by

n = 〈N〉 =
|q|B
2π

∑
s=±1

∑
n

∫ ∞
−∞

dkz
2π

f+(Ek, T, µ) . (B30)
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c. Longitudinal Pressure

We now consider the longitudinal pressure which is
given by P‖ ≡ 〈

∫
x
T zz〉 with

T zz =
i

2

[
ψ̄γz∂zψ − (∂zψ̄)γzψ

]
. (B31)

Plugging in the explicit forms for the spinors we have∫
x

T zz =
i

2

∑
r,s

∫
x

∑∫
p

∑∫
k

{[
b†r(p)u(r)†(p)eip̃µx

µ
]

×γ0γz
[
bs(k)u(s)(k)(ikz)e−ik̃µx

µ
]

−
[
b†r(p)u(r)†(p)(−ipz)eip̃µx

µ
]

×γ0γz
[
bs(k)u(s)(k)e−ik̃µx

µ
]}
. (B32)

Evaluating the x and p (sum-)integrals, making use of the
orthonormality relations and then taking the statistical
average gives

P‖ = −1

2

|q|B
2π

∑
s=±1

∑
n

∫ ∞
−∞

dkz
2π

kz

Ek
〈b†s(k)bs(k)〉

×
∫ ∞
−∞

dy [u(s)†(k)γ0γzu(s)(k)] , (B33)

where we have used the fact that 〈b†r(k)bs(k)〉 vanishes
unless r = s. Next we need to evaluate the spinor con-
traction∫ ∞

−∞
dy u(s)†(k)γ0γzu(s)(k) = −2kz , (B34)

which follows from the explicit form of the spinors ob-
tained previously. Using this and rewriting the statis-
tical average of the number operator as a Fermi-Dirac
distribution, one obtains

P‖ =
|q|B
2π

∑
s=±1

∑
n

∫ ∞
−∞

dkz
2π

kzkz

Ek
f+(Ek, T, µ) . (B35)

d. Transverse Pressure

We finally turn our attention to the transverse pres-
sure. By rotational symmetry, P⊥ ≡ 〈

∫
x
T yy〉 =

〈
∫
x
T xx〉. Choosing the former, which is somewhat easier

to evaluate, we should integrate and statistically average

T yy =
i

2

[
ψ̄γy∂yψ − (∂yψ̄)γyψ

]
− κBψ̄σxyψ. (B36)

Plugging in the explicit forms for the spinors we have∫
x

T yy =
i

2

∑
r,s

∫
x

∑∫
p

∑∫
k

{[
b†r(p)u(r)†(p)eip̃µx

µ
]

×γ0γy
[
bs(k)∂yu(s)(k)e−ik̃µx

µ
]

−
[
b†r(p)∂yu(r)†(p)eip̃µx

µ
]

×γ0γy
[
bs(k)u(s)(k)e−ik̃µx

µ
]}

−κB
∑
r,s

∫
x

∑∫
p

∑∫
k

[
b†r(p)u(r)†(p)eip̃µx

µ
]

×γ0σxy
[
bs(k)u(s)(k)e−ik̃µx

µ
]
. (B37)

Evaluating the x and p (sum-)integrals making use of the
orthonormality relations and then taking the statistical
average gives

P⊥ =
|q|B
2π

∑
s=±1

∑
n

∫ ∞
−∞

dkz
2π

1

Ek
〈b†s(k)bs(k)〉

×
{
i

2

∫ ∞
−∞

dy

[
u(s)†(k)γ0γy∂yu(s)(k)

−∂yu(s)†(k)γ0γyu(s)(k)

]
−κB

∫ ∞
−∞

dy u(s)†(k)γ0σxyu(s)(k)

}
. (B38)

Integrating by parts one finds that the second term con-
tributes the same as the first. Using the explicit repre-
sentation of the spinors obtained above one finds∫ ∞

−∞
dy u(s)†(k)γ0γy∂yu(s)(k)

= −i(c2c3 − c1c4)

×
∫ ∞
−∞

dξ (φν−1∂ξφν − φν∂ξφν−1)

= −i
√

2|q|Bν(c2c3 − c1c4)

= −i2|q|Bν
(

1− sκB

λ

)
, (B39)

and∫ ∞
−∞

dy u(s)†(k)γ0σxyu(s)(k) = 2s(λ− sκB) . (B40)

With this we can write down our final expression for the
transverse pressure for charged particles

P⊥ =
|q|B2

2π2

∑
s=±1

∑
n

∫ ∞
−∞

dkz
1

Ek
f+(Ek, T, µ)

×

[
|q|νm̄(ν)√
m2 + 2ν|q|B

− sκm̄(ν)

]
. (B41)

where m̄(ν) ≡
√
m2 + 2ν|q|B − sκB.
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2. Uncharged Particles

We now consider the case of uncharged particles. This
case is different since the transverse momenta of the par-
ticles are not quantized. Starting from the Dirac-Pauli
equation (B7) we make an ansatz for the bi-spinor Ψ of
the form Ψ(x) = eik·xu with u = (c1 c2 c3 c4)T. This
results in the following matrix equation for u m− κB 0 kz k−

0 m+ κB k+ −kz
kz k− −m+ κB 0
k+ −kz 0 −m− κB

u = Eu ,

(B42)
where k± ≡ kx ± iky. Evaluating the determinant of the
matrix on the left we obtain the energy eigenvalues

Es = ±
√
k2
z + (λ− sκB)2 , (B43)

where now we have λ ≡
√
m2 + k2

⊥ with k2
⊥ = k2

x + k2
y.

Once again the choice of an overall positive sign corre-
sponds to particle states and negative sign to anti-particle
states. We focus on particle states since the result is
straightforward to extend to anti-particles.

The resulting positive energy solutions are

u(s) =
1√

2λαsβs

 sαsβs
−kzk+

sβskz
αsk+

 , (B44)

where as before αs ≡ Es−κB+sλ and βs ≡ λ+sm. The
overall normalization of the state is fixed in this case by
requiring that u(r)† u(s) = 2Esδ

rs. The general quantum
state for positive energy states can now be constructed

ψ(x) =
∑
s=±1

∫
k

1√
2Ek

bs(k)u(s)(k)eikµx
µ

, (B45)

where bs(k) is a particle creation operator and
∫
k

=

(2π)−3
∫
d3k. Once again the factor of

√
2Ek in the

denominator above is fixed by the spinor normalization
used above.

Following the same general procedures used in the
charged particle derivation one obtains the following re-
sult for the energy density

ε = 〈H〉 =
∑
s=±1

∫
k

Ekf+(Ek, T, µ) . (B46)

The result for the number density is

n = 〈N〉 =
∑
s=±1

∫
k

f+(Ek, T, µ) . (B47)

The result for the parallel pressure is

P‖ = 〈T zz〉 =
∑
s=±1

∫
k

k2
z

Ek
f+(Ek, T, µ) . (B48)

And, finally, the result for the transverse pressure P⊥ =
〈T xx〉 = 〈T yy〉 is

P⊥ =
∑
s=±1

∫
k

1

Ek

[
1

2

k2
⊥m̄√

m2 + k2
⊥
− sκBm̄

]
f+(Ek, T, µ) .

(B49)

where m̄ =
√
m2 + k2

⊥ − sκB.

In all of the expressions above, we can perform two of
the three integrations by making the following change of
variables

kx =
√
λ2 −m2 cosφ ,

ky =
√
λ2 −m2 sinφ ,

kz =
√
E2 − (λ− sκB)2 . (B50)

Evaluating the Jacobian one finds

d3k =
Eλ√

E2 − (λ− sκB)2
dE dλ dφ . (B51)

With this change of variables we obtain the number den-
sity

n =
1

2π2

∑
s=±1

∫ ∞
m−sκB

dE E f+(E, T, µ)

×
∫ E+sκB

m

dλ
λ√

E2 − (λ− sκB)2

=
1

2π2

∑
s=±1

∫ ∞
m−sκB

dE E f+(E, T, µ)

×
[
k̂ + sκB

(
arctan

(
sκB −m

k̂

)
+
π

2

)]
,

(B52)

where k̂ ≡
√
E2 − (m− sκB)2. The energy density is

given by

ε =
1

2π2

∑
s=±1

∫ ∞
m−sκB

dE E2 f+(E, T, µ)

×
∫ E+sκB

m

dλ
λ√

E2 − (λ− sκB)2

=
1

2π2

∑
s=±1

∫ ∞
m−sκB

dE E2 f+(E, T, µ)

×
[
k̂ + sκB

(
arctan

(
sκB −m

k̂

)
+
π

2

)]
.

(B53)
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For the parallel pressure we obtain

P‖ =
1

2π2

∑
s=±1

∫ ∞
m−sκB

dE f+(E, T, µ)

×
∫ E+sκB

m

dλλ
√
E2 − (λ2 − sκB)2 ,

=
1

24π2

∑
s=±1

∫ ∞
m−sκB

dE f+(E, T, µ)

×
{

2k̂(sκB −m)(2m+ sκB)

+E2

[
4k̂ + 6sκB

(
arctan

(
sκB −m

k̂

)
+
π

2

)]}
,

(B54)

and for the perpendicular pressure we obtain

P⊥ =
1

2π2

∑
s=±1

∫ ∞
m−sκB

dE f+(E, T, µ)

∫ E+sκB

m

dλ

× λ− sκB√
E2 − (λ2 − sκB)2

[
1

2
(λ2 −m2)− sκBλ

]
,

=
1

6π2

∑
s=±1

∫ ∞
m−sκB

dE f+(E, T, µ)(k̂3 − 3sκBmk̂) .

(B55)
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